TWI437807B - Single Switch Zero Voltage Switching Load Resonant Converter - Google Patents

Single Switch Zero Voltage Switching Load Resonant Converter Download PDF

Info

Publication number
TWI437807B
TWI437807B TW100145219A TW100145219A TWI437807B TW I437807 B TWI437807 B TW I437807B TW 100145219 A TW100145219 A TW 100145219A TW 100145219 A TW100145219 A TW 100145219A TW I437807 B TWI437807 B TW I437807B
Authority
TW
Taiwan
Prior art keywords
resonant
current
voltage
capacitor
zero
Prior art date
Application number
TW100145219A
Other languages
Chinese (zh)
Other versions
TW201325051A (en
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW100145219A priority Critical patent/TWI437807B/en
Publication of TW201325051A publication Critical patent/TW201325051A/en
Application granted granted Critical
Publication of TWI437807B publication Critical patent/TWI437807B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Description

單開關零電壓切換負載共振式轉換器Single Switch Zero Voltage Switching Load Resonant Converter

本發明係有關於一種單開關零電壓切換負載共振式轉換器,特別係設有輸入電源連接儲能電感串聯功率開關,再於功率開關上並聯分流電容及一組共振槽,共振槽係由共振電感串聯共振電容後,再於共振電感與共振電容之間連接另一共振電感所組成,該共振槽之另一共振電感連接整流二極體,最後並聯濾波電容及負載;如此,利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。The invention relates to a single-switch zero-voltage switching load resonant converter, in particular to an input power supply connected to an energy storage inductor series power switch, and then a parallel shunt capacitor and a set of resonant slots on the power switch, the resonance channel is resonated After the inductor is connected in series with the resonant capacitor, another resonant inductor is connected between the resonant inductor and the resonant capacitor. The other resonant inductor of the resonant tank is connected to the rectifying diode, and finally the parallel filtering capacitor and the load; thus, using a single power The switch operates in a zero voltage switching state, which reduces its switching loss and has the characteristics of flexible switching while improving the operating efficiency of the converter.

現今科技不斷的進步,使得人類生活更加便利,科技的動力來自能源,能源在人類不斷的開採使用下總有耗竭的一天,如何有效使用有限的資源是我們該面對的重要課題,能源絕大部分來自於石油、天然氣、煤炭、及石化,但這些能源使用時所排放的大量二氧化碳已造成地球暖化及大氣層中的臭氧層破洞,使地球溫室效應節節昇高,這將對我們人類日後有著頗大的影響,而近幾年環保意識已被大家所深深注重,發展電子產品科技時也必須要特別注意對環境及環保造成的影響,避免能源有不必要的浪費,所以如何提高電子產品能在最低的能源消耗中達到最高的使用效率,顯得更為重要,而電力電子領域中,提高電路的轉換效率是我們不斷研究及追求的目標,以往的電子科技產品使用的轉換器,大多數是使用硬式切換,而開關操作於高頻的環境中,降低了電子產品的轉換效率,也間接造成能源浪費,使得成本提高,為了改善這些問題,可使用具有柔性切換特性的轉換器,柔性切換電路中利用電感及電容組成的共振電路,使功率開關之電壓及電流會在降 至零時才進行切換,而要使功率開關操作於零電壓或零電流,必須在電路中的切換頻率、電感及電容使用適當之參數,才可使轉換器電路整體效率提高,功率開關切換時造成的切換損失也才會大大的降低;緣此,本發明人有鑑於習知存在有如上述之缺失,乃潛心研究、改良,遂得以首先發明本發明。The continuous advancement of science and technology has made human life more convenient. The power of science and technology comes from energy. Energy is always exhausted under the continuous exploitation of human beings. How to effectively use limited resources is an important issue that we should face. Partly from oil, natural gas, coal, and petrochemicals, but the large amount of carbon dioxide emitted by these energy sources has caused global warming and the destruction of the ozone layer in the atmosphere, which has caused the global warming effect to increase, which will be for us in the future. It has a considerable influence, and in recent years, environmental awareness has been deeply concerned by everyone. When developing electronic product technology, we must pay special attention to the impact on the environment and environmental protection, and avoid unnecessary waste of energy, so how to improve electronics It is more important for products to achieve the highest efficiency in the lowest energy consumption. In the field of power electronics, improving the conversion efficiency of circuits is our constant research and pursuit. The converters used in previous electronic technology products are large. Most use hard switching, and the switch operates in a high frequency environment. The conversion efficiency of electronic products also indirectly causes energy waste, which increases the cost. In order to improve these problems, a converter with flexible switching characteristics can be used. The flexible switching circuit uses a resonant circuit composed of an inductor and a capacitor to make the voltage of the power switch. And the current will drop Switching is performed until 0 o'clock. To make the power switch operate at zero voltage or zero current, the switching frequency, inductance and capacitance in the circuit must be used with appropriate parameters to improve the overall efficiency of the converter circuit. The resulting switching loss is also greatly reduced; therefore, the present inventors have invented the present invention firstly in view of the above-mentioned drawbacks as described above.

