TWI449087B - A method for growing a silicon carbide film on a (100) silicon substrate - Google Patents

A method for growing a silicon carbide film on a (100) silicon substrate Download PDF

Info

Publication number
TWI449087B
TWI449087B TW097137650A TW97137650A TWI449087B TW I449087 B TWI449087 B TW I449087B TW 097137650 A TW097137650 A TW 097137650A TW 97137650 A TW97137650 A TW 97137650A TW I449087 B TWI449087 B TW I449087B
Authority
TW
Taiwan
Prior art keywords
carbide film
tantalum
tantalum carbide
temperature
growing
Prior art date
Application number
TW097137650A
Other languages
English (en)
Other versions
TW201015621A (en
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW097137650A priority Critical patent/TWI449087B/zh
Priority to US12/585,811 priority patent/US7763529B2/en
Publication of TW201015621A publication Critical patent/TW201015621A/zh
Application granted granted Critical
Publication of TWI449087B publication Critical patent/TWI449087B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/931Silicon carbide semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

一種在(100)矽基板上成長碳化矽薄膜的方法
本創作係藉由射頻感應加熱化學氣相沉積法,利用連續升溫四階段製程,於P型(100)矽基板上異質成長碳化矽薄膜,此一製程方法適用於相關產業生產高品質碳化矽薄膜。
碳化矽具有高熔點、寬能帶間隙、優異的崩潰電場強度、高熱傳導係數、高電子飽和遷移速度及化學穩定度,因此碳化矽比矽更適合用來製作高溫和高功率元件。然而因為碳化矽與矽兩者晶格常數的不匹配及熱膨脹係數的差異,想要在矽基板上沉積高品質碳化矽薄膜並不容易,目前一般於矽基板上成長碳化矽薄膜,都使用射頻感應加熱化學氣相沉積法,於矽基板上成長碳化矽薄膜為三階段(參考文獻:S. Nishino, J. A. Powell and H. A. Hill,Appl. phys. Lett .1988 ,42 , 460; J. P. Li and A .J. Steckl,J. Electrochem. Soc .1995 ,142 , 634),各階段如下所述:(1)表面清潔:將經過化學前處理的矽基板,置入真空腔體中,通入氫氣,將溫度升至適當的反應溫度,維持一段反應時間,以去除矽基板表面的原生氧化層。
(2)碳化層成長:在階段一結束後,將溫度降至室溫,接著通入載流氣體氫氣及含碳源的反應氣體,並將溫度升至反應溫度,進行第二階段製程,在矽基板表面形成一碳化層,作為碳化矽與矽基板的緩衝層。
(3)碳化矽薄膜成長:在階段二結束後,將溫度降至室溫,接著再次升溫至反應溫度,並通入載流氣體氫氣及含矽源和碳源的反應氣體,進行第三階段的碳化矽薄膜成長。
上述之製程雖然能成功於矽基板上沉積碳化薄膜,但是仍有下述之問題:(1)碳化矽與矽之異質介面容易出現空洞。
