TWI452255B - Optical encoder and the optical device thereof and the measuring method thereof - Google Patents

Optical encoder and the optical device thereof and the measuring method thereof Download PDF

Info

Publication number
TWI452255B
TWI452255B TW100103253A TW100103253A TWI452255B TW I452255 B TWI452255 B TW I452255B TW 100103253 A TW100103253 A TW 100103253A TW 100103253 A TW100103253 A TW 100103253A TW I452255 B TWI452255 B TW I452255B
Authority
TW
Taiwan
Prior art keywords
biconcave lens
displacements
rays
optical
light
Prior art date
Application number
TW100103253A
Other languages
Chinese (zh)
Other versions
TW201231912A (en
Inventor
范憶華
李應村
陳群育
廖薏琳
陳慶恩
Original Assignee
私立中原大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 私立中原大學 filed Critical 私立中原大學
Priority to TW100103253A priority Critical patent/TWI452255B/en
Publication of TW201231912A publication Critical patent/TW201231912A/en
Application granted granted Critical
Publication of TWI452255B publication Critical patent/TWI452255B/en

Links

Landscapes

  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

光學編碼器及其光學裝置與量測方法Optical encoder and optical device and measuring method thereof

本發明係有關於一種光學量測裝置,特別是有關於一種光學編碼器及其光學裝置與量測方法。The present invention relates to an optical measuring device, and more particularly to an optical encoder and an optical device and measuring method thereof.

現今光學尺所使用的量測方法大多為光柵光學編碼法,而依其所應用之物理特性的不同,大略可分為幾何式光學尺與繞射式光學尺。幾何式光學尺是採用疊紋或光柵投影方式進行位移量測,量測位移解析度最高只能到100nm,若要提高其量測解析度,必須將光柵密度提高,但當光柵條紋密度超過125條/mm時,由於光柵之繞射效應變得極為明顯,將會造成量測訊號之訊號雜訊比(signal-to-noise ratio;SNR)降低,進而影響量測之精準度,因此幾何式光學尺的光柵節距存在繞射的限制,使其無法進一步提高量測解析度;而繞射式光學尺由於繞射光對於光柵之角度公差特別靈敏,一來使得其光機系統的安裝甚為困難,二來其光柵相對於光學頭之間的微小機具運動 偏擺亦可能造成位移量測上的誤差,雖然透過電子的訊號補償及細分割技術可以大幅提高雷射光學尺的位移量測解析度達次奈米等級,但也因此犧牲了光學頭與光柵尺之間原本所具有的對位公差,相對地增加使用上的限制。Most of the measurement methods used in optical tapes today are grating optical coding methods, and depending on the physical characteristics of the applications, they can be roughly classified into geometric optical scales and diffraction optical scales. The geometric optical scale is measured by displacement using a double-stack or grating projection. The resolution of the displacement can only be up to 100 nm. To improve the measurement resolution, the grating density must be increased, but when the grating stripe density exceeds 125. When the strip/mm is used, the diffraction effect of the grating becomes extremely obvious, which will cause the signal-to-noise ratio (SNR) of the measurement signal to decrease, thereby affecting the accuracy of the measurement, so the geometry The grating pitch of the optical scale has a diffraction limitation, which makes it impossible to further improve the measurement resolution. The diffraction optical scale is particularly sensitive to the angular tolerance of the grating due to the diffracted light, so that the installation of the optical system is very Difficult, second, the movement of the grating relative to the micro-machine between the optical head The yaw may also cause errors in the displacement measurement. Although the signal compensation and fine segmentation techniques of the electrons can greatly improve the displacement measurement resolution of the laser optical scale to the nanometer level, the optical head and the grating are sacrificed. The alignment tolerance originally possessed between the rulers relatively increases the use limit.

有鑑於上述之缺點,本發明係提供一種光學編碼器及其光學裝置與量測方法,其可以改進習知量測位移解析度限制之問題。In view of the above disadvantages, the present invention provides an optical encoder and an optical device and measurement method thereof, which can improve the problem of the conventional measurement displacement resolution limitation.

本發明之目的之一,係藉由厚透鏡方程式推導出透鏡之曲率半徑與其放大倍率的關係,並透過調整透鏡之光線出射面的曲率半徑,以補償光線經透鏡放大後的差異,藉此設計一具有良好放大效能之光學透鏡。One of the objects of the present invention is to derive the relationship between the radius of curvature of the lens and its magnification by a thick lens equation, and to adjust the radius of curvature of the light exit surface of the lens to compensate for the difference in the magnification of the light through the lens. An optical lens with good amplification performance.

本發明之目的之一,係利用透鏡將光線放大的方式使得1奈米(nm)之原始位移可被透鏡擴大至光偵測器所能感測到的位移,並藉由光偵測器將光訊號轉換成電子訊號,進而判別其實際之移動距離。One of the objects of the present invention is to use a lens to amplify the light so that the original displacement of 1 nanometer (nm) can be enlarged by the lens to the displacement sensed by the photodetector, and the photodetector will The optical signal is converted into an electronic signal to determine its actual moving distance.

本發明揭露一種光學編碼器,其包含:一移動裝置,係具有複數個光柵用以將一光線細小化成複數個第一光線,其中此移動裝置可以改變此複數個第一光線從相對應的第一位置到相對應的第二位置以產生複數個第一位移;一光學裝置,係讓此複數個第一光線直接透射以放大成複數個第二光線,並且放大此複數個第一位移成複數個第二位移;以及一光感測器,係接收此複數個第二光線並且轉換成相對應的電子訊號,藉此量測此複數個第二位移以判別此複數個第一位移。The present invention discloses an optical encoder comprising: a moving device having a plurality of gratings for thinning a light into a plurality of first rays, wherein the moving device can change the plurality of first rays from the corresponding first a position to a corresponding second position to generate a plurality of first displacements; an optical device for directly transmitting the plurality of first rays to a plurality of second rays, and amplifying the plurality of first displacements into a plurality And a second sensor; and receiving the plurality of second rays and converting the corresponding second signals to the plurality of second signals to determine the plurality of second displacements to determine the plurality of first displacements.

前述之光學編碼器,其中所述之移動裝置係包含一單軸移動平台。The optical encoder described above, wherein the mobile device comprises a single axis mobile platform.

前述之光學編碼器,其中所述之光線包含由一雷射光源所產生。The optical encoder described above, wherein the light comprises a laser source.

前述之光學編碼器,其中所述之第一位移包含1奈米。The optical encoder of the foregoing, wherein the first displacement comprises 1 nanometer.

前述之光學編碼器,其中所述之光學裝置包含一雙凹透鏡,此雙凹透鏡的放大率與此雙凹透鏡的曲率半徑關係為: 其中ε為此雙凹透鏡的放大率,R1 、R2 則分別為此雙凹透鏡之光線入射面與出射面的曲率半徑,n為此雙凹透鏡的折射率,d為此雙凹透鏡的厚度。In the above optical encoder, the optical device comprises a double concave lens, and the magnification of the double concave lens is related to the radius of curvature of the double concave lens: Where ε is the magnification of the biconcave lens, and R 1 and R 2 are respectively the radii of curvature of the incident surface and the exit surface of the biconcave lens, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens.

前述之光學編碼器,其中所述之第二位移包含50奈米。The aforementioned optical encoder wherein the second displacement comprises 50 nm.

前述之光學編碼器,其中所述之光感測器的解析度包含50奈米。The optical encoder described above, wherein the resolution of the photosensor comprises 50 nm.

本發明亦揭露一種光學裝置,用於一光學編碼器以協助量測包括1奈米等級的位移,此光學裝置包含:一雙凹透鏡,讓複數個第一光線直接透射以放大成為複數個第二光線,並且放大此複數個第一光線從相對應的第一位置移動到相對應的第二位置所產生的複數個第一位移成為複數個第二位移;其中,此光學編碼器利用一光感測器接收此複數個第二光線並且轉換成相對應的電子訊號輸出,藉此量測此複數個第二位移以判別此複數個第一位移。The invention also discloses an optical device for an optical encoder to assist in measuring a displacement including a 1 nm class, the optical device comprising: a double concave lens for directly transmitting a plurality of first rays to be amplified into a plurality of second Light, and amplifying the plurality of first displacements generated by moving the plurality of first rays from the corresponding first position to the corresponding second position into a plurality of second displacements; wherein the optical encoder utilizes a light sensation The detector receives the plurality of second rays and converts them into corresponding electronic signal outputs, thereby measuring the plurality of second displacements to determine the plurality of first displacements.

前述之光學裝置,其中所述之複數個第一光線係由具有 複數個光柵的一移動裝置將一光線細小化所形成,此光線係由一雷射光源所產生。The optical device of the foregoing, wherein the plurality of first light rays are A moving device of a plurality of gratings is formed by miniaturizing a light generated by a laser source.

前述之光學裝置,其中所述之雙凹透鏡的放大率與此雙凹透鏡的曲率半徑關係為: 其中ε為此雙凹透鏡的放大率,R1 、R2 則分別為此雙凹透鏡之光線入射面與出射面的曲率半徑,n為此雙凹透鏡的折射率,d為此雙凹透鏡的厚度。The optical device described above, wherein the magnification of the biconcave lens is related to the radius of curvature of the biconcave lens: Where ε is the magnification of the biconcave lens, and R 1 and R 2 are respectively the radii of curvature of the incident surface and the exit surface of the biconcave lens, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens.

前述之光學裝置,其中所述之第一位移包含1奈米。The optical device of the foregoing, wherein the first displacement comprises 1 nanometer.

前述之光學裝置,其中所述之第二位移包含50奈米。The optical device described above, wherein the second displacement comprises 50 nm.

前述之光學裝置,其中所述之光感測器的解析度包含50奈米。The optical device described above, wherein the resolution of the photo sensor comprises 50 nm.

本發明更揭露一種光學編碼器量測方法,其包含:利用 具有複數個光柵的一移動裝置將一光線細小化成複數個第一光線,其中此移動裝置可以改變此複數個第一光線從相對應的第一位置到相對應的第二位置以產生複數個第一位移;利用一光學裝置讓此複數個第一光線直接透射以放大成複數個第二光線,並且放大此複數個第一位移成為複數個第二位移;以及利用一光感測器接收此複數個第二光線並且轉換成相對應的電子訊號輸出,藉此,量測此複數個第二位移以判別此複數個第一位移。The invention further discloses an optical encoder measuring method, which comprises: utilizing A moving device having a plurality of gratings reduces a light into a plurality of first rays, wherein the moving device can change the plurality of first rays from the corresponding first position to the corresponding second position to generate a plurality of a displacement; using an optical device to directly transmit the plurality of first rays to a plurality of second rays, and amplifying the plurality of first rays into a plurality of second displacements; and receiving the plurality of pixels by using a photo sensor The second light is converted into a corresponding electronic signal output, whereby the plurality of second displacements are measured to determine the plurality of first displacements.

前述之光學編碼器量測方法,其中所述之移動裝置包含一單軸移動平台。The optical encoder measuring method described above, wherein the mobile device comprises a single axis mobile platform.

前述之光學編碼器量測方法,其中所述之光線包含由一雷射光源所產生。The optical encoder measuring method described above, wherein the light is included by a laser light source.

前述之光學編碼器量測方法,其中所述之第一位移包含1奈米。The optical encoder measuring method described above, wherein the first displacement comprises 1 nm.

前述之光學編碼器量測方法,其中所述之光學裝置包含 一雙凹透鏡,而此雙凹透鏡的放大率與此雙凹透鏡的曲率半徑關係為: 其中ε為此雙凹透鏡的放大率,R1 、R2 分別為此雙凹透鏡之光線入射面與出射面的曲率半徑,n為此雙凹透鏡的折射率,d為此雙凹透鏡的厚度。The optical encoder measuring method described above, wherein the optical device comprises a double concave lens, and the magnification of the double concave lens and the radius of curvature of the double concave lens are: Where ε is the magnification of the biconcave lens, R 1 and R 2 are the radii of curvature of the incident surface and the exit surface of the biconcave lens, respectively, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens.

前述之光學編碼器量測方法,其中所述之第二位移包含50奈米。The optical encoder measuring method described above, wherein the second displacement comprises 50 nm.

前述之光學編碼器量測方法,其中所述之光感測器的解析度包含50奈米。The optical encoder measuring method described above, wherein the resolution of the photo sensor comprises 50 nm.

本發明將詳細描述一些實施例如下。然而,除了所揭露之實施例外,本發明亦可以廣泛地運用在其他之實施例施行。本發明之範圍並不受該些實施例之限定,乃以其後之申請專利範圍為準。而為提供更清楚之描述及使熟悉該項技藝者能理解 本發明之發明內容,圖示內各部分並沒有依照其相對之尺寸而繪圖,某些尺寸與其他相關尺度之比例會被突顯而顯得誇張,且不相關之細節部分亦未完全繪出,以求圖示之簡潔。The invention will be described in detail below with some embodiments. However, the invention may be applied to other embodiments in addition to the disclosed embodiments. The scope of the present invention is not limited by the embodiments, and the scope of the appended claims shall prevail. To provide a clearer description and to familiarize the artist with the understanding In the inventive content of the present invention, the parts in the drawings are not drawn according to their relative sizes, and the ratio of some sizes to other related scales is highlighted and exaggerated, and the irrelevant details are not completely drawn. Seek the simplicity of the illustration.

請參照第一圖,其為本發明之一較佳實施例100的概略方塊圖。一移動裝置120,具有複數個光柵用以將由一光源110所產生之一光線112細小化成複數個第一光線122,其中移動裝置120可以改變複數個第一光線122從相對應的第一位置(例如實線箭頭122)到相對應的第二位置(例如虛線箭頭122)以產生複數個第一位移△S。在本實施例中,光源110可以是一同調光源(例如:雷射二極體);移動裝置120可以是一單軸移動平台;而第一位移△S則包含最小1奈米的位移。此外,為了圖示簡潔及說明方便,第一、第二光線122、132僅繪出少許部分加以說明,並非用以限制本發明之實施。Please refer to the first figure, which is a schematic block diagram of a preferred embodiment 100 of the present invention. A mobile device 120 having a plurality of gratings for finening one of the light rays 112 generated by a light source 110 into a plurality of first light rays 122, wherein the mobile device 120 can change the plurality of first light rays 122 from the corresponding first position ( For example, solid arrow 122) to a corresponding second position (eg, dashed arrow 122) to produce a plurality of first displacements ΔS. In this embodiment, the light source 110 can be a coherent light source (eg, a laser diode); the mobile device 120 can be a single axis mobile platform; and the first displacement ΔS includes a displacement of at least 1 nanometer. In addition, for the sake of brevity and convenience of description, the first and second light rays 122, 132 are only illustrated in a few parts, and are not intended to limit the implementation of the present invention.

一光學裝置130,讓複數個一光線122直接透射以放大成複數個第二光線132,並放大複數個第一位移△S成複數個第二位移△S’。在本實施例中,第二位移△S’包含50奈米的位移;光學裝置130包含一雙凹透鏡,此雙凹透鏡的放大率與此雙凹透鏡的曲率半徑關係為: 其中ε為此雙凹透鏡的放大率,R1 、R2 則分別為此雙凹透鏡之光線入射面與出射面的曲率半徑,n為此雙凹透鏡的折射率,d為此雙凹透鏡的厚度(此部分將於稍後說明)。An optical device 130 directly transmits a plurality of light rays 122 to be enlarged into a plurality of second light rays 132, and amplifies the plurality of first displacements ΔS into a plurality of second displacements ΔS'. In this embodiment, the second displacement ΔS' includes a displacement of 50 nm; the optical device 130 includes a double concave lens, and the magnification of the biconcave lens is related to the radius of curvature of the biconcave lens: Where ε is the magnification of the biconcave lens, R 1 and R 2 are the radii of curvature of the incident surface and the exit surface of the biconcave lens, respectively, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens (this The section will be explained later).

一光感測器140,接收複數個第二光線132並將其轉換成相對應的電子訊號輸出,藉此量測複數個第二位移△S’以判別複數個第一位移△S實際距離。在本實施例中,光感測器140的解析度包含50奈米且其偵測長度為25公分。A photo sensor 140 receives a plurality of second rays 132 and converts them into corresponding electronic signal outputs, thereby measuring a plurality of second displacements ΔS' to determine a plurality of first displacements ΔS actual distances. In this embodiment, the resolution of the photo sensor 140 includes 50 nm and the detection length is 25 cm.

本實施例之工作原理為,先將單色雷射光進行細小化後當作光源,置於單軸移動平台上,並將經細小化之雷射光射入由光學透鏡所構成的光學裝置,利用透鏡可以將雷射光放大的特性,使得1奈米之原始位移可以被透鏡擴大至光偵測器所能感測到的位移(因現今之光偵測器尚無法感測到1nm的位移,因此若欲使光偵測器可以感測到1nm的位移,勢必要將1nm的位移放大至光偵測器所能感測到的大小),再藉由光偵測器將光訊號轉換成電子訊號,進而判別其實際之移動距離。The working principle of the embodiment is that the monochromatic laser light is firstly reduced and used as a light source, placed on a single-axis moving platform, and the fined laser light is incident on an optical device composed of optical lenses, and utilized. The lens can amplify the laser light so that the original displacement of 1 nm can be enlarged by the lens to the displacement that the photodetector can sense (because the current photodetector can not sense the displacement of 1 nm, therefore If the photodetector can sense the displacement of 1 nm, it is necessary to amplify the displacement of 1 nm to the size that can be sensed by the photodetector, and then convert the optical signal into an electronic signal by the photodetector. And then determine its actual moving distance.

請參照第二圖,其為本發明一較佳光學裝置130實施例示意圖,其中光學裝置130為一雙凹透鏡,在此僅以一光線做說明,並非用以限制本發明之實施。當經細小化的第一光線從第一位置S移動到第二位置S1 並產生第一位移△S時,其經雙凹透鏡放大成第二光線透射至影像端的位置亦相對從第一影像位置S’位移至第二影像位置S1 ’並產生第二位移△S’。Please refer to the second figure, which is a schematic diagram of an embodiment of a preferred optical device 130. The optical device 130 is a double concave lens, and only a light is used for illustration, which is not intended to limit the implementation of the present invention. When the thinned first light is moved from the first position S to the second position S 1 and the first displacement ΔS is generated, the position of the second light transmitted to the image end by the biconcave lens is also relative to the position from the first image position. S' is displaced to the second image position S 1 'and produces a second displacement ΔS'.

根據厚透鏡方程式,透鏡焦距與透鏡入射面及出射面曲率半徑的關係: 其中f為透鏡焦距,n為透鏡折射率,nm 為環境折射係數,R1 、R2 則分別為透鏡之光線入射面與出射面的曲率半徑,d為透鏡厚度。According to the thick lens equation, the relationship between the focal length of the lens and the radius of curvature of the incident and exit faces of the lens: Where f is the focal length of the lens, n is the refractive index of the lens, n m is the refractive index of the environment, R 1 and R 2 are the radii of curvature of the incident and exit faces of the light of the lens, respectively, and d is the thickness of the lens.

因此當第一光線從第一位置S移動到第二位置S1 時,其經透鏡放大成第二光線並透射至影像端的第一影像位置S’與第二影像位置S1 ’可表示成: 其中h’為透鏡至影像位置距離。而第二位移△S’可表示成: 因此透鏡放大率可表示成: 根據此方程式可知,透鏡放大率約與透鏡曲率成反比,如: 因此根據厚透鏡方程式的推導可知透鏡之曲率半徑與其放大倍率的關係,並且透過調整透鏡之光線出射面的曲率半徑,以補償光線經透鏡放大後的差異,並利用透鏡將光線放大的方式以使得小至1奈米等級之原始位移可被透鏡擴大至光 偵測器之解析度所能感測到的位移,藉此提高位移量測精準度。Therefore, when the first light from the first position to the second position S 1 S, a second lens which is amplified by the light and the image transmitted to the image position of a first end S 'and the second image position S 1' can be expressed as: versus Where h' is the distance from the lens to the image position. The second displacement ΔS' can be expressed as: Lens magnification Can be expressed as: According to this equation, the lens magnification is approximately inversely proportional to the curvature of the lens, such as: Therefore, according to the derivation of the thick lens equation, the relationship between the radius of curvature of the lens and its magnification can be known, and the radius of curvature of the light exit surface of the lens is adjusted to compensate for the difference in the magnification of the light through the lens, and the lens is used to enlarge the light so that the light is amplified. The original displacement as small as 1 nm can be extended by the lens to the displacement that can be sensed by the resolution of the photodetector, thereby improving the accuracy of the displacement measurement.

請先參照第五圖,其為本發明之一較佳實施例流程圖,並請同時參照第一、第二圖。在步驟502中,利用具有複數個光柵的移動裝置120將光線112細小化成複數個第一光線122,其中移動裝置120可改變複數個第一光線122從相對應的第一位置(例如實線箭頭122)到相對應的第二位置(例如虛線箭頭122)以產生複數個第一位移△S。其中,移動裝置120係包含一單軸移動平台;光線112係由雷射光源110所產生;且第一位移△S係包含最小1奈米的位移。Please refer to the fifth figure, which is a flow chart of a preferred embodiment of the present invention, and please refer to the first and second figures at the same time. In step 502, the light ray 112 is thinned into a plurality of first ray 122 by a mobile device 120 having a plurality of gratings, wherein the mobile device 120 can change the plurality of first ray 122 from the corresponding first position (eg, a solid arrow) 122) to a corresponding second position (eg, dashed arrow 122) to generate a plurality of first displacements ΔS. The mobile device 120 includes a single-axis mobile platform; the light 112 is generated by the laser light source 110; and the first displacement ΔS includes a displacement of at least 1 nanometer.

在步驟504中,利用光學裝置130讓複數個第一光線122直接透射以放大成複數個第二光線132,並且放大複數個第一位移△S成複數個第二位移△S’。其中,光學裝置130係包含一雙凹透鏡,此雙凹透鏡的放大率與曲率半徑關係為: 其中ε為此雙凹透鏡的放大率,R1 、R2 則分別為此雙凹透鏡之光線入射面與出射面的曲率半徑,n為此雙凹透鏡的折射 率,d為此雙凹透鏡的厚度。在本實施例中,第二位移△S’係包含50奈米,然不限定於此。In step 504, the plurality of first rays 122 are directly transmitted by the optical device 130 to be enlarged into a plurality of second rays 132, and the plurality of first displacements ΔS are amplified into a plurality of second displacements ΔS'. The optical device 130 includes a double concave lens, and the relationship between the magnification and the radius of curvature of the double concave lens is: Where ε is the magnification of the biconcave lens, and R 1 and R 2 are respectively the radii of curvature of the incident surface and the exit surface of the biconcave lens, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens. In the present embodiment, the second displacement ΔS' is 50 nm, but is not limited thereto.

在步驟506中,利用光感測器140接收複數個第二光線132並且將其轉換成相對應的電子訊號輸出,藉此量測複數個第二位移△S’以判別複數個第一位移△S。其中,光感測器140的解析度包含50奈米且其偵測長度包含25公分,然不限定於此。In step 506, the plurality of second light rays 132 are received by the light sensor 140 and converted into corresponding electronic signal outputs, thereby measuring a plurality of second displacements ΔS' to determine a plurality of first displacements Δ. S. The resolution of the photo sensor 140 includes 50 nm and the detection length thereof is 25 cm, but is not limited thereto.

請參照第三圖,其為本發明之一較佳實施例之光線折射模擬圖,其表示當光線移動時,其影像經過光學裝置130折射投影在光感測器140端的模擬示意圖。Please refer to the third figure, which is a light refraction simulation diagram of a preferred embodiment of the present invention, which shows a schematic diagram of the image projected through the optical device 130 at the end of the photosensor 140 when the light is moved.