本發明之主要目的,係在提供一種利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率之單開關零電壓切換負載共振式轉換器。The main object of the present invention is to provide a single-switch zero-voltage switching load that utilizes a single power switch to operate in a zero voltage switching state, can reduce its switching loss, and has the characteristics of flexible switching while improving the operating efficiency of the converter. Resonant converter.

本發明之特徵係在:輸入電源連接儲能電感串聯功率開關,再於功率開關上並聯分流電容及一組共振槽,共振槽係由共振電感串聯共振電容後,再於共振電感與共振電容之間連接另一共振電感所組成,該共振槽之另一共振電感連接整流二極體,最後並聯濾波電容及負載。The invention is characterized in that: the input power is connected to the energy storage inductor series power switch, and then the power switch is connected in parallel with the shunt capacitor and a set of resonant slots, the resonant tank is connected by the resonant inductor series resonant capacitor, and then the resonant inductor and the resonant capacitor It is composed of another resonant inductor. The other resonant inductor of the resonant tank is connected to the rectifying diode, and finally the capacitor and load are connected in parallel.

有關本發明為達上述之使用目的與功效,所採用之技術手段,茲舉出較佳可行之實施例,並配合圖式所示,詳述如下:本發明之實施例,請參閱第一、二圖所示,主要係設有輸入電源V dc 連接儲能電感L 串聯功率開關S ,再於功率開關S 上並聯分流電容C 及一組共振槽1,共振槽1係由共振電感L f 串聯共振電容C 1 後,再於共振電感L f 與共振電容C 1 之間連接另一共振電感L s 所組成,該共振槽1之另一共振 電感L s 連接整流二極體D 1 ,最後並聯濾波電容C o 及負載RFor the purpose of the present invention, the preferred embodiments of the present invention are set forth in the accompanying drawings. In the second figure, there is mainly an input power supply V dc connected to the energy storage inductor L series power switch S , and then a shunt capacitor C and a set of resonant tank 1 are connected in parallel with the power switch S , and the resonant tank 1 is connected in series by the resonant inductor L f after 1, and then connected to the resonant inductor and resonant capacitor C L f between the resonance capacitor C 1 is further composed of resonant inductor L s, the other of a resonant inductor L s resonant tank connected to the rectifying diode D 1, and finally connected in parallel Filter capacitor C o and load R.

使用時,請參閱第一、二圖所示,首先在輸入電源V dc (電源側)輸入一直流電壓,經過儲能電感L 後將直流電壓轉換成電流源I L ,再驅動功率開關S 切換導通,功率開關S 係選擇MOSFET電晶體開關,其內寄生之反向二極體可配合電路動作時流經功率開關S 之逆向電流,而共振槽1係由共振電感L f 串聯另一共振電感L s 與並聯共振電容C 1 所組成,其輸入端由功率開關S 作高頻切換得到弦波,輸出端之直流電壓則是利用整流二極體D 1 串聯共振槽,使高頻交流電壓轉換成直流電壓,另負載端是經由濾波電容C o 濾波穩壓後得到一直流電壓提供給負載R ,由電路設計可計算出濾波電容C o 的電容值,濾波電容C o 的電容值越大,電路特性也會越明顯,由於電路是操作於高頻的環境下,對於輸出端整流二極體D 1 的選擇是非常重要的一環,因二極體所需之逆向恢復時間需要非常即時,故可以選擇快速恢復(Fast Recovery)二極體或者是蕭特基(Schottky)二極體使用。When used, see the first and second figure, first the input power source V dc (supply side) of the input DC voltage is converted into a source current I L through the inductor L after the DC voltage, and then drive the power switch to switch S On, the power switch S selects the MOSFET transistor switch, and the parasitic reverse diode can cooperate with the reverse current flowing through the power switch S when the circuit operates, and the resonant tank 1 is connected by the resonant inductor L f in series with another resonant inductor L s and the parallel resonance capacitor C 1 is composed, the input end is the power switch s for switching the high-frequency sine wave DC voltage, the output terminal of the rectifying diode is to use a series resonant tank D 1, the high-frequency AC voltage is converted into DC voltage, the other end of the load was filtered through filter capacitor C o regulated DC voltage to a load R, can be calculated by the circuit design of the filter capacitor C o is the capacitance value, the larger the capacitance value of the filter capacitor C o, the circuit The more obvious the characteristics, because the circuit is operated in a high frequency environment, the selection of the rectifier diode D 1 at the output is very important, because the reverse recovery time required by the diode needs to be very immediate. Therefore, you can choose the Fast Recovery diode or the Schottky diode.