(2)一般之三階段製程法需要重複升降溫,故在各階段之間需花費時間來等待降溫,如此一來會使得製程時間較為漫長,造成人力與時間的耗費,在產業應用上較為不便。
有鑑於上述之問題,本創作提出一種新的成長碳化矽薄膜製程,藉由射頻感應加熱化學氣相沉積法,利用連續升溫四階段製程異質成長碳化矽薄膜於P型(100)矽基板,此一製程步驟為:(1)表面清潔:通入氫氣,去除矽基板表面之原生氧化層。
(2)碳化層成長:在階段一結束後,通入含碳源氣體,並立即升溫至反應溫度,維持一段時間。
(3)碳化層退火:在階段二反應時間結束後,關閉含碳源氣體,於氫氣氣氛下再次升溫至所需之溫度,並維持一段反應時間。
(4)碳化矽薄膜成長:在階段三結束後,同時通入含碳源及 矽源之反應氣體,並升高溫度至所需之溫度,來沉積碳化矽薄膜。
此四階段連續升溫製程,免去了一般製程各階段間的重複升降溫步驟及等待降溫所需時間,使得各階段製程控制更為精準,大幅縮短了製程時間,新增之碳化層退火步驟能有效避免碳化矽與矽基板介面間產生空洞,並提供後續碳化矽薄膜成長在一均質表面,明顯提高碳化矽薄膜品質,使製程有更佳的穩定性,在日後相關產業的發展上更為有利。
本創作藉由射頻感應加熱化學氣相沉積法,利用連續升溫四階段製程,於P型(100)矽基板上異質成長碳化矽薄膜,具體實例製程步驟詳述如下:(1)表面清潔:將經過化學前處理之P型矽(100)基板,置入真空腔體中,抽氣至1.7×10-2 torr,通入氫氣,工作壓力為10 torr,利用射頻感應加熱,將溫度升到900℃,升溫速率為11℃/秒,並維持5分鐘,以去除矽基板表面的原生氧化層。
(2)碳化層成長:在步驟一結束後,通入含碳源氣體(本創作使用純度99.95%的丙烷)10sccm,工作壓力調整為2 torr,並升溫至1250℃,碳化時間維持90秒。
(3)碳化層退火:在完成碳化層成長後,立即將丙烷關閉, 並升溫至1350℃,工作壓力維持在2 torr,在氫氣氣氛下進行碳化層退火,時間為5分鐘。
(4)碳化矽薄膜成長:在完成碳化層退火後,立即分別通入含碳源及矽源氣體(本創作使用純度99.95%的丙烷及純度5%稀釋於氫氣中的矽甲烷)3sccm和20sccm,並升溫至1420℃,工作壓力調整為0.8 torr,進行碳化矽薄膜成長,時間為30分鐘。
圖一(a)(b)分別為一般三階段製程示意圖及本創作之四階段製程示意圖。比較圖一(a)和圖一(b),可看出本創作免去重複升降溫的步驟,簡化製程操作步驟,有效縮短製程時間。接著在碳化層成長後,新增碳化層退火步驟,此一步驟將能有效的提供一「碳化矽」緩衝層而非「碳」緩衝層,使得後續碳化矽薄膜成長為均質成長而非異質成長,提高碳化矽薄膜的結晶性。圖二(a)(b)分別為藉由三階段製程和本創作之四階段製程所成長碳化矽薄膜的SEM剖面圖,由圖中可知,和三階段製程相比,本創作之四階段製程能有效的避免碳化矽和矽基板介面孔洞的產生,圖三為本創作碳化矽薄膜之XRD示意圖,由圖中可明顯看出2θ=41.5∘之碳化矽(200)特徵峰,其半高寬為0.24∘,除此之外,並無其他碳化矽晶面之特徵峰出現,由此可知本創作之碳化矽薄膜具有高指向性甚至近似於單晶的特性,圖四為本創作碳化矽薄膜剖面之電子繞射示意圖,由繞射點之排列可知本創作之碳化矽薄膜具有單晶特性,此一 結果和圖三相同。綜合以上所述,本創作之四階段連續升溫製程,可成功在P型(100)矽基板上成長高品質碳化矽薄膜,並可免去傳統三階段製程之重複升降溫步驟及製程時間過於冗長的缺點,節省產業發展上的成本,而且本創作之碳化矽薄膜具有優異的結晶性,及無孔洞的介面層,能提供優良特性的碳化矽薄膜,對於未來碳化矽電子元件相關產業的發展,為一大助益。本創作之産生能更進步、更實用、更符合使用者之所需,確已符合發明專利申請之要件,爰依法提出專利申請,尚請 貴審查委員撥冗細審,並盼早日准予專利以勵創作,實感德便。惟以上所述者,僅為本創作之較佳實施例而已,當不能以此限定本創作實施之範圍;故,凡依本創作申請專利範圍及創作說明書內容所作之簡單的等效變化與修飾,皆應仍屬本創作專利涵蓋之範圍內。
圖一、係製程示意圖(a)一般三階段製程(b)本創作之四階段連續升溫製程。
圖二、係碳化矽薄膜之SEM剖面圖(a)一般三階段製程成長(b)本創作之四階段連續升溫製程成長。
圖三、係本創作碳化矽薄膜之XRD示意圖。
圖四、係本創作碳化矽薄膜剖面之電子繞射圖。

Claims (3)

  1. 一種在(100)矽基板上成長碳化矽薄膜的方法,包含表面清潔、碳化層成長、碳化層退火以及碳化矽薄膜成長等四個階段,其中,該表面清潔的溫度在850~950℃,該碳化層成長的溫度在1200~1300℃,該碳化層退火的溫度在1300~1400℃,以及該碳化矽薄膜成長的溫度在1400~1450℃,且上述四個階段是連續升溫製程,在四個階段轉換時不降溫。
  2. 如申請專利範圍第1項之碳化矽薄膜成長方法,其中碳化矽是立方晶型碳化矽(3C-SiC)。
  3. 如申請專利範圍第1項之碳化矽薄膜成長方法,其反應氣體包括氫氣、含碳氫分子的氣體以及含矽氫分子的氣體。
TW097137650A 2008-10-01 2008-10-01 A method for growing a silicon carbide film on a (100) silicon substrate TWI449087B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097137650A TWI449087B (zh) 2008-10-01 2008-10-01 A method for growing a silicon carbide film on a (100) silicon substrate
US12/585,811 US7763529B2 (en) 2008-10-01 2009-09-25 Method of fabricating silicon carbide (SiC) layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097137650A TWI449087B (zh) 2008-10-01 2008-10-01 A method for growing a silicon carbide film on a (100) silicon substrate

Publications (2)

Publication Number Publication Date
TW201015621A TW201015621A (en) 2010-04-16
TWI449087B true TWI449087B (zh) 2014-08-11

Family

ID=42057904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097137650A TWI449087B (zh) 2008-10-01 2008-10-01 A method for growing a silicon carbide film on a (100) silicon substrate

Country Status (2)

Country Link
US (1) US7763529B2 (zh)
TW (1) TWI449087B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI449087B (zh) * 2008-10-01 2014-08-11 Nat Univ Tsing Hua A method for growing a silicon carbide film on a (100) silicon substrate
US9895321B2 (en) 2010-04-23 2018-02-20 Aktiv-Dry Llc Vaccines, methods of administering vaccines, methods and products for treating and/or delaying onset of dysplastic lesions, and wafers for oral administration
JP5720140B2 (ja) * 2010-08-13 2015-05-20 セイコーエプソン株式会社 立方晶炭化ケイ素膜の製造方法及び立方晶炭化ケイ素膜付き基板の製造方法
CN114068308B (zh) * 2022-01-17 2022-04-22 季华实验室 一种用于硅基mosfet器件的衬底及其制备方法
CN116525420B (zh) * 2023-06-09 2023-12-19 中电科先进材料技术创新有限公司 在硅片表面生长3C-SiC薄层的方法及3C-SiC层

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534525B2 (ja) * 1987-12-19 1996-09-18 富士通株式会社 β−炭化シリコン層の製造方法
US5563428A (en) * 1995-01-30 1996-10-08 Ek; Bruce A. Layered structure of a substrate, a dielectric layer and a single crystal layer
JP3384242B2 (ja) * 1996-03-29 2003-03-10 株式会社豊田中央研究所 炭化珪素単結晶の製造方法
US6916511B2 (en) * 2002-10-24 2005-07-12 Hewlett-Packard Development Company, L.P. Method of hardening a nano-imprinting stamp
US8097547B2 (en) * 2004-11-29 2012-01-17 Saint-Gobain Centre De Recherches Et D'etudes Europeen Sintered refactory material based on silicon carbide with a silicon nitride binder
US8216367B2 (en) * 2005-06-14 2012-07-10 Showa Denko K.K. Method for production of silicon carbide layer, gallium nitride semiconductor device and silicon substrate
US20070235450A1 (en) * 2006-03-30 2007-10-11 Advanced Composite Materials Corporation Composite materials and devices comprising single crystal silicon carbide heated by electromagnetic radiation
ITMI20061809A1 (it) * 2006-09-25 2008-03-26 E T C Srl Processo per realizzare un sustrato di carburo di silicio per applicazioni microelettroniche
US7901508B2 (en) * 2007-01-24 2011-03-08 Widetronix, Inc. Method, system, and apparatus for the growth of SiC and related or similar material, by chemical vapor deposition, using precursors in modified cold-wall reactor
US20080173239A1 (en) * 2007-01-24 2008-07-24 Yuri Makarov Method, system, and apparatus for the growth of SiC and related or similar material, by chemical vapor deposition, using precursors in modified cold-wall reactor
US8409351B2 (en) * 2007-08-08 2013-04-02 Sic Systems, Inc. Production of bulk silicon carbide with hot-filament chemical vapor deposition
US8603243B2 (en) * 2008-07-31 2013-12-10 The United States Of America, As Represented By The Secretary Of The Navy Tracking carbon to silicon ratio in situ during silicon carbide growth
TWI449087B (zh) * 2008-10-01 2014-08-11 Nat Univ Tsing Hua A method for growing a silicon carbide film on a (100) silicon substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. P. Li, et. al., "Nucleation and void formation mechanisms in SiC thin film growth on Si by carbonization", J. Electrochem. Soc., Vol. 142, No.2, 1995年02月 *

Also Published As

Publication number Publication date
US7763529B2 (en) 2010-07-27
US20100081261A1 (en) 2010-04-01
TW201015621A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
JP5727017B2 (ja) グラフェンの成長のための方法
TWI449087B (zh) A method for growing a silicon carbide film on a (100) silicon substrate
WO2016169108A1 (zh) 局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法
WO2013102360A1 (zh) 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
WO2013013419A1 (zh) 一种在绝缘基底上制备石墨烯纳米带的方法
CN108538707B (zh) 一种二维黑磷晶体制备方法
CN108018605A (zh) 籽晶处理方法及碳化硅晶体生长方法
CN106868469B (zh) 一种在硅基上无金属催化剂制备石墨烯的方法
JP5102697B2 (ja) 炭化珪素単結晶の製造方法
CN113078046B (zh) 一种氮化镓同质衬底及其制备方法
CN108428618B (zh) 基于石墨烯***层结构的氮化镓生长方法
CN108417483B (zh) 一种8英寸大功率igbt元器件用外延片的制备方法
CN110904502A (zh) 石墨烯单晶及其生长方法
CN111717911B (zh) 一种石墨烯薄膜的制备方法
CN107601473B (zh) 一种制备均匀一致的石墨烯材料的改进的化学气相沉积法
CN109081332A (zh) 石墨烯纳米图形化蓝宝石衬底及其制备方法
CN115838971B (zh) 氧化镓薄膜及其制备方法
CN117587361A (zh) 一种碳化钽涂层的制备方法
CN113620279B (zh) 一种在绝缘衬底上制备石墨烯的方法
CN111547711B (zh) 一种碳化硅基扭曲多层石墨烯材料的制备方法
JP6800185B2 (ja) グラフェンの境界制御方法
CN108425095B (zh) 一种晶体六方氮化硼薄膜的制备方法
CN108217636B (zh) 一种工艺气体辅助的石墨烯氢***层生长方法
WO2019224953A1 (ja) SiCエピタキシャル基板の製造方法
JP4353369B2 (ja) SiC半導体及びその製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees