TWI434414B - 具改良閘極特性之增強模式氮化鎵電晶體 - Google Patents

具改良閘極特性之增強模式氮化鎵電晶體 Download PDF

Info

Publication number
TWI434414B
TWI434414B TW99110729A TW99110729A TWI434414B TW I434414 B TWI434414 B TW I434414B TW 99110729 A TW99110729 A TW 99110729A TW 99110729 A TW99110729 A TW 99110729A TW I434414 B TWI434414 B TW I434414B
Authority
TW
Taiwan
Prior art keywords
gate
thickness
gallium nitride
pgan
transistor
Prior art date
Application number
TW99110729A
Other languages
English (en)
Other versions
TW201101485A (en
Inventor
Alexander Lidow
Robert Beach
Alana Nakata
Jianjun Cao
guang yuan Zhao
Original Assignee
Efficient Power Conversion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efficient Power Conversion Corp filed Critical Efficient Power Conversion Corp
Publication of TW201101485A publication Critical patent/TW201101485A/zh
Application granted granted Critical
Publication of TWI434414B publication Critical patent/TWI434414B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Manufacturing & Machinery (AREA)

Description

具改良閘極特性之增強模式氮化鎵電晶體
本發明係有關具改良閘極特性之增強模式氮化鎵電晶體。
發明背景
增強模式氮化鎵(GaN)電晶體是一新近之發展。在一氮化鎵電晶體中,一P-型氮化鎵(pGaN)閘極被成長在鋁鎵氮化合物(AlGaN)/氮化鎵結構頂部上以產生正性臨界電壓。但是,習知的pGaN閘極結構不具有最佳化的厚度,如果該pGaN結構是太厚的話則其可能導致介電質失效,或如果該pGaN閘極結構是太薄的話則可能導致電流之超傳導。
第1圖展示習知氮化鎵電晶體1之橫截面圖。氮化鎵電晶體1具有被配置在一未摻雜氮化鎵層6之頂部上的鋁鎵氮層5,而在那些層之間具有一層二維電子氣體(2DEG)異質接合9。在鋁鎵氮層5之頂部上是源極2、汲極3以及閘極4。閘極4具有在閘極金屬4和鋁鎵氮層5之間的pGaN結構7。介電質8覆蓋被曝露的鋁鎵氮層以及閘極4和pGaN結構7之側壁。該pGaN結構7具有厚度t。閘極介電質7藉由在閘極4和鋁鎵氮層5之間的側壁被決定。2DEG異質接合9利用閘極4被調變。
第2圖展示第1圖之習知氮化鎵電晶體1的電路圖。第2圖展示之介電質8是平行於閘極二極體。應了解,此處使用之參考號碼是指示於第1和2圖。
第3圖展示對於具有不同厚度t的pGaN結構之閘極轉導(輸入電壓對輸出電流)如何變化之圖式。由於pGaN厚度t增加,轉導減少且閘極二極體正向壓降增加。尤其是,第3圖展示具有300之厚度t的pGaN結構之閘極比具有600厚度t之pGaN結構之閘極具有較高的轉導,而具有600厚度t之pGaN結構的閘極又比具有1000厚度t之pGaN結構的閘極具有較高的轉導。較高的閘極電壓是完全地增強具有較厚的pGaN結構之裝置之所需。如果閘極介電質在裝置完全地被增強之前失去效用,則該裝置之最大性能不能被達成。
習知的增強模式氮化鎵電晶體皆具有至少1000厚度t之pGaN結構的閘極。例如,X. Hu,等人之“具有選擇性生成pn接合閘極之增強模式鋁鎵氮/氮化鎵異質接合場效應電晶體(HFET)”,電子通訊,第8期,第36章,第753-54頁(2000年4月13日)中教導1000之pGaN結構。此外,美國專利申請公開序號第2006/0273347號案,教導具有厚度1000之pGaN結構。但是,下面將說明,大於或等於1000之pGaN厚度t可能導致介電質之失效。
第5圖展示用於具有1000厚度t之pGaN結構的閘極I-V特性。第5圖之資料展示當8V-12V被施加至閘極時,具有1000厚度t之pGaN結構的閘極失去效用。因此,1000厚度t對於pGaN結構是太厚,因為閘極作用如同於介電質。介電質失效是激變的並且可能發生在2DEG異質接合完全被增強之前或可能由於在快速切換期間閘極過衝而發生(將在下面被展示)。
第6圖展示對於具有1000厚度t之pGaN結構的閘極I-V特性。如在第3圖中所見地,具有1000厚度t之pGaN結構的閘極在6伏特時沒完全地被導通,其增加介電質失效之風險。
第7圖展示與一閘極相關的過衝。如圖形中所見,在展示的高切換速率下,電壓之變動可能是激烈的。如果閘極之臨界電壓是接近於介電質承受電壓,則由於可能超出承受電壓位準的閘極過衝,介電質將很可能破裂。具有更較小於承受電壓之厚度t的pGaN結構之閘極是較不可能不利地受到閘極過衝所影響,因為被施加以致動閘極之電壓將不是太接近於承受電壓,亦即,閘極過衝是很不可能達到或超出承受電壓。
由上述明顯地可知,1000對於增強模式氮化鎵電晶體中之pGaN閘極結構是太厚。因此,將需要提供具有充分地薄之pGaN閘極的增強模式氮化鎵電晶體以避免介電質失效之風險。
發明概要
本發明是針對具有足夠薄的pGaN閘極結構以避免介電質失效之一增強模式氮化鎵電晶體。在一實施例中,對於5V閘極電壓應用中,這厚度是在400至900範圍中。在一較佳實施例中,該厚度是600。此厚度是厚的足以避免電流之超傳導。
圖式簡單說明
第1圖是一增強模式氮化鎵電晶體之橫截面圖。
第2圖是增強模式氮化鎵電晶體之電路圖。
第3圖是展示對於變化厚度之閘極的轉導如何變化之圖形。
第4圖是展示對於具有變化厚度之閘極裝置的閘極P-N接合I-V特性之圖形。
第5圖展示具有1000厚度t之pGaN結構的閘極之閘極P-N接合I-V特性。
第6圖是展示比較具有600厚度t之結構與具有1000厚度t之pGaN結構的閘極P-N接合I-V特性之圖形,展示在6伏特未被導通(因此允許電流流通)之具有1000閘極的裝置,其增加介電質失效風險。
第7圖是展示相關於先前技術閘極之過衝的圖形。
較佳實施例之詳細說明
本發明是針對具有厚度在400至900範圍中之pGaN閘極的一增強模式氮化鎵電晶體。此範圍是薄的足以避免介電質失效。如將在下面說明,此範圍同時也是厚的足以避免關於太薄的pGaN閘極之問題。在一較佳實施例中,pGaN閘極厚度是600
pGaN閘極結構是鎂摻雜的且被致動成p-型傳導性。在一實施例中,pGaN閘極結構是一種半絕緣氮化鎵,其是摻雜鎂且以氫補償。
如於第4圖之展示,具有厚度600之pGaN結構的閘極是充分地厚以傳導一可量測之電流量。第4圖同時也展示具有300Å厚度t之pGaN結構的閘極在任何數量之正的或負的電壓被施加時傳導不可量測的電流量。因此,300Å之厚度對於一pGaN結構是太薄。
如於第6圖之展示,具有厚度600Å之pGaN結構的閘極在介電質失效發生之前被導通,因此避免介電質失效。對於具有厚度600Å之pGaN結構的閘極,介電質失效同時也是較不可能的,因為該閘極以更較低於介電質承受電壓的電壓被導通,亦即,閘極過衝是較不可能促使閘極電壓接近該承受電壓。
上述之閘極厚度以及量測係有關於以額定的閘極電壓5V操作之裝置。顯然地,在較低之額定閘極電壓,pGaN結構之厚度將相對地被降低。因此,增強模式GaN電晶體具有一具一係數Ax(400Å至900Å)之厚度的閘極結構,其中該係數A對應於額定閘極電壓/5V之比率值。
上面之說明以及圖形僅是考慮作為展示達成此處說明之本發明特點和優點的特定實施例。對於特定處理條件是可以有修改以及替代性。因此,本發明不受限制於先前的說明以及圖形。
1...氮化鎵電晶體
2...源極
3...汲極
4...閘極
5...鋁鎵氮層
6...未摻雜氮化鎵層
7...P-型氮化鎵結構
8...介電質
9...二維電子氣體異質接合
第1圖是一增強模式氮化鎵電晶體之橫截面圖。
第2圖是增強模式氮化鎵電晶體之電路圖。
第3圖是展示對於變化厚度之閘極的轉導如何變化之圖形。
第4圖是展示對於具有變化厚度之閘極裝置的閘極P-N接合I-V特性之圖形。
第5圖展示具有1000厚度t之pGaN結構的閘極之閘極P-N接合I-V特性。
第6圖是展示比較具有600厚度t之結構與具有1000厚度t之pGaN結構的閘極P-N接合I-V特性之圖形,展示在6伏特未被導通(因此允許電流流通)之具有1000閘極的裝置,其增加介電質失效風險。
第7圖是展示相關於先前技術閘極之過衝的圖形。

Claims (2)

  1. 一種增強模式氮化鎵(GaN)電晶體,具有一5伏特或較小之額定閘極電壓,其包含:一具有一厚度t之p型GaN閘極結構,其中:對5伏特之額定閘極電壓而言,該厚度t係400Å至900Å;以及對小於5伏特之額定閘極電壓而言,該厚度t係(400Å至900Å)乘以一比率值,該比率值係該額定閘極電壓除以5伏特。
  2. 如申請專利範圍第1項所述之增強模式GaN電晶體,其中該電晶體之額定閘極電壓為5V,及該p型GaN閘極結構之厚度為600Å。
TW99110729A 2009-04-08 2010-04-07 具改良閘極特性之增強模式氮化鎵電晶體 TWI434414B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16778809P 2009-04-08 2009-04-08

Publications (2)

Publication Number Publication Date
TW201101485A TW201101485A (en) 2011-01-01
TWI434414B true TWI434414B (zh) 2014-04-11

Family

ID=42933674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99110729A TWI434414B (zh) 2009-04-08 2010-04-07 具改良閘極特性之增強模式氮化鎵電晶體

Country Status (7)

Country Link
US (1) US8969918B2 (zh)
JP (1) JP2012523699A (zh)
KR (1) KR20120006510A (zh)
CN (1) CN102388443A (zh)
DE (1) DE112010001582T5 (zh)
TW (1) TWI434414B (zh)
WO (1) WO2010118090A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299821B2 (en) 2010-06-23 2016-03-29 Cornell University Gated III-V semiconductor structure and method
CN103348480B (zh) 2011-01-31 2016-11-16 宜普电源转换公司 用于氮化镓晶体管的离子植入及自行对准栅极结构
US8895993B2 (en) 2011-01-31 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Low gate-leakage structure and method for gallium nitride enhancement mode transistor
CN108807526B (zh) * 2012-04-20 2021-12-21 苏州晶湛半导体有限公司 增强型开关器件及其制造方法
US9978844B2 (en) 2013-08-01 2018-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. HEMT-compatible lateral rectifier structure
US9960620B2 (en) 2014-09-16 2018-05-01 Navitas Semiconductor, Inc. Bootstrap capacitor charging circuit for GaN devices
US11101378B2 (en) 2019-04-09 2021-08-24 Raytheon Company Semiconductor structure having both enhancement mode group III-N high electron mobility transistors and depletion mode group III-N high electron mobility transistors
US11545566B2 (en) 2019-12-26 2023-01-03 Raytheon Company Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement
WO2021217651A1 (en) 2020-04-30 2021-11-04 Innoscience (suzhou) Semiconductor Co., Ltd. Semiconductor device and method for manufacturing the same
US11362190B2 (en) 2020-05-22 2022-06-14 Raytheon Company Depletion mode high electron mobility field effect transistor (HEMT) semiconductor device having beryllium doped Schottky contact layers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261053A (ja) * 1998-03-09 1999-09-24 Furukawa Electric Co Ltd:The 高移動度トランジスタ
US6897495B2 (en) * 2001-10-31 2005-05-24 The Furukawa Electric Co., Ltd Field effect transistor and manufacturing method therefor
AU2003265691A1 (en) * 2002-08-26 2004-03-11 University Of Florida GaN-TYPE ENHANCEMENT MOSFET USING HETERO STRUCTURE
JP4916671B2 (ja) * 2005-03-31 2012-04-18 住友電工デバイス・イノベーション株式会社 半導体装置
JP4705412B2 (ja) 2005-06-06 2011-06-22 パナソニック株式会社 電界効果トランジスタ及びその製造方法
JP5299805B2 (ja) * 2005-08-29 2013-09-25 学校法人 名城大学 トランジスタ
US7728355B2 (en) * 2005-12-30 2010-06-01 International Rectifier Corporation Nitrogen polar III-nitride heterojunction JFET
JP5400266B2 (ja) * 2006-04-17 2014-01-29 パナソニック株式会社 電界効果トランジスタ
JP2008078526A (ja) * 2006-09-25 2008-04-03 New Japan Radio Co Ltd 窒化物半導体装置及びその製造方法
JP4755961B2 (ja) * 2006-09-29 2011-08-24 パナソニック株式会社 窒化物半導体装置及びその製造方法
JP2008211172A (ja) * 2007-01-31 2008-09-11 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
US7728356B2 (en) * 2007-06-01 2010-06-01 The Regents Of The University Of California P-GaN/AlGaN/AlN/GaN enhancement-mode field effect transistor
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices

Also Published As

Publication number Publication date
CN102388443A (zh) 2012-03-21
US20100258842A1 (en) 2010-10-14
KR20120006510A (ko) 2012-01-18
TW201101485A (en) 2011-01-01
US8969918B2 (en) 2015-03-03
WO2010118090A1 (en) 2010-10-14
DE112010001582T5 (de) 2012-08-02
JP2012523699A (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
TWI434414B (zh) 具改良閘極特性之增強模式氮化鎵電晶體
US8598628B2 (en) Semiconductor device
TWI546864B (zh) 具有低漏電流和改善的可靠性的增強型氮化鎵金氧半場效電晶體
TWI400801B (zh) 半導體元件
JP4469139B2 (ja) 化合物半導体fet
JP5348364B2 (ja) ヘテロ接合型電界効果半導体装置
US10411125B2 (en) Semiconductor device having high linearity-transconductance
JP4296195B2 (ja) 電界効果トランジスタ
US20110012173A1 (en) Semiconductor device
JP5388839B2 (ja) Iii族窒化物半導体電界効果トランジスタ
US20150295073A1 (en) Switching device
US11705513B2 (en) Nitride semiconductor device
JP2008288474A (ja) ヘテロ接合電界効果トランジスタ
US9502548B1 (en) Semiconductor device
JP6119215B2 (ja) 電界効果トランジスタ
US20150263104A1 (en) Semiconductor device
US9647102B2 (en) Field effect transistor
KR102311344B1 (ko) 고전자이동도 트랜지스터 esd 보호 구조
JP2014187085A5 (zh)
JP5721782B2 (ja) 半導体装置
JP2011066464A (ja) 電界効果トランジスタ
TWM529274U (zh) 常關式疊接型高電子遷移率電晶體
JP2011108712A (ja) 窒化物半導体装置
Yao et al. Manipulation of polarization effect to engineer III-nitride HEMTs for normally-off operation
JP2017005139A (ja) トランジスタ