本發明之工作模式分別為(請參閱第三圖所示):The working modes of the present invention are respectively (see the third figure):

一、工作模式一(ωt 0 ωt <ωt 1 ),如第四圖所示:First, the working mode one ( ωt 0 Ωt < ωt 1 ), as shown in the fourth figure:

當驅動電壓V gs 從低電位變為高電位,功率開關S 此時開始切換導通,共振電感電流大於儲能電感電流I L 小於零,電流則反向流經功率開關S ,功率開關電流I s 由負值開始上升,與功率開關S 並聯之分流電容電流I c 由負值上升至正值後,由於存在雜散電容的關係,產生高頻振盪影響分流電容電流I C ,所以電流上升後又下降至負值然後為零,此時功率開關電流I S 由負值開始上升至為零後,進入功作模式二。When the driving voltage V gs changes from a low potential to a high potential, the power switch S starts to switch on at this time, and the resonant inductor current , Greater than the energy storage inductor current I L , If it is less than zero, the current flows in the reverse direction through the power switch S. The power switch current I s starts to rise from a negative value, and the shunt capacitor current I c in parallel with the power switch S rises from a negative value to a positive value due to the presence of stray capacitance. The relationship, the high frequency oscillations affect the shunt capacitor current I C , so the current rises and then drops to a negative value and then zero. At this time, the power switch current I S starts to rise to a zero value and then enters the work mode 2 .

二、工作模式二(ωt 1 ωt <ωt 2 ),如第五圖所示:Second, the working mode two ( ωt 1 Ωt < ωt 2 ), as shown in the fifth figure:

當驅動電壓V gs 為高電位,功率開關S 為導通狀態,電流值大於零,電流流經功率開關S ,功率開關電流I S 大於零,與功率開關S 並聯之分流電容電流I C 等於零,所以電流並無流過分流電容C ,功率開關電流I S 由零開始上升,儲能電感電流I L 流經功率開關S 至電源端,共振電感電流為正值但持續下降,二極體D 1 仍為導通狀態,當共振電感電流降至為零時,進入工作模式三。When the driving voltage V gs is high, the power switch S is in an on state. The current value is greater than zero, the current flows through the power switch S , the power switch current I S is greater than zero, and the shunt capacitor current I C in parallel with the power switch S is equal to zero, so the current does not flow through the shunt capacitor C , and the power switch current I S is zero. Starting to rise, the energy storage inductor current I L flows through the power switch S to the power supply terminal, and the resonant inductor current , Positive value but continuous decrease, diode D 1 is still on, when resonant inductor current , When it drops to zero, it enters mode three.

三、工作模式三(ωt 2 ωt <ωt 3 ),如第六圖所示:Third, the working mode three ( ωt 2 Ωt < ωt 3 ), as shown in the sixth figure:

當驅動電壓V gs 維持於高電位,此時功率開關S 為導通狀態,電流值大於零,電流流經功率開關S ,與功率開關S 並聯的分流電容C 之分流電容電流I C 為零,所以分流電容C 上並無電流,而共振槽1串並聯之共振電感L f L s 與共振電容C 1 會因二極體D 1 洩漏電流產生高頻共振,影響共振電容電壓與共振電容電流隨之振盪,共振槽1輸出電壓V b 也跟著振盪,由正值振盪至負值,二極體電壓則由零開始振盪至負值,當功率開關S 截止,功率開關電流I S 降至零時,進入工作模式四。When the driving voltage V gs is maintained at a high potential, the power switch S is turned on at this time. The current value is greater than zero, the current flows through the power switch S , and the shunt capacitor current I C of the shunt capacitor C connected in parallel with the power switch S is zero, so there is no current on the shunt capacitor C , and the resonant tank 1 has a series-parallel resonant inductor L f , L s and the resonant capacitor C 1 will generate high frequency resonance due to the leakage current of the diode D 1 , which affects the resonant capacitor voltage. Resonant capacitor current With the oscillation, the output voltage V b of the resonant tank 1 also oscillates, from a positive value to a negative value, the diode voltage Then, the oscillation starts from zero to a negative value. When the power switch S is turned off and the power switch current I S falls to zero, the operation mode 4 is entered.

四、工作模式四(ωt 3 ωt <ωt 4 ),如第七圖所示:Fourth, the working mode four ( ωt 3 Ωt < ωt 4 ), as shown in the seventh figure:

當驅動電壓V gs 從高電位轉為低電位,此時功率開關S 截止,功率開關電流I S 為零,電流值大於零,因功率開關S 截止,電流則流經分流電容C ,所以分流電容電流I C 大於零,共振電容電壓由零開始上升,共振電容電流大於零,當共振電感電流由零開始上升時,進入工作模式五。When the driving voltage V gs changes from a high potential to a low potential, the power switch S is turned off at this time, and the power switching current I S is zero. The current value is greater than zero, because the power switch S is off, the current flows through the shunt capacitor C , so the shunt capacitor current I C is greater than zero, the resonant capacitor voltage Rising from zero, resonant capacitor current Greater than zero when resonant inductor current When starting from zero, enter working mode five.

五、工作模式五(ωt 4 ωt <ωt 5 ),如第八圖所示:Five, working mode five ( ωt 4 Ωt < ωt 5 ), as shown in the eighth figure:

當驅動電壓V gs 持續為低電位,此時功率開關S 截止,功率開關電流I S 為零,電流大於零,分流電容電壓持續上升,共振電容電流大於零,當共振電感電流由零開始上升時,進入工作模式六;依電路學之理論,共振電感電流上升時間要比共振電感電流還要先上升,但受到二極體D 1 洩漏電流及寄生電感的關係,使得共振電感電流比共振電感電流先上升以及下降至零。When the driving voltage V gs continues to be low, the power switch S is turned off and the power switch current I S is zero. Current is greater than zero, shunt capacitor voltage Continuous rise, resonant capacitor current Greater than zero when resonant inductor current When starting from zero, enter working mode six; according to the theory of circuit theory, resonant inductor current Rise time is higher than resonant inductor current It also needs to rise first, but it is affected by the leakage current and parasitic inductance of the diode D 1 , so that the resonant inductor current Specific resonant inductor current First rise and fall to zero.

六、工作模式六(ωt 5 ωt <ωt 6 ),如第九圖所示:Sixth, work mode six ( ωt 5 Ωt < ωt 6 ), as shown in the ninth:

當驅動電壓V gs 持續為低電位,此時功率開關S 截止,功率開關電流I S 為零,電流流經分流電容C ,分流電容電流I C 漸漸下降至零,此時二極體D 1 導通,當由正值下降至零時,進入工作模式七。When the voltage V gs to a low level duration, wherein the power switch S is turned off, the power switch current I S is zero, the current through the shunt capacitance C, Split capacitive current I C gradually decreases to zero, and diode D 1 is turned on , when When the positive value drops to zero, it enters the working mode seven.

七、工作模式七(ωt 6 ωt <ωt 7 ),如第十圖所示:Seven, working mode seven ( ωt 6 Ωt < ωt 7 ), as shown in the tenth figure:

當驅動電壓V gs 持續為低電位,此時功率開關S 截止, 功率開關電流I S 為零,由零開始下降後再上升,但仍為負值,分流電容電流I C 相同,共振電容電壓由峰值開始下降,共振電容電流由零下降至負值,共振電感電流皆由峰值逐漸下降,二極體D 1 導通,當共振電容電流開始上升至零時,功率開關S 開始切換導通回到工作模式一,完成工作週期的循環動作;此工作模式中只需要一個雙向的導通開關,在此電路中是使用MOSFET的電晶體開關作為切換開關,由於MOSFET內部就有一個寄生的二極體,所以不須要再另外並聯一個二極體,可以減少電路使用的元件,因為當開關在切換導通與截止時,分流電容電壓V C 都是由零開始上升或是下降至零,都是在零的時候才做切換的動作,所以開關在截止與導通時並無跨有電壓,達到了零電壓切換,降低了開關在切換上的切換損失,具有柔性切換的特性。When the driving voltage V gs continues to be low, the power switch S is turned off and the power switch current I S is zero. Falling from zero and then rising again, but still negative, shunt capacitor current I C and Same, resonant capacitor voltage Falling from the peak, resonant capacitor current From zero to negative, resonant inductor current , Both are gradually decreasing from the peak, and the diode D 1 is turned on when the resonant capacitor current When it starts to rise to zero, the power switch S starts to switch back to the working mode one, and completes the cycle action of the duty cycle; only one bidirectional conduction switch is needed in this working mode, in which the transistor switch using the MOSFET is used as the switching Switch, because there is a parasitic diode inside the MOSFET, there is no need to connect another diode in parallel, which can reduce the components used in the circuit, because when the switch is switched on and off, the shunt capacitor voltage V C is Zero starts to rise or fall to zero, and the switching action is performed at zero time. Therefore, the switch does not cross voltage when it is turned off and on, and zero voltage switching is achieved, which reduces the switching loss of the switch in switching. Features flexible switching.

而驅動電壓V gs 與功率開關電壓Vds 實測波形圖,如第十一圖所示,其CH1:X軸:2.5μs/div、Y軸:10V/div;CH2:X軸:2.5μs/div、Y軸:50V/div。The driving voltage V gs and the power switching voltage V ds measured waveform diagram, as shown in the eleventh figure, its CH1: X axis: 2.5 μs / div, Y axis: 10 V / div; CH2: X axis: 2.5 μs / div , Y axis: 50V / div.

而驅動電壓V gs 與功率開關電流I S 實測波形圖,如第十二圖所示,其CH1:X軸:2.5μs/div、Y軸:10V/div;CH2:X軸:2.5μs/div、Y軸:2A/div。The driving voltage V gs and the power switching current I S measured waveform diagram, as shown in the twelfth figure, its CH1: X axis: 2.5 μs / div, Y axis: 10 V / div; CH2: X axis: 2.5 μs / div , Y axis: 2A / div.

而分流電容電壓V c 與分流電容電流I C 實測波形圖,如第十三圖所示,其CH1:X軸:2.5μs/div、Y軸:50V/div; CH2:X軸:2.5μs/div、Y軸:2A/div。The shunt capacitor voltage V c and the shunt capacitor current I C measured waveform diagram, as shown in the thirteenth figure, its CH1: X axis: 2.5 μs / div, Y axis: 50 V / div; CH2: X axis: 2.5 μs / Div, Y axis: 2A/div.

而共振電感電壓V Lf 與共振電感電流實測波形圖,如第十四圖所示,其CH1:X軸:2.5μs/div、Y軸:20V/div;CH2:X軸:2.5μs/div、Y軸:5A/div。Resonant inductor voltage V Lf and resonant inductor current The measured waveform diagram, as shown in Fig. 14, has CH1: X axis: 2.5 μs/div, Y axis: 20 V/div; CH2: X axis: 2.5 μs/div, Y axis: 5 A/div.

而共振電容電壓與共振電容電流實測波形圖,如第十五圖所示,其CH1:X軸:2.5μs/div、Y軸:50V/div;CH2:X軸:2.5μs/div、Y軸:0.5A/div。Resonant capacitor voltage Resonant capacitor current The measured waveform diagram, as shown in the fifteenth figure, has CH1: X axis: 2.5 μs/div, Y axis: 50 V/div; CH2: X axis: 2.5 μs/div, Y axis: 0.5 A/div.

而共振電感電壓V LS 與共振電感電流實測波形圖,如第十六圖所示,其CH1:X軸:2.5μs/div、Y軸:20V/div;CH2:X軸:2.5μs/div、Y軸:2A/div。Resonant inductor voltage V LS and resonant inductor current The measured waveform diagram, as shown in Fig. 16, has CH1: X axis: 2.5 μs/div, Y axis: 20 V/div; CH2: X axis: 2.5 μs/div, Y axis: 2 A/div.

而共振槽輸出電壓V b 與共振電容電流實測波形圖,如第十七圖所示,其CH1:X軸:2.5μs/div、Y軸:50V/div;CH2:X軸:2.5μs/div、Y軸:2A/div。Resonant tank output voltage V b and resonant capacitor current The measured waveform diagram, as shown in Fig. 17, has CH1: X axis: 2.5 μs/div, Y axis: 50 V/div; CH2: X axis: 2.5 μs/div, Y axis: 2 A/div.

而共振槽輸入電壓V a 與共振槽輸出電壓V b 實測波形圖,如第十八圖所示,其CH1:X軸:2.5μs/div、Y軸:50V/div;CH2:X軸:2.5μs/div、Y軸:50V/div。The resonant tank input voltage V a and the resonant tank output voltage V b measured waveform diagram, as shown in the eighteenth figure, its CH1: X axis: 2.5 μs / div, Y axis: 50 V / div; CH2: X axis: 2.5 Μs/div, Y axis: 50V/div.

而二極體電壓V D1 與二極體電流I D1 實測波形圖,如第十九圖所示,其CH1:X軸:2.5μs/div、Y軸:20V/div;CH2:X軸:2.5μs/div、Y軸:2A/div。The measured voltage waveform of the diode voltage V D1 and the diode current I D1 is as shown in the nineteenth figure, and its CH1: X axis: 2.5 μs/div, Y axis: 20 V /div; CH2: X axis: 2.5 Μs/div, Y axis: 2A/div.

而輸出電壓V o 與輸出電流I o 實測波形圖,如第二十圖所示,其CH1:X軸:2.5μs/div、Y軸:50V/div;CH2:X軸:2.5μs/div、Y軸:2A/div。The output voltage V o and the output current I o are measured waveform diagrams, as shown in the twentieth diagram, the CH1: X axis: 2.5 μs/div, the Y axis: 50 V /div; and the CH2: X axis: 2.5 μs/div, Y axis: 2A/div.

本發明利用單一個功率開關在零電壓切換狀態下操 作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。The invention utilizes a single power switch to operate under zero voltage switching state It can reduce its switching loss and has the characteristics of flexible switching while improving the operating efficiency of the converter.

綜上所述,本發明實施例確實已能達到所預期之目的及使用功效,且未見有相同結構特徵公知、公用在先者,故本發明當能符合發明專利之申請要件,爰依法提出申請,懇請早日審結,並核賜專利,實深任感荷。In summary, the embodiments of the present invention have indeed achieved the intended purpose and the efficacy of use, and the same structural features are not known and commonly used, so the present invention can meet the requirements of the invention patent, and is proposed according to law. Apply, please apply for an early conclusion, and grant a patent, and I am deeply impressed.

1‧‧‧共振槽1‧‧‧Resonance slot

V dc ‧‧‧輸入電源 V dc ‧‧‧ input power

L ‧‧‧儲能電感 L ‧‧‧ storage inductor

S ‧‧‧功率開關 S ‧‧‧Power switch

C ‧‧‧分流電容 C ‧‧‧Shunt Capacitor

L f L s ‧‧‧共振電感 L f , L s ‧‧‧Resonance inductance

C 1 ‧‧‧共振電容 C 1 ‧‧‧Resonance Capacitor

D 1 ‧‧‧二極體 D 1 ‧‧‧ diode

C o ‧‧‧濾波電容 C o ‧‧‧Filter Capacitor

R ‧‧‧負載 R ‧‧‧load

V gs ‧‧‧驅動電壓 V gs ‧‧‧ drive voltage

V L ‧‧‧儲能電感電壓 V L ‧‧‧ storage inductor voltage

V c ‧‧‧分流電容電壓 V c ‧‧‧Shunt capacitor voltage

V Lf V LS ‧‧‧共振電感電壓 V Lf , V LS ‧‧‧Resonance Inductor Voltage

‧‧‧共振電容電壓 ‧‧‧Resonant capacitor voltage

V D1 ‧‧‧二極體電壓 V D1 ‧‧‧ diode voltage

V co ‧‧‧濾波電容電壓 V co ‧‧‧Filter capacitor voltage

V o ‧‧‧輸出電壓 V o ‧‧‧output voltage

V a ‧‧‧共振槽輸入電壓 V a ‧‧‧Resonance tank input voltage

V b ‧‧‧共振槽輸出電壓 V b ‧‧‧resonance slot output voltage

I L ‧‧‧儲能電感電流 I L ‧‧‧ Energy storage inductor current

I S ‧‧‧功率開關電流 I S ‧‧‧Power Switch Current

I C ‧‧‧分流電容電流 I C ‧‧‧Shunt Capacitor Current

‧‧‧共振電感電流 , ‧‧‧Resonance inductor current

‧‧‧共振電容電流 ‧‧‧Resonant capacitor current

I D1 ‧‧‧二極體電流 I D1 ‧‧‧ diode current

I Co ‧‧‧濾波電容電流 I Co ‧‧‧Filter Capacitor Current

I o ‧‧‧輸出電流 I o ‧‧‧Output current

第一圖所示係為本發明實施例之電路圖。The first figure is a circuit diagram of an embodiment of the present invention.

第二圖所示係為本發明實施例之方塊圖。The second figure is a block diagram of an embodiment of the present invention.

第三圖所示係為本發明實施例之波形圖。The third figure is a waveform diagram of an embodiment of the present invention.

第四圖所示係為本發明實施例工作模式一之等效電路圖。The fourth figure is an equivalent circuit diagram of the working mode 1 of the embodiment of the present invention.

第五圖所示係為本發明實施例工作模式二之等效電路圖。The fifth figure is an equivalent circuit diagram of the working mode 2 of the embodiment of the present invention.

第六圖所示係為本發明實施例工作模式三之等效電路圖。The sixth figure shows an equivalent circuit diagram of the working mode 3 of the embodiment of the present invention.

第七圖所示係為本發明實施例工作模式四之等效電路圖。The seventh figure is an equivalent circuit diagram of the working mode 4 of the embodiment of the present invention.

第八圖所示係為本發明實施例工作模式五之等效電路圖。The eighth figure is an equivalent circuit diagram of the working mode 5 of the embodiment of the present invention.

第九圖所示係為本發明實施例工作模式六之等效電路圖。The ninth figure is an equivalent circuit diagram of the working mode 6 of the embodiment of the present invention.

第十圖所示係為本發明實施例工作模式七之等效電路圖。The tenth figure is an equivalent circuit diagram of the working mode 7 of the embodiment of the present invention.

第十一圖所示係為本發明實施例驅動電壓V gs 與功率開關電壓V ds 實測波形圖。FIG eleventh voltage V gs and V ds Found power switch voltage waveform diagram illustrating the embodiment of the drive train of the present invention is shown.

第十二圖所示係為本發明實施例驅動電壓V gs 與功率開關電流I S 實測波形圖。FIG twelfth voltage V gs of the power switch current I S Found waveform diagram illustrating the drive train of the present embodiment of the invention shown in FIG.

第十三圖所示係為本發明實施例分流電容電壓V c 與分流電容電流I C 實測波形圖。FIG. 13 is a waveform diagram of the shunt capacitor voltage V c and the shunt capacitor current I C according to an embodiment of the present invention.

第十四圖所示係為本發明實施例共振電感電壓V Lf 與共振電感電流實測波形圖。Figure 14 is a resonance inductor voltage V Lf and a resonant inductor current according to an embodiment of the present invention. Measured waveform diagram.

第十五圖所示係為本發明實施例共振電容電壓與共振電容電流實測波形圖。The fifteenth figure shows the resonant capacitor voltage of the embodiment of the present invention. Resonant capacitor current Measured waveform diagram.

第十六圖所示係為本發明實施例共振電感電壓V LS 與共振電感電流實測波形圖。Figure 16 is a diagram showing the resonant inductor voltage V LS and the resonant inductor current of the embodiment of the present invention. Measured waveform diagram.

第十七圖所示係為本發明實施例共振槽輸出電壓V b 與共振電容電流實測波形圖。Figure 17 is a resonance tank output voltage V b and a resonant capacitor current according to an embodiment of the present invention. Measured waveform diagram.

第十八圖所示係為本發明實施例共振槽輸入電壓V a 與共振槽輸出電壓V b 實測波形圖。FIG. 18 is a waveform diagram of the resonant tank input voltage V a and the resonant tank output voltage V b according to the embodiment of the present invention.

第十九圖所示係為本發明實施例二極體電壓V D1 與二極體電流I D1 實測波形圖。FIG. 19 is a measured waveform diagram of the diode voltage V D1 and the diode current I D1 according to the embodiment of the present invention.

第二十圖所示係為本發明實施例輸出電壓V o 與輸出電流I o 實測波形圖。FIG. 20 is a waveform diagram of the output voltage V o and the output current I o according to an embodiment of the present invention.

1‧‧‧共振槽1‧‧‧Resonance slot

V dc ‧‧‧輸入電源 V dc ‧‧‧ input power

L ‧‧‧儲能電感 L ‧‧‧ storage inductor

S ‧‧‧功率開關 S ‧‧‧Power switch

C ‧‧‧分流電容 C ‧‧‧Shunt Capacitor

L f L s ‧‧‧共振電感 L f , L s ‧‧‧Resonance inductance

C 1 ‧‧‧共振電容 C 1 ‧‧‧Resonance Capacitor

D 1 ‧‧‧二極體 D 1 ‧‧‧ diode

C o ‧‧‧濾波電容 C o ‧‧‧Filter Capacitor

R ‧‧‧負載 R ‧‧‧load

V gs ‧‧‧驅動電壓 V gs ‧‧‧ drive voltage

V L ‧‧‧儲能電感電壓 V L ‧‧‧ storage inductor voltage

V c ‧‧‧分流電容電壓 V c ‧‧‧Shunt capacitor voltage

V Lf V LS ‧‧‧共振電感電壓 V Lf , V LS ‧‧‧Resonance Inductor Voltage

‧‧‧共振電容電壓 ‧‧‧Resonant capacitor voltage

V D1 ‧‧‧二極體電壓 V D1 ‧‧‧ diode voltage

V co ‧‧‧濾波電容電壓 V co ‧‧‧Filter capacitor voltage

V o ‧‧‧輸出電壓 V o ‧‧‧output voltage

V a ‧‧‧共振槽輸入電壓 V a ‧‧‧Resonance tank input voltage

V b ‧‧‧共振槽輸出電壓 V b ‧‧‧resonance slot output voltage

I L ‧‧‧儲能電感電流 I L ‧‧‧ Energy storage inductor current

I S ‧‧‧功率開關電流 I S ‧‧‧Power Switch Current

I C ‧‧‧分流電容電流 I C ‧‧‧Shunt Capacitor Current

‧‧‧共振電感電流 , ‧‧‧Resonance inductor current

‧‧‧共振電容電流 ‧‧‧Resonant capacitor current

I D1 ‧‧‧二極體電流 I D1 ‧‧‧ diode current

I Co ‧‧‧濾波電容電流 I Co ‧‧‧Filter Capacitor Current

I o ‧‧‧輸出電流 I o ‧‧‧Output current

Claims (2)

一種單開關零電壓切換負載共振式轉換器,主要係設有輸入電源連接儲能電感串聯功率開關,再於功率開關上並聯分流電容及一組共振槽,共振槽係由共振電感串聯共振電容後,再於共振電感與共振電容之間連接另一共振電感所組成,該共振槽之另一共振電感連接整流二極體,最後並聯濾波電容及負載;如此,利用單一個功率開關在零電壓切換狀態下操作,可降低其切換損失,並具有柔性切換的特性,同時提高轉換器的操作效率。 A single-switch zero-voltage switching load resonant converter is mainly provided with an input power supply connected to an energy storage inductor series power switch, and then a shunt capacitor and a set of resonant slots are connected in parallel with the power switch, and the resonant tank is connected by a resonant inductor series resonant capacitor. And another resonant inductor is connected between the resonant inductor and the resonant capacitor, another resonant inductor of the resonant tank is connected to the rectifying diode, and finally the parallel filtering capacitor and the load; thus, switching with a single power switch at zero voltage Operating in the state, it can reduce its switching loss, and has the characteristics of flexible switching, while improving the operating efficiency of the converter. 如申請專利範圍第1項所述之單開關零電壓切換負載共振式轉換器,其中整流二極體係為快速恢復二極體或蕭特基二極體。 The single-switch zero-voltage switching load resonant converter according to claim 1, wherein the rectifying diode system is a fast recovery diode or a Schottky diode.
TW100145219A 2011-12-08 2011-12-08 Single Switch Zero Voltage Switching Load Resonant Converter TWI437807B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100145219A TWI437807B (en) 2011-12-08 2011-12-08 Single Switch Zero Voltage Switching Load Resonant Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100145219A TWI437807B (en) 2011-12-08 2011-12-08 Single Switch Zero Voltage Switching Load Resonant Converter

Publications (2)

Publication Number Publication Date
TW201325051A TW201325051A (en) 2013-06-16
TWI437807B true TWI437807B (en) 2014-05-11

Family

ID=49033215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100145219A TWI437807B (en) 2011-12-08 2011-12-08 Single Switch Zero Voltage Switching Load Resonant Converter

Country Status (1)

Country Link
TW (1) TWI437807B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103647B2 (en) 2016-08-17 2018-10-16 Industrial Technology Research Institute Sensorless measurement method and device for filter capacitor current by using a state observer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3547525A1 (en) * 2018-03-27 2019-10-02 General Electric Technology GmbH Voltage source converter apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103647B2 (en) 2016-08-17 2018-10-16 Industrial Technology Research Institute Sensorless measurement method and device for filter capacitor current by using a state observer

Also Published As

Publication number Publication date
TW201325051A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
US8860322B2 (en) Piezoelectric resonator light-emitting-diode (LED) driving circuit
CN102983747A (en) Full-bridge combined soft switching DC (direct-current) converter
CN101951175A (en) Flyback synchronous rectification control circuit
WO2008136293A1 (en) Power factor improving circuit
TWI437807B (en) Single Switch Zero Voltage Switching Load Resonant Converter
TWI482411B (en) Current fed single load switch series resonant converter doubler
CN204131384U (en) A kind of Switching Power Supply exports lossless absorption circuit and the Switching Power Supply of rectifying tube
TWI443956B (en) Zero Voltage Switching DC Power Supply
TWI465025B (en) Single Switch Zero Voltage Switching Resonant Converter
CN103200725B (en) Piezo-electric resonance type LED driving circuit
CN201533427U (en) LLC self-excited half-bridge resonant LED driver
Feng et al. Design of high-voltage DC power supply based on series-resonant constant-current charging
Choi et al. Single-stage bridgeless three-level AC/DC converter with current doubler rectifier
TWI430555B (en) Class E DC - to - DC converter
WO2015051698A1 (en) Led drive device
TWI506938B (en) Single - switch - type load - sharing resonator
Lee et al. Switched-capacitor quasi-resonant step-up/step-down bidirectional converter
TW201733235A (en) Interleave high frequency sinusoidal wave pulsed electric motor charger including input voltage, input capacitor, a first partial pressure capacitor, a second partial pressure capacitor, driving circuit, resonance slot, interleave rectifier, a first storage battery and a second storage battery
CN204615641U (en) A kind of novel B oost PFC soft switch circuit
TWI704745B (en) Battery charger with high frequency sinusoidal wave and high efficiency
TWI536726B (en) Single switching switch zero - current switching series - parallel resonant converter
CN202602967U (en) Piezoelectric resonator type light emitting diode drive circuit
CN202019481U (en) Driving circuit of low-current high-voltage light emitting diode (LED) lamp
CN209462251U (en) A kind of switching power circuit and Switching Power Supply
CN202949368U (en) Numerical control DC high voltage power supply circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees