TWI431810B - Optoelectronic device and method for manufacturing the same - Google Patents

Optoelectronic device and method for manufacturing the same Download PDF

Info

Publication number
TWI431810B
TWI431810B TW100105022A TW100105022A TWI431810B TW I431810 B TWI431810 B TW I431810B TW 100105022 A TW100105022 A TW 100105022A TW 100105022 A TW100105022 A TW 100105022A TW I431810 B TWI431810 B TW I431810B
Authority
TW
Taiwan
Prior art keywords
hole structure
layer
transition
width
density
Prior art date
Application number
TW100105022A
Other languages
Chinese (zh)
Other versions
TW201234655A (en
Inventor
Hung Chih Yang
Min Hsun Hsieh
Ming Chi Hsu
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW100105022A priority Critical patent/TWI431810B/en
Publication of TW201234655A publication Critical patent/TW201234655A/en
Application granted granted Critical
Publication of TWI431810B publication Critical patent/TWI431810B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

光電元件及其製造方法Photoelectric element and method of manufacturing same

本發明係關於一種具有位於半導體結構與基板間之緩衝疊層結構之光電元件。The present invention relates to a photovoltaic element having a buffer stack structure between a semiconductor structure and a substrate.

發光二極體是半導體元件中一種被廣泛使用的光源。相較於傳統的白熾燈泡或螢光燈管,發光二極體具有省電及使用壽命較長的特性,因此逐漸取代傳統光源而應用於各種領域,如交通號誌、背光模組、路燈照明、醫療設備等產業。A light-emitting diode is a widely used light source among semiconductor elements. Compared with traditional incandescent bulbs or fluorescent tubes, LEDs have the characteristics of power saving and long service life, so they gradually replace traditional light sources and are used in various fields, such as traffic signs, backlight modules, street lighting. , medical equipment and other industries.

隨著發光二極體光源的應用與發展對於亮度的需求越來越高,如何增加其發光效率以提高其亮度,便成為產業界所共同努力的重要方向。With the application and development of the light-emitting diode light source, the demand for brightness is getting higher and higher, and how to increase its luminous efficiency to increase its brightness has become an important direction for the industry to work together.

一種光電元件,包含:一基板;及一過渡疊層,位於基板之上,其中過渡疊層包含至少一第一過渡層,位於基板之上,且第一過渡層內部具有一第一孔洞結構;及一第二過渡層,且第二過渡層內部具有一第二孔洞結構,且位於第一過渡層之上,其中第一孔洞結構與第二孔洞結構具有一寬度與密度,且第一孔洞結構之寬度或密度大小與第二孔洞結構之寬度或密度大小不同。A photovoltaic element comprising: a substrate; and a transition stack on the substrate, wherein the transition stack comprises at least a first transition layer over the substrate, and the first transition layer has a first hole structure therein; And a second transition layer, and the second transition layer has a second hole structure inside and is located above the first transition layer, wherein the first hole structure and the second hole structure have a width and a density, and the first hole structure The width or density is different from the width or density of the second hole structure.

為了使本發明之敘述更加詳盡與完備,請參照下列描述並配合第1圖至第6圖之圖示。因為光線由光密介質進入光疏介質,會因介面的折射率差異而造成光取出效率變差。因此,在本申請案,我們提出一種可達到折射率漸變之過渡疊層來增加光的取出效率。如第1A~第1B圖所例示,第1A圖係顯示具有孔洞之過渡疊層示意圖,藉由調整過渡疊層102中的孔洞大小或密度,可使得光的取出效率可以大幅提昇。其中折射率n可藉由下列公式調整之:n(z)=1*m+2.4*(1-m),其中z代表過渡疊層的長晶方向,m為孔洞密度,p為過渡疊層中之孔洞。第1B圖係顯示孔洞密度對過渡疊層之折射率關係圖。例如當過渡疊層102之材料為GaN時,藉由調整過渡疊層102中的孔洞密度,可使得折射率調變成從原來的n=2.5至n=接近1.9~1。In order to make the description of the present invention more detailed and complete, please refer to the following description and cooperate with the diagrams of FIGS. 1 to 6. Since the light enters the light-diffusing medium from the optically dense medium, the light extraction efficiency is deteriorated due to the difference in refractive index of the interface. Therefore, in the present application, we propose a transition stack that achieves a gradient of refractive index to increase the efficiency of light extraction. As illustrated in FIGS. 1A-1B, FIG. 1A shows a schematic diagram of a transition stack having holes. By adjusting the size or density of the holes in the transition stack 102, the light extraction efficiency can be greatly improved. Wherein the refractive index n can be adjusted by the following formula: n(z)=1*m+2.4*(1-m), where z represents the crystal growth direction of the transition stack, m is the hole density, and p is the transition stack The hole in the hole. Figure 1B is a graph showing the relationship between the density of the holes and the refractive index of the transition stack. For example, when the material of the transition stack 102 is GaN, by adjusting the density of the holes in the transition stack 102, the refractive index can be adjusted from n = 2.5 to n = nearly 1.9 to 1.

藉由上述理論,如第2A~第2F圖所例示,依據本發明第一實施例之光電元件之製造方法簡述如下:如第2A~2B圖所示,在一具有一法線方向N之基板101第一表面1011上成長一第一過渡層1021。According to the above theory, as illustrated in FIGS. 2A to 2F, the manufacturing method of the photovoltaic element according to the first embodiment of the present invention is briefly described as follows: as shown in FIGS. 2A to 2B, in a normal direction N A first transition layer 1021 is grown on the first surface 1011 of the substrate 101.

之後,如第2B圖所示,於第一過渡層1021上成長一第二過渡層1022,其中第一過渡層1021與第二過渡層1022可合稱為一過渡疊層102。其中第一過渡層1021係藉由電化學蝕刻、非等向性蝕刻,例如感應耦合電漿(inductive coupling plasma,ICP)之乾蝕刻,或使用草酸、氫氧化鉀、或磷酸硫酸溶液等單一溶液或混合溶液進行濕蝕刻,使第一過渡層1021可包含至少一個第一孔洞結構p1,且第二過渡層1022可包含至少一個第二孔洞結構p2。其中第一孔洞結構p1與第二孔洞結構p2可為孔洞(pore,void,bore)、針孔(pinhole),或至少兩個孔洞結構相互連結形成一網狀孔洞結構(porous structure),其形成之一種方法可參閱本案申請人之第099132135號、第099137445號與第099142035號台灣專利申請案,並援引其為本申請案之一部分。Then, as shown in FIG. 2B, a second transition layer 1022 is grown on the first transition layer 1021, wherein the first transition layer 1021 and the second transition layer 1022 can be collectively referred to as a transition stack 102. The first transition layer 1021 is subjected to electrochemical etching, anisotropic etching, such as dry etching of inductive coupling plasma (ICP), or using a single solution such as oxalic acid, potassium hydroxide, or a sulfuric acid sulfuric acid solution. Or the mixed solution is subjected to wet etching so that the first transition layer 1021 may include at least one first hole structure p1, and the second transition layer 1022 may include at least one second hole structure p2. The first hole structure p1 and the second hole structure p2 may be pores, voids, pores, or pinholes, or at least two pore structures are connected to each other to form a porous structure. One of the methods can be found in the applicant's Taiwan Patent Application No. 099132135, No. 099137445, and No. 099142035, which is incorporated herein by reference.

其中上述第一孔洞結構p1與第二孔洞結構p2各具有一寬度,其中寬度係為孔洞結構於平行表面方向之最大尺寸,且第一孔洞結構p1與第二孔洞結構p2之寬度大小不同。在一實施例中,第一孔洞結構p1之寬度大於第二孔洞結構p2之寬度。The first hole structure p1 and the second hole structure p2 each have a width, wherein the width is the largest dimension of the hole structure in the direction of the parallel surface, and the widths of the first hole structure p1 and the second hole structure p2 are different. In an embodiment, the width of the first hole structure p1 is greater than the width of the second hole structure p2.

其中上述第一孔洞結構p1與第二孔洞結構p2各具有一密度,且第一孔洞結構p1與第二孔洞結構p2之密度大小不同。在一實施例中,第一孔洞結構p1之密度大於第二孔洞結構p2之密度。The first hole structure p1 and the second hole structure p2 each have a density, and the first hole structure p1 and the second hole structure p2 have different densities. In an embodiment, the density of the first hole structure p1 is greater than the density of the second hole structure p2.

在本實施例中,過渡疊層102之材料包含一種或一種以上之元素選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)、磷(P)、氮(N)以及矽(Si)所構成群組。In this embodiment, the material of the transition layer 102 comprises one or more elements selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), arsenic (As), phosphorus (P), and nitrogen (N). And a group of 矽 (Si).

在一實施例中,第一孔洞結構p1與第二孔洞結構p2中之孔洞或網狀孔洞之寬度可介於10nm~2000nm,或100nm~2000nm,或300nm~2000nm,或500nm~2000nm,或800nm~2000nm,或1000nm~2000nm,或1300nm~2000nm,或1500nm~2000nm,或1800nm~2000nm。In an embodiment, the width of the hole or the mesh hole in the first hole structure p1 and the second hole structure p2 may be between 10 nm and 2000 nm, or 100 nm to 2000 nm, or 300 nm to 2000 nm, or 500 nm to 2000 nm, or 800 nm. ~2000nm, or 1000nm~2000nm, or 1300nm~2000nm, or 1500nm~2000nm, or 1800nm~2000nm.

在另一實施例中,第一孔洞結構p1與第二孔洞結構p2可具有複數個孔洞或網狀孔洞群。其中複數個孔洞之平均寬度可介於10nm~2000nm,或100nm~2000nm,或300nm~2000nm,或500nm~2000nm,或800nm~2000nm,或1000nm~2000nm,或1300nm~2000nm,或1500nm~2000nm,或1800nm~2000nm。在一實施例中,上述複數個孔洞或網狀孔洞群之平均間距可介於10nm~2000nm,或100nm~2000nm,或300nm~2000nm,或500nm~2000nm,或800nm~2000nm,或1000nm~2000nm,或1300nm~2000nm,或1500nm~2000nm,或1800nm~2000nm。In another embodiment, the first hole structure p1 and the second hole structure p2 may have a plurality of holes or a network of holes. The average width of the plurality of holes may be between 10 nm and 2000 nm, or 100 nm to 2000 nm, or 300 nm to 2000 nm, or 500 nm to 2000 nm, or 800 nm to 2000 nm, or 1000 nm to 2000 nm, or 1300 nm to 2000 nm, or 1500 nm to 2000 nm, or 1800nm~2000nm. In an embodiment, the average spacing of the plurality of holes or mesh holes may be between 10 nm and 2000 nm, or 100 nm to 2000 nm, or 300 nm to 2000 nm, or 500 nm to 2000 nm, or 800 nm to 2000 nm, or 1000 nm to 2000 nm. Or 1300nm~2000nm, or 1500nm~2000nm, or 1800nm~2000nm.

上述複數個孔洞或網狀孔洞群形成之孔隙度Φ(porosity)定義為孔洞或網狀孔洞群之總體積VV 除以整體體積VT (),其中整體體積VT 為第一過渡層1021或第二過渡層1022總體積。在本實施例中,第一孔洞結構p1與第二孔洞結構p2之孔隙度Φ可介於5%-90%,或10%-90%,或20%-90%,或30%-90%,或40%-90%,或50%-90%,或60%-90%,或70%-90%,或80%-90%。The porosity Φ formed by the plurality of holes or mesh groups is defined as the total volume V V of the holes or mesh holes divided by the total volume V T ( Wherein the overall volume V T is the total volume of the first transition layer 1021 or the second transition layer 1022. In this embodiment, the porosity Φ of the first hole structure p1 and the second hole structure p2 may be 5%-90%, or 10%-90%, or 20%-90%, or 30%-90%. , or 40%-90%, or 50%-90%, or 60%-90%, or 70%-90%, or 80%-90%.

如第2C圖所示,在另一實施例中,第一過渡層1021中之複數個第一孔洞結構p1可為一規則陣列結構,且此數個第一孔洞結構p1具有相同之大小,形成一第一光子晶體(photonic crystal)結構。且第二過渡層1022中之複數個第二孔洞結構p2可為一規則陣列結構,且此數個第二孔洞結構p2具有相同之大小,形成一第二光子晶體結構。在本實施例中,上述第一光子晶體孔洞結構與第二光子晶體孔洞結構可以降低應力,並提高光線之反射與散射。在一實施例中,上述第一孔洞結構p1與第二孔洞結構p2之孔洞寬度不同。在另一實施例中,上述第一孔洞結構p1之寬度大於第二孔洞結構p2。As shown in FIG. 2C, in another embodiment, the plurality of first hole structures p1 in the first transition layer 1021 may be a regular array structure, and the plurality of first hole structures p1 have the same size and are formed. A first photonic crystal structure. The plurality of second hole structures p2 in the second transition layer 1022 may be a regular array structure, and the plurality of second hole structures p2 have the same size to form a second photonic crystal structure. In this embodiment, the first photonic crystal hole structure and the second photonic crystal hole structure can reduce stress and improve reflection and scattering of light. In an embodiment, the first hole structure p1 and the second hole structure p2 have different hole widths. In another embodiment, the width of the first hole structure p1 is greater than the width of the second hole structure p2.

接著,如第2D圖所示,於上述第二過渡層1022之上繼續成長一第一半導體層103、一主動層104與一第二半導體層105。Next, as shown in FIG. 2D, a first semiconductor layer 103, an active layer 104, and a second semiconductor layer 105 are grown on the second transition layer 1022.

最後,如第2E圖所示,於第二半導體層105與基板101之上分別形成兩電極106、107以形成一垂直式光電元件100。Finally, as shown in FIG. 2E, two electrodes 106, 107 are formed on the second semiconductor layer 105 and the substrate 101, respectively, to form a vertical photovoltaic element 100.

在另一實施例中,如第2F圖所示,蝕刻部分上述主動層104與一第二半導體層105以露出部分第一半導體層103後,於第一半導體層103及第二半導體層105之上形成兩電極106、107以形成一水平式光電元件100。上述電極106、107材料可選自:鉻(Cr)、鈦(Ti)、鎳(Ni)、鉑(Pt)、銅(Cu)、金(Au)、鋁(Al)、或銀(Ag)等金屬材料。In another embodiment, as shown in FIG. 2F, after the active layer 104 and a second semiconductor layer 105 are etched to expose a portion of the first semiconductor layer 103, the first semiconductor layer 103 and the second semiconductor layer 105 are Two electrodes 106, 107 are formed thereon to form a horizontal photovoltaic element 100. The materials of the electrodes 106 and 107 may be selected from the group consisting of chromium (Cr), titanium (Ti), nickel (Ni), platinum (Pt), copper (Cu), gold (Au), aluminum (Al), or silver (Ag). Metal materials.

上述第一過渡層1021或第二過渡層1022中之第一孔洞結構p1與第二孔洞結構p2係為中空結構且具有一折射率,適可作為空氣透鏡,當光線於光電元件100中行進至複數個孔洞或網狀孔洞群時,由於複數個孔洞或網狀孔洞群內外部材料折射率之差異(例如,半導體層之折射率約介於2~3之間,空氣的折射率為1),光線會在複數個孔洞或網狀孔洞群處改變行進方向而離開光電元件,因而增加光取出效率。另外,複數個孔洞或網狀孔洞群也可作為一散射中心(scattering center)以改變光子之行進方向並且減少全反射。藉由孔洞密度的增加,可更增加上述功效。另外,在一實施例中,因為第一孔洞結構p1之寬度大於第二孔洞結構p2,可以使得之後的磊晶成長較為容易,而得到更好的磊晶品質。The first hole structure p1 and the second hole structure p2 in the first transition layer 1021 or the second transition layer 1022 are hollow structures and have a refractive index, which is suitable as an air lens, when the light travels to the photovoltaic element 100 to When a plurality of holes or mesh holes are different, the refractive index difference between the inner and outer materials of a plurality of holes or mesh holes (for example, the refractive index of the semiconductor layer is between 2 and 3, and the refractive index of air is 1) The light will change the direction of travel at a plurality of holes or mesh holes to leave the photovoltaic element, thereby increasing light extraction efficiency. In addition, a plurality of holes or mesh holes can also serve as a scattering center to change the direction of travel of the photons and reduce total reflection. By increasing the density of the holes, the above effects can be further increased. In addition, in an embodiment, since the width of the first hole structure p1 is larger than the second hole structure p2, the subsequent epitaxial growth can be made easier, and a better epitaxial quality is obtained.

在本發明另一實施例中,過渡疊層102可為一n-type摻雜層,且第一孔洞結構p1與第二孔洞結構p2可藉由電化學蝕刻生成。由於電化學蝕刻產生之孔洞或密度大小與過渡疊層102之載子濃度有相關性,在同樣的電化學蝕刻條件下,載子濃度較低可得到較小之蝕刻孔洞或密度。因此,藉由調整上述第一過渡層1021與第二過渡層1022之載子濃度,則可製造出不同寬度或密度之第一孔洞結構p1與第二孔洞結構p2。在一實施例中,過渡疊層102之摻雜雜質濃度可介於1E15~1E19 cm-3 ,或1E16~1E19 cm-3 ,或1E17~1E19 cm-3 ,或1E18~1E19 cm-3 ,或5X1E18~1E19 cm-3 ,或5X1E17~1E19 cm-3 ,或5X1E17~1E18 cm-3In another embodiment of the present invention, the transition stack 102 can be an n-type doped layer, and the first hole structure p1 and the second hole structure p2 can be formed by electrochemical etching. Since the pores or density produced by electrochemical etching are related to the carrier concentration of the transition stack 102, under the same electrochemical etching conditions, a lower carrier concentration results in a smaller etched hole or density. Therefore, by adjusting the carrier concentration of the first transition layer 1021 and the second transition layer 1022, the first hole structure p1 and the second hole structure p2 of different widths or densities can be manufactured. In an embodiment, the doping impurity concentration of the transition stack 102 may be between 1E15~1E19 cm -3 , or 1E16~1E19 cm -3 , or 1E17~1E19 cm -3 , or 1E18~1E19 cm -3 , or 5X1E18~1E19 cm -3 , or 5X1E17~1E19 cm -3 , or 5X1E17~1E18 cm -3 .

在一實施例中,第二過渡層1022之上也可成長一連接層(未顯示),其中此連接層係為一非故意摻雜層(unintentional doped layer)或一未摻雜層(undoped layer)。連接層之成長溫度可介於800~1200℃,壓力範圍100~700 mbar,其調整係配合過渡疊層102之孔洞大小與密度,以在過渡疊層102之上進行橫向修補癒合,使靠近過渡疊層102與連接層介面之孔洞寬度或密度變小,並繼續成長連接層。In an embodiment, a connection layer (not shown) may also be grown on the second transition layer 1022, wherein the connection layer is an unintentional doped layer or an undoped layer. ). The growth temperature of the connection layer can be between 800 and 1200 ° C, and the pressure range is from 100 to 700 mbar. The adjustment is matched with the size and density of the holes of the transition layer 102 to perform lateral repair healing on the transition layer 102 to make the transition close. The width or density of the holes of the laminate 102 and the connection layer interface become small, and the connection layer continues to grow.

如第3A~第3C圖所例示,顯示本發明另一實施例之光電元件結構簡圖:如第3A~3B圖所示,過渡疊層102尚可包一第三過渡層1023或一第四過渡層1024。如第3C圖所示,依元件之實際設計也可包含n層的過渡層1021~102n以達到更好之光學或減少應力之效果。在本實施例中,過渡疊層102中之各層過渡層包含至少一個孔洞結構,可為孔洞(pore,void,bore)、針孔(pinhole),或至少兩個孔洞結構相互連結形成一網狀孔洞結構(porous structure),其形成方法、材料、大小與其他特性與上述實施例相同,在此不再贅述。As shown in FIGS. 3A to 3C, a schematic diagram of a structure of a photovoltaic element according to another embodiment of the present invention is shown: as shown in FIGS. 3A-3B, the transition layer 102 may further include a third transition layer 1023 or a fourth. Transition layer 1024. As shown in FIG. 3C, the n-layer transition layers 1021 to 102n may also be included in the actual design of the device to achieve better optical or stress-reducing effects. In this embodiment, each of the transition layers in the transition stack 102 includes at least one pore structure, which may be a pore, a void, a bore, a pinhole, or at least two pore structures connected to each other to form a mesh. The porous structure, the forming method, material, size and other characteristics are the same as those in the above embodiment, and will not be described herein.

如第三A圖所示,第一過渡疊層1021、第二過渡層1022及第三過渡層1023中各至少包含一孔洞結構p1、p2與p3。在一實施例中,各層中的孔洞結構p1、p2與p3可為相同或不同大小。在一實施例中,各層中的孔洞結構之寬度或密度關係為p1>p2>p3。在另一實施例中,各層中的孔洞結構之寬度或密度關係為p1>p2且p3>p2。在另一實施例中,各層中的孔洞結構之寬度或密度關係為p1<p2且p3<p2。As shown in FIG. 3A, each of the first transition layer 1021, the second transition layer 1022, and the third transition layer 1023 includes at least one hole structure p1, p2, and p3. In an embodiment, the pore structures p1, p2, and p3 in each layer may be the same or different sizes. In one embodiment, the width or density relationship of the pore structures in each layer is p1 > p2 > p3. In another embodiment, the width or density relationship of the pore structures in each layer is p1 > p2 and p3 > p2. In another embodiment, the width or density relationship of the pore structures in each layer is p1 < p2 and p3 < p2.

第4A-5B圖係依本發明上述實施例所形成過渡疊層102之掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)圖。如第4A~4B圖示,顯示本發明另一實施例所形成過渡疊層102之掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)圖。如第4A圖所示,過渡疊層102包含第一過渡疊層1021、第二過渡疊層1022與第三過渡疊層1023,其中第二過渡層1022中之孔洞寬度或密度小於第一過渡疊層1021與第三過渡疊層1023。如第4B圖所示,顯示過渡疊層之102上視圖,其中第三過渡疊層1023中之複數孔洞之平均間距約為20~100nm。在本實施例中,利用過渡疊層102中第一過渡疊層1021、第二過渡疊層1022與第三過渡疊層1023之孔洞寬度或密度變化,產生不同之折射率,而可有DBR反射層之效果。4A-5B are scanning electron microscopy (SEM) images of the transition stack 102 formed in accordance with the above-described embodiment of the present invention. As shown in FIGS. 4A-4B, a scanning electron microscope (SEM) image of the transition stack 102 formed in another embodiment of the present invention is shown. As shown in FIG. 4A, the transition stack 102 includes a first transition stack 1021, a second transition stack 1022, and a third transition stack 1023, wherein the width or density of the holes in the second transition layer 1022 is less than the first transition stack. Layer 1021 and third transition stack 1023. As shown in FIG. 4B, a top view of the transition stack 102 is shown, wherein the average spacing of the plurality of holes in the third transition stack 1023 is about 20-100 nm. In the present embodiment, the difference in the width or density of the holes of the first transition stack 1021, the second transition stack 1022 and the third transition stack 1023 in the transition stack 102 is used to produce different refractive indices, and DBR reflections may be used. The effect of the layer.

如第5A~5B圖所示,顯示本發明另一實施例所形成過渡疊層102之掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)圖。如第5A圖所示,過渡疊層包含第一過渡疊層1021、第二過渡疊層1022與第三過渡疊層1023,其中第二過渡層1022中之孔洞寬度或密度大於第一過渡疊層1021與第三過渡疊層1023。如第5B圖所示,顯示過渡疊層之102上視圖,其中第三過渡疊層1023中之複數孔洞之平均間距約為20~100nm。在本實施例中,利用過渡疊層102中第一過渡疊層1021、第二過渡疊層1022與第三過渡疊層1023之孔洞寬度或密度變化,產生不同之折射率,而可有DBR反射層之效果。As shown in Figs. 5A to 5B, a scanning electron microscope (SEM) image of the transition layer stack 102 formed in another embodiment of the present invention is shown. As shown in FIG. 5A, the transition stack includes a first transition stack 1021, a second transition stack 1022, and a third transition stack 1023, wherein the width or density of the holes in the second transition layer 1022 is greater than the first transition stack. 1021 and a third transition stack 1023. As shown in FIG. 5B, a top view of the transition stack 102 is shown, wherein the average spacing of the plurality of holes in the third transition stack 1023 is about 20-100 nm. In the present embodiment, the difference in the width or density of the holes of the first transition stack 1021, the second transition stack 1022 and the third transition stack 1023 in the transition stack 102 is used to produce different refractive indices, and DBR reflections may be used. The effect of the layer.

具體而言,光電元件100係包含發光二極體(LED)、光電二極體(photodiode)、光敏電阻(photoresister)、雷射(laser)、紅外線發射體(infrared emitter)、有機發光二極體(organic light-emitting diode)及太陽能電池(solar cell)中至少其一。基板101係為一成長及/或承載基礎。候選材料可包含導電基板或不導電基板、透光基板或不透光基板。其中導電基板材料其一可為鍺(Ge)、砷化鎵(GaAs)、銦化磷(InP)、碳化矽(SiC)、矽(Si)、鋁酸鋰(LiAlO2 )、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)、金屬。透光基板材料其一可為藍寶石(Sapphire)、鋁酸鋰(LiAlO2 )、氧化鋅(ZnO)、氮化鎵(GaN)、玻璃、鑽石、CVD鑽石、與類鑽碳(Diamond-Like Carbon;DLC)、尖晶石(spinel,MgAl2 O4 )、氧化鋁(Al2 O3 )、氧化矽(SiOX )及鎵酸鋰(LiGaO2 )。Specifically, the photovoltaic element 100 includes a light emitting diode (LED), a photodiode, a photoresistor, a laser, an infrared emitter, and an organic light emitting diode. At least one of (organic light-emitting diode) and solar cell. The substrate 101 is a growth and/or carrier foundation. The candidate material may comprise a conductive substrate or a non-conductive substrate, a light transmissive substrate or an opaque substrate. One of the conductive substrate materials may be germanium (Ge), gallium arsenide (GaAs), indium phosphate (InP), tantalum carbide (SiC), germanium (Si), lithium aluminate (LiAlO 2 ), zinc oxide (ZnO). ), gallium nitride (GaN), aluminum nitride (AlN), metal. One of the transparent substrate materials may be sapphire, lithium aluminate (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), glass, diamond, CVD diamond, and diamond-like carbon (Diamond-Like Carbon). ; DLC), spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), yttrium oxide (SiO X ), and lithium gallate (LiGaO 2 ).

上述第一半導體層103及第二半導體層105係彼此中至少二個部分之電性、極性或摻雜物相異、或者係分別用以提供電子與電洞之半導體材料單層或多層(「多層」係指二層或二層以上,以下同。),其電性選擇可以為p型、n型、及i型中至少任意二者之組合。主動層104係位於第一半導體層103及第二半導體層105之間,為電能與光能可能發生轉換或被誘發轉換之區域。電能轉變或誘發光能者係如發光二極體、液晶顯示器、有機發光二極體;光能轉變或誘發電能者係如太陽能電池、光電二極體。上述第一半導體層103、主動層104及第二半導體層105其材料包含一種或一種以上之元素選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)、磷(P)、氮(N)以及矽(Si)所構成群組。The first semiconductor layer 103 and the second semiconductor layer 105 are different in electrical conductivity, polarity, or dopant from at least two portions, or are used to provide a single or multiple layers of semiconductor materials for electrons and holes, respectively (" "Multilayer" means two or more layers, the same applies hereinafter.) The electrical selection may be a combination of at least any two of p-type, n-type, and i-type. The active layer 104 is located between the first semiconductor layer 103 and the second semiconductor layer 105, and is a region where electrical energy and light energy may be converted or induced to be converted. Those who convert or induce light energy are such as light-emitting diodes, liquid crystal displays, and organic light-emitting diodes; those that convert or induce light energy are such as solar cells and photodiodes. The first semiconductor layer 103, the active layer 104, and the second semiconductor layer 105 have a material containing one or more elements selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), arsenic (As), and phosphorus (P). ), a group of nitrogen (N) and bismuth (Si).

依據本發明之另一實施例之光電元件100係一發光二極體,其發光頻譜可以藉由改變半導體單層或多層之物理或化學要素進行調整。常用之材料係如磷化鋁鎵銦(AlGaInP)系列、氮化鋁鎵銦(AlGaInN)系列、氧化鋅(ZnO)系列等。主動層104之結構係如:單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure;DH)、雙側雙異質結構(double-side double heterostructure;DDH)、或多層量子井(multi-quantμm well;MQW)。再者,調整量子井之對數亦可以改變發光波長。The photovoltaic element 100 according to another embodiment of the present invention is a light-emitting diode whose light-emitting spectrum can be adjusted by changing physical or chemical elements of a single layer or multiple layers of a semiconductor. Commonly used materials are such as aluminum gallium indium phosphide (AlGaInP) series, aluminum gallium indium nitride (AlGaInN) series, zinc oxide (ZnO) series and the like. The structure of the active layer 104 is, for example, a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-layer quantum well (multi- Quantμm well; MQW). Furthermore, adjusting the logarithm of the quantum well can also change the wavelength of the illumination.

於本發明之一實施例中,第一半導體層103與過渡疊層102或過渡疊層102與基板101間尚可選擇性地包含一緩衝層(buffer layer,未顯示)。此緩衝層係介於二種材料系統之間,使基板之材料系統”過渡”至半導體系統之材料系統。對發光二極體之結構而言,一方面,緩衝層係用以降低二種材料間晶格不匹配之材料層。另一方面,緩衝層亦可以是用以結合二種材料或二個分離結構之單層、多層或結構,其可選用之材料係如:有機材料、無機材料、金屬、及半導體等;其可選用之結構係如:反射層、導熱層、導電層、歐姆接觸(ohmic contact)層、抗形變層、應力釋放(stress release)層、應力調整(stress adjustment)層、接合(bonding)層、波長轉換層、及機械固定構造等。In an embodiment of the invention, the first semiconductor layer 103 and the transition layer 102 or the transition layer 102 and the substrate 101 may optionally include a buffer layer (not shown). The buffer layer is interposed between the two material systems to "transition" the material system of the substrate to the material system of the semiconductor system. For the structure of the light-emitting diode, on the one hand, the buffer layer is used to reduce the material layer of the lattice mismatch between the two materials. In another aspect, the buffer layer may also be a single layer, a plurality of layers or a structure for combining two materials or two separate structures, such as organic materials, inorganic materials, metals, and semiconductors; The selected structure is: reflective layer, thermally conductive layer, conductive layer, ohmic contact layer, anti-deformation layer, stress release layer, stress adjustment layer, bonding layer, wavelength Conversion layer, mechanical fixing structure, etc.

第二半導體層105上更可選擇性地形成一接觸層(未顯示)。接觸層係設置於第二半導體層105遠離主動層104之一側。具體而言,接觸層可以為光學層、電學層、或其二者之組合。光學層係可以改變來自於或進入主動層104的電磁輻射或光線。在此所稱之「改變」係指改變電磁輻射或光之至少一種光學特性,前述特性係包含但不限於頻率、波長、強度、通量、效率、色溫、演色性(rendering index)、光場(light field)、及可視角(angle of view)。電學層係可以使得接觸層之任一組相對側間之電壓、電阻、電流、電容中至少其一之數值、密度、分布發生變化或有發生變化之趨勢。接觸層之構成材料係包含氧化物、導電氧化物、透明氧化物、具有50%或以上穿透率之氧化物、金屬、相對透光金屬、具有50%或以上穿透率之金屬、有機質、無機質、螢光物、磷光物、陶瓷、半導體、摻雜之半導體、及無摻雜之半導體中至少其一。於某些應用中,接觸層之材料係為氧化銦錫、氧化鎘錫、氧化銻錫、氧化銦鋅、氧化鋅鋁、與氧化鋅錫中至少其一。若為相對透光金屬,其厚度較佳地約為0.005μm~0.6μm。A contact layer (not shown) is more selectively formed on the second semiconductor layer 105. The contact layer is disposed on a side of the second semiconductor layer 105 away from the active layer 104. In particular, the contact layer can be an optical layer, an electrical layer, or a combination of both. The optical layer can change the electromagnetic radiation or light from or into the active layer 104. As used herein, "change" means changing at least one optical property of electromagnetic radiation or light, including but not limited to frequency, wavelength, intensity, flux, efficiency, color temperature, rendering index, light field. (light field), and angle of view. The electrical layer system may change or change the value, density, distribution of at least one of voltage, resistance, current, and capacitance between opposite sides of any one of the contact layers. The constituent material of the contact layer comprises an oxide, a conductive oxide, a transparent oxide, an oxide having a transmittance of 50% or more, a metal, a relatively light-transmissive metal, a metal having a transmittance of 50% or more, an organic substance, At least one of an inorganic substance, a phosphor, a phosphor, a ceramic, a semiconductor, a doped semiconductor, and an undoped semiconductor. In some applications, the material of the contact layer is at least one of indium tin oxide, cadmium tin oxide, antimony tin oxide, indium zinc oxide, zinc aluminum oxide, and zinc tin oxide. In the case of a relatively light-transmitting metal, the thickness thereof is preferably about 0.005 μm to 0.6 μm.

以上各圖式與說明雖僅分別對應特定實施例,然而,各個實施例中所說明或揭露之元件、實施方式、設計準則、及技術原理除在彼此顯相衝突、矛盾、或難以共同實施之外,吾人當可依其所需任意參照、交換、搭配、協調、或合併。The above figures and descriptions are only corresponding to specific embodiments, however, the elements, embodiments, design criteria, and technical principles described or disclosed in the various embodiments are inconsistent, contradictory, or difficult to implement together. In addition, we may use any reference, exchange, collocation, coordination, or merger as required.

雖然本發明已說明如上,然其並非用以限制本發明之範圍、實施順序、或使用之材料與製程方法。對於本發明所作之各種修飾與變更,皆不脫本發明之精神與範圍。Although the invention has been described above, it is not intended to limit the scope of the invention, the order of implementation, or the materials and process methods used. Various modifications and variations of the present invention are possible without departing from the spirit and scope of the invention.

101...基板101. . . Substrate

102...過渡疊層102. . . Transition stack

103...第一半導體層103. . . First semiconductor layer

104...主動層104. . . Active layer

105...第二半導體層105. . . Second semiconductor layer

106、107...電極106, 107. . . electrode

第1A~1B圖係本發明實施例之光電元件之原理示意圖;1A to 1B are schematic diagrams showing the principle of a photovoltaic element according to an embodiment of the present invention;

第2A~第2F圖係本發明實施例之光電元件之製造方法示意圖;2A to 2F are schematic views showing a method of manufacturing a photovoltaic element according to an embodiment of the present invention;

第3A~第3C圖係本發明實施例之光電元件結構示意圖;及3A to 3C are schematic views showing the structure of a photovoltaic element according to an embodiment of the present invention; and

第4A~5B圖係依本發明實施例之掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)圖。4A-5B are scanning electron microscopy (SEM) images according to an embodiment of the present invention.

101...基板101. . . Substrate

102...過渡疊層102. . . Transition stack

1021...第一過渡層1021. . . First transition layer

1022...第二過渡層1022. . . Second transition layer

103...第一半導體層103. . . First semiconductor layer

104...主動層104. . . Active layer

105...第二半導體層105. . . Second semiconductor layer

106、107...電極106, 107. . . electrode

Claims (19)

一種光電元件,包含:一基板;及一過渡疊層,位於該基板之上,其中該過渡疊層包含至少一第一過渡層,位於該基板之上,且該第一過渡層內部具有一第一孔洞結構;及一第二過渡層,且該第二過渡層內部具有一第二孔洞結構,且位於該第一過渡層之上,其中該第一孔洞結構與該第二孔洞結構具有一寬度與密度,且該第一孔洞結構之寬度或密度大小與第二孔洞結構之寬度或密度大小不同。A photovoltaic element comprising: a substrate; and a transition stack on the substrate, wherein the transition stack comprises at least a first transition layer over the substrate, and the first transition layer has a first a hole structure; and a second transition layer, and the second transition layer has a second hole structure and is located above the first transition layer, wherein the first hole structure and the second hole structure have a width And density, and the width or density of the first hole structure is different from the width or density of the second hole structure. 如請求項1所述之光電元件,其中該光電元件包含複數個該第一孔洞結構與複數該第二孔洞結構,該些第一孔洞結構與該些第二孔洞結構可相互連結,形成一個或複數個網狀孔洞群;或該些第一孔洞結構與該些第二孔洞結構呈一規則陣列,且該些第一孔洞結構與該些第二孔洞結構其平均間距介於10nm~2000nm,孔隙度介於5%-90%。The photovoltaic element according to claim 1, wherein the photovoltaic element comprises a plurality of the first hole structure and the plurality of second hole structures, and the first hole structure and the second hole structure are coupled to each other to form one or a plurality of mesh holes; or the first holes and the second holes have a regular array, and the first holes and the second holes have an average spacing of 10 nm to 2000 nm. The degree is between 5% and 90%. 如請求項1所述之光電元件,更包含一第一半導體層、一主動層及一第二半導體層形成於該過渡疊層之上。The photovoltaic device according to claim 1, further comprising a first semiconductor layer, an active layer and a second semiconductor layer formed on the transition layer. 如請求項3所述之光電元件,其中該過渡疊層、該第一半導體層、該主動層及該第二半導體層之材料包含一種或一種以上之元素選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)、磷(P)、氮(N)以及矽(Si)所構成群組。The photovoltaic device according to claim 3, wherein the material of the transition stack, the first semiconductor layer, the active layer and the second semiconductor layer comprises one or more elements selected from the group consisting of gallium (Ga) and aluminum (Al) ), a group of indium (In), arsenic (As), phosphorus (P), nitrogen (N), and cerium (Si). 如請求項1所述之光電元件,其中該第一孔洞結構之寬度或密度大於該第二孔洞結構之寬度或密度。The photovoltaic element of claim 1, wherein the width or density of the first hole structure is greater than the width or density of the second hole structure. 如請求項1所述之光電元件,其中該過渡疊層為一摻雜濃度介於1E15~1E19 cm-3 之n-type摻雜層,且該第一過渡層與該第二過渡層之摻雜濃度不同。The photovoltaic device according to claim 1, wherein the transition layer is an n-type doped layer having a doping concentration of 1E15~1E19 cm -3 , and the first transition layer and the second transition layer are doped The impurity concentration is different. 如請求項1所述之光電元件,其中該第一孔洞結構與該第二孔洞結構為一光子晶體結構。The photovoltaic element according to claim 1, wherein the first hole structure and the second hole structure are a photonic crystal structure. 如請求項1所述之光電元件,更包括一連接層形成於該過渡疊層之上,其中該連接層可為一非故意摻雜層(unintentional doped layer)或一未摻雜層(undoped layer)。The photovoltaic device of claim 1, further comprising a connection layer formed on the transition layer, wherein the connection layer can be an unintentional doped layer or an undoped layer ). 如請求項1所述之光電元件,其中該過渡疊層更包括一第三過渡層形成於該第二過渡層之上,且該第三過渡疊層內部具有至少一第三孔洞結構,其中該第三孔洞結構具有一寬度與密度,且第一孔洞結構之寬度或密度大小、第二孔洞結構之寬度或密度大小與第三孔洞結構之寬度或密度大小不同。The photovoltaic device of claim 1, wherein the transition layer further comprises a third transition layer formed on the second transition layer, and the third transition laminate has at least one third hole structure therein, wherein The third hole structure has a width and a density, and the width or density of the first hole structure, the width or density of the second hole structure is different from the width or density of the third hole structure. 一種製造一光電元件之方法,包含下列步驟:提供一基板;形成一第一過渡層於該基板之上;形成至少一第一孔洞結構,於該第一過渡層內;形成一第二過渡層於該第一過渡層之上;及形成至少一第二孔洞結構,於該第二過渡層內,其中該第一孔洞結構與該第二孔洞結構具有一寬度與密度,且該第一孔洞結構之寬度或密度大小與第二孔洞結構之寬度或密度大小不同。A method of fabricating a photovoltaic element, comprising the steps of: providing a substrate; forming a first transition layer over the substrate; forming at least a first hole structure in the first transition layer; forming a second transition layer And forming at least one second hole structure, wherein the first hole structure and the second hole structure have a width and a density, and the first hole structure The width or density is different from the width or density of the second hole structure. 如請求項10所述之方法,其中於該第一過渡層與該第二過渡層中形成該第一孔洞結構與該第二孔洞結構之步驟包含電化學蝕刻、非等向性乾蝕刻或非等向性濕蝕刻。The method of claim 10, wherein the step of forming the first hole structure and the second hole structure in the first transition layer and the second transition layer comprises electrochemical etching, anisotropic dry etching or non- Isotropic wet etching. 如請求項10所述之方法,其中該光電元件包含複數個該些第一孔洞結構與複數該些第二孔洞結構,該些第一孔洞結構與該些第二孔洞結構可相互連結,形成一個或複數個網狀孔洞群;或該些第一孔洞結構與該些第二孔洞結構呈一規則陣列,且該些第一孔洞結構與該些第二孔洞結構其平均間距介於10nm~2000nm,孔隙度介於5%-90%。The method of claim 10, wherein the photovoltaic element comprises a plurality of the first hole structures and the plurality of second hole structures, and the first hole structures and the second hole structures are coupled to each other to form a Or a plurality of mesh holes; or the first holes and the second holes have a regular array, and the first holes and the second holes have an average spacing of 10 nm to 2000 nm. The porosity is between 5% and 90%. 如請求項10所述之方法,更包含形成一第一半導體層、一主動層及一第二半導體層於該過渡疊層之上。The method of claim 10, further comprising forming a first semiconductor layer, an active layer, and a second semiconductor layer over the transition stack. 如請求項13所述之方法,其中該過渡疊層、該第一半導體層、該主動層及該第二半導體層之材料包含一種或一種以上之元素選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)、磷(P)、氮(N)以及矽(Si)所構成群組。The method of claim 13, wherein the material of the transition stack, the first semiconductor layer, the active layer, and the second semiconductor layer comprises one or more elements selected from the group consisting of gallium (Ga), aluminum (Al) A group consisting of indium (In), arsenic (As), phosphorus (P), nitrogen (N), and cerium (Si). 如請求項10所述之方法,其中該第一孔洞結構之寬度或密度大於該第二孔洞結構之寬度或密度。The method of claim 10, wherein the width or density of the first hole structure is greater than the width or density of the second hole structure. 如請求項10所述之方法,其中該第一孔洞結構與該第二孔洞結構係以電化學蝕刻形成且該過渡疊層為一摻雜濃度介於1E15~1E19 cm-3 之n-type摻雜層,且該第一過渡層與該第二過渡層之摻雜濃度不同。The method of claim 10, wherein the first hole structure and the second hole structure are formed by electrochemical etching and the transition layer is an n-type doping having a doping concentration between 1E15 and 1E19 cm -3 a hetero layer, and the doping concentration of the first transition layer and the second transition layer are different. 如請求項10所述之方法,其中該第一孔洞結構與該第二孔洞結構為一光子晶體結構。The method of claim 10, wherein the first hole structure and the second hole structure are a photonic crystal structure. 如請求項10所述之方法,更包括形成一連接層於該過渡疊層之上,其中該連接層可為一非故意摻雜層(unintentional doped layer)或一未摻雜層(undoped layer)。The method of claim 10, further comprising forming a connection layer over the transition layer, wherein the connection layer can be an unintentional doped layer or an undoped layer . 如請求項10所述之方法,其中該過渡疊層更包括形成一第三過渡層於該第二過渡層之上,且該第三過渡疊層內部具有至少一第三孔洞結構,其中該第三孔洞結構具有一寬度,其中該寬度係為該第三孔洞結構於平行該表面方向之最大尺寸,且該第一孔洞結構之寬度或密度大小、第二孔洞結構之寬度或密度大小與第三孔洞結構之寬度或密度大小不同。The method of claim 10, wherein the transition stack further comprises forming a third transition layer over the second transition layer, and the third transition laminate has at least a third hole structure therein, wherein the The three-hole structure has a width, wherein the width is the largest dimension of the third hole structure in a direction parallel to the surface, and the width or density of the first hole structure, the width or density of the second hole structure, and the third The width or density of the hole structure is different.
TW100105022A 2011-02-15 2011-02-15 Optoelectronic device and method for manufacturing the same TWI431810B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105022A TWI431810B (en) 2011-02-15 2011-02-15 Optoelectronic device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105022A TWI431810B (en) 2011-02-15 2011-02-15 Optoelectronic device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201234655A TW201234655A (en) 2012-08-16
TWI431810B true TWI431810B (en) 2014-03-21

Family

ID=47070153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105022A TWI431810B (en) 2011-02-15 2011-02-15 Optoelectronic device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI431810B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631782B2 (en) 2018-01-26 2023-04-18 Cambridge Enterprise Limited Method for electrochemically etching a semiconductor structure
US11651954B2 (en) 2017-09-27 2023-05-16 Cambridge Enterprise Ltd Method for porosifying a material and semiconductor structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11651954B2 (en) 2017-09-27 2023-05-16 Cambridge Enterprise Ltd Method for porosifying a material and semiconductor structure
US11631782B2 (en) 2018-01-26 2023-04-18 Cambridge Enterprise Limited Method for electrochemically etching a semiconductor structure

Also Published As

Publication number Publication date
TW201234655A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TWI419367B (en) Optoelectronic device and method for manufacturing the same
TWI451597B (en) Optoelectronic device and method for manufacturing the same
TWI501421B (en) Optoelectronic device and method for manufacturing the same
US8519430B2 (en) Optoelectronic device and method for manufacturing the same
JP5763789B2 (en) Photoelectric device and manufacturing method thereof
US8053789B2 (en) Light emitting device and fabrication method thereof
US8343788B2 (en) Light emitting device and manufacturing method thereof
US9070827B2 (en) Optoelectronic device and method for manufacturing the same
US8946736B2 (en) Optoelectronic device and method for manufacturing the same
TWI431810B (en) Optoelectronic device and method for manufacturing the same
CN102544287B (en) Photoelectric cell and manufacture method thereof
TWI495155B (en) Optoelectronic device and method for manufacturing the same
CN102420281B (en) Photoelectric element and manufacturing method thereof
CN102623580B (en) Photoelectric element and manufacturing method thereof
TW201438276A (en) Optoelectronic device and method for manufacturing the same
KR101246735B1 (en) Efficiency enhanced semiconductor device using moth-eye structure and Its manufacturing method
KR101643213B1 (en) Optoelectronic device and method for manufacturing the same
KR20120040426A (en) Optoelectronic device and method for manufacturing the same
TW201424059A (en) Optoelectronic device and method for manufacturing the same
JP2012142473A (en) Photoelectric element and method of manufacturing the same