請參照第四圖,其為本發明之較佳實施例之透鏡放大率與光線位置及影像位置的關係曲線圖。其中,曲線1表示雙凹透鏡之光線入射面與出射面的曲率半徑分別為-6.25mm與12.5mm;曲線2表示雙凹透鏡之光線入射面與出射面的曲率半徑分別為-6.25mm與6.25mm;以及曲線3表示雙凹透鏡之光線入射面與出射面的曲率半徑分別為-6.25mm與-12.5mm。並且,曲線1、2、3的影像距離分別為380mm、160mm 以及1260mm。因此,根據第四圖之關係曲線所示,例如:從光學設計軟體LightTools所模擬的曲線1可知其雙凹透鏡放大倍率為50倍,可使第一光線1奈米的第一位移被放大成第二光線50奈米的第二位移於光感測器表面,藉此量測第二位移即可判別第一位移,進而提高量測精準度。發明人在此要強調的是,上述之資料及數據係僅用以說明本發明,並非用以限制本發明之實施。Please refer to the fourth figure, which is a graph showing the relationship between the lens magnification and the position of the light and the position of the image according to a preferred embodiment of the present invention. Wherein, curve 1 indicates that the radius of curvature of the incident surface and the exit surface of the biconcave lens are respectively −6.25 mm and 12.5 mm; and curve 2 indicates that the radius of curvature of the incident surface and the exit surface of the biconcave lens are −6.25 mm and 6.25 mm, respectively; And curve 3 indicates that the radius of curvature of the incident surface and the exit surface of the biconcave lens are -6.25 mm and -12.5 mm, respectively. Moreover, the image distances of curves 1, 2, and 3 are 380 mm and 160 mm, respectively. And 1260mm. Therefore, according to the relationship curve of the fourth figure, for example, from the curve 1 simulated by the optical design software LightTools, the magnification of the biconcave lens is 50 times, and the first displacement of the first light 1 nm is enlarged to the first The second displacement of the two rays of 50 nm is on the surface of the photosensor, thereby measuring the second displacement to determine the first displacement, thereby improving the measurement accuracy. The inventors hereby emphasize that the above information and data are only used to illustrate the invention and are not intended to limit the implementation of the invention.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其他為脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍。The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; all other equivalent changes or modifications made in the spirit of the present invention should be included in the following. The scope of the patent application.

100‧‧‧本發明之一較佳實施例概略方塊圖100‧‧‧A schematic block diagram of a preferred embodiment of the present invention

110‧‧‧光源110‧‧‧Light source

112‧‧‧光線112‧‧‧Light

120‧‧‧移動裝置120‧‧‧Mobile devices

122‧‧‧第一光線122‧‧‧First light

130‧‧‧光學裝置130‧‧‧Optical device

132‧‧‧第二光線132‧‧‧second light

140‧‧‧光感測器140‧‧‧Light sensor

△S‧‧‧第一位移△S‧‧‧First displacement

△S’‧‧‧第二位移△S’‧‧‧second displacement

F‧‧‧焦點F‧‧‧ focus

f‧‧‧焦距F‧‧•focal length

d‧‧‧透鏡厚度d‧‧‧Lens thickness

S‧‧‧光線第一位置S‧‧‧Light first position

S1 ‧‧‧光線第二位置S 1 ‧‧‧Light second position

S’‧‧‧影像第一位置S’‧‧· image first position

S1 ’‧‧‧影像第二位置S 1 '‧‧‧ image second position

h‧‧‧光線至透鏡距離h‧‧‧Light to lens distance

h’‧‧‧透鏡至影像距離H’‧‧‧Lens to image distance

第一圖係本發明之一較佳實施例概略方塊圖;第二圖係本發明之一較佳光學裝置實施例示意圖;第三圖係本發明之一較佳實施例光線折射模擬示意圖;第四圖係本發明之較佳實施例透鏡放大率與光線位置及影像位置的關係曲線圖;以及第五圖係本發明之一較佳實施例流程圖。1 is a schematic block diagram of a preferred embodiment of the present invention; a second diagram is a schematic diagram of a preferred optical device embodiment of the present invention; and a third diagram is a schematic diagram of a light refraction simulation of a preferred embodiment of the present invention; 4 is a graph showing the relationship between lens magnification and light position and image position in a preferred embodiment of the present invention; and a fifth diagram showing a flow chart of a preferred embodiment of the present invention.

100‧‧‧本發明之一較佳實施例概略方塊圖100‧‧‧A schematic block diagram of a preferred embodiment of the present invention

110‧‧‧光源110‧‧‧Light source

112‧‧‧光線112‧‧‧Light

120‧‧‧移動裝置120‧‧‧Mobile devices

122‧‧‧第一光線122‧‧‧First light

130‧‧‧光學裝置130‧‧‧Optical device

132‧‧‧第二光線132‧‧‧second light

140‧‧‧光感測器140‧‧‧Light sensor

△S‧‧‧第一位移△S‧‧‧First displacement

△S’‧‧‧第二位移△S’‧‧‧second displacement

Claims (16)

一種光學編碼器,其包含:一移動裝置,具有複數個光柵用以將一雷射光源所產生之光線細小化成複數個第一光線,其中該移動裝置可以改變該複數個第一光線從相對應的第一位置到相對應的第二位置以產生複數個第一位移;一光學裝置,讓該複數個第一光線直接透射以放大成複數個第二光線,並放大該複數個第一位移成複數個第二位移,其中該光學裝置包含一雙凹透鏡,該雙凹透鏡的放大率與該雙凹透鏡的曲率半徑關係為: 其中ε為該雙凹透鏡的放大率,R1 、R2 分別為該雙凹透鏡之光線入射面與出射面的曲率半徑,n為該雙凹透鏡的折射率,d為該雙凹透鏡的厚度;以及一光感測器,接收該複數個第二光線並轉換成相對應的電子訊號輸出,藉此量測該複數個第二位移以判別該複數個第一位移。An optical encoder comprising: a moving device having a plurality of gratings for thinning a light generated by a laser light source into a plurality of first light rays, wherein the moving device can change the plurality of first light rays from corresponding a first position to a corresponding second position to generate a plurality of first displacements; an optical device that transmits the plurality of first rays directly to amplify the plurality of second rays, and amplifies the plurality of first displacements into a plurality of second displacements, wherein the optical device comprises a double concave lens, and the magnification of the biconcave lens is related to the radius of curvature of the biconcave lens: Where ε is the magnification of the biconcave lens, R 1 and R 2 are the radii of curvature of the incident surface and the exit surface of the biconcave lens, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens; The photo sensor receives the plurality of second rays and converts them into corresponding electronic signal outputs, thereby measuring the plurality of second displacements to determine the plurality of first displacements. 如申請專利範圍第1項所述之光學編碼器,其中所述之移動裝置包含一單軸移動平台。 The optical encoder of claim 1, wherein the mobile device comprises a single axis mobile platform. 如申請專利範圍第1項所述之光學編碼器,其中所述之第一位移包含1奈米。 The optical encoder of claim 1, wherein the first displacement comprises 1 nm. 如申請專利範圍第1項所述之光學編碼器,其中所述之第二位移包含50奈米。 The optical encoder of claim 1, wherein the second displacement comprises 50 nm. 如申請專利範圍第1項所述之光學編碼器,其中所述之光感測器的解析度包含50奈米。 The optical encoder of claim 1, wherein the resolution of the photosensor comprises 50 nm. 一種光學裝置,用於一光學編碼器以協助量測包括1奈米等級的位移,該光學裝置包含:一雙凹透鏡,讓一雷射光源所產生之複數個第一光線直接透射以放大成為複數個第二光線,並且放大該複數個第一光線從相對應的第一位置移動到相對應的第二位置所產生的複數個第一位移成為複數個第二位移;其中,該光學編碼器利用一光感測器接收該複數個第二光線並且轉換成相對應的電子訊號輸出,藉此量測該複數個第二位移以判別該複數個第一位移。 An optical device for an optical encoder to assist in measuring displacement including a 1 nm class, the optical device comprising: a double concave lens for direct transmission of a plurality of first rays generated by a laser source to be amplified into a plurality a second light ray, and amplifying the plurality of first displacements generated by moving the plurality of first light rays from the corresponding first position to the corresponding second position into a plurality of second displacements; wherein the optical encoder utilizes A photo sensor receives the plurality of second rays and converts them into corresponding electronic signal outputs, thereby measuring the plurality of second displacements to discriminate the plurality of first displacements. 如申請專利範圍第6項所述之光學裝置,其中所述之複數個第一光線係由該光學編碼器具有複數個光柵的一移動裝置將一光 線細小化所形成。 The optical device of claim 6, wherein the plurality of first light rays are a light device having a plurality of gratings by the optical encoder The line is formed by miniaturization. 如申請專利範圍第9項所述之光學裝置,其中所述之雙凹透鏡的放大率與該雙凹透鏡的曲率半徑關係為: 其中ε為該雙凹透鏡的放大率,R1 、R2 分別為該雙凹透鏡之光線入射面與出射面的曲率半徑,n為該雙凹透鏡的折射率,d為該雙凹透鏡的厚度。The optical device of claim 9, wherein the magnification of the biconcave lens and the radius of curvature of the biconcave lens are: Where ε is the magnification of the biconcave lens, R 1 and R 2 are the radii of curvature of the incident surface and the exit surface of the biconcave lens, n is the refractive index of the biconcave lens, and d is the thickness of the biconcave lens. 如申請專利範圍第6項所述之光學裝置,其中所述之第一位移包含1奈米。 The optical device of claim 6, wherein the first displacement comprises 1 nanometer. 如申請專利範圍第6項所述之光學裝置,其中所述之第二位移包含50奈米。 The optical device of claim 6, wherein the second displacement comprises 50 nm. 如申請專利範圍第6項所述之光學裝置,其中所述之光感測器的解析度包含50奈米。 The optical device of claim 6, wherein the resolution of the photosensor comprises 50 nm. 一種光學編碼器量測方法,其包含:利用具有複數個光柵的一移動裝置將一雷射光源所產生之光線細小化成複數個第一光線,其中該移動裝置可以改變該 複數個第一光線從相對應的第一位置到相對應的第二位置以產生複數個第一位移;利用一光學裝置讓該複數個第一光線直接透射以放大成為複數個第二光線,並且放大該複數個第一位移成為複數個第二位移,其中該光學裝置包含一雙凹透鏡,該雙凹透鏡的放大率與該雙凹透鏡的曲率半徑關係為: 其中ε為該雙凹透鏡的放大率,R1 、R2 分別為該雙凹透鏡之光線入射面與出射面的曲率半徑,n為該雙凹透鏡的折射率,d為該雙凹透鏡的厚度;以及利用一光感測器接收該複數個第二光線並且轉換成相對應的電子訊號,藉此量測該複數個第二位移以判別該複數個第一位移。An optical encoder measuring method includes: using a moving device having a plurality of gratings to reduce light generated by a laser light source into a plurality of first light rays, wherein the moving device can change the plurality of first light rays Corresponding first position to corresponding second position to generate a plurality of first displacements; using an optical device to directly transmit the plurality of first rays to amplify into a plurality of second rays, and amplifying the plurality of first rays The displacement becomes a plurality of second displacements, wherein the optical device comprises a double concave lens, and the magnification of the biconcave lens is related to the radius of curvature of the biconcave lens: Where ε is the magnification of the biconcave lens, R 1 and R 2 are the radii of curvature of the incident surface and the exit surface of the biconcave lens, n is the refractive index of the biconcave lens, d is the thickness of the biconcave lens; A photo sensor receives the plurality of second rays and converts them into corresponding electronic signals, thereby measuring the plurality of second displacements to discriminate the plurality of first displacements. 如申請專利範圍第12項所述之光學編碼器量測方法,其中所述之移動裝置包含一單軸移動平台。 The optical encoder measuring method of claim 12, wherein the mobile device comprises a single axis mobile platform. 如申請專利範圍第12項所述之光學編碼器量測方法,其中所述之第一位移包含1奈米。 The optical encoder measuring method of claim 12, wherein the first displacement comprises 1 nm. 如申請專利範圍第12項所述之光學編碼器量測方法,其中所述之第二位移包含50奈米。 The optical encoder measuring method of claim 12, wherein the second displacement comprises 50 nm. 如申請專利範圍第12項所述之光學編碼器量測方法,其中所述之光感測器的解析度包含50奈米。 The optical encoder measuring method according to claim 12, wherein the resolution of the photosensor comprises 50 nm.
TW100103253A 2011-01-28 2011-01-28 Optical encoder and the optical device thereof and the measuring method thereof TWI452255B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100103253A TWI452255B (en) 2011-01-28 2011-01-28 Optical encoder and the optical device thereof and the measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100103253A TWI452255B (en) 2011-01-28 2011-01-28 Optical encoder and the optical device thereof and the measuring method thereof

Publications (2)

Publication Number Publication Date
TW201231912A TW201231912A (en) 2012-08-01
TWI452255B true TWI452255B (en) 2014-09-11

Family

ID=47069432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103253A TWI452255B (en) 2011-01-28 2011-01-28 Optical encoder and the optical device thereof and the measuring method thereof

Country Status (1)

Country Link
TW (1) TWI452255B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912322A (en) * 1986-08-15 1990-03-27 Mitutoyo Mfg. Co., Ltd. Optical type displacement detecting device
TW201030322A (en) * 2009-02-06 2010-08-16 Nikon Corp Encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912322A (en) * 1986-08-15 1990-03-27 Mitutoyo Mfg. Co., Ltd. Optical type displacement detecting device
TW201030322A (en) * 2009-02-06 2010-08-16 Nikon Corp Encoder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Yuan, B., Yan, H. M., & Cao, X. Q. (2009). A new subdivision method for grating-based displacement sensor using imaging array. Optics and Lasers in Engineering, 47(1), 90-95. *
Zhang, D., Luo, M., & Arola, D. D. (2006). Displacement/strain measurements using an optical microscope and digital image correlation. Optical Engineering, 45(3), 033605-033605 *

Also Published As

Publication number Publication date
TW201231912A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US10624720B1 (en) Imaging apparatus with temperature compensation
CN101403650B (en) Differential confocal combination ultra-long focal length measuring method and apparatus
JP2913984B2 (en) Tilt angle measuring device
CN100504287C (en) Surface plasma resonance measurement mechanism and method thereof
CN108871278B (en) Liquid surface reflection type double-shaft photoelectric level meter and method
CN101187783A (en) Focusing and leveling measuring system and its measuring method
CN102519510A (en) Calibration device and calibration method of position sensitive sensor
CN101788267B (en) Optical micrometric displacement sensor based on two sets of sub-wavelength gratings
JP2007173614A (en) Micro fabricating device
CN102012215B (en) Digital image-based noncontact optical strain measurement method and strain gauge
CN101201548B (en) Measuring system and method for focusing and leveling
JP4422206B2 (en) Ranging device and ranging method
US7327474B2 (en) Method and apparatus for measuring displacement of an object
TWI452255B (en) Optical encoder and the optical device thereof and the measuring method thereof
JP2007010556A (en) Optical range finding sensor, and equipment provided therewith
JP5264847B2 (en) Ranging device, lens system, and imaging device
CN103994722B (en) Grating accurate measurement structure based on self-focusing principle and measuring method
Saito et al. A single lens micro-angle sensor
Lim et al. A novel one-body dual laser profile based vibration compensation in 3D scanning
Cheng et al. A 3-DoF motion error measurement system based on film interferometry
TWI357970B (en) Optical measuring system
CN112986961A (en) Transmitting module, electronic equipment and distance measuring method
JP2011043438A (en) Reflective photoelectric encoder
CN101285735A (en) Hartmann sensor for expanding dynamic range by separating integral inclination of wave surface
Matsak et al. A method of measuring the diameter of a wide-aperture beam of laser radiation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees