TWI436957B - Electron element - Google Patents

Electron element Download PDF

Info

Publication number
TWI436957B
TWI436957B TW96149398A TW96149398A TWI436957B TW I436957 B TWI436957 B TW I436957B TW 96149398 A TW96149398 A TW 96149398A TW 96149398 A TW96149398 A TW 96149398A TW I436957 B TWI436957 B TW I436957B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electronic component
transparent conductive
conductive layer
substrate
Prior art date
Application number
TW96149398A
Other languages
Chinese (zh)
Other versions
TW200927690A (en
Inventor
Qun-Qing Li
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96149398A priority Critical patent/TWI436957B/en
Publication of TW200927690A publication Critical patent/TW200927690A/en
Application granted granted Critical
Publication of TWI436957B publication Critical patent/TWI436957B/en

Links

Description

電子元件 Electronic component

本發明涉及一種電子元件,尤其涉及一種用於偏振片、電極電池、場發射顯示等領域的含有透明導電層的電子元件。 The present invention relates to an electronic component, and more particularly to an electronic component containing a transparent conductive layer for use in the fields of a polarizing plate, an electrode battery, a field emission display, and the like.

從1991年日本科學家Iijima首次發現奈米碳管(Car-bon Nanotube,CNT)以來(“Helical microtu-bules of graphitic carbon”Iijima S.,Nature,Vol 354,p56(1991)),以奈米碳管為代表的奈米材料以其獨特的結構和性質引起了人們極大的關注。近幾年來,隨著奈米碳管及奈米材料研究的不斷深入,其廣闊應用前景不斷顯現出來。例如,由於奈米碳管所具有的獨特的電磁學、光學、力學、化學性能等,大量有關其在場發射電子源、傳感器、新型光學材料、軟鐵磁材料等領域的應用研究不斷被報道。 Since the Japanese scientist Iijima first discovered the Car-bon Nanotube (CNT) in 1991 ("Helical microtu-bules of graphitic carbon" Iijima S., Nature, Vol 354, p56 (1991)), with nanocarbon The nano-material represented by the tube has attracted great attention due to its unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications for field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been reported. .

奈米碳管層為奈米碳管實際應用的一種重要形式。具體地,奈米碳管層已被研究用作場發射源、光電和生物傳感器、電池電極、吸波材料、水淨化材料、發光材料等。 The carbon nanotube layer is an important form of practical application of carbon nanotubes. Specifically, carbon nanotube layers have been studied as field emission sources, photovoltaic and biosensors, battery electrodes, absorbing materials, water purification materials, luminescent materials, and the like.

先前技術中的液晶顯示器(LCD)、電漿顯示器(PDP)、電致發光顯示器(EL/OLED)、觸摸屏(Touch Panel)、太陽能電池以及其它電子儀錶通常需要一個具有透明導電層的電子元件,該電子元件通常包括一基體和一透明導電層。上述的透明導電層通常採用ITO層。上述ITO層主 要採用濺射或蒸鍍等方法製備,在製備的過程,需要較高的真空環境及加熱到200~300℃,因此,使得ITO層的製備成本較高,從而相應地使的電子元件得成本較高。另外,由於ITO層的機械和化學耐用性不够好及ITO層作透明導電層存在電阻阻值分布不均勻等缺點,導致了先前的電子元件的性能不好。 Prior art liquid crystal displays (LCDs), plasma displays (PDPs), electroluminescent displays (EL/OLEDs), touch panels, solar cells, and other electronic meters typically require an electronic component having a transparent conductive layer. The electronic component typically includes a substrate and a transparent conductive layer. The above transparent conductive layer usually employs an ITO layer. The above ITO layer main To be prepared by sputtering or evaporation, in the process of preparation, a high vacuum environment and heating to 200-300 ° C are required, so that the preparation cost of the ITO layer is relatively high, thereby correspondingly costing the electronic components. Higher. In addition, due to the shortcomings of the mechanical and chemical durability of the ITO layer and the uneven distribution of the resistance of the ITO layer as the transparent conductive layer, the performance of the prior electronic components is not good.

有鑒於此,確有必要提供一種電子元件,該電子元件的透明導電層具有成本低、機械性能優异、阻值分布均勻及透光性好等優點。 In view of this, it is indeed necessary to provide an electronic component having a transparent conductive layer having the advantages of low cost, excellent mechanical properties, uniform resistance distribution, and good light transmittance.

一種電子元件,該電子元件包括一基體;一透明導電層,該透明導電層設置於所述基體的表面。其中,所述透明導電層包括一奈米碳管層。 An electronic component comprising a substrate; a transparent conductive layer disposed on a surface of the substrate. Wherein, the transparent conductive layer comprises a carbon nanotube layer.

與先前技術的電子元件相比較,本技術方案提供的電子元件具有以下優點:其一,由於奈米碳管層具有很好的韌性和機械强度,故,采用奈米碳管層作透明導電層,可以相應的提高電子元件的耐用性。其二,由於奈米碳管層具有較均勻的結構,故,采用奈米碳管層作透明導電層,可使得透明導電層具有均勻的電阻,從而提高電子元件的性能。其三,由於本技術方案的奈米碳管層可通過直接鋪設作透明導電層,而無需濺射和加熱等工藝,故,降低了電子元件的製作成本。 Compared with the electronic components of the prior art, the electronic components provided by the technical solution have the following advantages: First, since the carbon nanotube layer has good toughness and mechanical strength, the carbon nanotube layer is used as a transparent conductive layer. , can improve the durability of electronic components accordingly. Second, since the carbon nanotube layer has a relatively uniform structure, the use of a carbon nanotube layer as a transparent conductive layer allows the transparent conductive layer to have a uniform electrical resistance, thereby improving the performance of the electronic component. Third, since the carbon nanotube layer of the present technical solution can be directly laid as a transparent conductive layer without a process such as sputtering and heating, the manufacturing cost of the electronic component is reduced.

以下將結合附圖對本技術方案作進一步的詳細說明。 The technical solution will be further described in detail below with reference to the accompanying drawings.

請參閱圖1和圖2,本技術方案實施例提供一種電子元件20包括一基體22和一透明導電層24。透明導電層24設置在基體22的至少一個表面上。 Referring to FIG. 1 and FIG. 2 , an embodiment of the present technical solution provides an electronic component 20 including a substrate 22 and a transparent conductive layer 24 . The transparent conductive layer 24 is disposed on at least one surface of the substrate 22.

所述基體22為一曲面型或平面型的結構。該基體22由玻璃、石英、金剛石或塑料等硬性材料或柔性材料形成。所述基體22主要起支撑的作用。 The base 22 is a curved or planar structure. The base 22 is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support.

所述透明導電層24包括至少一個奈米碳管層,該奈米碳管層包括無序或有序排列的多個奈米碳管。當奈米碳管層包括多個有序奈米碳管時,所述多個奈米碳管在所述奈米碳管層中平行於基體表面排列,且沿同一方向擇優取向排列或沿不同方向擇優取向排列或各向同性。具體地,所述奈米碳管層為一個奈米碳管薄膜或多個平行且無間隙鋪設的奈米碳管薄膜。 The transparent conductive layer 24 includes at least one carbon nanotube layer including a plurality of carbon nanotubes that are disordered or ordered. When the carbon nanotube layer comprises a plurality of ordered carbon nanotubes, the plurality of carbon nanotubes are arranged parallel to the surface of the substrate in the carbon nanotube layer, and are arranged in the same direction or in different directions. Directionally preferred orientation or isotropic. Specifically, the carbon nanotube layer is a carbon nanotube film or a plurality of carbon nanotube films laid in parallel and without gaps.

另,本實施例中,所述透明導電層24包括至少兩個重叠設置的奈米碳管層。每個奈米碳管層中的奈米碳管沿固定方向擇優取向排列,相鄰的兩個奈米碳管層中的沿同一方向排列或沿不同方向排列,具體地,相鄰的兩個奈米碳管層中的奈米碳管層具有一交叉角度α,0 α 90度,具體角度可依據實際需求製備。可以理解,由於所述透明導電層24中的奈米碳管層可重叠設置,故,所述透明導電層24的厚度不限,可根據實際需要製成具有任意厚度的透明導電層24。 In addition, in this embodiment, the transparent conductive layer 24 includes at least two carbon nanotube layers disposed in an overlapping manner. The carbon nanotubes in each of the carbon nanotube layers are arranged in a preferred orientation in a fixed direction, and the adjacent two carbon nanotube layers are arranged in the same direction or in different directions, specifically, two adjacent ones. The carbon nanotube layer in the carbon nanotube layer has a cross angle α, 0 α 90 degrees, and the specific angle can be prepared according to actual needs. It can be understood that, since the carbon nanotube layers in the transparent conductive layer 24 can be overlapped, the thickness of the transparent conductive layer 24 is not limited, and the transparent conductive layer 24 having an arbitrary thickness can be formed according to actual needs.

本實施例中,所述奈米碳管薄膜的寬度與奈米碳管陣列所生長的基底的尺寸有關,該奈米碳管薄膜的長度不限 ,可根據實際需求製得。由於采用化學氣相沈積法(CVD法)生長在4英寸的基底生長超順排奈米碳管陣列,並進行進一步地處理所得一奈米碳管薄膜,故該奈米碳管薄膜的寬度可為0.01厘米~10厘米,該奈米碳管薄膜的厚度為10奈米~100微米。所述奈米碳管薄膜包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管的一種或幾種。其中,該單壁奈米碳管的直徑為0.5奈米~50奈米;該雙壁奈米碳管的直徑為1.0奈米~50奈米;該多壁奈米碳管的直徑為1.5奈米~50奈米。 In this embodiment, the width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown, and the length of the carbon nanotube film is not limited. Can be made according to actual needs. Since the ultra-sequential carbon nanotube array is grown on a 4-inch substrate by chemical vapor deposition (CVD) and further processed to obtain a carbon nanotube film, the width of the carbon nanotube film can be The thickness of the carbon nanotube film is from 10 nm to 100 μm from 0.01 cm to 10 cm. The carbon nanotube film comprises one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. Wherein, the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm; the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm; and the multi-walled carbon nanotube has a diameter of 1.5 nm. Meter ~ 50 nm.

本技術方案實施例透明導電層24包括至少兩個重叠設置的奈米碳管層,每一奈米碳管層包括多個定向排列的奈米碳管,且相鄰的兩個奈米碳管層中的奈米碳管沿不同方向排列或沿同一方向排列。所述透明導電層的製備方法主要包括以下步驟: The transparent conductive layer 24 of the technical solution embodiment comprises at least two carbon nanotube layers arranged in an overlapping manner, each carbon nanotube layer comprises a plurality of aligned carbon nanotubes, and two adjacent carbon nanotubes The carbon nanotubes in the layer are arranged in different directions or in the same direction. The preparation method of the transparent conductive layer mainly includes the following steps:

步驟一:提供一奈米碳管陣列,優選地,該陣列為超順排奈米碳管陣列。 Step 1: Providing an array of carbon nanotubes, preferably the array is a super-sequential carbon nanotube array.

本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施例中,超順排奈米碳管陣列的製備方法采用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本實施例優選為採用4英寸的矽基底;(b)在基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底在700~900℃的空氣中退 火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,在保護氣體環境下加熱到500~740℃,然後通入碳源氣體反應約5~30分鐘,生長得到超順排奈米碳管陣列,其高度為200~400微米。該超順排奈米碳管陣列為多個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通過上述控製生長條件,該超順排奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈米碳管陣列與上述基底面積基本相同。 The carbon nanotube array provided by the embodiment of the technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array or a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or selected The tantalum substrate is formed with an oxide layer. In this embodiment, a 4-inch tantalum substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel ( (1) one of the alloys of Ni) or any combination thereof; (c) retreating the substrate on which the catalyst layer is formed in the air at 700 to 900 ° C The fire is about 30 minutes to 90 minutes; (d) the treated substrate is placed in a reaction furnace, heated to 500-740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow super The array of aligned carbon nanotubes has a height of 200 to 400 microns. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate.

本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment. It is argon.

可以理解,本實施例提供的奈米碳管陣列不限於上述製備方法。也可為石墨電極恒流電弧放電沈積法、激光蒸發沈積法等。 It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like.

步驟二:采用一拉伸工具從奈米碳管陣列中拉取獲得一奈米碳管薄膜。其具體包括以下步驟:(a)從上述奈米碳管陣列中選定一定寬度的多個奈米碳管片斷,本實施例優選為采用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的多個奈米碳管片斷;(b)以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該多個奈米碳管片斷,以形成一連續的奈米碳管薄膜。 Step 2: Pulling a carbon nanotube film from the carbon nanotube array by using a stretching tool. Specifically, the method comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array; in this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a certain width. a plurality of carbon nanotube segments; (b) stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film.

在上述拉伸過程中,該多個奈米碳管片段在拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的多個奈米碳管片斷分別與其他奈米碳管片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。該奈米碳管薄膜包括多個首尾相連且定向排列的奈米碳管束。該奈米碳管薄膜中奈米碳管的排列方向基本平行於奈米碳管薄膜的拉伸方向。 In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotube bundles connected end to end and oriented. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film.

步驟三:製備上述的兩個奈米碳管薄膜,並重叠且交叉設置,從而形成透明導電層24。 Step 3: Prepare the two carbon nanotube films described above, and overlap and crosswise to form a transparent conductive layer 24.

取上述製備的兩個奈米碳管薄膜,每一個奈米碳管薄膜作為一個奈米碳管層。重叠設置上述的兩個奈米碳管層,從而使得到上述兩個奈米碳管層中的定向排列的奈米碳管之間具有一交叉角度α,0 α 90°。可以理解,由於奈米碳管薄膜中奈米碳管的排列方向基本平行於奈米碳管薄膜的拉伸方向,故,可以使得上述的兩個奈米碳管層之間的奈米碳管成一交叉角度α設置。 The two carbon nanotube films prepared above were taken, and each of the carbon nanotube films was used as a carbon nanotube layer. The two carbon nanotube layers described above are arranged in an overlapping manner such that the aligned carbon nanotubes in the two carbon nanotube layers have an angle of intersection α, 0 α 90°. It can be understood that since the arrangement direction of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film, the carbon nanotubes between the two carbon nanotube layers can be made. Set to an angle of intersection α.

請參閱圖3,該奈米碳管薄膜為擇優取向排列的多個奈米碳管束首尾相連形成的具有一定寬度的奈米碳管薄膜。該奈米碳管薄膜中奈米碳管的排列方向基本平行於奈米碳管薄膜的拉伸方向。該直接拉伸獲得的擇優取向排列的奈米碳管薄膜比無序的奈米碳管薄膜具有更好的均勻性,即具有更均勻的厚度以及具有均勻的導電性能。同時該直接拉伸獲得奈米碳管薄膜的方法簡單快速,適宜進行工業化應用。故,採用本技術方案的奈米碳管層作透明導電層24,可以降低了電子元件20的製作。 Referring to FIG. 3, the carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferential orientation. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. The preferentially oriented aligned carbon nanotube film obtained by the direct stretching has better uniformity than the disordered carbon nanotube film, that is, has a more uniform thickness and has uniform electrical conductivity. At the same time, the direct stretching method for obtaining the carbon nanotube film is simple and rapid, and is suitable for industrial application. Therefore, by using the carbon nanotube layer of the present technical solution as the transparent conductive layer 24, the fabrication of the electronic component 20 can be reduced.

可以理解,由於本實施例超順排奈米碳管陣列中的奈米碳管非常純淨,且由於奈米碳管本身的比表面積非常大,所以該奈米碳管薄膜本身具有較强的粘性。因此,采用本實施例中的奈米碳管薄膜形成奈米碳管層,並作為透明導電層24時,可直接粘附在基體22的一個表面上。 It can be understood that since the carbon nanotube in the super-sequential carbon nanotube array of the embodiment is very pure, and the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. . Therefore, the carbon nanotube film is formed by using the carbon nanotube film of this embodiment, and as the transparent conductive layer 24, it can be directly adhered to one surface of the substrate 22.

另外,可使用有機溶劑處理上述粘附在基體22上的奈米碳管層。具體地,可通過試管將有機溶劑滴落在奈米碳管層表面浸潤整個奈米碳管層。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。所述奈米碳管薄膜經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力的作用下,奈米碳管薄膜中的平行的奈米碳管片斷會部分聚集成奈米碳管束,因此,該奈米碳管薄膜表面體積比小,無粘性,且具有良好的機械强度及韌性。 Alternatively, the above-described carbon nanotube layer adhered to the substrate 22 may be treated with an organic solvent. Specifically, the organic solvent may be dropped on the surface of the carbon nanotube layer by a test tube to infiltrate the entire carbon nanotube layer. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. After the carbon nanotube film is infiltrated by an organic solvent, the parallel carbon nanotube segments in the carbon nanotube film partially aggregate into the carbon nanotube bundle under the surface tension of the volatile organic solvent, so The carbon nanotube film has a small surface volume ratio, is non-tacky, and has good mechanical strength and toughness.

此外,根據實際需要,還可在透明導電層24的一個表面上設置有至少兩個電極26。優選地,上述的至少兩個電極26間隔設置在透明導電層24遠離基體22的一個表面上。可以理解,上述的電極26也可以設置在透明導電層24的不同表面上,其關鍵在於確保上述的電極26與透明導電層24形成電連接即可。上述至少兩個電極26的材料可以為銅、銀、金、石墨或奈米碳管長綫。具體地,在本實施例中,基體22為玻璃基板,所述至少兩個電極26為由銅的鍍層或者箔片組成的條狀電極。所述電極26可以採用濺射、電鍍、化學鍍等沈積方法直接形成在透明導電層24上。另外,也可用銀膠等導電粘結劑將上述的至 少兩個電極26粘結在透明導電層24上。 Further, at least two electrodes 26 may be disposed on one surface of the transparent conductive layer 24 according to actual needs. Preferably, the at least two electrodes 26 are spaced apart from each other on a surface of the transparent conductive layer 24 away from the substrate 22. It can be understood that the above-mentioned electrodes 26 can also be disposed on different surfaces of the transparent conductive layer 24, and the key is to ensure that the above-mentioned electrode 26 and the transparent conductive layer 24 are electrically connected. The material of the at least two electrodes 26 may be a long line of copper, silver, gold, graphite or carbon nanotubes. Specifically, in the present embodiment, the base 22 is a glass substrate, and the at least two electrodes 26 are strip electrodes composed of a copper plating or a foil. The electrode 26 may be directly formed on the transparent conductive layer 24 by a deposition method such as sputtering, electroplating, or electroless plating. In addition, it is also possible to use the conductive adhesive such as silver glue to Two fewer electrodes 26 are bonded to the transparent conductive layer 24.

可以理解,在本技術方案提供的電子元件20的透明導電層24上采用光刻或激光刻蝕的方法,形成布綫後,所述電子元件20可以用作透明電極或電路用於平面顯示、光電、觸摸屏、電致發光和電磁屏蔽(EMI)中。 It can be understood that, after the wiring is formed on the transparent conductive layer 24 of the electronic component 20 provided by the technical solution, the electronic component 20 can be used as a transparent electrode or a circuit for planar display. Photoelectric, touch screen, electroluminescence and electromagnetic shielding (EMI).

具體地,當用於做熱源時,電子元件20可包括兩個電極,上述的兩個電極間隔設置在透明導電層24的遠離基體22的一個表面上。上述的兩個電極分別連接導線後,接入電源。由於上述的兩個電極間隔一定距離設置。故,在上述兩個電極之間的透明導電層24上接入了一定的阻值,防止了短路現象的發生。因此,當電源接入後,電子元件20的透明導電層24可輻射出一定波長範圍的電磁波。 Specifically, when used as a heat source, the electronic component 20 may include two electrodes spaced apart from one surface of the transparent conductive layer 24 away from the substrate 22. After the above two electrodes are respectively connected to the wires, they are connected to the power source. Since the above two electrodes are spaced apart by a certain distance. Therefore, a certain resistance value is connected to the transparent conductive layer 24 between the two electrodes to prevent the occurrence of a short circuit phenomenon. Therefore, when the power source is connected, the transparent conductive layer 24 of the electronic component 20 can radiate electromagnetic waves of a certain wavelength range.

當用於觸摸屏時,電子元件20可包括四個電極,上述的四個電極間隔設置在透明導電層24的遠離基體22的一個表面上。上述的四個電極分別連接導線,接入電源。由於上述的四個電極間隔一定距離設置,且所述透明導電層24包括一奈米碳管層,該奈米碳管層中的奈米碳管有序排列,從而使得透明導電層24具有均勻的阻值分布。故,接入電源後,在透明導電層24上形成均勻分布的等電位面。當手指或導電筆等觸摸物觸摸或靠近觸摸屏的透明導電層24時,觸摸物與透明導電層24之間形成一耦合電容。對於高頻電流來說,電容為直接導體,故,手指從接觸點吸走了一部分電流。這個電流分別從觸摸屏20上的電極中流出,並且流經這四個電極的電流與手指 到四角的距離成正比,觸摸屏控製器通過對這四個電流比例的精確計算,得出觸摸點的位置。 When used in a touch screen, the electronic component 20 may include four electrodes spaced apart from one surface of the transparent conductive layer 24 away from the substrate 22. The above four electrodes are respectively connected to the wires and connected to the power source. Since the above four electrodes are disposed at a certain distance, and the transparent conductive layer 24 includes a carbon nanotube layer, the carbon nanotubes in the carbon nanotube layer are arranged in an orderly manner, so that the transparent conductive layer 24 has uniformity. The resistance distribution. Therefore, after the power is turned on, a uniformly distributed equipotential surface is formed on the transparent conductive layer 24. When a touch object such as a finger or a conductive pen touches or approaches the transparent conductive layer 24 of the touch screen, a coupling capacitance is formed between the touch object and the transparent conductive layer 24. For high-frequency currents, the capacitor is a direct conductor, so the finger draws a portion of the current from the contact point. This current flows out of the electrodes on the touch screen 20, respectively, and the current flowing through the four electrodes and the fingers Directly proportional to the distance to the four corners, the touch screen controller derives the position of the touch point by accurately calculating the ratio of the four currents.

本技術方案實施例提供的電子元件20具有以下優點:其一,由於奈米碳管層具有很好的韌性和機械强度,故,采用奈米碳管層作透明導電層24,可以相應的提高電子元件的耐用性。其二,由於奈米碳管層具有較均勻的結構,故,采用奈米碳管層作透明導電層24,可使得透明導電層具有均勻的電阻,從而提高電子元件的性能。其三,由於本技術方案的奈米碳管層可通過直接鋪設作透明導電層,而無需濺射和加熱等工藝,故,降低了電子元件的製作成本。 The electronic component 20 provided by the embodiment of the present technical solution has the following advantages: First, since the carbon nanotube layer has good toughness and mechanical strength, the use of the carbon nanotube layer as the transparent conductive layer 24 can be correspondingly improved. Durability of electronic components. Second, since the carbon nanotube layer has a relatively uniform structure, the use of a carbon nanotube layer as the transparent conductive layer 24 allows the transparent conductive layer to have a uniform electrical resistance, thereby improving the performance of the electronic component. Third, since the carbon nanotube layer of the present technical solution can be directly laid as a transparent conductive layer without a process such as sputtering and heating, the manufacturing cost of the electronic component is reduced.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限製本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

30‧‧‧電子元件 30‧‧‧Electronic components

22‧‧‧基體 22‧‧‧ base

24‧‧‧透明導電層 24‧‧‧Transparent conductive layer

26‧‧‧電極 26‧‧‧Electrode

圖1為本技術方案實施例的電子元件的結構示意圖。 FIG. 1 is a schematic structural diagram of an electronic component according to an embodiment of the present technical solution.

圖2為沿圖1所示的線II-II的剖視圖。 Fig. 2 is a cross-sectional view taken along line II-II shown in Fig. 1.

圖3為本技術方案實施例的透明導電層的奈米碳管薄膜的掃描電鏡圖。 3 is a scanning electron micrograph of a carbon nanotube film of a transparent conductive layer according to an embodiment of the present technology.

22‧‧‧基體 22‧‧‧ base

24‧‧‧透明導電層 24‧‧‧Transparent conductive layer

26‧‧‧電極 26‧‧‧Electrode

Claims (13)

一種電子元件,包括一基體;一透明導電層,該透明導電層設置於所述基體的至少一個表面,其改良在於,所述透明導電層包括至少一個奈米碳管層,該奈米碳管層包括多個有序奈米碳管,所述多個奈米碳管在所述奈米碳管層中平行於基體表面排列,且沿同一方向擇優取向排列。 An electronic component comprising a substrate; a transparent conductive layer disposed on at least one surface of the substrate, wherein the transparent conductive layer comprises at least one carbon nanotube layer, the carbon nanotube The layer includes a plurality of ordered carbon nanotubes arranged in parallel with the surface of the substrate in the layer of carbon nanotubes and arranged in a preferred orientation in the same direction. 如申請專利範圍第1項所述的電子元件,其中,所述奈米碳管層為一個奈米碳管薄膜或多個平行且無間隙鋪設的奈米碳管薄膜,該奈米碳管薄膜包括多個沿同一方向擇優取向排列的奈米碳管。 The electronic component according to claim 1, wherein the carbon nanotube layer is a carbon nanotube film or a plurality of parallel and gap-free carbon nanotube films, the carbon nanotube film A plurality of carbon nanotubes arranged in a preferred orientation in the same direction are included. 如申請專利範圍第2項所述的電子元件,其中,所述奈米碳管薄膜進一步包括多個奈米碳管束片段,每個奈米碳管束片段具有大致相等的長度且每個奈米碳管束片段由多個相互平行的奈米碳管束構成,所述多個奈米碳管束片段兩端通過凡德瓦爾力相互連接。 The electronic component of claim 2, wherein the carbon nanotube film further comprises a plurality of carbon nanotube bundle segments, each of the carbon nanotube bundle segments having substantially equal lengths and each nanocarbon The tube bundle segment is composed of a plurality of mutually parallel carbon nanotube bundles, and the two ends of the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. 如申請專利範圍第2項所述的電子元件,其中,所述奈米碳管薄膜的厚度為0.01微米~100微米。 The electronic component according to claim 2, wherein the carbon nanotube film has a thickness of from 0.01 μm to 100 μm. 如申請專利範圍第4項所述的電子元件,其中,所述奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或几種。 The electronic component of claim 4, wherein the carbon nanotube comprises one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. 如申請專利範圍第5項所述的電子元件,其中,所述單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。 The electronic component according to claim 5, wherein the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm. The diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. 如申請專利範圍第1項所述的電子元件,其中,所述透明導電層包括至少兩個重叠設置的奈米碳管層,每個奈米碳管層中的奈米碳管沿固定方向擇優取向排列。 The electronic component of claim 1, wherein the transparent conductive layer comprises at least two carbon nanotube layers arranged in an overlapping manner, and the carbon nanotubes in each carbon nanotube layer are preferentially oriented in a fixed direction. Orientation. 如申請專利範圍第7項所述的電子元件,其中,所述相鄰兩個奈米碳管層之間的奈米碳管沿不同方向排列或沿同一方向排列,即具有一交叉角度α,α大於等於0度且小於等於90度。 The electronic component of claim 7, wherein the carbon nanotubes between the adjacent two carbon nanotube layers are arranged in different directions or arranged in the same direction, that is, have an intersection angle α, α is greater than or equal to 0 degrees and less than or equal to 90 degrees. 如申請專利範圍第1項所述的電子元件,其中,所述電子元件進一步包括至少兩個電極,該至少兩個電極間隔設置在上述透明導電層的一表面或基體的一表面,並與該透明導電層電連接。 The electronic component of claim 1, wherein the electronic component further comprises at least two electrodes spaced apart from a surface of the transparent conductive layer or a surface of the substrate, and The transparent conductive layer is electrically connected. 如申請專利範圍第9項所述的電子元件,其中,所述至少兩電極的材料為銅、銀、金、鉬或石墨。 The electronic component according to claim 9, wherein the material of the at least two electrodes is copper, silver, gold, molybdenum or graphite. 如申請專利範圍第10項所述的電子元件,其中,所述至少兩個電極通過一導電銀膠設置在透明導電層上。 The electronic component of claim 10, wherein the at least two electrodes are disposed on the transparent conductive layer by a conductive silver paste. 如申請專利範圍第1項所述的電子元件,其中,所述基體為平面基體或曲面基體。 The electronic component according to claim 1, wherein the substrate is a planar substrate or a curved substrate. 如申請專利範圍第1項所述的電子元件,其中,所述基體的材料為玻璃、石英、金剛石或塑料。 The electronic component of claim 1, wherein the material of the substrate is glass, quartz, diamond or plastic.
TW96149398A 2007-12-21 2007-12-21 Electron element TWI436957B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149398A TWI436957B (en) 2007-12-21 2007-12-21 Electron element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149398A TWI436957B (en) 2007-12-21 2007-12-21 Electron element

Publications (2)

Publication Number Publication Date
TW200927690A TW200927690A (en) 2009-07-01
TWI436957B true TWI436957B (en) 2014-05-11

Family

ID=44863729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149398A TWI436957B (en) 2007-12-21 2007-12-21 Electron element

Country Status (1)

Country Link
TW (1) TWI436957B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496167B (en) * 2009-08-21 2015-08-11 Innolux Corp A conductive plate having a plurity of conductive films
CN104718170A (en) 2012-09-04 2015-06-17 Ocv智识资本有限责任公司 Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Also Published As

Publication number Publication date
TW200927690A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
CN101458975B (en) Electronic element
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
US8325585B2 (en) Touch panel and display device using the same
TWI354921B (en) Touch panel and displaying device using the same
CN101470558B (en) Touch screen and display equipment
US8199119B2 (en) Touch panel and display device using the same
US8237671B2 (en) Touch panel and display device using the same
TW200926471A (en) Touch panel and displaying device using the same
TW200929725A (en) Electromagnetic shielding layer and method for making the same
CN101458604B (en) Touch screen and display device
TWI386831B (en) Touch panel and displaying device using the same
CN102074429B (en) Field emission cathode structure and preparation method thereof
TW200929649A (en) Touchable control device
TWI436957B (en) Electron element
TW200928915A (en) Method for making touch panel
TWI408575B (en) Touch panel and displaying device using the same
TWI403928B (en) Method for making touch panel
TWI436510B (en) Touch panel and displaying device using the same
KR20110046102A (en) Carbon nano tubes film and method for manufacturing the same
TWI374302B (en) Touch panel
TWI423084B (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI482324B (en) Touch panel and displaying device using the same