TWI416716B - Solid-state image device, method for producing the same, and image pickup apparatus - Google Patents

Solid-state image device, method for producing the same, and image pickup apparatus Download PDF

Info

Publication number
TWI416716B
TWI416716B TW098145492A TW98145492A TWI416716B TW I416716 B TWI416716 B TW I416716B TW 098145492 A TW098145492 A TW 098145492A TW 98145492 A TW98145492 A TW 98145492A TW I416716 B TWI416716 B TW I416716B
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
conversion layer
layer
solid
imaging device
Prior art date
Application number
TW098145492A
Other languages
Chinese (zh)
Other versions
TW201103132A (en
Inventor
Atsushi Toda
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW201103132A publication Critical patent/TW201103132A/en
Application granted granted Critical
Publication of TWI416716B publication Critical patent/TWI416716B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14667Colour imagers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A solid state imaging device, a manufacturing method thereof, and an imaging device are provided to suppress a dark current by including a photoelectric conversion layer with a high light absorption coefficient. CONSTITUTION: A solid state imaging device(1) comprises a silicon substrate(11) and a photoelectric conversion layer(13). The photoelectric conversion layer is formed on the silicon substrate and is lattice-matched on the silicon substrate. The photoelectric conversion layer is made of chalcopyrite-based chemical semiconductor. The photoelectric conversion layer includes first to third photoelectric conversion layers. The first to third photoelectric conversion layers split light into red, green, and blue elements.

Description

固態影像裝置,其製造方法,及攝像設備Solid-state imaging device, manufacturing method thereof, and imaging device

本發明有關一種固態影像裝置、用於製造該固態影像裝置之方法,以及攝像設備。The present invention relates to a solid-state image device, a method for manufacturing the solid-state image device, and an image pickup apparatus.

隨著像素數增加,像素大小縮小之發展已有許多進步。同時,藉由高速成像改善動畫性能之發展亦有許多進步。以此種方式,高速成像與像素大小之縮小減少入射在單一像素上之光子數,因而降低敏感度。With the increase in the number of pixels, there have been many advances in the development of pixel size reduction. At the same time, there have been many advances in the development of animation performance through high-speed imaging. In this way, high speed imaging and pixel size reduction reduce the number of photons incident on a single pixel, thereby reducing sensitivity.

就監視照相機而言,需要能在黑暗處捕捉影像的照相機。即,需要高敏感度感測器。As far as surveillance cameras are concerned, there is a need for a camera that can capture images in the dark. That is, a high sensitivity sensor is required.

在具有典型拜耳模式(Bayer pattern)之影像感測器中,依據每一色彩而將像素分離。因此,進行從環繞某一像素之多個像素內插該像素之色彩的演算處理之去馬賽克(demosaicing),因而不利地導致彩色雜點(color artifact)。In an image sensor having a typical Bayer pattern, pixels are separated according to each color. Therefore, demosaicing of a calculation process of interpolating the color of the pixel from a plurality of pixels surrounding a certain pixel is performed, thereby disadvantageously causing color artifacts.

在此情況下,已有報告指出將作為具有高光學吸收係數之光電轉換層的CuInGaSe2 層施加於影像感測器上,獲致較高敏感度(例如,詳見日本早期公開專利申請案公告第2007-123720號,及The Japan Society of Applied Physics,Spring Meeting,2008,Conference Proceedings,29p-ZC-12(2008))。In this case, it has been reported that a CuInGaSe 2 layer, which is a photoelectric conversion layer having a high optical absorption coefficient, is applied to an image sensor, resulting in higher sensitivity (for example, see Japanese Laid-Open Patent Application Publication No. 2007-123720, and The Japan Society of Applied Physics, Spring Meeting, 2008, Conference Proceedings, 29p-ZC-12 (2008)).

然而,該光電轉換層基本上係在電極上生長且為多晶形,因此因晶體瑕疵而造成顯著發生暗電流。此外,在此情況下,光未被分離。However, the photoelectric conversion layer is basically grown on the electrode and is polymorphous, and thus a dark current is remarkably generated due to crystal enthalpy. Furthermore, in this case, the light is not separated.

同時,報告提出一種使用矽之波長相依吸收係數分離光的方法。該方法不包括去馬賽克,因此消除彩色雜點(例如,詳見美國專利第5,965,875號)。At the same time, the report proposes a method of separating light using the wavelength dependent absorption coefficient of erbium. This method does not include demosaicing, thus eliminating color noise (see, for example, U.S. Patent No. 5,965,875).

該方法提供高度色彩混合與不良之色彩重現性。即,有關使用美國專利第5,965,875號所述之波長相依吸收係數的機制,理論上偵測到的光量並未減少。然而,當紅光與綠光通過對於藍色分量敏感之層時,特定量之紅色分量與綠色分量在該層中被吸收,因此該等分量被偵測為藍色分量。如此,即使不存在藍色信號的情況下,綠色與紅色信號通過會導致誤偵測到藍色信號,造成混淆以及難以提供充足色彩重現性。This method provides high color mixing and poor color reproducibility. That is, with respect to the mechanism of the wavelength dependent absorption coefficient described in U.S. Patent No. 5,965,875, the amount of light theoretically detected is not reduced. However, when red and green light pass through a layer sensitive to the blue component, a certain amount of red and green components are absorbed in the layer, and thus the components are detected as blue components. Thus, even in the absence of a blue signal, the passage of green and red signals can result in false detection of a blue signal, causing confusion and difficulty in providing sufficient color reproducibility.

為了避免發生混淆,藉由供校正用之使用所有三原色之計算進行信號處理。因此,設置供該計算用之電路,由於該電路而增加電路結構的複雜性以及其規模,且導致成本提高。此外,若三原色其中之一飽和,則不測定該飽和色彩的信號真實值,因而導致誤算。結果,該信號被當作不同色彩處理。此外,以插頭讀取信號;因此提供一插頭區。此造成光電二極體面積縮減。即,該方法不適於縮減像素大小。In order to avoid confusion, signal processing is performed by calculation using all three primary colors for correction. Therefore, a circuit for the calculation is provided, which increases the complexity of the circuit structure and the scale thereof, and leads to an increase in cost. Further, if one of the three primary colors is saturated, the true value of the signal of the saturated color is not measured, thus causing miscalculation. As a result, the signal is treated as a different color. In addition, the signal is read by the plug; thus a plug area is provided. This causes the area of the photodiode to be reduced. That is, the method is not suitable for reducing the pixel size.

同時,參看圖46,大部分半導體具有對於紅外線之吸收敏感度。因而,在使用例如矽(Si)半導體材料之固態影像裝置(影像感測器)中,經常在該感測器的入射光側設置紅外線截止濾光器作為減色彩色濾光器之實例。已提出一種克服使用該波長相依吸收係數之機制的缺點之感測器。該感測器使用能帶隙而不使用減色彩色濾光器。該感測器具有良好光電轉換效率與色彩分離作用。在一個像素位置偵測所有三原色(例如,詳見日本早期公開專利申請案公告第1-151262號、第3-289523號,及第6-209107號)。該等文件中所揭示之影像感測器各具有在深度方向改變能帶隙的結構。Meanwhile, referring to Fig. 46, most of the semiconductors have absorption sensitivity to infrared rays. Therefore, in a solid-state image device (image sensor) using, for example, a bismuth (Si) semiconductor material, an infrared cut filter is often provided as an example of a subtractive color filter on the incident light side of the sensor. A sensor that overcomes the disadvantages of the mechanism of using the wavelength dependent absorption coefficient has been proposed. The sensor uses a bandgap instead of a subtractive color filter. The sensor has good photoelectric conversion efficiency and color separation. All three primary colors are detected at one pixel position (for example, see Japanese Laid-Open Patent Publication No. 1-151262, No. 3-289523, and No. 6-209107). The image sensors disclosed in these documents each have a structure that changes the band gap in the depth direction.

在日本早期公開專利申請案公告第1-151262號中,由具有不同能帶隙Eg之材料所組成的多層係在深度方向相繼堆疊於玻璃基板上以供色彩分離。然而,例如為了分離藍色(B)、綠色(G)與紅色(R),該文件僅描述堆疊該等層,先決條件係Eg(B)>Eg(G)>Eg(R)。其中未提及由特殊材料製成。In Japanese Laid-Open Patent Application Publication No. 1-151262, a multilayer structure composed of materials having different energy band gaps Eg is successively stacked on a glass substrate in the depth direction for color separation. However, for example to separate blue (B), green (G) and red (R), the document only describes stacking the layers, the prerequisite being Eg(B)>Eg(G)>Eg(R). It is not mentioned that it is made of special materials.

反之,日本早期公開專利申請案公告第3-289523號揭示使用SiC材料供色彩分離。日本早期公開專利申請案公告第6-209107號揭示AlGaInAs與AlGaAs材料。On the contrary, Japanese Laid-Open Patent Application Publication No. 3-289523 discloses the use of SiC material for color separation. AlGaInAs and AlGaAs materials are disclosed in Japanese Laid-Open Patent Application Publication No. 6-209107.

然而,在日本早期公開專利申請案公告第3-289523號與第6-209107號中,未提及不同材料之異質接面的結晶度。However, in Japanese Laid-Open Patent Application Publication No. 3-289523 and No. 6-209107, the crystallinity of the heterojunction of different materials is not mentioned.

在具有不同晶體結構之材料彼此接合的情況中,晶格常數之差異造成失配位錯,此降低結晶度。結果,放出截留在能帶隙中所形成之缺陷能級的電子,導致發生暗電流。In the case where materials having different crystal structures are joined to each other, the difference in lattice constants causes misfit dislocations, which lowers crystallinity. As a result, electrons that are trapped in the defect level formed in the band gap are released, resulting in dark current.

至於用以解決前述問題的方法,已提出藉由控制矽(Si)基板上之能帶隙來分離光(例如,詳見日本早期公開專利申請案公告第2006-245088號)。晶格失配之以SiCGe為基礎之混合晶體與Si/SiC上層結構係在不做晶格匹配的情況下在Si基板上形成。為了分離光,屬意於形成厚膜,此係因矽(Si)之吸收係數低的緣故。不利的是,容易產生晶體瑕疵,且容易發生暗電流。亦提出使用鎵-砷(GaAs)基板之裝置。然而,GaAs基板昂貴且對於常用感測器的親和力比矽(Si)基板之親和力低。As for the method for solving the aforementioned problems, it has been proposed to separate light by controlling the energy band gap on the cerium (Si) substrate (for example, see Japanese Laid-Open Patent Application Publication No. 2006-245088). The lattice mismatched SiCGe-based mixed crystal and the Si/SiC superstructure are formed on the Si substrate without lattice matching. In order to separate light, it is intended to form a thick film because of the low absorption coefficient of cerium (Si). Disadvantageously, crystal defects are liable to occur, and dark current is liable to occur. Devices using gallium-arsenic (GaAs) substrates have also been proposed. However, GaAs substrates are expensive and have low affinity for common sensors compared to germanium (Si) substrates.

嘗試提高敏感度之一實例係藉由突崩倍增放大信號。例如,已完成藉由施加高電壓進行光電子倍增的嘗試(例如,詳見IEEE Transactions Electron Devices,1997年10月,第44卷,第10號)。此處,施加高達40 V之電壓以供光電子倍增會因諸如串擾等問題而造成縮減像素大小之困難度。該感測器的像素大小為11.5μm×13.5μm。至於其他突崩倍增(例如,詳見IEEE J. Solid-State Circuits,40,1847(2005)),施加25.5 V之電壓以供倍增。為了避免串擾,例如設置一寬保護環層。此外,該像素大小達58μm×58μm。One example of trying to increase sensitivity is to amplify the signal by doubling the multiplication. For example, an attempt to photoelectron multiplication by applying a high voltage has been completed (for example, see IEEE Transactions Electron Devices, October 1997, Vol. 44, No. 10). Here, applying a voltage of up to 40 V for photoelectron multiplication can cause difficulty in reducing the pixel size due to problems such as crosstalk. The sensor has a pixel size of 11.5 μm × 13.5 μm. As for other collapse multiplications (see, for example, IEEE J. Solid-State Circuits, 40, 1847 (2005)), a voltage of 25.5 V is applied for multiplication. In order to avoid crosstalk, for example, a wide guard ring layer is provided. Further, the pixel size is 58 μm × 58 μm.

隨著像素數增加,需要縮減像素大小,獲致高速捕捉影像及在黑暗處捕捉影像,以及避免因入射在單一像素上的光子數減少造成之敏感度降低。As the number of pixels increases, the pixel size needs to be reduced, resulting in high-speed image capture and image capture in the dark, and reduced sensitivity due to reduced photon incidence on a single pixel.

根據本發明一具體實例,提出一種高敏感度固態影像裝置,其包括具有良好結晶度與高光學吸收係數同時抑制暗電流發生之光電轉換層。According to an embodiment of the present invention, a high-sensitivity solid-state imaging device is proposed which includes a photoelectric conversion layer having good crystallinity and a high optical absorption coefficient while suppressing occurrence of dark current.

一種根據本發明一具體實例之固態影像裝置包括矽基板以及設置於該矽基板上且與該矽基板晶格匹配之光電轉換層,該光電轉換層係由以銅-鋁-鎵-銦-硫-硒(CuAlGaInSSe)為基礎之混合晶體或以銅-鋁-鎵-銦-鋅-硫-硒(CuAlGaInZnSSe)為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。A solid-state imaging device according to an embodiment of the present invention includes a germanium substrate and a photoelectric conversion layer disposed on the germanium substrate and lattice-matched with the germanium substrate, the photoelectric conversion layer being composed of copper-aluminum-gallium-indium-sulfur - Selenium (CuAlGaInSSe)-based mixed crystal or a chalcopyrite-based compound semiconductor based on copper-aluminum-gallium-indium-zinc-sulfur-selenium (CuAlGaInZnSSe)-based mixed crystal.

該根據本發明一具體實例之固態影像裝置包括矽基板與設置在該矽基板上且與該矽基板晶格匹配的光電轉換層,該光電轉換層係由以CuAlGaInSSe為基礎之混合晶體或以CuAlGaInZnSSe為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。如此,抑制暗電流發生,且提高敏感度。因而有利地獲得具有優良影像品質與高敏感度的影像。The solid-state imaging device according to an embodiment of the present invention includes a germanium substrate and a photoelectric conversion layer disposed on the germanium substrate and lattice-matched with the germanium substrate, the photoelectric conversion layer being a mixed crystal based on CuAlGaInSSe or CuAlGaInZnSSe A chalcopyrite-based compound semiconductor based on a mixed crystal. In this way, dark current generation is suppressed and sensitivity is improved. It is thus advantageous to obtain images with excellent image quality and high sensitivity.

一種用於製造根據本發明一具體實例之固態影像裝置的方法包括在矽基板上形成光電轉換層同時保持與該矽基板晶格匹配的步驟,該光電轉換層係由以銅-鋁-鎵-銦-硫-硒(CuAlGaInSSe)為基礎之混合晶體或以銅-鋁-鎵-銦-鋅-硫-硒(CuAlGaInZnSSe)為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。A method for fabricating a solid-state image device according to an embodiment of the present invention includes the steps of forming a photoelectric conversion layer on a germanium substrate while maintaining lattice matching with the germanium substrate, the photoelectric conversion layer being composed of copper-aluminum-gallium Indium-sulfur-selenium (CuAlGaInSSe)-based mixed crystal or a copper-aluminum-gallium-indium-zinc-sulfur-selenium (CuAlGaInZnSSe)-based mixed crystal chalcopyrite-based compound semiconductor.

在該用於製造根據本發明一具體實例之固態影像裝置的方法中,該光電轉換層係在該矽基板上形成同時維持與該矽基板晶格匹配,該光電轉換層係由以CuAlGaInSSe為基礎之混合晶體或以CuAlGaInZnSSe為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。如此,抑制暗電流發生,且提高敏感度。因而有利地獲得具有優良影像品質與高敏感度的影像。In the method for fabricating a solid-state imaging device according to an embodiment of the present invention, the photoelectric conversion layer is formed on the germanium substrate while maintaining lattice matching with the germanium substrate, the photoelectric conversion layer being based on CuAlGaInSSe A mixed crystal or a chalcopyrite-based compound semiconductor based on a mixed crystal of CuAlGaInZnSSe. In this way, dark current generation is suppressed and sensitivity is improved. It is thus advantageous to obtain images with excellent image quality and high sensitivity.

一種根據本發明一具體實例之攝像設備包括經配置以聚集入射光之聚光光學系統、經配置以接收由該聚光光學系統所聚集之光且進行光電轉換的固態影像裝置,及經配置以處理由光電轉換所獲得之信號的信號處理單元,其中該固態影像裝置包括設置於矽基板上且與該矽基板晶格匹配之光電轉換層,該光電轉換層係由以銅-鋁-鎵-銦-硫-硒(CuAlGaInSSe)為基礎之混合晶體或以銅-鋁-鎵-銦-鋅-硫-硒(CuAlGaInZnSSe)為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。An image pickup apparatus according to an embodiment of the present invention includes a collecting optical system configured to collect incident light, a solid-state image device configured to receive light collected by the collecting optical system and photoelectrically converted, and configured to a signal processing unit for processing a signal obtained by photoelectric conversion, wherein the solid-state imaging device comprises a photoelectric conversion layer disposed on a germanium substrate and lattice-matched to the germanium substrate, the photoelectric conversion layer being composed of copper-aluminum-gallium Indium-sulfur-selenium (CuAlGaInSSe)-based mixed crystal or a copper-aluminum-gallium-indium-zinc-sulfur-selenium (CuAlGaInZnSSe)-based mixed crystal chalcopyrite-based compound semiconductor.

在該根據本發明一具體實例之攝像設備中,該固態影像裝置包括設置在該矽基板上且與該矽基板晶格匹配的光電轉換層,該光電轉換層係由以CuAlGaInSSe為基礎之混合晶體或以CuAlGaInZnSSe為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。如此,抑制暗電流發生,因而抑制因亮點瑕疵造成之影像品質降低。此外該固態影像裝置具有高敏感度且以高敏感度捕捉影像。因而,以高敏感度捕捉影像以及抑制影像品質降低有利地使得即使在黑暗環境(例如,夜間)也可能捕捉具有高品質之影像。In the image pickup apparatus according to an embodiment of the present invention, the solid-state image device includes a photoelectric conversion layer disposed on the germanium substrate and lattice-matched with the germanium substrate, the photoelectric conversion layer being a mixed crystal based on CuAlGaInSSe Or a chalcopyrite-based compound semiconductor composed of a mixed crystal based on CuAlGaInZnSSe. In this way, the occurrence of dark current is suppressed, and thus the image quality deterioration due to the bright spot is suppressed. In addition, the solid-state imaging device has high sensitivity and captures images with high sensitivity. Thus, capturing images with high sensitivity and suppressing image quality degradation advantageously enables capturing of images of high quality even in dark environments (eg, nighttime).

1. 第一具體實例First specific example

固態影像裝置之結構的第一實例First example of the structure of a solid-state imaging device

茲參看圖1之示意斷面圖說明根據本發明第一具體實例之固態影像裝置的第一實例。BRIEF DESCRIPTION OF THE DRAWINGS A first example of a solid-state image device according to a first embodiment of the present invention is illustrated with reference to the schematic sectional view of Fig. 1.

如圖1所示,在矽基板11中形成第一電極層12。該第一電極層12係由例如在矽基板11中形成之n型矽區製成。由晶格匹配之銅-鋁-鎵-銦-硫-硒(下文稱為「CuAlGaInSSe」)為基礎的混合晶體之以黃銅礦為基礎的化合物半導體所組成之光電轉換層13係設置在該第一電極層12上。亦可使用以銅-鋁-鎵-銦-鋅-硫-硒(下文稱為「CuAlGaInZnSSe」)為基礎之混合晶體作為上述以黃銅礦為基礎之化合物半導體。在該光電轉換層13上設置光學透明第二電極層14。該第二電極層14係由透明電極材料所組成,該透明電極材料係例如氧化銦錫(ITO)、氧化鋅,或氧化銦鋅。固態影像裝置1(影像感測器)具有上述基礎結構。As shown in FIG. 1, the first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of, for example, an n-type germanium region formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a chalcopyrite-based compound semiconductor based on a lattice-matched copper-aluminum-gallium-indium-sulfur-selenium (hereinafter referred to as "CuAlGaInSSe") mixed crystal is disposed in the On the first electrode layer 12. As the above-mentioned chalcopyrite-based compound semiconductor, a mixed crystal based on copper-aluminum-gallium-indium-zinc-sulfur-selenium (hereinafter referred to as "CuAlGaInZnSSe") can also be used. An optically transparent second electrode layer 14 is provided on the photoelectric conversion layer 13. The second electrode layer 14 is composed of a transparent electrode material such as indium tin oxide (ITO), zinc oxide, or indium zinc oxide. The solid-state imaging device 1 (image sensor) has the above-described basic structure.

由以黃銅礦為基礎之化合物半導體所組成的光電轉換層13係經配置以在深度方向將光分離成紅色、綠色與藍色(RGB)分量,且係形成為與該矽基板11晶格匹配。The photoelectric conversion layer 13 composed of a chalcopyrite-based compound semiconductor is configured to separate light into red, green, and blue (RGB) components in the depth direction, and is formed to be latticed with the germanium substrate 11. match.

在Si(100)基板上磊晶生長分別具有高光學吸收係數的以黃銅礦為基礎之混合晶體同時維持與該基板之晶格匹配,如此獲致令人滿意之結晶度且造成具有低暗電流之高度敏感固態影像裝置1。Epitaxial growth of a chalcopyrite-based mixed crystal having a high optical absorption coefficient on a Si (100) substrate while maintaining lattice matching with the substrate, thus achieving satisfactory crystallinity and causing low dark current Highly sensitive solid-state imaging device 1.

黃銅礦結構係示於圖2。圖2顯示CuInSe2 之結構作為黃銅礦材料的實例。The chalcopyrite structure is shown in Figure 2. Figure 2 shows an example of the structure of CuInSe 2 as a chalcopyrite material.

如圖2所示,CuInSe2 基本上具有與矽(Si)相同的鑽石型結構。矽原子係經(例如)銅(Cu)、銦(In)、鎵(Ga)等部分取代,以形成該黃銅礦結構。因此,基本上可進行在該矽基板上的磊晶生長。磊晶生長方法的實例包括分子束磊晶(MBE)、金屬有機化學氣相沉積(MOCVD),及液相磊晶(LPE)。即,只要可進行磊晶生長,基本上可使用任何沉積方法。As shown in FIG. 2, CuInSe 2 basically has the same diamond-type structure as bismuth (Si). The ruthenium atom is partially substituted with, for example, copper (Cu), indium (In), gallium (Ga), or the like to form the chalcopyrite structure. Therefore, epitaxial growth on the tantalum substrate can be performed substantially. Examples of epitaxial growth methods include molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), and liquid phase epitaxy (LPE). That is, as long as epitaxial growth can be performed, substantially any deposition method can be used.

圖3顯示以黃銅礦為基礎之材料的能帶隙與晶格常數。Figure 3 shows the band gap and lattice constant of a chalcopyrite-based material.

如圖3所示,矽(Si)之晶格常數為5.431(該圖中以虛線表示)。可形成以便與該晶格常數晶格匹配之混合晶體的實例係以CuAlGaInSSe為基礎之混合晶體。該CuAlGaInSSe為基礎之混合晶體可在矽(100)基板上磊晶生長。As shown in Figure 3, the lattice constant of bismuth (Si) is 5.431. (It is indicated by a dotted line in the figure). An example of a mixed crystal that can be formed so as to be lattice-matched to the lattice constant is a mixed crystal based on CuAlGaInSSe. The CuAlGaInSSe-based hybrid crystal can be epitaxially grown on a ruthenium (100) substrate.

如圖4所示,該能帶隙可藉由改變在晶格常數為5.431(該圖中以虛線表示)之組成而予以控制。因此可能生長經配置以將光分成紅色、綠色與藍色分量之數層。下文中,R代表紅色,G代表綠色,且B代表藍色。例如,CuGa0.52 In0.48 S2 係用作分離R分量用之光電轉換材料。CuAl0.24 Ga0.23 In0.53 S2 係用作分離G分量用之光電轉換材料。CuAl0.36 Ga0.64 S1.28 Se0.72 係用作分離B分量用之光電轉換材料。在此情況下,其能帶隙比例為2.00 eV、2.20 eV與2.51 eV。在此情況下,如圖5所示,依序在該矽基板11上堆疊R分量之光電轉換材料、G分量之光電轉換材料,及B分量之光電轉換材料,以使得可在深度方向將光分成該等分量。As shown in Figure 4, the band gap can be changed by a lattice constant of 5.431. It is controlled by the composition of the figure (indicated by a broken line in the figure). It is therefore possible to grow several layers that are configured to split the light into red, green and blue components. Hereinafter, R represents red, G represents green, and B represents blue. For example, CuGa 0.52 In 0.48 S 2 is used as a photoelectric conversion material for separating the R component. CuAl 0.24 Ga 0.23 In 0.53 S 2 is used as a photoelectric conversion material for separating the G component. CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 is used as a photoelectric conversion material for separating the B component. In this case, the band gap ratio is 2.00 eV, 2.20 eV and 2.51 eV. In this case, as shown in FIG. 5, the photoelectric conversion material of the R component, the photoelectric conversion material of the G component, and the photoelectric conversion material of the B component are stacked on the germanium substrate 11 in order to make the light in the depth direction Divided into these components.

鑒於紅色、綠色與藍色(RGB)分量的光子能量,可在深度方向分離光的能帶隙區係如下述。即,圖1所示之光電轉換層13係由經配置以從光分離紅色分量的第一光電轉換層21、經配置以從光分離綠色分量的第二光電轉換層22,以及經配置以從光分離藍色分量的第三光電轉換層23所形成。該第一光電轉換層21之能帶隙可為2.00 eV±0.1 eV(波長:590 nm至650 nm)。該第二光電轉換層22之能帶隙可為2.20 eV±0.15 eV(波長:530 nm至605 nm)。該第三光電轉換層23之能帶隙可為2.51 eV±0.2 eV(波長:460 nm至535 nm)。In view of the photon energy of the red, green, and blue (RGB) components, the energy band gap that can separate the light in the depth direction is as follows. That is, the photoelectric conversion layer 13 shown in FIG. 1 is composed of a first photoelectric conversion layer 21 configured to separate a red component from light, a second photoelectric conversion layer 22 configured to separate a green component from light, and configured to The light is separated by a blue photoelectric conversion layer 23 of a blue component. The first photoelectric conversion layer 21 may have an energy band gap of 2.00 eV ± 0.1 eV (wavelength: 590 nm to 650 nm). The second photoelectric conversion layer 22 has an energy band gap of 2.20 eV ± 0.15 eV (wavelength: 530 nm to 605 nm). The third photoelectric conversion layer 23 has an energy band gap of 2.51 eV ± 0.2 eV (wavelength: 460 nm to 535 nm).

在此情況下,第一光電轉換層21之組成為CuAlx Gay Inz S2 ,其中0≦x≦0.12,0.38≦y≦0.52,0.48≦z≦0.50,且x+y+z=1。該第二光電轉換層22之組成為CuAlx Gay Inz S2 ,其中0.06≦x≦0.41,0.01≦y≦0.45,0.49≦z≦0.58,且x+y+z=1。該第三光電轉換層23之組成為CuAlx Gay Su Sev ,其中0.31≦x≦0.52,0.48≦y≦0.69,1.33≦u≦1.38,0.62≦v≦0.67,且x+y+u+v=3(或者x+y=1且u+v=2)。圖1顯示該等層之範例組成。In this case, the composition of the first photoelectric conversion layer 21 is CuAl x Ga y In z S 2 , where 0≦x≦0.12, 0.38≦y≦0.52, 0.48≦z≦0.50, and x+y+z=1 . The composition of the second photoelectric conversion layer 22 is CuAl x Ga y In z S 2 , where 0.06 ≦ x ≦ 0.41, 0.01 ≦ y ≦ 0.45, 0.49 ≦ z ≦ 0.58, and x + y + z = 1. The composition of the third photoelectric conversion layer 23 is CuAl x Ga y S u Se v , where 0.31≦x≦0.52, 0.48≦y≦0.69, 1.33≦u≦1.38, 0.62≦v≦0.67, and x+y+u +v=3 (or x+y=1 and u+v=2). Figure 1 shows an example composition of the layers.

固態影像裝置之變體(超晶格之應用)Variants of solid-state imaging devices (application of superlattice)

其間,視磊晶生長設備與磊晶生長條件而定,在某些實例中部分或全部該經配置以分離RGB分量的以黃銅礦為基礎之光電轉換層無法以固溶體形式生長。In the meantime, depending on the epitaxial growth apparatus and the epitaxial growth conditions, in some instances some or all of the chalcopyrite-based photoelectric conversion layer configured to separate the RGB components cannot be grown in the form of a solid solution.

在此情況下,如圖6所示,每一層可使用超晶格生長,該超晶格具有厚度各等於或小於臨界厚度之多層。例如,在生長CuGax In1 -x S2 之實例,交替生長可在矽基板11上生長之CuGaS2 層32及CuInS2 層31至彼等具有厚度各等於或小於臨界厚度。In this case, as shown in FIG. 6, each layer may be grown using a superlattice having a plurality of layers each having a thickness equal to or less than a critical thickness. For example, in the example of growing CuGa x In 1 - x S 2 , the CuGaS 2 layer 32 and the CuInS 2 layer 31 which are grown on the tantalum substrate 11 are alternately grown to have thicknesses equal to or less than a critical thickness.

在此情況下,藉由控制各層之厚度達成令該等層之整體組成與標的組成相同的設計,藉此形成準混合晶體。該超晶格中各層的厚度設定成等於或小於臨界厚度hc的原因係大於臨界厚度hc之厚度會造成失配位錯瑕疵,因而降低結晶度。該臨界厚度係藉由該圖中所示之Matthews-Blakeslee公式所界定。In this case, a quasi-mixed crystal is formed by controlling the thickness of each layer to achieve the same design as the overall composition of the layers. The reason why the thickness of each layer in the superlattice is set to be equal to or smaller than the critical thickness hc is that the thickness larger than the critical thickness hc causes misfit dislocation enthalpy, thereby lowering the crystallinity. The critical thickness is defined by the Matthews-Blakeslee formula shown in the figure.

使用寬度能帶隙材料作為光電轉換層抑制因熱而產生載子,因而降低熱雜訊且形成令人滿意之影像。The use of a width bandgap material as a photoelectric conversion layer suppresses the generation of carriers due to heat, thereby reducing thermal noise and forming a satisfactory image.

至於生長晶體之方法,事先以例如氧化矽(SiO2 )或氮化矽(SiN)覆蓋電晶體、讀出電路、配線等所在之部分。在部分露出矽基板的部分上選擇性生長光電轉換層13。然後該光電轉換層13可在該材料(例如氧化矽或氮化矽)表面上橫向生長,以便覆蓋實質上整體表面。As for the method of growing crystals, portions such as a transistor, a readout circuit, a wiring, and the like are covered with, for example, yttrium oxide (SiO 2 ) or tantalum nitride (SiN). The photoelectric conversion layer 13 is selectively grown on a portion where the germanium substrate is partially exposed. The photoelectric conversion layer 13 can then be grown laterally on the surface of the material (e.g., tantalum oxide or tantalum nitride) to cover a substantially integral surface.

在此情況下,令人滿意地分離RGB分量,且色彩混合程度低。圖7顯示從各材料之能帶隙能量預測之吸收係數α對於波長之相依性。In this case, the RGB components are satisfactorily separated, and the degree of color mixing is low. Figure 7 shows the dependence of the absorption coefficient a on wavelength from the energy band gap energy of each material.

圖7證明在低於對應能帶隙能量的光子能量下各吸收係數急劇降低。Figure 7 demonstrates that the absorption coefficients decrease sharply at photon energies below the energy of the corresponding band gap.

特徵之比較Comparison of characteristics

顯示根據本發明一具體實例之範例固態影像裝置的光譜敏感度。該固態影像裝置具有在深度方向分離光之結構,如圖8所示。即,使用0.8μm厚之CuGa0.52 In0.48 S2 層作為光電轉換層13的第一光電轉換層21。使用0.7μm厚之CuAl0.24 Ga0.23 In0.53 S2 層作為第二光電轉換層22。使用0.3μm厚之CuAl0.36 Ga0.64 S1.28 Se0.72 層作為第三光電轉換層23。The spectral sensitivity of an exemplary solid state imaging device in accordance with an embodiment of the present invention is shown. The solid-state image device has a structure for separating light in the depth direction as shown in FIG. That is, a 0.8 μm thick CuGa 0.52 In 0.48 S 2 layer was used as the first photoelectric conversion layer 21 of the photoelectric conversion layer 13. A 0.7 μm thick CuAl 0.24 Ga 0.23 In 0.53 S 2 layer was used as the second photoelectric conversion layer 22. As the third photoelectric conversion layer 23, a 0.3 μm thick CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 layer was used.

圖9證明在該光電轉換層13的光譜敏感度特徵方面,令人滿意地分離之紅色、綠色與藍色色彩,且獲致低度色彩混合。Fig. 9 demonstrates that the red, green and blue colors are satisfactorily separated in terms of the spectral sensitivity characteristics of the photoelectric conversion layer 13, and low color mixing is obtained.

反之,在美國專利第5,965,875號中所述之在深度方向分離光的結構(例如,如圖10所示)當中,經配置以分離紅色分量的光電轉換層121係由2.6μm厚之Si層所形成。經配置以分離綠色分量的光電轉換層122係由1.7μm厚之Si層所形成。經配置以分離藍色分量的光電轉換層123係由0.6μm厚之Si層所形成。即,光電轉換層113之厚度為4.9μm。On the other hand, in the structure for separating light in the depth direction (for example, as shown in FIG. 10) described in the U.S. Patent No. 5,965,875, the photoelectric conversion layer 121 configured to separate the red component is composed of a 2.6 μm thick Si layer. form. The photoelectric conversion layer 122 configured to separate the green component is formed of a 1.7 μm thick Si layer. The photoelectric conversion layer 123 configured to separate the blue component is formed of a 0.6 μm thick Si layer. That is, the thickness of the photoelectric conversion layer 113 was 4.9 μm.

圖11證明在該光電轉換層113的光譜敏感度特徵方面,紅色、綠色與藍色色彩的分離差,且色彩混合程度高。Fig. 11 demonstrates that the separation of red, green, and blue colors is poor in the spectral sensitivity characteristics of the photoelectric conversion layer 113, and the degree of color mixing is high.

固態影像裝置1以令人滿意之色彩分離作用將光分離成分量而不需要使用晶片上彩色濾光器(OCCF),且不同於晶片上彩色濾光器(OCCF),因為光不會被阻絕,故具有高使用效率與高敏感度。The solid-state imaging device 1 separates the light by a satisfactory color separation without using an on-wafer color filter (OCCF), and is different from the on-wafer color filter (OCCF) because the light is not blocked. Therefore, it has high use efficiency and high sensitivity.

獲得每一像素位置之紅色、綠色與藍色三種色彩的資訊組,因而可不進行去馬賽克。因此,原則上不會發生彩色雜點,此形成高解析度。The information set of three colors of red, green and blue at each pixel position is obtained, so that no demosaicing can be performed. Therefore, in principle, color noise does not occur, which forms a high resolution.

此外,可不使用低通濾光器,此有利地使成本降低。Furthermore, a low pass filter may not be used, which advantageously reduces the cost.

另外,該光電轉換層係與矽(Si)基板晶格匹配,因而即使生長具有較大厚度之光電轉換層,該層亦無晶體瑕疵,因此形成低暗電流。Further, the photoelectric conversion layer is lattice-matched to the bismuth (Si) substrate, and thus even if a photoelectric conversion layer having a large thickness is grown, the layer is free of crystal defects, thereby forming a low dark current.

日本早期公開專利申請案公告第2006-245088號揭示在矽(Si)基板上之以SiCGe為基礎之混合晶體和Si/SiC之超晶格的製造。為了分離光,由於矽(Si)之低吸收係數緣故,希望在該結構中形成厚膜,因此容易產生晶體瑕疵。亦提到在GaAs基板上之晶體生長。然而,由於少量作為原料之Ga元素之故,GaAs基板的成本高。此外,因該基板毒性之故,其對於環境有負面影響。Japanese Laid-Open Patent Application Publication No. 2006-245088 discloses the fabrication of a SiCGe-based mixed crystal and a Si/SiC superlattice on a ruthenium (Si) substrate. In order to separate the light, it is desirable to form a thick film in the structure due to the low absorption coefficient of cerium (Si), so that crystal ruthenium is likely to occur. Crystal growth on a GaAs substrate is also mentioned. However, the cost of the GaAs substrate is high due to a small amount of Ga element as a raw material. In addition, due to the toxicity of the substrate, it has a negative impact on the environment.

2. 第二具體實例2. The second concrete example

固態影像裝置之結構的第二實例Second example of the structure of a solid-state imaging device

茲參看圖12之示意斷面圖、圖13之示意電路(該電路係經配置以讀取信號),以及圖14(其係於零偏壓之能帶圖)說明根據本發明第二具體實例之固態影像裝置的第二實例。以下茲將說明容許信號讀出與突崩倍增同時發生的結構。Referring to the schematic cross-sectional view of FIG. 12, the schematic circuit of FIG. 13 (which is configured to read signals), and FIG. 14 (which is an energy band diagram for zero bias) illustrate a second embodiment in accordance with the present invention. A second example of a solid state imaging device. The structure in which signal readout and collapse multiplication are allowed to occur simultaneously will be described below.

如圖12與13所示,該矽基板11係p型矽基板。在該矽基板11中形成第一電極層12。該第一電極層12係由例如在矽基板11中形成之n型矽層製成。在第一電極層12上設置由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13。光電轉換層13包括依序堆疊在第一電極層12上之由i-CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由i-CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由p-CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。在該光電轉換層13上設置光學透明第二電極層14。該第二電極層14係由光學透明電極材料所組成,該光學透明電極材料係例如氧化銦錫(ITO)、氧化鋅,或氧化銦鋅。As shown in FIGS. 12 and 13, the ruthenium substrate 11 is a p-type ruthenium substrate. The first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of, for example, an n-type germanium layer formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is provided on the first electrode layer 12. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of i-CuGa 0.52 In 0.48 S 2 sequentially stacked on the first electrode layer 12, and a first composed of i-CuAl 0.24 Ga 0.23 In 0.53 S 2 . The second photoelectric conversion layer 22, and a third photoelectric conversion layer 23 composed of p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . An optically transparent second electrode layer 14 is provided on the photoelectric conversion layer 13. The second electrode layer 14 is composed of an optically transparent electrode material such as indium tin oxide (ITO), zinc oxide, or indium zinc oxide.

該光電轉換層13具有p-i-n結構為一整體。讀出電極15係設置在第一電極層12上。使用閘極MOS電晶體41以箭頭所示方向讀取信號的讀出電路51係設置在矽基板11上。該閘極MOS電晶體41具有閘極係設置在閘極絕緣膜上的結構。以下所述閘極MOS電晶體具有相同結構。The photoelectric conversion layer 13 has a p-i-n structure as a whole. The readout electrode 15 is disposed on the first electrode layer 12. A readout circuit 51 that reads a signal in the direction indicated by the arrow using the gate MOS transistor 41 is disposed on the germanium substrate 11. The gate MOS transistor 41 has a structure in which a gate is provided on a gate insulating film. The gate MOS transistors described below have the same structure.

在讀出電路51中,重設電晶體M1之擴散層與放大電晶體M2的閘極係連接至一連接到光電轉換層13的浮置擴散節點FD。放大電晶體M2係連接至選擇電晶體M3,放大電晶體M2之擴散層係由放大電晶體M2與選擇電晶體M3共用。選擇電晶體M3之擴散層係連接至一輸出線。In the readout circuit 51, the diffusion layer of the reset transistor M1 and the gate of the amplification transistor M2 are connected to a floating diffusion node FD connected to the photoelectric conversion layer 13. The amplifying transistor M2 is connected to the selection transistor M3, and the diffusion layer of the amplifying transistor M2 is shared by the amplifying transistor M2 and the selection transistor M3. The diffusion layer of the selected transistor M3 is connected to an output line.

固態影像裝置2(影像感測器)具有前述礎結構。The solid-state imaging device 2 (image sensor) has the aforementioned basic structure.

如圖14之能帶圖所示,由於光電轉換層13的p-i-n結構緣故,該能帶因內部電場而傾斜。由光照射所產生之電洞對因該傾斜而空間分離成電子與電洞。As shown in the energy band diagram of Fig. 14, the energy band is tilted by the internal electric field due to the p-i-n structure of the photoelectric conversion layer 13. The holes generated by the light irradiation are spatially separated into electrons and holes due to the inclination.

此外,藉由連續組成控制,在接近這三層之間的界面之部分的寬隙側上形成釘狀障壁,其先決條件係BB ≧BG ≧BR >kT(=26 meV),因此可針對RGB各者侷限且累積光電子(光電子之累積),其中k表示波茲曼常數(Boltzmann constant),且kT對應於室溫下之熱能。Further, by the continuous composition control, a nail-shaped barrier is formed on the wide gap side of the portion close to the interface between the three layers, the prerequisite of which is B B ≧B G ≧B R >kT (=26 meV), Photoelectrons (accumulation of photoelectrons) can be localized for RGB, where k represents the Boltzmann constant and kT corresponds to thermal energy at room temperature.

若不存在障壁,則載子自然地從高能帶隙層轉移至低能帶隙層。如此,各RGB不會累積光電子。If no barrier is present, the carrier naturally migrates from the high energy bandgap layer to the low energy bandgap layer. Thus, each RGB does not accumulate photoelectrons.

如圖15所示,在固態影像裝置2中,可藉由施加反向偏壓VR 而先讀取R信號。G信號與B信號係受到釘狀障壁侷限。As shown in FIG. 15, in the solid-state imaging device 2, the R signal can be read first by applying a reverse bias voltage V R . The G signal and the B signal are limited by the nail barrier.

在此情況下,作為第一電極層12之n型矽層以及作為第一光電轉換層21之i-CuGa0.52 In0.48 S2 層之間的傳導能帶中存在固有之不連續性。如此,即使施加低電壓亦會造成碰撞,而對晶格施加高動能。此導致離子化而產生新的電子電洞對,因而造成突崩倍增。In this case, there is an inherent discontinuity in the conduction band between the n-type germanium layer as the first electrode layer 12 and the i-CuGa 0.52 In 0.48 S 2 layer as the first photoelectric conversion layer 21. Thus, even if a low voltage is applied, a collision is caused, and a high kinetic energy is applied to the crystal lattice. This causes ionization to create new pairs of electron holes, which causes a collapse.

為了讀取信號,電荷係暫時累積在作為第一電極層12之n型矽層。然後,讀出電路51使用閘極MOS電晶體41讀取信號。如圖16與17所示,依序施加電壓VG 與VB 以讀取G信號與B信號(其中VB >VG >VR )。在此情況下,亦因介於作為第一電極層12之n型矽層與作為第一光電轉換層21之i-CuGa0.52 In0.48 S2 層之間的傳導能帶的不連續性以及在以黃銅礦為基礎的材料之間的傳導能帶不連續性之影響而造成突崩倍增。In order to read the signal, the charge is temporarily accumulated in the n-type germanium layer as the first electrode layer 12. Then, the readout circuit 51 reads the signal using the gate MOS transistor 41. As shown in FIGS. 16 and 17, voltages V G and V B are sequentially applied to read the G signal and the B signal (where V B >V G >V R ). In this case, also because of the discontinuity of the conduction band between the n-type germanium layer as the first electrode layer 12 and the i-CuGa 0.52 In 0.48 S 2 layer as the first photoelectric conversion layer 21 The effect of the conduction band discontinuity between the chalcopyrite-based materials causes a collapse.

在此種讀出方法中,可不使用美國專利第5,965,875號所述之插頭結構。如此,可形成具有大面積之各光電二極體,因而改善敏感度、簡化製程,以及降低成本。In such a readout method, the plug structure described in U.S. Patent No. 5,965,875 may be omitted. In this way, each of the photodiodes having a large area can be formed, thereby improving sensitivity, simplifying the process, and reducing costs.

前文已描述使用閘極MOS電晶體讀取信號的方法。或者,如圖18所示,可在作為第一電極層12之n型矽層上形成讀出電極15以讀取信號。The method of reading a signal using a gate MOS transistor has been described above. Alternatively, as shown in FIG. 18, the readout electrode 15 may be formed on the n-type germanium layer as the first electrode layer 12 to read a signal.

在上述固態影像裝置2中,藉由改變組成來控制能帶隙導致光在深度方向色散成RGB分量、光電子累積、以三階段施加電壓來讀取信號,以及電壓降低而造成突崩倍增。In the above-described solid-state imaging device 2, by changing the composition, the band gap is controlled to cause light to be dispersed into RGB components in the depth direction, photoelectrons are accumulated, voltage is applied in three stages to read signals, and voltage is lowered to cause collapse.

3. 第三具體實例3. The third concrete example

固態影像裝置之結構的第三實例Third example of the structure of a solid-state imaging device

前文已描述在深度方向分離光之結構以及同時造成光色散與突崩倍增的結構。至於本發明第三具體實例,可使用僅發生突崩倍增的簡單結構。茲將參看圖19(其係於零偏壓下的能帶圖)與圖20(其係於反向偏壓下的能帶圖)說明範例結構。The structure in which the light is separated in the depth direction and the structure in which the light dispersion and the collapse are multiplied at the same time have been described. As for the third embodiment of the present invention, a simple structure in which only collapse doubling occurs can be used. An example structure will be described with reference to Figure 19 (which is an energy band diagram at zero bias) and Figure 20 (which is an energy band diagram under reverse bias).

如圖19與20所示,能帶隙中之連續或逐步改變造成高度不連續性。在此情況下,傳導帶不連續性之程度高於圖14至17所示情況的該程度。如此可能在低驅動電壓獲致高突崩倍增。在此情況下,可使用設置在與裝置之表面相鄰的彩色濾光器(諸如晶片上彩色濾光器(OCCF))進行色彩分離。As shown in Figures 19 and 20, continuous or stepwise changes in the band gap result in a high degree of discontinuity. In this case, the degree of discontinuity of the conduction band is higher than that of the case shown in Figs. This is likely to result in high sag doubling at low drive voltages. In this case, color separation can be performed using a color filter (such as an on-wafer color filter (OCCF)) disposed adjacent to the surface of the device.

此外,用於讀取信號的方法並不侷限於上述在深度方向施加電壓的方法。例如,可藉由對於具有p-i-n結構或pn結構的光電轉換部分施加電壓而讀取信號。茲將參看圖21與22說明此做法之實例。Further, the method for reading a signal is not limited to the above-described method of applying a voltage in the depth direction. For example, the signal can be read by applying a voltage to a photoelectric conversion portion having a p-i-n structure or a pn structure. An example of this will be described with reference to Figs.

如圖21所示,該矽基板11係由p型矽基板所形成。在該矽基板11中形成第一電極層12。該第一電極層12係由例如在矽基板11中形成之n型矽層製成。將由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13設置在第一電極層12上。光電轉換層13包括依序堆疊在第一電極層12上之由CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各具有i傳導類型之中央部分、p傳導類型之一端部分,以及n傳導類型之另一端部分。如此,各層均具有p-i-n結構。As shown in FIG. 21, the ruthenium substrate 11 is formed of a p-type ruthenium substrate. The first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of, for example, an n-type germanium layer formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of CuGa 0.52 In 0.48 S 2 sequentially stacked on the first electrode layer 12, and a second photoelectric conversion layer composed of CuAl 0.24 Ga 0.23 In 0.53 S 2 . 22, and a third photoelectric conversion layer 23 composed of CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . The first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23 each have a central portion of the i conduction type, one end portion of the p conduction type, and the other end portion of the n conduction type. As such, each layer has a pin structure.

或者,第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各具有p型半導體之一端部分與n型半導體之另一端部分(未圖示)。如此,各層均具有pn結構。Alternatively, the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23 each have one end portion of a p-type semiconductor and another end portion (not shown) of the n-type semiconductor. As such, each layer has a pn structure.

此外,p型電極14p(第二電極層)係設置在光電轉換層13的第二光電轉換層22之p型端部分與第三光電轉換層23之p型端部分上。另外,n型電極14n(第二電極層)係設置在光電轉換層13的第二光電轉換層22之n型端部分與第三光電轉換層23之n型端部分上。可不設置該p型電極14p。Further, a p-type electrode 14p (second electrode layer) is provided on the p-type end portion of the second photoelectric conversion layer 22 of the photoelectric conversion layer 13 and the p-type end portion of the third photoelectric conversion layer 23. Further, an n-type electrode 14n (second electrode layer) is provided on the n-type end portion of the second photoelectric conversion layer 22 of the photoelectric conversion layer 13 and the n-type end portion of the third photoelectric conversion layer 23. The p-type electrode 14p may not be provided.

在矽基板11中形成經配置以使用閘極MOS電晶體41以箭頭所示方向讀取信號的讀出電路51。A readout circuit 51 configured to read a signal in the direction indicated by the arrow using the gate MOS transistor 41 is formed in the germanium substrate 11.

如圖22所示,在讀出電路51中,重設電晶體M1之擴散層與放大電晶體M2的閘極係連接至一連接到光電轉換層13的浮置擴散節點FD。放大電晶體M2係連接至選擇電晶體M3,放大電晶體M2之擴散層係由放大電晶體M2與選擇電晶體M3共用。選擇電晶體M3之擴散層係連接至一輸出線。As shown in FIG. 22, in the readout circuit 51, the diffusion layer of the reset transistor M1 and the gate of the amplification transistor M2 are connected to a floating diffusion node FD connected to the photoelectric conversion layer 13. The amplifying transistor M2 is connected to the selection transistor M3, and the diffusion layer of the amplifying transistor M2 is shared by the amplifying transistor M2 and the selection transistor M3. The diffusion layer of the selected transistor M3 is connected to an output line.

固態影像裝置3(影像感測器)具有前述礎結構。The solid-state imaging device 3 (image sensor) has the aforementioned basic structure.

再者,於上述光電轉換層具有p-i-n結構或pn結構的情況下,可不必施加施加反向偏壓以便讀取信號。Further, in the case where the above photoelectric conversion layer has a p-i-n structure or a pn structure, it is not necessary to apply a reverse bias to read a signal.

圖21所示之固態影像裝置3的能帶圖係示於圖23。即,藉由組成控制在接近介於該第二光電轉換層22與該第三光電轉換層23之間的界面之部分的寬隙側形成障壁,其先決條件係B>kT(=26 meV)。如此,可侷限且累積由藍色分量所產生的光電子。同樣地,藉由組成控制在接近介於該第一光電轉換層21與該第二光電轉換層22之間的界面之部分的寬隙側形成障壁,其先決條件係B>kT(=26 meV)。如此,可侷限且累積由綠色分量所產生的光電子。至於紅色分量,電子係轉移到作為第一電極層12的n型矽層,然後由閘極MOS電晶體41讀取。The energy band diagram of the solid-state imaging device 3 shown in Fig. 21 is shown in Fig. 23. That is, the barrier is formed by the composition control of the wide gap side close to the portion between the second photoelectric conversion layer 22 and the third photoelectric conversion layer 23, the prerequisite of which is B>kT (=26 meV) . In this way, photoelectrons generated by the blue component can be limited and accumulated. Similarly, the barrier is formed by the composition control of the wide gap side close to the portion between the first photoelectric conversion layer 21 and the second photoelectric conversion layer 22, the prerequisite of which is B>kT (=26 meV) ). In this way, photoelectrons generated by the green component can be limited and accumulated. As for the red component, the electrons are transferred to the n-type germanium layer as the first electrode layer 12, and then read by the gate MOS transistor 41.

4.第四具體實例4. Fourth concrete example

固態影像裝置之結構的第四實例Fourth example of the structure of a solid-state imaging device

此外,該固態影像裝置3可具有下述之結構。下文茲說明作為本發明第四具體實例之該結構。Further, the solid-state imaging device 3 can have the following structure. The structure as a fourth specific example of the present invention is explained below.

如圖24所示,該矽基板11係由p型矽基板所形成。將由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13設置在矽基板11上。光電轉換層13包括依序堆疊在矽基板11上之由CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各具有本質中央部分、p型半導體之一端部分與n型半導體之另一端部分(未圖示)。如此,各層均具有p-i-n結構。As shown in FIG. 24, the ruthenium substrate 11 is formed of a p-type ruthenium substrate. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the germanium substrate 11. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of CuGa 0.52 In 0.48 S 2 sequentially stacked on the germanium substrate 11, and a second photoelectric conversion layer 22 composed of CuAl 0.24 Ga 0.23 In 0.53 S 2 . And a third photoelectric conversion layer 23 composed of CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . The first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23 each have an intrinsic central portion, one end portion of the p-type semiconductor, and the other end portion (not shown) of the n-type semiconductor. As such, each layer has a pin structure.

或者,第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各具有p型半導體之一端部分與n型半導體之另一端部分(未圖示)。如此,各層均具有pn結構。Alternatively, the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23 each have one end portion of a p-type semiconductor and another end portion (not shown) of the n-type semiconductor. As such, each layer has a pn structure.

此外,該p型電極14p(第二電極層)係設置在光電轉換層13的第一光電轉換層21的p型端部分、第二光電轉換層22之p型端部分與第三光電轉換層23之p型端部分上。此外,該n型電極14n(第二電極層)係設置在光電轉換層13的第一光電轉換層21的n型端部分、第二光電轉換層22之n型端部分與第三光電轉換層23之n型端部分上。可不設置該p型電極14p。Further, the p-type electrode 14p (second electrode layer) is provided at a p-type end portion of the first photoelectric conversion layer 21 of the photoelectric conversion layer 13, a p-type end portion of the second photoelectric conversion layer 22, and a third photoelectric conversion layer. 23 on the p-type end. Further, the n-type electrode 14n (second electrode layer) is provided at an n-type end portion of the first photoelectric conversion layer 21 of the photoelectric conversion layer 13, an n-type end portion of the second photoelectric conversion layer 22, and a third photoelectric conversion layer. 23 on the n-type end portion. The p-type electrode 14p may not be provided.

該第一電極層12係在矽基板11中形成,且位於例如該第一光電轉換層21的一側上。該第一電極層12係由例如在矽基板11中形成之n型矽層製成。在第一光電轉換層21上的n型電極14n係以引線18連接至設置在第一電極層12上之電極17。閘極MOS電晶體41係設置在矽基板11上且與第一電極層12相鄰。矽基板11包括與圖22之示意電路圖所述者相同之讀出電路,該讀出電路係經配置以使用閘極MOS電晶體41讀取信號。The first electrode layer 12 is formed in the ruthenium substrate 11 and is located, for example, on one side of the first photoelectric conversion layer 21. The first electrode layer 12 is made of, for example, an n-type germanium layer formed in the germanium substrate 11. The n-type electrode 14n on the first photoelectric conversion layer 21 is connected by a lead 18 to the electrode 17 provided on the first electrode layer 12. The gate MOS transistor 41 is disposed on the germanium substrate 11 and adjacent to the first electrode layer 12. The germanium substrate 11 includes the same readout circuitry as described in the schematic circuit diagram of FIG. 22, which is configured to read signals using the gate MOS transistor 41.

固態影像裝置4(影像感測器)具有前述礎結構。The solid-state imaging device 4 (image sensor) has the aforementioned basic structure.

下文茲參看圖25固態影像裝置4之能帶圖。如圖25所示,藉由組成控制在接近介於該第二光電轉換層22與該第三光電轉換層23之間的界面之部分的寬隙側形成障壁,其先決條件係B>kT(=26 meV)。如此,可侷限且累積由藍色分量所產生的光電子。同樣地,藉由組成控制在接近介於該第一光電轉換層21與該第二光電轉換層22之間的界面之部分的寬隙側形成障壁,其先決條件係B>kT(=26 meV)。如此,可侷限且累積由綠色分量所產生的光電子。同樣地,藉由組成控制在接近介於該第一光電轉換層21與該矽基板11之間的界面之部分的寬隙側形成障壁,其先決條件係B>kT(=26 meV)。由於n型電極14n係設置該第一光電轉換層21上,可直接讀取累積在第一光電轉換層21上的電子。Referring now to the energy band diagram of the solid-state imaging device 4 of FIG. As shown in FIG. 25, a barrier is formed by a composition control on a wide gap side close to a portion of the interface between the second photoelectric conversion layer 22 and the third photoelectric conversion layer 23, the prerequisite of which is B>kT ( =26 meV). In this way, photoelectrons generated by the blue component can be limited and accumulated. Similarly, the barrier is formed by the composition control of the wide gap side close to the portion between the first photoelectric conversion layer 21 and the second photoelectric conversion layer 22, the prerequisite of which is B>kT (=26 meV) ). In this way, photoelectrons generated by the green component can be limited and accumulated. Likewise, the barrier is formed by the composition control on the wide gap side close to the portion between the first photoelectric conversion layer 21 and the ytterbium substrate 11, the prerequisite of which is B>kT (=26 meV). Since the n-type electrode 14n is disposed on the first photoelectric conversion layer 21, electrons accumulated on the first photoelectric conversion layer 21 can be directly read.

或者,RGB分量各者的光電子可暫時累積在矽基板11中,然後由閘極MOS電晶體41讀取。雖然p型電極14p係經配置以提取電洞,但藉由將該p型電極14p直接接地可消除充電。此外,使用具有較高p型摻雜劑濃度的矽基板11容許電洞轉移至矽基板11內。在此情況下,可不使用p型電極14p。該結構中,由於傳導帶中無不連續性緣故,除紅色分量之讀出以外,在低電壓驅動下不一定發生突崩倍增。然而,此結構的缺點係信號並非如上述般相繼讀取,而是同時讀取。Alternatively, photoelectrons of each of the RGB components may be temporarily accumulated in the germanium substrate 11, and then read by the gate MOS transistor 41. Although the p-type electrode 14p is configured to extract a hole, charging can be eliminated by directly grounding the p-type electrode 14p. Further, the use of the germanium substrate 11 having a higher p-type dopant concentration allows the holes to be transferred into the germanium substrate 11. In this case, the p-type electrode 14p may not be used. In this configuration, since there is no discontinuity in the conduction band, in addition to the reading of the red component, the collapse multiplication does not necessarily occur under low voltage driving. However, the disadvantage of this configuration is that the signals are not read sequentially as described above, but are read simultaneously.

5. 第五具體實例5. The fifth concrete example

固態影像裝置之結構的第五實例Fifth example of the structure of a solid-state imaging device

在前述說明中,在深度方向堆疊第一至第三光電轉換層。然而,不一定堆疊該等層。下文茲將參看圖26之示意斷面圖說明固態影像裝置之第五實例,其中根據本發明第五具體電例,第一至第三光電轉換層並非堆疊。In the foregoing description, the first to third photoelectric conversion layers are stacked in the depth direction. However, it is not necessary to stack the layers. A fifth example of a solid-state image device will now be described with reference to a schematic sectional view of Fig. 26, in which the first to third photoelectric conversion layers are not stacked according to the fifth specific embodiment of the present invention.

如圖26所示,可橫向設置經配置以分離紅色分量的第一光電轉換層21、經配置以分離綠色分量的第二光電轉換層22,以及經配置以分離藍色分量的第三光電轉換層23。As shown in FIG. 26, a first photoelectric conversion layer 21 configured to separate a red component, a second photoelectric conversion layer 22 configured to separate a green component, and a third photoelectric conversion configured to separate a blue component may be laterally disposed Layer 23.

下文茲將進行具體說明。該矽基板11係由p型矽基板所形成。該第一電極層12係在矽基板11中形成,且位於形成將光分離為RGB分量之光電轉換層的位置處。該等第一電極層12各係由例如在矽基板11中形成之n型矽層製成。Specific instructions will be given below. The germanium substrate 11 is formed of a p-type germanium substrate. The first electrode layer 12 is formed in the ruthenium substrate 11 and is located at a position where a photoelectric conversion layer that separates light into RGB components is formed. The first electrode layers 12 are each made of, for example, an n-type germanium layer formed in the germanium substrate 11.

由晶格匹配之以CuAlGaInSSe為基礎的混合晶體所組成之第一光電轉換層21係設置在第一電極層12上位於分離紅色分量之部分處。該第一光電轉換層21係由例如CuGa0.52 In0.48 S2 所組成。A first photoelectric conversion layer 21 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12 at a portion separated by a red component. The first photoelectric conversion layer 21 is composed of, for example, CuGa 0.52 In 0.48 S 2 .

由晶格匹配之以CuAlGaInSSe為基礎的混合晶體所組成之第二光電轉換層22係設置在第一電極層12上位於分離綠色分量之部分處。該第二光電轉換層22係由例如CuAl0.24 Ga0.23 In0.53 S2 所組成。A second photoelectric conversion layer 22 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12 at a portion separated from the green component. The second photoelectric conversion layer 22 is composed of, for example, CuAl 0.24 Ga 0.23 In 0.53 S 2 .

由晶格匹配之以CuAlGaInSSe為基礎的混合晶體所組成之第三光電轉換層23係設置在第一電極層12上位於分離藍色分量之部分處。該第三光電轉換層23係由例如CuAl0.36 Ga0.64 S1.28 Se0.72 所組成。A third photoelectric conversion layer 23 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12 at a portion of the separated blue component. The third photoelectric conversion layer 23 is composed of, for example, CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

該第一光電轉換層21之厚度為例如0.8μm。該第二光電轉換層22之厚度為例如0.7μm。該第三光電轉換層23之厚度為例如0.7μm。The thickness of the first photoelectric conversion layer 21 is, for example, 0.8 μm. The thickness of the second photoelectric conversion layer 22 is, for example, 0.7 μm. The thickness of the third photoelectric conversion layer 23 is, for example, 0.7 μm.

該第二電極層14係設置在第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各者上。每一第二電極層14係由第一具體實例中所述之相同光學透明電極所形成。The second electrode layer 14 is provided on each of the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23. Each of the second electrode layers 14 is formed of the same optically transparent electrode as described in the first specific example.

形成包括堆疊在矽基板11上之第一電極層12、第一光電轉換層21與第二電極層14的第一光電轉換部分24。同樣地,形成包括堆疊在矽基板11上之第一電極層12、第二光電轉換層22與第二電極層14的第二光電轉換部分25。形成包括堆疊在矽基板11上之第一電極層12、第三光電轉換層23與第二電極層14的第三光電轉換部分26。即,第一光電轉換部分至第三光電轉換部分24至26係橫向設置在矽基板11上。A first photoelectric conversion portion 24 including a first electrode layer 12, a first photoelectric conversion layer 21, and a second electrode layer 14 stacked on the germanium substrate 11 is formed. Likewise, the second photoelectric conversion portion 25 including the first electrode layer 12, the second photoelectric conversion layer 22, and the second electrode layer 14 stacked on the ruthenium substrate 11 is formed. A third photoelectric conversion portion 26 including the first electrode layer 12, the third photoelectric conversion layer 23, and the second electrode layer 14 stacked on the germanium substrate 11 is formed. That is, the first to third photoelectric conversion portions 24 to 26 are laterally disposed on the ruthenium substrate 11.

在具有上述結構的固態影像裝置5當中,由於使用p型以黃銅礦為基礎之材料,即使不施加反向偏壓時,光電子亦因能量差而自發地朝向矽基板11轉移。該等光電子可使用在矽基板11上的閘極MOS電晶體41讀取。該等閘極MOS電晶體41各者係設置在矽基板11上且位於與對應之第一電極層12相鄰處。在此結構當中,可同時讀取RGB信號。In the solid-state image device 5 having the above-described structure, since a p-type chalcopyrite-based material is used, the photoelectron spontaneously shifts toward the ruthenium substrate 11 due to the energy difference even when no reverse bias is applied. These photoelectrons can be read using the gate MOS transistor 41 on the germanium substrate 11. Each of the gate MOS transistors 41 is disposed on the germanium substrate 11 and located adjacent to the corresponding first electrode layer 12. In this structure, RGB signals can be read simultaneously.

如同拜耳模式,可提高綠色像素之數量以改善綠色分量的解析度。圖27顯示該結構中的光譜敏感度特徵。Like the Bayer mode, the number of green pixels can be increased to improve the resolution of the green component. Figure 27 shows the spectral sensitivity characteristics in this structure.

如圖27所示,較短波長未被阻絕。如此,下文可說明例如於去馬賽克之後的色彩演算處理。As shown in Figure 27, the shorter wavelengths are not blocked. Thus, the color calculation processing after, for example, demosaicing can be explained below.

R=r-g,G=g-b,且B=bR=r-g, G=g-b, and B=b

其中r、g與b為原始資料。Where r, g and b are the original data.

上述之以黃銅礦為基礎之材料係以CuAlGaInSSe為基礎的混合晶體。The chalcopyrite-based material described above is a mixed crystal based on CuAlGaInSSe.

6.第六具體實例6. Sixth concrete example

固態影像裝置之結構的第六實例Sixth example of the structure of a solid-state imaging device

下文茲將說明例如使用以CuGaInZnSSe為基礎的混合晶體作為以黃銅礦為基礎之材料的結構作為根據本發明第六具體實例之固態影像裝置的第六實例。使用該以CuGaInZnSSe為基礎的混合晶體使得可能進行與上述相同的能帶隙控制,因此提供與上述固態影像裝置相同的效果。A sixth example of a solid-state image device according to a sixth embodiment of the present invention will be described below, for example, using a structure in which a mixed crystal based on CuGaInZnSSe is used as a material based on chalcopyrite. The use of the CuGaInZnSSe-based mixed crystal makes it possible to perform the same band gap control as described above, thus providing the same effect as the above solid-state image device.

圖28顯示介於該以CuGaInZnSSe為基礎之材料的能帶隙與晶格常數之間的關係。Figure 28 shows the relationship between the energy band gap and the lattice constant of the material based on CuGaInZnSSe.

圖28證明該以CuGaInZnSSe為基礎的混合晶體可在矽(100)基板11上生長,同時維持與該矽基板11晶格匹配。FIG. 28 demonstrates that the CuGaInZnSSe-based mixed crystal can be grown on the ruthenium (100) substrate 11 while maintaining lattice matching with the ruthenium substrate 11.

例如,使用圖29所示之斷面結構能將光分離成RGB分量。For example, the cross-sectional structure shown in Fig. 29 can be used to separate light into RGB components.

作為圖29所示之結構的實例,在矽基板11中形成第一電極層12。該第一電極層12係由例如在矽基板11中形成之n型矽區製成。在第一電極層12上設置由晶格匹配之以CuAlGaInZnSSe為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成的光電轉換層13。在該光電轉換層13上設置光學透明第二電極層14。該第二電極層14係由透明電極材料所組成,該透明電極材料係例如氧化銦錫(ITO)、氧化鋅,或氧化銦鋅。固態影像裝置6(影像感測器)具有上述基礎結構。As an example of the structure shown in FIG. 29, the first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of, for example, an n-type germanium region formed in the germanium substrate 11. On the first electrode layer 12, a photoelectric conversion layer 13 composed of a chalcopyrite-based compound semiconductor which is a lattice-matched mixed crystal based on CuAlGaInZnSSe is provided. An optically transparent second electrode layer 14 is provided on the photoelectric conversion layer 13. The second electrode layer 14 is composed of a transparent electrode material such as indium tin oxide (ITO), zinc oxide, or indium zinc oxide. The solid-state imaging device 6 (image sensor) has the above-described basic structure.

由以黃銅礦為基礎之化合物半導體所組成的光電轉換層13係經配置以在深度方向將光分離成紅色、綠色與藍色(RGB)分量,且係形成為與該矽基板11晶格匹配。The photoelectric conversion layer 13 composed of a chalcopyrite-based compound semiconductor is configured to separate light into red, green, and blue (RGB) components in the depth direction, and is formed to be latticed with the germanium substrate 11. match.

在Si(100)基板上磊晶生長分別具有高光學吸收係數的以黃銅礦為基礎之混合晶體同時維持與該基板之晶格匹配,如此獲致令人滿意之結晶度且造成具有低暗電流之高度敏感固態影像裝置6(影像感測器)。Epitaxial growth of a chalcopyrite-based mixed crystal having a high optical absorption coefficient on a Si (100) substrate while maintaining lattice matching with the substrate, thus achieving satisfactory crystallinity and causing low dark current Highly sensitive solid-state imaging device 6 (image sensor).

該光電轉換層13包括從底部依序堆疊之經配置以分離紅色分量的第一光電轉換層21、經配置以分離綠色分量的第二光電轉換層22,以及經配置以分離藍色分量的第三光電轉換層23。The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 configured to separate red components from the bottom, a second photoelectric conversion layer 22 configured to separate a green component, and a first configured to separate blue components Three photoelectric conversion layers 23.

例如,CuGa0.52 In0.48 S2 係用作分離紅色分量用之光電轉換材料。CuGaIn1.39 Se0.6 係用作分離綠色分量用之光電轉換材料。CuGa0.74 Zn0.26 S1.49 Se0.51 係用作分離藍色分量用之光電轉換材料。以此種方式,在矽基板11上依序堆疊用於分離紅色分量之光電轉換材料、用於分離綠色分量之光電轉換材料以及用於分離藍色分量之光電轉換材料使得可在深度方向分離光。For example, CuGa 0.52 In 0.48 S 2 is used as a photoelectric conversion material for separating a red component. CuGaIn 1.39 Se 0.6 is used as a photoelectric conversion material for separating a green component. CuGa 0.74 Zn 0.26 S 1.49 Se 0.51 is used as a photoelectric conversion material for separating a blue component. In this manner, the photoelectric conversion material for separating the red component, the photoelectric conversion material for separating the green component, and the photoelectric conversion material for separating the blue component are sequentially stacked on the ruthenium substrate 11 so that the light can be separated in the depth direction. .

鑒於紅色、綠色與藍色(RGB)分量的光子能量,可在深度方向分離光的能帶隙區如下述。該第一光電轉換層21之能帶隙可為2.00±0.1 eV(波長:590 nm至650 nm)。該第二光電轉換層22之能帶隙可為2.20±0.15 eV(波長:530 nm至605 nm)。該第三光電轉換層23之能帶隙可為2.51±0.2 eV(波長:460 nm至535 nm)。In view of the photon energy of the red, green, and blue (RGB) components, the energy band gap that can separate the light in the depth direction is as follows. The first photoelectric conversion layer 21 may have an energy band gap of 2.00 ± 0.1 eV (wavelength: 590 nm to 650 nm). The second photoelectric conversion layer 22 may have an energy band gap of 2.20 ± 0.15 eV (wavelength: 530 nm to 605 nm). The third photoelectric conversion layer 23 has an energy band gap of 2.51 ± 0.2 eV (wavelength: 460 nm to 535 nm).

在此情況下,該第一光電轉換層21之組成為CuGay Inz Su Sev ,其中 0.52≦y≦0.76,0.24≦z≦0.48,1.70≦u≦2.00,0≦v≦0.30,且y+z+u+v=3(或者,y+z=1且u+v=2)。該第二光電轉換層22之組成為CuGay Inz Znw Su Sev ,其中0.64≦y≦0.88,0≦z≦0.36,0≦w≦0.12,0.15≦u≦1.44,0.56≦v≦1.85,且y+z+w+u+v=3(或者,y+z+w=1且u+v=2)。In this case, the composition of the first photoelectric conversion layer 21 is CuGa y In z S u Se v , where 0.52 ≦ y ≦ 0.76, 0.24 ≦ z ≦ 0.48, 1.70 ≦ u ≦ 2.00, 0 ≦ v ≦ 0.30, and y+z+u+v=3 (or, y+z=1 and u+v=2). The composition of the second photoelectric conversion layer 22 is CuGa y In z Zn w S u Se v , wherein 0.64≦y≦0.88, 0≦z≦0.36, 0≦w≦0.12, 0.15≦u≦1.44, 0.56≦v≦ 1.85, and y+z+w+u+v=3 (or, y+z+w=1 and u+v=2).

該第三光電轉換層23之組成為CuGay Znw Su Sev ,其中 0.74≦y≦0.91,0.09≦w≦0.26,1.42≦u≦1.49,0.51≦v≦0.58,且y+w+u+v=3。The composition of the third photoelectric conversion layer 23 is CuGa y Zn w S u Se v , where 0.74≦y≦0.91, 0.09≦w≦0.26, 1.42≦u≦1.49, 0.51≦v≦0.58, and y+w+u +v=3.

前述以CuAlGaInSSe為基礎之組成物可部分或完全被此等組成物取代。圖29顯示該等層之範例組成。The aforementioned composition based on CuAlGaInSSe may be partially or completely substituted by such compositions. Figure 29 shows an example composition of the layers.

7. 第七具體實例7. Seventh concrete example

固態影像裝置之結構的第七實例Seventh example of the structure of a solid-state imaging device

茲參看圖30之示意斷面圖以及圖31之示意電路圖說明根據本發明第七具體實例之固態影像裝置的第七實例。圖30顯示光係入射在與形成有電晶體以及配線之前側相反的背側上之範例背光照明感測器。該背光照明感測器亦具有與光係入射在形成有電晶體以及配線之前側上的前光照明感測器相同之優點。A seventh example of a solid-state image device according to a seventh embodiment of the present invention is explained with reference to the schematic sectional view of Fig. 30 and the schematic circuit diagram of Fig. 31. Figure 30 shows an example backlight sensor with a light system incident on the back side opposite the front side on which the transistor and wiring are formed. The backlight sensor also has the same advantages as the front light illumination sensor on which the light system is incident on the front side of the transistor and the wiring.

如圖30所示,該矽基板11係由p型矽基板所形成。該第一電極層12係在矽基板11中形成,且係延伸至矽基板11的背側附近。該第一電極層12係由例如在矽基板11中形成之n型矽層製成。在第一電極層12上設置由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13。光電轉換層13包括堆疊在第一電極層12上之由i-CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由i-CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由p-CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。As shown in FIG. 30, the ruthenium substrate 11 is formed of a p-type ruthenium substrate. The first electrode layer 12 is formed in the ruthenium substrate 11 and extends to the vicinity of the back side of the ruthenium substrate 11. The first electrode layer 12 is made of, for example, an n-type germanium layer formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is provided on the first electrode layer 12. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of i-CuGa 0.52 In 0.48 S 2 stacked on the first electrode layer 12, and a second photoelectric layer composed of i-CuAl 0.24 Ga 0.23 In 0.53 S 2 . The conversion layer 22, and a third photoelectric conversion layer 23 composed of p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

如此,該光電轉換層13具有p-i-i結構為一整體。Thus, the photoelectric conversion layer 13 has a p-i-i structure as a whole.

該光電轉換層13可由上述組成範圍內之材料所組成。此外,可使用前述以CuGaInZnSSe為基礎的混合晶體。The photoelectric conversion layer 13 can be composed of materials within the above composition range. Further, the aforementioned mixed crystal based on CuGaInZnSSe can be used.

在該光電轉換層13上設置光學透明第二電極層14。該第二電極層14係由光學透明電極材料所組成,該光學透明電極材料係例如氧化銦錫(ITO)、氧化鋅,或氧化銦鋅。An optically transparent second electrode layer 14 is provided on the photoelectric conversion layer 13. The second electrode layer 14 is composed of an optically transparent electrode material such as indium tin oxide (ITO), zinc oxide, or indium zinc oxide.

此外,在矽基板11之前側(於該圖式中係矽基板11之下側)上形成從該第一電極層12讀取信號之讀出電極15。在矽基板11之前側形成使用閘極MOS電晶體41以箭頭所指示方向讀取信號的讀出電路51。Further, a readout electrode 15 for reading a signal from the first electrode layer 12 is formed on the front side of the ruthenium substrate 11 (the lower side of the ruthenium substrate 11 in the drawing). A readout circuit 51 that reads a signal in the direction indicated by the arrow using the gate MOS transistor 41 is formed on the front side of the germanium substrate 11.

參看圖31,在讀出電路51中,重設電晶體M1之擴散層與放大電晶體M2的閘極係連接至一連接到光電轉換層13的浮置擴散節點FD。放大電晶體M2係連接至選擇電晶體M3,放大電晶體M2之擴散層係由放大電晶體M2與選擇電晶體M3共用。選擇電晶體M3之擴散層係連接至一輸出線。Referring to Fig. 31, in the readout circuit 51, the diffusion layer of the reset transistor M1 and the gate of the amplification transistor M2 are connected to a floating diffusion node FD connected to the photoelectric conversion layer 13. The amplifying transistor M2 is connected to the selection transistor M3, and the diffusion layer of the amplifying transistor M2 is shared by the amplifying transistor M2 and the selection transistor M3. The diffusion layer of the selected transistor M3 is connected to an output line.

固態影像裝置7(影像感測器)具有前述礎結構。The solid-state imaging device 7 (image sensor) has the aforementioned basic structure.

在固態影像裝置7中,可能在深度方向將光分離成RGB分量、累積光電子、以三階段施加電壓來讀取信號,以及獲致以較低電壓造成突崩倍增。In the solid-state imaging device 7, it is possible to separate light into RGB components in the depth direction, accumulate photoelectrons, apply voltages in three stages to read signals, and cause collapse to multiply at a lower voltage.

在矽基板11之前側上形成諸如讀出電極15之電極、諸如閘極MOS電晶體41之電晶體、配線等等。在矽基板11之背側(在該圖式中為矽基板11之上側)上設置光電轉換層13。如此,可將光電轉換層13設置在除介於相鄰光電轉換層13之間的間隙以外之矽基板11之整體表面上。因此,大口徑導致入射光之量增加,因而顯著提高敏感度。An electrode such as the readout electrode 15, a transistor such as the gate MOS transistor 41, wiring, and the like are formed on the front side of the germanium substrate 11. A photoelectric conversion layer 13 is provided on the back side of the germanium substrate 11 (the upper side of the germanium substrate 11 in the drawing). Thus, the photoelectric conversion layer 13 can be disposed on the entire surface of the substrate 11 except for the gap between the adjacent photoelectric conversion layers 13. Therefore, the large aperture causes an increase in the amount of incident light, thereby significantly increasing the sensitivity.

固態影像裝置之第七實例的第一修改First modification of the seventh example of the solid-state imaging device

參看圖32,在圖30所示之固態影像裝置7中,可使用組成從矽基板11側之n-CuAlS1.2 Se0.8 或i-CuAlS1.2 Se0.8 改變成p-CuGa0.52 In0.48 S2 之光電轉換層13。在該固態影像裝置8(影像感測器)中,在低驅動電壓下可獲致較高突崩倍增增益。Referring to Fig. 32, in the solid-state image device 7 shown in Fig. 30, a photoelectric composition of p-CuGa 0.52 In 0.48 S 2 which is changed from n-CuAlS 1.2 Se 0.8 or i-CuAlS 1.2 Se 0.8 from the side of the ruthenium substrate 11 can be used. Conversion layer 13. In the solid-state imaging device 8 (image sensor), a high sag multiplication gain can be obtained at a low driving voltage.

固態影像裝置之第七實例的第二修改Second modification of the seventh example of the solid-state imaging device

茲參看圖33說明一固態影像裝置(影像感測器)。參看圖33,在圖26所示之固態影像裝置5中,於矽基板11之前側(在該圖式中為矽基板11之下側)上形成諸如讀出電極15之電極、諸如閘極MOS電晶體41之電晶體、配線等等。即,在圖30所示之固態影像裝置7中,該等經配置以從光分離RGB分量的光電轉換層各自獨立地形成作為光電轉換層13。換言之,不堆疊經配置以分離紅色分量之第一光電轉換層21、經配置以分離綠色分量之第二光電轉換層22以及經配置以分離藍色分量之第一光電轉換層23,而是彼等係獨立地設置在矽基板11之背側(在該圖式中為矽基板11之上側)上。A solid-state imaging device (image sensor) will be described with reference to FIG. Referring to Fig. 33, in the solid-state image device 5 shown in Fig. 26, an electrode such as the readout electrode 15, such as a gate MOS, is formed on the front side of the germanium substrate 11 (the lower side of the germanium substrate 11 in the drawing). The transistor, wiring, etc. of the transistor 41. That is, in the solid-state image device 7 shown in FIG. 30, the photoelectric conversion layers configured to separate the RGB components from the light are independently formed as the photoelectric conversion layer 13 respectively. In other words, the first photoelectric conversion layer 21 configured to separate the red component, the second photoelectric conversion layer 22 configured to separate the green component, and the first photoelectric conversion layer 23 configured to separate the blue component are not stacked, but The lines are independently provided on the back side of the ruthenium substrate 11 (in the figure, the upper side of the ruthenium substrate 11).

該固態影像裝置9具有經配置以分離RGB分量之該等光電轉換層係橫向設置的結構。此外,在矽基板11之前側(在該圖式中為矽基板11之下側)上設置經配置以讀取光電子之讀出電路(未圖示)、讀出電極15、閘極MOS電晶體41、配線等。The solid-state imaging device 9 has a structure in which the photoelectric conversion layers configured to separate RGB components are laterally disposed. Further, a readout circuit (not shown) configured to read photoelectrons, a readout electrode 15, and a gate MOS transistor are disposed on the front side of the germanium substrate 11 (the lower side of the germanium substrate 11 in the drawing). 41, wiring and so on.

此種結構中,可將光電轉換層13設置在除介於相鄰光電轉換層13之間的間隙以外之矽基板11之整體表面上。因此,大口徑導致入射光之量增加,因而顯著提高敏感度。In such a structure, the photoelectric conversion layer 13 can be disposed on the entire surface of the substrate 11 except for the gap between the adjacent photoelectric conversion layers 13. Therefore, the large aperture causes an increase in the amount of incident light, thereby significantly increasing the sensitivity.

8. 第八具體實例8. The eighth specific example

固態影像裝置之製造方法的第一實例First example of a manufacturing method of a solid-state imaging device

下文茲將說明根據本發明第八具體實例之固態影像裝置的製造方法之第一實例。A first example of a method of manufacturing a solid-state image device according to an eighth specific example of the present invention will now be described.

例如,可將圖12所示之固態影像裝置2應用於圖34所示之CMOS影像感測器中使用的光電二極體。固態影像裝置2之能帶圖係示於圖14。For example, the solid-state imaging device 2 shown in FIG. 12 can be applied to the photodiode used in the CMOS image sensor shown in FIG. The energy band diagram of the solid-state imaging device 2 is shown in FIG.

可藉由例如常用CMOS製程在矽基板11上製造固態影像裝置2。下文茲參看圖12說明細節。The solid-state image device 2 can be fabricated on the ruthenium substrate 11 by, for example, a conventional CMOS process. Details are explained below with reference to FIG.

使用矽(100)基板作為矽基板11。首先,在矽基板11中形成包括電晶體與電極之週邊電路(未圖示)。A ruthenium (100) substrate was used as the ruthenium substrate 11. First, a peripheral circuit (not shown) including a transistor and an electrode is formed in the germanium substrate 11.

其次,在該矽基板11中形成第一電極層12。該第一電極層12係由藉由例如離子植入所形成的n型矽層製成。在離子植入中,以抗蝕劑遮罩界定離子植入區。在離子植入完成之後移除該抗蝕劑遮罩。Next, the first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of an n-type germanium layer formed by, for example, ion implantation. In ion implantation, the ion implantation region is defined by a resist mask. The resist mask is removed after the ion implantation is completed.

在設置於矽基板11中之第一電極層12上形成作為經配置以分離紅色分量之光電轉換層的第一光電轉換層21。由i-CuGa0.52 In0.48 S2 混合晶體所組成之第一光電轉換層21係藉由例如分子束磊晶(MBE)而形成。此處,在介於第一光電轉換層21與矽基板11之間的界面形成障壁,其先決條件係BR >kT=26 meV。例如,在生長i-CuAl0.06 Ga0.45 In0.49 S2 之後,逐漸增加Ga含量而逐漸減少Al與In含量,因而獲得i-CuGa0.52 In0.48 S2 。藉此堆疊釘狀障壁。該障壁之能量BR 為50 meV或更低,其已充分高於室溫下之熱能。該障壁之厚度為100 nm。經配置以分離紅色分量之光電轉換層的厚度總計為0.8μm。A first photoelectric conversion layer 21 as a photoelectric conversion layer configured to separate a red component is formed on the first electrode layer 12 disposed in the germanium substrate 11. The first photoelectric conversion layer 21 composed of an i-CuGa 0.52 In 0.48 S 2 mixed crystal is formed by, for example, molecular beam epitaxy (MBE). Here, a barrier is formed at an interface between the first photoelectric conversion layer 21 and the ruthenium substrate 11, with a prerequisite of B R >kT=26 meV. For example, after i-CuAl 0.06 Ga 0.45 In 0.49 S 2 is grown, the Ga content is gradually increased to gradually reduce the Al and In contents, and thus i-CuGa 0.52 In 0.48 S 2 is obtained . Thereby, the nail-shaped barrier is stacked. The energy barrier B R of the barrier is 50 meV or less, which is sufficiently higher than the thermal energy at room temperature. The barrier has a thickness of 100 nm. The thickness of the photoelectric conversion layer configured to separate the red component was 0.8 μm in total.

其次,在第一光電轉換層21上形成作為經配置以分離綠色分量之光電轉換層的第二光電轉換層22。藉由例如MBE形成該厚度為例如0.7 μm之第二光電轉換層22。第二光電轉換層22之組成為i-CuAl0.24 Ga0.23 In0.53 S2Next, a second photoelectric conversion layer 22 as a photoelectric conversion layer configured to separate a green component is formed on the first photoelectric conversion layer 21. The second photoelectric conversion layer 22 having a thickness of, for example, 0.7 μm is formed by, for example, MBE. The composition of the second photoelectric conversion layer 22 is i-CuAl 0.24 Ga 0.23 In 0.53 S 2 .

在介於該第一光電轉換層21與第二光電轉換層22之間的界面堆疊障壁。在生長i-CuAl0.33 Ga0.11 In0.56 S2 之後,逐漸增加Ga含量而逐漸減少Al與In含量,因而獲得i-CuAl0.24 Ga0.23 In0.53 S2 。藉此堆疊釘狀障壁。該障壁的能量BG 為84 meV或更低,其充分高於室溫下之熱能且高於上述能量BRA barrier is stacked at an interface between the first photoelectric conversion layer 21 and the second photoelectric conversion layer 22. After i-CuAl 0.33 Ga 0.11 In 0.56 S 2 was grown, the Ga content was gradually increased to gradually reduce the Al and In contents, and thus i-CuAl 0.24 Ga 0.23 In 0.53 S 2 was obtained . Thereby, the nail-shaped barrier is stacked. The energy barrier B G of the barrier is 84 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the above energy B R .

其次,在第二光電轉換層22上形成作為經配置以分離藍色分量之光電轉換層的第三光電轉換層23。藉由例如MBE形成該厚度為例如0.3μm之第三光電轉換層23。第三光電轉換層23之組成為p-CuAl0.36 Ga0.64 S1.28 Se0.72Next, a third photoelectric conversion layer 23 as a photoelectric conversion layer configured to separate blue components is formed on the second photoelectric conversion layer 22. The third photoelectric conversion layer 23 having a thickness of, for example, 0.3 μm is formed by, for example, MBE. The composition of the third photoelectric conversion layer 23 is p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

在介於該第三光電轉換層23與第二光電轉換層22之間的界面堆疊障壁。在生長p-CuAl0.42 Ga0.58 S1.36 Se0.64 之後,逐漸增加Ga含量而逐漸減少Al與S含量,因而獲得p-CuAl0.36 Ga0.64 S1.28 Se0.72 。藉此堆疊釘狀障壁。該障壁的能量BB 為100 meV或更低,其充分高於室溫下之熱能且高於能量BR 與BG 。Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98至0.99之比例生長而獲致p型傳導。A barrier is stacked at an interface between the third photoelectric conversion layer 23 and the second photoelectric conversion layer 22. After the growth of p-CuAl 0.42 Ga 0.58 S 1.36 Se 0.64 , the Ga content was gradually increased to gradually reduce the Al and S contents, thereby obtaining p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . Thereby, the nail-shaped barrier is stacked. The energy barrier B B of the barrier is 100 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the energies B R and B G . The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98 to 0.99.

至於上述晶體生長,視條件而定,在某些情況下難以生長固溶體。在此情況下,可生長具有超晶格之準混合晶體。例如,至於經配置以分離紅色分量之光電轉換層,交替堆疊i-CuInS2 層與i-CuGaS2 層,該等層各具有等於或小於臨界厚度以使該等層之整體組成為i-CuGa0.52 In0.48 S2As for the above crystal growth, depending on the conditions, it is difficult to grow a solid solution in some cases. In this case, a quasi-mixed crystal having a superlattice can be grown. For example, as for the photoelectric conversion layer configured to separate the red component, the i-CuInS 2 layer and the i-CuGaS 2 layer are alternately stacked, each of the layers having a thickness equal to or less than a critical thickness such that the overall composition of the layers is i-CuGa 0.52 In 0.48 S 2 .

例如,令該等i-CuInS2 層與i-CuGaS2 層交替堆疊同時維持與Si(100)晶格匹配的生長條件可藉由X射線繞射等測定。然後可以此種方式進行堆疊作用以使整體組成與目標組成相同。For example, growth conditions in which the i-CuInS 2 layer and the i-CuGaS 2 layer are alternately stacked while maintaining lattice matching with Si (100) can be measured by X-ray diffraction or the like. The stacking can then be performed in such a way that the overall composition is the same as the target composition.

在上述晶體生長當中,事先以由例如氧化矽(SiO2 )或氮化矽(SiN)之材料所組成的膜覆蓋電晶體、讀出電路、配線等的所在部分。在矽基板11係部分露出的部分上選擇性生長光電轉換層。In the above crystal growth, a portion of a transistor, a readout circuit, a wiring, or the like is covered with a film made of a material such as yttria (SiO 2 ) or tantalum nitride (SiN). The photoelectric conversion layer is selectively grown on a portion where the germanium substrate 11 is partially exposed.

然後該等光電轉換層係在該材料(例如氧化矽(SiO2 )或氮化矽(SiN))膜之表面上橫向生長,以便覆蓋實質上整體表面。Then those based photoelectric conversion layer of the material (e.g., silicon oxide (SiO 2) or silicon nitride (the SiN)) of the lateral growth on the surface of the film so as to cover substantially the entire surface.

此外,藉由濺鍍沉積形成由光學透明材料氧化銦錫(ITO)所組成之層作為第二電極層14。金屬配線在ITO層上形成並且接地,藉此避免因電洞累積所致之充電。希望藉由例如使用抗蝕劑遮罩之反應性離子蝕刻(RIE)處理將像素分開,以使得信號電隔離。在此情況下,分離該等光電轉換層以及該光學透明電極。此外,為了提高集光效率,每一像素可形成晶片上透鏡(OCL)。Further, a layer composed of an optically transparent material indium tin oxide (ITO) is formed as a second electrode layer 14 by sputtering deposition. Metal wiring is formed on the ITO layer and grounded, thereby avoiding charging due to accumulation of holes. It is desirable to separate the pixels by reactive ion etching (RIE) processing, such as using a resist mask, to electrically isolate the signals. In this case, the photoelectric conversion layers and the optically transparent electrode are separated. In addition, in order to improve the light collection efficiency, each pixel can form an on-wafer lens (OCL).

在藉由前述製程所製造之固態影像裝置2(影像感測器)中,以反向偏壓模式連續施加電壓VR 、VG 與VB 導致突崩倍增與經放大之RGB信號,其先決條件係VR >VG >VB 。藉由該方法所獲得的影像與常用晶片上彩色濾光器裝置(OCCF裝置)之影像相較,展現出色彩重現性且具有高敏感度。In the solid-state imaging device 2 (image sensor) manufactured by the foregoing process, continuously applying the voltages V R , V G and V B in a reverse bias mode results in a collapse multiplication and an amplified RGB signal, which is a prerequisite The condition is V R >V G >V B . The image obtained by this method exhibits color reproducibility and high sensitivity as compared with the image of a conventional on-wafer color filter device (OCCF device).

9. 第九具體實例9. The ninth concrete example

固態影像裝置之製造方法的第二實例Second example of a method of manufacturing a solid-state imaging device

下文茲將說明根據本發明第九具體實例之固態影像裝置的製造方法之第二實例。A second example of a method of manufacturing a solid-state image device according to a ninth embodiment of the present invention will now be described.

例如,可將圖21所示之固態影像裝置3應用於圖34所示之CMOS影像感測器中使用的光電二極體。固態影像裝置3之能帶圖係示於圖23。For example, the solid-state imaging device 3 shown in FIG. 21 can be applied to the photodiode used in the CMOS image sensor shown in FIG. The energy band diagram of the solid-state imaging device 3 is shown in FIG.

可藉由例如常用CMOS製程在矽基板11上製造固態影像裝置3。下文茲參看圖21說明細節。The solid-state image device 3 can be fabricated on the ruthenium substrate 11 by, for example, a conventional CMOS process. Details are explained below with reference to FIG.

使用矽(100)基板作為矽基板11。首先,在矽基板11中形成包括電晶體與電極之週邊電路。A ruthenium (100) substrate was used as the ruthenium substrate 11. First, a peripheral circuit including a transistor and an electrode is formed in the germanium substrate 11.

其次,在該矽基板11中形成第一電極層12。該第一電極層12係由藉由例如離子植入所形成的n型矽層製成。在離子植入中,以抗蝕劑遮罩界定離子植入區。在離子植入完成之後移除該抗蝕劑遮罩。Next, the first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of an n-type germanium layer formed by, for example, ion implantation. In ion implantation, the ion implantation region is defined by a resist mask. The resist mask is removed after the ion implantation is completed.

在設置於矽基板11中之第一電極層12上形成作為經配置以分離紅色分量之光電轉換層的第一光電轉換層21。藉由例如MBE形成由i-CuGa0.52 In0.48 S2 混合晶體所組成之第一光電轉換層21,且該層之厚度為例如0.8μm。A first photoelectric conversion layer 21 as a photoelectric conversion layer configured to separate a red component is formed on the first electrode layer 12 disposed in the germanium substrate 11. The first photoelectric conversion layer 21 composed of an i-CuGa 0.52 In 0.48 S 2 mixed crystal is formed by, for example, MBE, and the thickness of the layer is, for example, 0.8 μm.

在第一光電轉換層21上形成作為經配置以分離綠色分量之光電轉換層的第二光電轉換層22。藉由例如MBE形成該厚度為例如0.7μm之第二光電轉換層22。第二光電轉換層22之組成為i-CuAl0.24 Ga0.23 In0.53 S2A second photoelectric conversion layer 22 as a photoelectric conversion layer configured to separate a green component is formed on the first photoelectric conversion layer 21. The second photoelectric conversion layer 22 having a thickness of, for example, 0.7 μm is formed by, for example, MBE. The composition of the second photoelectric conversion layer 22 is i-CuAl 0.24 Ga 0.23 In 0.53 S 2 .

在介於該第一光電轉換層21與第二光電轉換層22之間的界面堆疊障壁。在生長厚度為50 nm之i-CuAl0.33 Ga0.11 In0.56 S2 層之後,生長i-CuAl0.24 Ga0.23 In0.53 S2 ,如此提供該障壁。該障壁的能量BG為84 meV或更低,其充分高於室溫下之熱能且高於上述能量BRA barrier is stacked at an interface between the first photoelectric conversion layer 21 and the second photoelectric conversion layer 22. After growing an i-CuAl 0.33 Ga 0.11 In 0.56 S 2 layer having a thickness of 50 nm, i-CuAl 0.24 Ga 0.23 In 0.53 S 2 was grown, thus providing the barrier. The barrier has an energy BG of 84 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the above energy B R .

其次,在第二光電轉換層22上形成作為經配置以分離藍色分量之光電轉換層的第三光電轉換層23。藉由例如MBE形成該厚度為例如0.3μm之第三光電轉換層23。第三光電轉換層23之組成為p-CuAl0.36 Ga0.64 S1.28 Se0.72Next, a third photoelectric conversion layer 23 as a photoelectric conversion layer configured to separate blue components is formed on the second photoelectric conversion layer 22. The third photoelectric conversion layer 23 having a thickness of, for example, 0.3 μm is formed by, for example, MBE. The composition of the third photoelectric conversion layer 23 is p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

在介於該第三光電轉換層23與第二光電轉換層22之間的界面堆疊障壁。在生長厚度為50 nm之p-CuAl0.42 Ga0.58 S1.36 Se0.64 層之後,生長i-CuAl0.36 Ga0.64 S1.28 Se0.72 ,如此提供該障壁。該障壁的能量BB 為100 meV或更低,其充分高於室溫下之熱能且高於能量BR 與BGA barrier is stacked at an interface between the third photoelectric conversion layer 23 and the second photoelectric conversion layer 22. After growing a layer of p-CuAl 0.42 Ga 0.58 S 1.36 Se 0.64 having a thickness of 50 nm, i-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 was grown, thus providing the barrier. The energy barrier B B of the barrier is 100 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the energies B R and B G .

為了改變第一光電轉換層21、第二光電轉換層22與第三光電轉換層23之傳導類型,以石版印刷技術形成遮罩,然後選擇性離子植入摻雜劑。可藉由離子植入第13族元素作為p型摻雜劑而形成p型區。例如,離子植入鎵(Ga)。可使用第12族元素作為n型摻雜劑而形成n型區。例如,離子植入鋅(Zn)。離子植入之後的退火作用活化該等摻雜劑,因而形成p-i-n結構。In order to change the conductivity type of the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23, a mask is formed by a lithographic technique, and then the dopant is selectively ion-implanted. The p-type region can be formed by ion implantation of a Group 13 element as a p-type dopant. For example, ion implantation of gallium (Ga). An n-type region can be formed using a Group 12 element as an n-type dopant. For example, ion implantation of zinc (Zn). Annealing after ion implantation activates the dopants, thus forming a p-i-n structure.

在上述晶體生長當中,事先以由例如氧化矽(SiO2 )或氮化矽(SiN)之材料所組成的膜覆蓋電晶體、讀出電路、配線等的所在部分。在矽基板11係部分露出的部分上選擇性生長光電轉換層。In the above crystal growth, a portion of a transistor, a readout circuit, a wiring, or the like is covered with a film made of a material such as yttria (SiO 2 ) or tantalum nitride (SiN). The photoelectric conversion layer is selectively grown on a portion where the germanium substrate 11 is partially exposed.

然後該等光電轉換層係在該材料(例如氧化矽(SiO2 )或氮化矽(SiN))膜之表面上橫向生長以便覆蓋實質上整體表面。Such a photoelectric conversion layer is then based on the material (e.g., silicon oxide (SiO 2) or silicon nitride (the SiN)) of lateral growth surface of the film so as to cover substantially the entire surface.

此外,藉由濺鍍沉積形成由光學透明材料氧化銦錫(ITO)所組成之層作為第二電極層14。金屬配線在ITO層上形成並且接地,藉此避免因電洞累積所致之充電。此處,高p型摻雜劑濃度導致電洞朝矽基板11轉移。如此,可不設置第二電極層14。希望藉由例如使用抗蝕劑遮罩之反應性離子蝕刻(RIE)等將像素分開,以使得信號電隔離。在此情況下,分離該等光電轉換層以及該光學透明電極。此外,為了提高集光效率,每一像素可形成晶片上透鏡(OCL)。Further, a layer composed of an optically transparent material indium tin oxide (ITO) is formed as a second electrode layer 14 by sputtering deposition. Metal wiring is formed on the ITO layer and grounded, thereby avoiding charging due to accumulation of holes. Here, the high p-type dopant concentration causes the holes to migrate toward the germanium substrate 11. As such, the second electrode layer 14 may not be provided. It is desirable to separate the pixels by reactive ion etching (RIE) or the like using, for example, a resist mask to electrically isolate the signals. In this case, the photoelectric conversion layers and the optically transparent electrode are separated. In addition, in order to improve the light collection efficiency, each pixel can form an on-wafer lens (OCL).

在藉由前述製程所製造之固態影像裝置3(影像感測器)中,至於經配置以分離紅色分量之第一光電轉換層21,電子係轉移至作為該第一電極層12之n型矽層,然後由閘極MOS電晶體41所讀取。如同該經配置以分離綠色分量之第二光電轉換層22與經配置以分離藍色分量之第一光電轉換層23,可藉由在介於第一光電轉換層21與矽基板11之間的界面形成障壁且在該第一光電轉換層21上設置n型電極來直接讀取該層中所累積的電子。藉由該方法所獲得的影像與常用晶片上彩色濾光器裝置(OCCF裝置)之影像相較,展現出色彩重現性且具有高敏感度。In the solid-state image device 3 (image sensor) manufactured by the above process, as for the first photoelectric conversion layer 21 configured to separate the red component, the electron system is transferred to the n-type germanium as the first electrode layer 12. The layer is then read by the gate MOS transistor 41. The second photoelectric conversion layer 22 configured to separate the green component and the first photoelectric conversion layer 23 configured to separate the blue component may be interposed between the first photoelectric conversion layer 21 and the germanium substrate 11 The interface forms a barrier and an n-type electrode is disposed on the first photoelectric conversion layer 21 to directly read electrons accumulated in the layer. The image obtained by this method exhibits color reproducibility and high sensitivity as compared with the image of a conventional on-wafer color filter device (OCCF device).

10. 第十具體實例10. Tenth concrete example

固態影像裝置之製造方法的第三實例Third example of manufacturing method of solid-state imaging device

下文茲將說明根據本發明第十具體實例之固態影像裝置的製造方法之第三實例。A third example of a method of manufacturing a solid-state image device according to a tenth embodiment of the present invention will now be described.

例如,可將圖12所示之固態影像裝置2應用於圖35所示之CCD中使用的光電二極體。固態影像裝置2之能帶圖係示於圖14。For example, the solid-state imaging device 2 shown in Fig. 12 can be applied to the photodiode used in the CCD shown in Fig. 35. The energy band diagram of the solid-state imaging device 2 is shown in FIG.

可藉由例如常用CCD製程在矽基板11上製造固態影像裝置2。下文茲參看圖12說明細節。The solid-state image device 2 can be fabricated on the ruthenium substrate 11 by, for example, a conventional CCD process. Details are explained below with reference to FIG.

使用矽(100)基板作為矽基板11。首先,在矽基板11中形成週邊電路,諸如轉移閘與垂直電阻器。A ruthenium (100) substrate was used as the ruthenium substrate 11. First, peripheral circuits such as a transfer gate and a vertical resistor are formed in the germanium substrate 11.

其次,在該矽基板11中形成第一電極層12。該第一電極層12係由藉由例如離子植入所形成的n型矽層製成。在離子植入中,以抗蝕劑遮罩界定離子植入區。在離子植入完成之後移除該抗蝕劑遮罩。Next, the first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of an n-type germanium layer formed by, for example, ion implantation. In ion implantation, the ion implantation region is defined by a resist mask. The resist mask is removed after the ion implantation is completed.

在設置於矽基板11中之第一電極層12上形成作為經配置以分離紅色分量之光電轉換層的第一光電轉換層21。由i-CuGa0.52 In0.48 S2 混合晶體所組成之第一光電轉換層21係藉由例如分子束磊晶(MBE)而形成。此處,在介於第一光電轉換層21與矽基板11之間的界面形成障壁,其先決條件係BR >kT=26 meV。例如,在生長i-CuAl0.06 Ga0.45 In0.49 S2 之後,逐漸增加Ga含量而逐漸減少Al與In含量,因而獲得i-CuGa0.52 In0.48 S2 。藉此堆疊釘狀障壁。該障壁之能量BR 為50 meV或更低,其已充分高於室溫下之熱能。該障壁之厚度為100 nm。經配置以分離紅色分量之光電轉換層的厚度總計為0.8μm。A first photoelectric conversion layer 21 as a photoelectric conversion layer configured to separate a red component is formed on the first electrode layer 12 disposed in the germanium substrate 11. The first photoelectric conversion layer 21 composed of an i-CuGa 0.52 In 0.48 S 2 mixed crystal is formed by, for example, molecular beam epitaxy (MBE). Here, a barrier is formed at an interface between the first photoelectric conversion layer 21 and the ruthenium substrate 11, with a prerequisite of B R >kT=26 meV. For example, after i-CuAl 0.06 Ga 0.45 In 0.49 S 2 is grown, the Ga content is gradually increased to gradually reduce the Al and In contents, and thus i-CuGa 0.52 In 0.48 S 2 is obtained . Thereby, the nail-shaped barrier is stacked. The energy barrier B R of the barrier is 50 meV or less, which is sufficiently higher than the thermal energy at room temperature. The barrier has a thickness of 100 nm. The thickness of the photoelectric conversion layer configured to separate the red component was 0.8 μm in total.

其次,在第一光電轉換層21上形成作為經配置以分離綠色分量之光電轉換層的第二光電轉換層22。藉由例如MBE形成該厚度為例如0.7μm之第二光電轉換層22。第二光電轉換層22之組成為i-CuAl0.24 Ga0.23 In0.53 S2Next, a second photoelectric conversion layer 22 as a photoelectric conversion layer configured to separate a green component is formed on the first photoelectric conversion layer 21. The second photoelectric conversion layer 22 having a thickness of, for example, 0.7 μm is formed by, for example, MBE. The composition of the second photoelectric conversion layer 22 is i-CuAl 0.24 Ga 0.23 In 0.53 S 2 .

在介於該第一光電轉換層21與第二光電轉換層22之間的界面堆疊障壁。在生長i-CuAl0.33 Ga0.11 In0.56 S2 之後,逐漸增加Ga含量而逐漸減少Al與In含量,因而獲得i-CuAl0.24 Ga0.23 In0.53 S2 。藉此堆疊釘狀障壁。該障壁的能量BG 為84 meV或更低,其充分高於室溫下之熱能且高於上述能量BRA barrier is stacked at an interface between the first photoelectric conversion layer 21 and the second photoelectric conversion layer 22. After i-CuAl 0.33 Ga 0.11 In 0.56 S 2 was grown, the Ga content was gradually increased to gradually reduce the Al and In contents, and thus i-CuAl 0.24 Ga 0.23 In 0.53 S 2 was obtained . Thereby, the nail-shaped barrier is stacked. The energy barrier B G of the barrier is 84 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the above energy B R .

其次,在第二光電轉換層22上形成作為經配置以分離藍色分量之光電轉換層的第三光電轉換層23。藉由例如MBE形成該厚度為例如0.3 μm之第三光電轉換層23。第三光電轉換層23之組成為p-CuAl0.36 Ga0.64 S1.28 Se0.72Next, a third photoelectric conversion layer 23 as a photoelectric conversion layer configured to separate blue components is formed on the second photoelectric conversion layer 22. The third photoelectric conversion layer 23 having a thickness of, for example, 0.3 μm is formed by, for example, MBE. The composition of the third photoelectric conversion layer 23 is p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

在介於該第三光電轉換層23與第二光電轉換層22之間的界面堆疊障壁。在生長p-CuAl0.42 Ga0.58 S1.36 Se0.64 之後,逐漸增加Ga含量而逐漸減少Al與S含量,因而獲得p-CuAl0.36 Ga0.64 S1.28 Se0.72 。藉此堆疊釘狀障壁。該障壁的能量BB 為100 meV或更低,其充分高於室溫下之熱能且高於能量BR 與BG 。Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98至0.99之比例生長而獲致p型傳導。A barrier is stacked at an interface between the third photoelectric conversion layer 23 and the second photoelectric conversion layer 22. After the growth of p-CuAl 0.42 Ga 0.58 S 1.36 Se 0.64 , the Ga content was gradually increased to gradually reduce the Al and S contents, thereby obtaining p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . Thereby, the nail-shaped barrier is stacked. The energy barrier B B of the barrier is 100 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the energies B R and B G . The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98 to 0.99.

至於上述晶體生長,視條件而定,在某些情況下難以生長固溶體。在此情況下,可生長具有超晶格之準混合晶體。例如,至於經配置以分離紅色分量之光電轉換層,交替堆疊i-CuInS2 層與i-CuGaS2 層,該等層各具有等於或小於臨界厚度以使該等層之整體組成為i-CuGa0.52 In0.48 S2As for the above crystal growth, depending on the conditions, it is difficult to grow a solid solution in some cases. In this case, a quasi-mixed crystal having a superlattice can be grown. For example, as for the photoelectric conversion layer configured to separate the red component, the i-CuInS 2 layer and the i-CuGaS 2 layer are alternately stacked, each of the layers having a thickness equal to or less than a critical thickness such that the overall composition of the layers is i-CuGa 0.52 I n0.48 S 2 .

例如,令該等i-CuInS2 層與i-CuGaS2 層交替堆疊同時維持與Si(100)晶格匹配的生長條件可藉由X射線繞射等測定。然後可以此種方式進行堆疊作用以使整體組成與目標組成相同。For example, growth conditions in which the i-CuInS 2 layer and the i-CuGaS 2 layer are alternately stacked while maintaining lattice matching with Si (100) can be measured by X-ray diffraction or the like. The stacking can then be performed in such a way that the overall composition is the same as the target composition.

在上述晶體生長當中,事先以由例如氧化矽(SiO2 )或氮化矽(SiN)之材料所組成的膜覆蓋電晶體、讀出電路、配線等的所在部分。在矽基板11係部分露出的部分上選擇性生長光電轉換層。In the above crystal growth, a portion of a transistor, a readout circuit, a wiring, or the like is covered with a film made of a material such as yttria (SiO 2 ) or tantalum nitride (SiN). The photoelectric conversion layer is selectively grown on a portion where the germanium substrate 11 is partially exposed.

然後該等光電轉換層係在該材料(例如氧化矽(SiO2 )或氮化矽(SiN))膜之表面上橫向生長以便覆蓋實質上整體表面。Such a photoelectric conversion layer is then based on the material (e.g., silicon oxide (SiO 2) or silicon nitride (the SiN)) of lateral growth surface of the film so as to cover substantially the entire surface.

此外,藉由濺鍍沉積形成由光學透明材料氧化銦錫(ITO)所組成之層作為第二電極層14。金屬配線在ITO層上形成並且接地,藉此避免因電洞累積所致之充電。希望藉由例如使用抗蝕劑遮罩之反應性離子蝕刻(RIE)等將像素分開,以使得信號電隔離。在此情況下,分離該等光電轉換層以及該光學透明電極。此外,為了提高集光效率,每一像素可形成晶片上透鏡(OCL)。Further, a layer composed of an optically transparent material indium tin oxide (ITO) is formed as a second electrode layer 14 by sputtering deposition. Metal wiring is formed on the ITO layer and grounded, thereby avoiding charging due to accumulation of holes. It is desirable to separate the pixels by reactive ion etching (RIE) or the like using, for example, a resist mask to electrically isolate the signals. In this case, the photoelectric conversion layers and the optically transparent electrode are separated. In addition, in order to improve the light collection efficiency, each pixel can form an on-wafer lens (OCL).

在藉由前述製程所製造之固態影像裝置2(影像感測器)中,以反向偏壓模式連續施加電壓VR 、VG 與VB 導致突崩倍增與經放大之RGB信號,其先決條件係VR >VG >VBIn the solid-state imaging device 2 (image sensor) manufactured by the foregoing process, continuously applying the voltages V R , V G and V B in a reverse bias mode results in a collapse multiplication and an amplified RGB signal, which is a prerequisite The condition is V R >V G >V B .

如同在常用CCD中般將所得之信號轉移至具有轉移閘之垂直CCD、轉移至水平CCD以及輸出。藉此可讀取該等信號。藉由該方法所獲得的影像與常用晶片上彩色濾光器裝置(OCCF裝置)之影像相較,展現出色彩重現性且具有高敏感度。The resulting signal is transferred to a vertical CCD with a transfer gate, to a horizontal CCD, and to an output as in a conventional CCD. Thereby the signals can be read. The image obtained by this method exhibits color reproducibility and high sensitivity as compared with the image of a conventional on-wafer color filter device (OCCF device).

11. 第十一具體實例11. Eleventh concrete example

固態影像裝置之製造方法的第四實例Fourth example of manufacturing method of solid-state imaging device

下文茲將說明根據本發明第十一具體實例之固態影像裝置的製造方法之第四實例。A fourth example of a method of manufacturing a solid-state image device according to an eleventh embodiment of the present invention will now be described.

例如,可將圖26所示之固態影像裝置5應用於圖34所示之CMOS影像感測器中使用的光電二極體。該固態影像裝置5具有經配置以分離RGB分量之該等光電轉換層係分開設置的結構。For example, the solid-state imaging device 5 shown in FIG. 26 can be applied to the photodiode used in the CMOS image sensor shown in FIG. The solid-state imaging device 5 has a structure in which the photoelectric conversion layers configured to separate RGB components are separately provided.

可藉由例如常用CMOS製程在矽基板11上製造固態影像裝置5。下文茲參看圖26說明細節。The solid-state image device 5 can be fabricated on the ruthenium substrate 11 by, for example, a conventional CMOS process. Details are explained below with reference to FIG.

使用矽(100)基板作為矽基板11。首先,在矽基板11中形成包括電晶體與電極之週邊電路。A ruthenium (100) substrate was used as the ruthenium substrate 11. First, a peripheral circuit including a transistor and an electrode is formed in the germanium substrate 11.

該第一電極層12係在矽基板11中形成,且位於形成將光分離為RGB分量之光電轉換層的位置處。該第一電極層12係由例如將n型摻雜劑離子植入矽基板11所形成的n型矽層製成。The first electrode layer 12 is formed in the ruthenium substrate 11 and is located at a position where a photoelectric conversion layer that separates light into RGB components is formed. The first electrode layer 12 is made of, for example, an n-type germanium layer formed by ion-implanting an n-type dopant into the germanium substrate 11.

以藉由石版印刷技術與RIE處理技術覆蓋形成有經配置以分離紅色分量之光電轉換層的區之表面以外的區域之方式,在矽基板11上形成由氧化矽(SiO2 )所組成的氧化物膜(未圖示)。在矽基板11上藉由例如MBE形成該作為經配置以分離紅色分量之光電轉換層的第一光電轉換層21。該第一光電轉換層21係藉由例如生長p-CuGa0.52 In0.48 S2 混合晶體而形成。在此情況下,為了僅在對於紅色分量敏感之光電二極體的表面上選擇性生長該晶體,以加強遷移模式生長該晶體以形成約0.8μm之厚度。Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98之比例生長而獲致p型傳導。Oxidation of yttrium oxide (SiO 2 ) is formed on the tantalum substrate 11 in such a manner that a region other than the surface of the region in which the photoelectric conversion layer configured to separate the red component is formed is covered by the lithographic printing technique and the RIE processing technique. Film (not shown). The first photoelectric conversion layer 21 as a photoelectric conversion layer configured to separate a red component is formed on the germanium substrate 11 by, for example, MBE. The first photoelectric conversion layer 21 is formed by, for example, growing a p-CuGa 0.52 In 0.48 S 2 mixed crystal. In this case, in order to selectively grow the crystal only on the surface of the photodiode sensitive to the red component, the crystal was grown in a reinforced migration mode to form a thickness of about 0.8 μm. The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98.

然後移除該氧化物膜。The oxide film is then removed.

以藉由石版印刷技術與RIE處理技術覆蓋形成有經配置以分離綠色分量之光電轉換層的區之表面以外的區域之方式,在矽基板11上形成由氧化矽(SiO2 )所組成的氧化物膜(未圖示)。在矽基板11上藉由例如MBE形成作為該經配置以分離綠色分量之光電轉換層的第二光電轉換層22。該第二光電轉換層22係藉由例如生長p-CuAl0.24 Ga0.23 In0.53 S2 混合晶體而形成。在此情況下,為了僅在對於綠色分量敏感之光電二極體的表面上選擇性生長該晶體,以加強遷移模式生長該晶體以形成約0.7μm之厚度。Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98之比例生長而獲致p型傳導。Oxidation of yttrium oxide (SiO 2 ) is formed on the tantalum substrate 11 in such a manner that a region other than the surface of the region where the photoelectric conversion layer configured to separate the green component is formed is covered by the lithographic printing technique and the RIE processing technique. Film (not shown). A second photoelectric conversion layer 22 as the photoelectric conversion layer configured to separate the green component is formed on the germanium substrate 11 by, for example, MBE. The second photoelectric conversion layer 22 is formed by, for example, growing a mixed crystal of p-CuAl 0.24 Ga 0.23 In 0.53 S 2 . In this case, in order to selectively grow the crystal only on the surface of the photodiode sensitive to the green component, the crystal was grown in a reinforced migration mode to form a thickness of about 0.7 μm. The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98.

然後移除該氧化物膜。The oxide film is then removed.

以藉由石版印刷技術與RIE處理技術覆蓋形成有經配置以分離藍色分量之光電轉換層的區之表面以外的區域之方式,在矽基板11上形成由氧化矽(SiO2 )所組成的氧化物膜(未圖示)。在矽基板11上藉由例如MBE形成該作為經配置以分離藍色分量之光電轉換層的第三光電轉換層23。該第三光電轉換層23係藉由例如生長p-CuAl0.36 Ga0.64 S1.28 Se0.72 混合晶體而形成。在此情況下,為了僅在對於藍色分量敏感之光電二極體的表面上選擇性生長該晶體,以加強遷移模式生長該晶體以形成約0.7μm之厚度。Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98至0.99之比例生長而獲致p型傳導。Forming a layer composed of yttrium oxide (SiO 2 ) on the ruthenium substrate 11 by covering a region other than the surface of the region where the photoelectric conversion layer configured to separate the blue component is formed by lithography and RIE processing techniques Oxide film (not shown). The third photoelectric conversion layer 23 as a photoelectric conversion layer configured to separate the blue component is formed on the germanium substrate 11 by, for example, MBE. The third photoelectric conversion layer 23 is formed by, for example, growing a mixed crystal of p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . In this case, in order to selectively grow the crystal only on the surface of the photodiode sensitive to the blue component, the crystal was grown in a reinforced migration mode to form a thickness of about 0.7 μm. The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98 to 0.99.

然後移除該氧化物膜。The oxide film is then removed.

至於上述晶體生長,視條件而定,在某些情況下難以生長固溶體。在此情況下,可生長具有超晶格之準混合晶體。As for the above crystal growth, depending on the conditions, it is difficult to grow a solid solution in some cases. In this case, a quasi-mixed crystal having a superlattice can be grown.

例如,至於經配置以分離紅色分量之光電轉換層,交替堆疊p-CuInS2 層與p-CuGaS2 層,該等層各具有等於或小於臨界厚度以使該等層之整體組成為p-CuGa0.52 In0.48 S2 。例如,令該等p-CuInS2 層與p-CuGaS2 層交替堆疊同時維持與Si(100)晶格匹配的生長條件可藉由X射線繞射等測定。然後可以此種方式進行堆疊作用以使整體組成與目標組成相同。For example, as for the photoelectric conversion layer configured to separate the red component, the p-CuInS 2 layer and the p-CuGaS 2 layer are alternately stacked, each of the layers having a thickness equal to or less than a critical thickness such that the overall composition of the layers is p-CuGa 0.52 In 0.48 S 2 . For example, growth conditions in which the p-CuInS 2 layer and the p-CuGaS 2 layer are alternately stacked while maintaining lattice matching with Si (100) can be measured by X-ray diffraction or the like. The stacking can then be performed in such a way that the overall composition is the same as the target composition.

該第二電極層14係設置在第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各者上。各第二電極層14係由上述光學透明電極所形成。金屬配線係在各第二電極層14上形成且接地,藉此避免因電洞累積所致之充電。The second electrode layer 14 is provided on each of the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23. Each of the second electrode layers 14 is formed of the above-described optically transparent electrode. Metal wiring is formed on each of the second electrode layers 14 and grounded, thereby avoiding charging due to accumulation of holes.

希望藉由例如使用RIE之處理將像素分開,以使得信號電隔離。在此情況下,分離該等光電轉換層以及該第二電極層14。此外,為了提高集光效率,每一像素可形成晶片上透鏡(OCL)。It is desirable to separate the pixels by, for example, processing using RIE to electrically isolate the signals. In this case, the photoelectric conversion layers and the second electrode layer 14 are separated. In addition, in order to improve the light collection efficiency, each pixel can form an on-wafer lens (OCL).

在藉由前述製程所製造之影像感測器中,施加反向偏壓形成RGB信號r、g與b(原始資料)。然後,下文可說明於去馬賽克之後的色彩演算處理。In the image sensor manufactured by the aforementioned process, reverse bias is applied to form RGB signals r, g, and b (original data). Then, the color calculation processing after demosaicing can be explained below.

R=r-g,G=g-b,且B=bR=r-g, G=g-b, and B=b

其中r、g與b為原始資料。Where r, g and b are the original data.

藉由該方法所獲得的影像與常用晶片上彩色濾光器裝置(OCCF裝置)之影像相較,展現出色彩重現性且具有高敏感度。The image obtained by this method exhibits color reproducibility and high sensitivity as compared with the image of a conventional on-wafer color filter device (OCCF device).

12. 第十二具體實例12. Twelfth concrete example

固態影像裝置之製造方法的第五實例Fifth example of manufacturing method of solid-state imaging device

下文茲將說明根據本發明第十二具體實例之固態影像裝置的製造方法之第五實例。A fifth example of a method of manufacturing a solid-state image device according to a twelfth embodiment of the present invention will now be described.

例如,可將圖36所示之固態影像裝置10應用於圖34所示之CMOS影像感測器中使用的光電二極體。如圖37所示,在固態影像裝置10中,該晶格匹配之系統的組成改變達到獲致能帶隙中最大改變之程度。此結構造成在低驅動電壓之最大突崩倍增,因而顯著提高敏感度。For example, the solid-state imaging device 10 shown in FIG. 36 can be applied to a photodiode used in the CMOS image sensor shown in FIG. As shown in FIG. 37, in the solid-state imaging device 10, the composition of the lattice-matched system is changed to the extent that the maximum change in the bandgap is obtained. This structure causes a maximum sag at the low drive voltage, thus significantly increasing the sensitivity.

使用矽(100)基板作為矽基板11。首先,在矽基板11中形成包括電晶體與電極之週邊電路。A ruthenium (100) substrate was used as the ruthenium substrate 11. First, a peripheral circuit including a transistor and an electrode is formed in the germanium substrate 11.

該第一電極層12係在矽基板11中形成,且位於形成將光分離為RGB分量之光電轉換層的位置處。該第一電極層12係由例如將n型摻雜劑離子植入矽基板11所形成的n型矽層製成。The first electrode layer 12 is formed in the ruthenium substrate 11 and is located at a position where a photoelectric conversion layer that separates light into RGB components is formed. The first electrode layer 12 is made of, for example, an n-type germanium layer formed by ion-implanting an n-type dopant into the germanium substrate 11.

在該矽基板11上形成光電轉換層13。例如,首先藉由MBE生長n-CuAlS1.2 Se0.8 晶體或i-CuAlS1.2 Se0.8 晶體。其次,逐漸提高Ga與In含量同時逐漸減少Al與Se含量,以獲致p-CuGa0.52 In0.48 S2 。該層之整體厚度可為約2μm。A photoelectric conversion layer 13 is formed on the germanium substrate 11. For example, n-CuAlS 1.2 Se 0.8 crystal or i-CuAlS 1.2 Se 0.8 crystal is first grown by MBE. Secondly, the Ga and In contents are gradually increased while the Al and Se contents are gradually reduced to obtain p-CuGa 0.52 In 0.48 S 2 . The overall thickness of the layer can be about 2 [mu]m.

應注意的是,於該生長期間,該層之傳導類型從n型或i型傳導改變為p型傳導。為了獲致n型傳導,可以第12族元素摻雜該層。例如,於晶體生長期間,可添加微量鋅(Zn)。It should be noted that during this growth, the conductivity type of the layer changes from n-type or i-type conduction to p-type conduction. In order to achieve n-type conduction, the layer may be doped with a Group 12 element. For example, a trace amount of zinc (Zn) may be added during crystal growth.

在i型傳導之情況下,該層未經摻雜。In the case of i-type conduction, the layer is undoped.

Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98至0.99之比例生長而獲致p型傳導。The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98 to 0.99.

在上述生長當中,事先以由例如氧化矽(SiO2 )或氮化矽(SiN)之材料覆蓋電晶體、讀出電路、配線等的所在部分。在Si基板係部分露出的部分上選擇性生長光電轉換層。然後該光電轉換層係在該材料(例如氧化矽(SiO2 )或氮化矽(SiN))表面上橫向生長,以便覆蓋實質上整體表面。In the above growth, the portion where the transistor, the readout circuit, the wiring, and the like are covered is previously covered with a material such as yttria (SiO 2 ) or tantalum nitride (SiN). The photoelectric conversion layer is selectively grown on a portion where the Si substrate portion is exposed. The photoelectric conversion layer is then grown laterally based on the material (e.g., silicon oxide (SiO 2) or silicon nitride (the SiN)) surface, so as to cover substantially the entire surface.

此外,藉由濺鍍沉積形成由光學透明材料氧化銦錫(ITO)所組成之層作為第二電極層14。金屬配線在ITO層上形成並且接地,藉此避免因電洞累積所致之充電。可將晶片上彩色濾光器(OCCF)附接於每一像素以供色彩分離。為改善集光效率,可配備晶片上透鏡。Further, a layer composed of an optically transparent material indium tin oxide (ITO) is formed as a second electrode layer 14 by sputtering deposition. Metal wiring is formed on the ITO layer and grounded, thereby avoiding charging due to accumulation of holes. An on-wafer color filter (OCCF) can be attached to each pixel for color separation. In order to improve the light collection efficiency, an on-wafer lens can be provided.

如圖19與20所示,上述之能帶隙中的大幅變化於施加低反向偏壓時造成高度能不連續性,因而提供高突崩倍增增益以獲致高敏感度。As shown in Figures 19 and 20, the large variation in the energy band gap described above causes a high energy discontinuity when a low reverse bias voltage is applied, thus providing a high collapse multiplication gain to achieve high sensitivity.

13. 十三具體實例13. Thirteen specific examples

固態影像裝置之製造方法的第六實例Sixth example of a method of manufacturing a solid-state imaging device

下文茲將說明根據本發明第十三具體電例之固態影像裝置的製造方法之第六實例。A sixth example of a method of manufacturing a solid-state image device according to a thirteenth embodiment of the present invention will now be described.

例如,可將圖30所示之固態影像裝置7應用於圖34所示之CMOS影像感測器中使用的光電二極體。For example, the solid-state imaging device 7 shown in FIG. 30 can be applied to the photodiode used in the CMOS image sensor shown in FIG.

可藉由例如常用CMOS製程在矽基板11上製造固態影像裝置7。下文茲參看圖30說明細節。The solid-state image device 7 can be fabricated on the ruthenium substrate 11 by, for example, a conventional CMOS process. Details are explained below with reference to FIG.

藉由CMOS製程在SOI基板之矽層(相當於圖30所示之矽基板11)中形成包括電晶體與電極之週邊電路。此外,形成氧化矽膜(未圖示)以覆蓋該包括電晶體與電極的週邊電路。A peripheral circuit including a transistor and an electrode is formed in a layer of a SOI substrate (corresponding to the germanium substrate 11 shown in FIG. 30) by a CMOS process. Further, a hafnium oxide film (not shown) is formed to cover the peripheral circuit including the transistor and the electrode.

其次,將該SOI基板之矽層接合於玻璃基板。在此情況下,該基板之電路側係接合於該玻璃基板,且矽(100)層之背側係曝露於外部。Next, the germanium layer of the SOI substrate is bonded to the glass substrate. In this case, the circuit side of the substrate is bonded to the glass substrate, and the back side of the ruthenium (100) layer is exposed to the outside.

在該矽層中形成第一電極層12。該第一電極層12係由藉由例如離子植入所形成的n型矽層製成。在離子植入中,以抗蝕劑遮罩界定離子植入區。在離子植入完成之後移除該抗蝕劑遮罩。A first electrode layer 12 is formed in the tantalum layer. The first electrode layer 12 is made of an n-type germanium layer formed by, for example, ion implantation. In ion implantation, the ion implantation region is defined by a resist mask. The resist mask is removed after the ion implantation is completed.

在設置於矽層中之第一電極層12上形成作為經配置以分離紅色分量之光電轉換層的第一光電轉換層21。由i-CuGa0.52 In0.48 S2 混合晶體所組成之第一光電轉換層21係藉由例如分子束磊晶(MBE)而形成。A first photoelectric conversion layer 21 as a photoelectric conversion layer configured to separate a red component is formed on the first electrode layer 12 disposed in the germanium layer. The first photoelectric conversion layer 21 composed of an i-CuGa 0.52 In 0.48 S 2 mixed crystal is formed by, for example, molecular beam epitaxy (MBE).

此處,在介於第一光電轉換層21與矽基板11之間的界面形成障壁,其先決條件係BR >kT=26 meV。例如,在生長i-CuAl0 .06 Ga0.45 In0.49 S2 之後,逐漸增加Ga含量而逐漸減少Al與In含量,因而獲得i-CuGa0.52 In0.48 S2 。藉此堆疊釘狀障壁。該障壁之能量BR 為50 meV或更低,其已充分高於室溫下之熱能。該障壁之厚度為100 nm。經配置以分離紅色分量之光電轉換層的厚度總計為0.8 μm。Here, a barrier is formed at an interface between the first photoelectric conversion layer 21 and the ruthenium substrate 11, with a prerequisite of B R >kT=26 meV. For example, after i-CuAl 0 . 06 Ga 0.45 In 0.49 S 2 is grown, the Ga content is gradually increased to gradually reduce the Al and In contents, and thus i-CuGa 0.52 In 0.48 S 2 is obtained . Thereby, the nail-shaped barrier is stacked. The energy barrier B R of the barrier is 50 meV or less, which is sufficiently higher than the thermal energy at room temperature. The barrier has a thickness of 100 nm. The thickness of the photoelectric conversion layer configured to separate the red component was 0.8 μm in total.

其次,在第一光電轉換層21上形成作為經配置以分離綠色分量之光電轉換層的第二光電轉換層22。藉由例如MBE形成該厚度為例如0.7 μm之第二光電轉換層22。第二光電轉換層22之組成為i-CuAl0.24 Ga0.23 In0.53 S2Next, a second photoelectric conversion layer 22 as a photoelectric conversion layer configured to separate a green component is formed on the first photoelectric conversion layer 21. The second photoelectric conversion layer 22 having a thickness of, for example, 0.7 μm is formed by, for example, MBE. The composition of the second photoelectric conversion layer 22 is i-CuAl 0.24 Ga 0.23 In 0.53 S 2 .

在介於該第一光電轉換層21與第二光電轉換層22之間的界面堆疊障壁。例如,在生長i-CuAl0.33 Ga0.11 In0.56 S2 之後,逐漸增加Ga含量而逐漸減少Al與In含量,因而獲得i-CuAl0.24 Ga0.23 In0.53 S2 。藉此堆疊釘狀障壁。該障壁的能量BG 為84 meV或更低,其充分高於室溫下之熱能且高於上述能量BRA barrier is stacked at an interface between the first photoelectric conversion layer 21 and the second photoelectric conversion layer 22. For example, after i-CuAl 0.33 Ga 0.11 In 0.56 S 2 is grown, the Ga content is gradually increased to gradually reduce the Al and In contents, and thus i-CuAl 0.24 Ga 0.23 In 0.53 S 2 is obtained . Thereby, the nail-shaped barrier is stacked. The energy barrier B G of the barrier is 84 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the above energy B R .

其次,在第二光電轉換層22上形成作為經配置以分離藍色分量之光電轉換層的第三光電轉換層23。藉由例如MBE形成該厚度為例如0.3 μm之第三光電轉換層23。第三光電轉換層23之組成為p-CuAl0.36 Ga0.64 S1.28 Se0.72Next, a third photoelectric conversion layer 23 as a photoelectric conversion layer configured to separate blue components is formed on the second photoelectric conversion layer 22. The third photoelectric conversion layer 23 having a thickness of, for example, 0.3 μm is formed by, for example, MBE. The composition of the third photoelectric conversion layer 23 is p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

在介於該第三光電轉換層23與第二光電轉換層22之間的界面堆疊障壁。在生長p-CuAl0.42 Ga0.58 S1.36 Se0.64 之後,逐漸增加Ga含量而逐漸減少Al與S含量,因而獲得p-CuAl0.36 Ga0.64 S1.28 Se0.72 。藉此堆疊釘狀障壁。該障壁的能量BB 為100 meV或更低,其充分高於室溫下之熱能且高於能量BR 與BG 。Cu對第13族元素的比例為1或更低形成p型傳導。例如,可藉由以0.98至0.99之比例生長而獲致p型傳導。A barrier is stacked at an interface between the third photoelectric conversion layer 23 and the second photoelectric conversion layer 22. After the growth of p-CuAl 0.42 Ga 0.58 S 1.36 Se 0.64 , the Ga content was gradually increased to gradually reduce the Al and S contents, thereby obtaining p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . Thereby, the nail-shaped barrier is stacked. The energy barrier B B of the barrier is 100 meV or less, which is sufficiently higher than the thermal energy at room temperature and higher than the energies B R and B G . The ratio of Cu to the Group 13 element is 1 or lower to form p-type conduction. For example, p-type conduction can be achieved by growing at a ratio of 0.98 to 0.99.

至於上述晶體生長,視條件而定,在某些情況下難以生長固溶體。在此情況下,可生長具有超晶格之準混合晶體。As for the above crystal growth, depending on the conditions, it is difficult to grow a solid solution in some cases. In this case, a quasi-mixed crystal having a superlattice can be grown.

例如,至於經配置以分離紅色分量之光電轉換層,交替堆疊i-CuInS2 層與i-CuGaS2 層,該等層各具有等於或小於臨界厚度以使該等層之整體組成為i-CuGa0.52 In0.48 S。For example, as for the photoelectric conversion layer configured to separate the red component, the i-CuInS 2 layer and the i-CuGaS 2 layer are alternately stacked, each of the layers having a thickness equal to or less than a critical thickness such that the overall composition of the layers is i-CuGa 0.52 In 0.48 S.

例如,令該等i-CuInS2 層與i-CuGaS2 層交替堆疊同時維持與Si(100)晶格匹配的生長條件可藉由X射線繞射等測定。然後可以此種方式進行堆疊作用以使整體組成與目標組成相同。For example, growth conditions in which the i-CuInS 2 layer and the i-CuGaS 2 layer are alternately stacked while maintaining lattice matching with Si (100) can be measured by X-ray diffraction or the like. The stacking can then be performed in such a way that the overall composition is the same as the target composition.

在上述晶體生長當中,事先以由例如氧化矽(SiO2 )或氮化矽(SiN)之材料所組成的膜覆蓋電晶體、讀出電路、配線等的所在部分。在矽基板11係部分露出的部分上選擇性生長光電轉換層。In the above crystal growth, a portion of a transistor, a readout circuit, a wiring, or the like is covered with a film made of a material such as yttria (SiO 2 ) or tantalum nitride (SiN). The photoelectric conversion layer is selectively grown on a portion where the germanium substrate 11 is partially exposed.

然後該等光電轉換層係在該材料(例如氧化矽(SiO2 )或氮化矽(SiN))膜之表面上橫向生長,以便覆蓋實質上整體表面。Then those based photoelectric conversion layer of the material (e.g., silicon oxide (SiO 2) or silicon nitride (the SiN)) of the lateral growth on the surface of the film so as to cover substantially the entire surface.

此外,藉由濺鍍沉積形成由光學透明材料氧化銦錫(ITO)所組成之層作為第二電極層14。金屬配線在ITO層上形成並且接地,藉此避免因電洞累積所致之充電。希望藉由例如使用抗蝕劑遮罩之反應性離子蝕刻(RIE)處理將像素分開,以使得信號電隔離。在此情況下,分離該等光電轉換層以及該光學透明電極。此外,為了提高集光效率,每一像素可形成晶片上透鏡(OCL)。Further, a layer composed of an optically transparent material indium tin oxide (ITO) is formed as a second electrode layer 14 by sputtering deposition. Metal wiring is formed on the ITO layer and grounded, thereby avoiding charging due to accumulation of holes. It is desirable to separate the pixels by reactive ion etching (RIE) processing, such as using a resist mask, to electrically isolate the signals. In this case, the photoelectric conversion layers and the optically transparent electrode are separated. In addition, in order to improve the light collection efficiency, each pixel can form an on-wafer lens (OCL).

在藉由前述製程所製造之固態影像裝置7(影像感測器)中,以反向偏壓模式連續施加電壓VR 、VG 與VB 導致突崩倍增與經放大之RGB信號,其先決條件係VR >VG >VB 。藉由該方法所獲得的影像與常用晶片上彩色濾光器裝置(OCCF裝置)之影像相較,展現出色彩重現性且具有高敏感度。In the solid-state imaging device 7 (image sensor) manufactured by the foregoing process, continuously applying the voltages V R , V G and V B in the reverse bias mode results in a collapse multiplication and an amplified RGB signal, which is a prerequisite The condition is V R >V G >V B . The image obtained by this method exhibits color reproducibility and high sensitivity as compared with the image of a conventional on-wafer color filter device (OCCF device).

14. 第十四具體實例14. Fourteenth concrete example

固態影像裝置之結構的第十實例Tenth example of the structure of a solid-state imaging device

如上述,所有前述固態影像裝置均具有讀取電子作為信號之結構。As described above, all of the aforementioned solid-state imaging devices have a structure in which electrons are read as signals.

事實上,可使用讀取電洞作為信號之結構。下文茲將說明該結構之實例。In fact, a read hole can be used as the structure of the signal. An example of this structure will be described below.

茲參看圖38之示意斷面圖說明經配置以讀取電洞之固態影像裝置的結構,該裝置相當於圖12所示之固態影像裝置。Referring to the schematic cross-sectional view of Fig. 38, the structure of a solid-state imaging device configured to read a hole is illustrated, which corresponds to the solid-state imaging device shown in FIG.

如圖38所示,矽基板11係n型矽基板。在該矽基板11中形成第一電極層12。該第一電極層12係由例如在矽基板11中形成之p型矽層製成。在第一電極層12上設置由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13。光電轉換層13包括依序堆疊在第一電極層12上之由i-CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由i-CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由i-CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。該光學透明第二電極層14係堆疊在光電轉換層13上,其間配備有由硫化鎘(CdS)所組成之中間層16。該第二電極層14係由n型光學透明電極材料(諸如氧化鋅)所組成。設置由硫化鎘所組成之中間層16的理由係降低電子朝光學透明電極之電位障壁會降低驅動電壓。As shown in FIG. 38, the germanium substrate 11 is an n-type germanium substrate. The first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of, for example, a p-type germanium layer formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is provided on the first electrode layer 12. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of i-CuGa 0.52 In 0.48 S 2 sequentially stacked on the first electrode layer 12, and a first composed of i-CuAl 0.24 Ga 0.23 In 0.53 S 2 . The second photoelectric conversion layer 22, and a third photoelectric conversion layer 23 composed of i-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . The optically transparent second electrode layer 14 is stacked on the photoelectric conversion layer 13 with an intermediate layer 16 composed of cadmium sulfide (CdS). The second electrode layer 14 is composed of an n-type optically transparent electrode material such as zinc oxide. The reason for providing the intermediate layer 16 composed of cadmium sulfide is to lower the driving voltage by lowering the potential barrier of the electron toward the optically transparent electrode.

該光電轉換層之黃銅礦層具有i型傳導。或者,可使用經輕度摻雜之p型層。The chalcopyrite layer of the photoelectric conversion layer has i-type conduction. Alternatively, a lightly doped p-type layer can be used.

在固態影像裝置71中,藉由連續組成控制在接近第一光電轉換層21、第二光電轉換層22與第三光電轉換層光電轉換層23之間的界面之部分的寬隙側形成釘狀障壁,其先決條件係價能帶中BB ≧BG ≧BR >kT(=26 meV)。因此,針對RGB各者侷限且累積電洞,其中k表示波茲曼常數,且kT對應於室溫下之熱能。在此情況下,與讀取電子之結構相比,所施加之電壓的極性係相反。即,依序連續施加負電壓VR 、VG 與VB 導致讀出R信號、G信號與B信號,其先決條件係VB <VG <VR ≦-kT)。In the solid-state imaging device 71, a nail-like shape is formed on the wide-gap side of the portion close to the interface between the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer photoelectric conversion layer 23 by a continuous composition control. The barrier, its preconditions, is B B ≧B G ≧B R >kT (=26 meV). Therefore, the holes are limited for each of RGB, where k represents the Boltzmann constant, and kT corresponds to the thermal energy at room temperature. In this case, the polarity of the applied voltage is reversed compared to the structure in which the electrons are read. That is, the sequential application of the negative voltages V R , V G and V B in sequence causes the readout of the R signal, the G signal and the B signal, the prerequisite of which is V B <V G <V R ≦-kT).

茲參看圖39之示意斷面圖說明經配置以讀取電洞之固態影像裝置的結構,該裝置相當於圖21所示之固態影像裝置。Referring to the schematic cross-sectional view of Fig. 39, the structure of a solid-state imaging device configured to read a hole is illustrated, which corresponds to the solid-state imaging device shown in FIG.

如圖39所示,矽基板11係n型矽基板。在該矽基板11中形成第一電極層12。該第一電極層12係由例如在矽基板11中形成之p型矽層製成。在第一電極層12上設置由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13。光電轉換層13包括依序堆疊在第一電極層12上之由CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。第一光電轉換層21、第二光電轉換層22與第三光電轉換層23各具有i傳導類型之中央部分、p傳導類型之一端部分,以及n傳導類型之另一端部分。如此,各層均具有p-i-n結構。As shown in FIG. 39, the germanium substrate 11 is an n-type germanium substrate. The first electrode layer 12 is formed in the germanium substrate 11. The first electrode layer 12 is made of, for example, a p-type germanium layer formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is provided on the first electrode layer 12. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of CuGa 0.52 In 0.48 S 2 sequentially stacked on the first electrode layer 12, and a second photoelectric conversion layer composed of CuAl 0.24 Ga 0.23 In 0.53 S 2 . 22, and a third photoelectric conversion layer 23 composed of CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . The first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23 each have a central portion of the i conduction type, one end portion of the p conduction type, and the other end portion of the n conduction type. As such, each layer has a pin structure.

此外,該p型電極14p(第二電極層)係設置在光電轉換層13的第二光電轉換層22之p型端部分與第三光電轉換層23之p型端部分上。另外,該n型電極14n(第二電極層)係設置在光電轉換層13的第二光電轉換層22之n型端部分與第三光電轉換層23之n型端部分上。可不設置該p型電極14p。Further, the p-type electrode 14p (second electrode layer) is provided on the p-type end portion of the second photoelectric conversion layer 22 of the photoelectric conversion layer 13 and the p-type end portion of the third photoelectric conversion layer 23. Further, the n-type electrode 14n (second electrode layer) is provided on the n-type end portion of the second photoelectric conversion layer 22 of the photoelectric conversion layer 13 and the n-type end portion of the third photoelectric conversion layer 23. The p-type electrode 14p may not be provided.

在矽基板11中形成經配置以使用閘極MOS電晶體41讀取信號的讀出電路(未圖示)。A readout circuit (not shown) configured to read a signal using the gate MOS transistor 41 is formed in the germanium substrate 11.

固態影像裝置72具有上述結構。The solid-state imaging device 72 has the above structure.

茲參看圖40之示意斷面圖說明經配置以讀取電洞之固態影像裝置的結構,該裝置相當於圖26所示之固態影像裝置。Referring to the schematic cross-sectional view of Fig. 40, the structure of a solid-state image device configured to read a hole is illustrated, which corresponds to the solid-state image device shown in FIG.

如圖40所示,矽基板11係n型矽基板。該第一電極層12係在矽基板11中形成,且位於形成將光分離為RGB分量之光電轉換層的位置處。該等第一電極層12各係由例如在矽基板11中形成之p型矽層製成。As shown in FIG. 40, the germanium substrate 11 is an n-type germanium substrate. The first electrode layer 12 is formed in the ruthenium substrate 11 and is located at a position where a photoelectric conversion layer that separates light into RGB components is formed. The first electrode layers 12 are each made of, for example, a p-type germanium layer formed in the germanium substrate 11.

由晶格匹配之以CuAlGaInSSe為基礎的混合晶體所組成之第一光電轉換層21係設置在第一電極層12上位於分離紅色分量之部分處。該第一光電轉換層21係由例如p-CuGa0.52 In0.48 S2 所組成。A first photoelectric conversion layer 21 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12 at a portion separated by a red component. The first photoelectric conversion layer 21 is composed of, for example, p-CuGa 0.52 In 0.48 S 2 .

由晶格匹配之以CuAlGaInSSe為基礎的混合晶體所組成之第二光電轉換層22係設置在第一電極層12上位於分離綠色分量之部分處。該第二光電轉換層22係由例如p型CuAl0.24 Ca0.23 In0.53 S2 所組成。A second photoelectric conversion layer 22 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12 at a portion separated from the green component. The second photoelectric conversion layer 22 is composed of, for example, p-type CuAl 0.24 Ca 0.23 In 0.53 S 2 .

由晶格匹配之以CuAlGaInSSe為基礎的混合晶體所組成之第三光電轉換層23係設置在第一電極層12上位於分離藍色分量之部分處。該第三光電轉換層23係由例如p-CuAl0.36 Ga0.64 S1.28 Se0.72 所組成。A third photoelectric conversion layer 23 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is disposed on the first electrode layer 12 at a portion of the separated blue component. The third photoelectric conversion layer 23 is composed of, for example, p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

該第一光電轉換層21之厚度為0.8μm。該第二光電轉換層22之厚度為0.7μm。該第三光電轉換層23之厚度為0.7μm。The thickness of the first photoelectric conversion layer 21 was 0.8 μm. The thickness of the second photoelectric conversion layer 22 was 0.7 μm. The thickness of the third photoelectric conversion layer 23 was 0.7 μm.

該等光學透明第二電極層14係堆疊在第一光電轉換層21、第二光電轉換層22與第三光電轉換層23上,其間具有由硫化鎘(CdS)所組成之中間層16。各第二電極層14係由n型光學透明電極材料(諸如氧化鋅)所組成。The optically transparent second electrode layers 14 are stacked on the first photoelectric conversion layer 21, the second photoelectric conversion layer 22, and the third photoelectric conversion layer 23 with an intermediate layer 16 composed of cadmium sulfide (CdS) therebetween. Each of the second electrode layers 14 is composed of an n-type optically transparent electrode material such as zinc oxide.

形成包括堆疊在矽基板11上之第一電極層12、第一光電轉換層21與第二電極層14的第一光電轉換部分24。同樣地,形成包括堆疊在矽基板11上之第一電極層12、第二光電轉換層22與第二電極層14的第二光電轉換部分25。形成包括堆疊在矽基板11上之第一電極層12、第三光電轉換層23與第二電極層14的第三光電轉換部分26。即,第一光電轉換部分至第三光電轉換部分24至26係橫向設置在矽基板11上。A first photoelectric conversion portion 24 including a first electrode layer 12, a first photoelectric conversion layer 21, and a second electrode layer 14 stacked on the germanium substrate 11 is formed. Likewise, the second photoelectric conversion portion 25 including the first electrode layer 12, the second photoelectric conversion layer 22, and the second electrode layer 14 stacked on the ruthenium substrate 11 is formed. A third photoelectric conversion portion 26 including the first electrode layer 12, the third photoelectric conversion layer 23, and the second electrode layer 14 stacked on the germanium substrate 11 is formed. That is, the first to third photoelectric conversion portions 24 to 26 are laterally disposed on the ruthenium substrate 11.

固態影像裝置73具有上述結構。The solid-state imaging device 73 has the above structure.

茲參看圖41之示意斷面圖說明經配置以讀取電洞之固態影像裝置的結構,該裝置相當於圖30所示之固態影像裝置。Referring to the schematic cross-sectional view of Fig. 41, the structure of a solid-state image device configured to read a hole is illustrated, which corresponds to the solid-state image device shown in FIG.

如圖41所示,矽基板11係n型矽基板。該第一電極層12係在矽基板11中形成,且延伸至矽基板11的背側附近。該第一電極層12係由例如在矽基板11中形成之p型矽層製成。在第一電極層12上設置由晶格匹配之以CuAlGaInSSe為基礎之混合晶體所組成的光電轉換層13。光電轉換層13包括堆疊在第一電極層12上之由p-CuGa0.52 In0.48 S2 所組成的第一光電轉換層21、由i-CuAl0.24 Ga0.23 In0.53 S2 所組成的第二光電轉換層22,以及由p-CuAl0.36 Ga0.64 S1.28 Se0.72 所組成的第三光電轉換層23。As shown in FIG. 41, the germanium substrate 11 is an n-type germanium substrate. The first electrode layer 12 is formed in the ruthenium substrate 11 and extends to the vicinity of the back side of the ruthenium substrate 11. The first electrode layer 12 is made of, for example, a p-type germanium layer formed in the germanium substrate 11. A photoelectric conversion layer 13 composed of a lattice-matched mixed crystal based on CuAlGaInSSe is provided on the first electrode layer 12. The photoelectric conversion layer 13 includes a first photoelectric conversion layer 21 composed of p-CuGa 0.52 In 0.48 S 2 stacked on the first electrode layer 12, and a second photoelectric layer composed of i-CuAl 0.24 Ga 0.23 In 0.53 S 2 . The conversion layer 22, and a third photoelectric conversion layer 23 composed of p-CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 .

如此,該光電轉換層13具有p-i-p結構為一整體。Thus, the photoelectric conversion layer 13 has a p-i-p structure as a whole.

該光電轉換層13可由上述組成範圍內之材料所組成。此外,可使用前述以CuGaInZnSSe為基礎的混合晶體。The photoelectric conversion layer 13 can be composed of materials within the above composition range. Further, the aforementioned mixed crystal based on CuGaInZnSSe can be used.

該光學透明第二電極層14係堆疊在光電轉換層13上,其間配備有該由硫化鎘(CdS)所組成之中間層16。該第二電極層14係由n型光學透明電極材料(諸如氧化鋅)所組成。The optically transparent second electrode layer 14 is stacked on the photoelectric conversion layer 13 with the intermediate layer 16 composed of cadmium sulfide (CdS). The second electrode layer 14 is composed of an n-type optically transparent electrode material such as zinc oxide.

此外,在矽基板11之前側(於該圖式中係矽基板11之下側)上形成從該第一電極層12讀取信號之讀出電極15。在矽基板11之前側形成使用閘極MOS電晶體41讀取信號之讀出電路(未圖示)。Further, a readout electrode 15 for reading a signal from the first electrode layer 12 is formed on the front side of the ruthenium substrate 11 (the lower side of the ruthenium substrate 11 in the drawing). A readout circuit (not shown) that reads a signal using the gate MOS transistor 41 is formed on the front side of the germanium substrate 11.

固態影像裝置74具有上述結構。The solid-state imaging device 74 has the above structure.

茲參看圖42之示意斷面圖說明經配置以讀取電洞之固態影像裝置的結構,該裝置相當於圖32所示之固態影像裝置。Referring to the schematic cross-sectional view of Fig. 42, a configuration of a solid-state imaging device configured to read a hole is illustrated, which corresponds to the solid-state imaging device illustrated in FIG.

參看圖42,在圖32所示之固態影像裝置8中,可使用組成從矽基板11側之p-CuAlS1.2 Se0.8 或i-CuAlS1.2 Se0.8 改變成i-CuGa0.52 In0.48 S2 之光電轉換層13。在該固態影像裝置75中,在低驅動電壓下可獲致較高突崩倍增增益。Referring to Fig. 42, in the solid-state image device 8 shown in Fig. 32, a photoelectric composition having a composition of p-CuAlS 1.2 Se 0.8 or i-CuAlS 1.2 Se 0.8 from the side of the ruthenium substrate 11 can be used to change into i-CuGa 0.52 In 0.48 S 2 . Conversion layer 13. In the solid-state imaging device 75, a high sag multiplication gain can be obtained at a low driving voltage.

在經配置以讀取電洞之固態影像裝置中,所有施加用以讀取信號之電壓的極性與經配置以讀取電子之固態影像裝置中的極性相反。In solid state imaging devices configured to read holes, the polarity of all voltages applied to read signals is opposite to the polarity in solid state imaging devices configured to read electrons.

下文茲將說明光電轉換層13之特定製造方法與原材料。Specific manufacturing methods and raw materials of the photoelectric conversion layer 13 will be described below.

在藉由金屬有機化學氣相沉積(MOCVD)製造晶體之方法當中,晶體生長係使用例如圖43所示之MOCVD設備進行。Among the methods of producing crystals by metal organic chemical vapor deposition (MOCVD), crystal growth is performed using, for example, an MOCVD apparatus shown in FIG.

使用下述有機金屬材料作為來源材料。銅之有機金屬材料的實例為乙醯丙酮銅(Cu(C5 H7 O2 )2 )。鎵(Ga)之有機金屬材料的實例為三甲鎵(Ga(CH3 )3 )。鋁(Al)之有機金屬材料的實例為三甲鋁(Al(CH3 )3 )。銦(In)之有機金屬材料的實例為三甲銦(In(CH3 )3 )。硒(Se)之有機金屬材料的實例為二甲硒(Se(CH3 )2 )。硫(S)之有機金屬材料的實例為二甲硫(S(CH3 )2 )。鋅(Zn)之有機金屬材料的實例為二甲鋅(Zn(CH3 )2 )。The following organometallic materials were used as the source material. An example of a copper organometallic material is copper acetonitrile (Cu(C 5 H 7 O 2 ) 2 ). An example of an organometallic material of gallium (Ga) is gallium (Ga(CH 3 ) 3 ). An example of an organometallic material of aluminum (Al) is trimethylaluminum (Al(CH 3 ) 3 ). An example of an organometallic material of indium (In) is trimethyl indium (In(CH 3 ) 3 ). An example of an organometallic material of selenium (Se) is dimethyl selenide (Se(CH 3 ) 2 ). An example of an organometallic material of sulfur (S) is dimethyl sulfide (S(CH 3 ) 2 ). An example of an organometallic material of zinc (Zn) is dimethyl zinc (Zn(CH 3 ) 2 ).

來源材料不侷限於該等有機金屬材料。可使用任何有機金屬材料作為藉由MOCVD生長晶體的來源材料。Source materials are not limited to these organometallic materials. Any organometallic material can be used as the source material for growing crystals by MOCVD.

可使用之來源材料的實例包括三乙鎵(Ga(C2 H5 )3 )、三乙鋁(Al(C2 H5 )3 )、三乙銦(In(C2 H5 )3 )、二乙硒(Se(C2 H5 )2 )、二乙硫(S(C2 H5 )2 ),以及二乙鋅(Zn(C2 H5 )2 )。Examples of source materials that can be used include triethylgallium (Ga(C 2 H 5 ) 3 ), triethylaluminum (Al(C 2 H 5 ) 3 ), triethylindium (In(C 2 H 5 ) 3 ), Selenium (Se(C 2 H 5 ) 2 ), diethylsulfide (S(C 2 H 5 ) 2 ), and diethylzinc (Zn(C 2 H 5 ) 2 ).

此外,可使用氣態材料作為有機金屬材料。例如,可使用硒化氫(H2 Se)作為Se來源,以及硫化氫(H2 S)作為S來源。Further, a gaseous material can be used as the organic metal material. For example, hydrogen selenide (H 2 Se) can be used as a source of Se, and hydrogen sulfide (H 2 S) can be used as a source of S.

在圖43所示之MOCVD設備中,以氫對各有機金屬材料進行通氣,以使得氫飽含對應之有機金屬材料蒸氣。如此,將各材料之分子輸送至反應室。不同材料之氫流率係藉由質量流量控制器(MFC)控制,以決定每單元時間所進料之材料的莫耳量。晶體生長係藉由在矽基板上熱分解有機金屬材料以形成晶體之方式進行。此時,可能使用介於輸送之材料的莫耳比例與晶體組成之間的相關性來控制晶體的組成。In the MOCVD apparatus shown in Fig. 43, each of the organometallic materials is ventilated with hydrogen so that the hydrogen is saturated with the corresponding organometallic material vapor. In this way, molecules of each material are delivered to the reaction chamber. The hydrogen flow rate of the different materials is controlled by a mass flow controller (MFC) to determine the amount of moieties of material fed per unit time. Crystal growth is carried out by thermally decomposing an organometallic material on a tantalum substrate to form crystals. At this point, it is possible to use a correlation between the molar ratio of the material being transported and the crystal composition to control the composition of the crystal.

該矽基板係位在碳基座上。該基座係藉由高頻加熱器(RF線圈)加熱,且配備有熱電偶與溫度控制系統以便控制該基板之溫度。典型基板溫度在400℃至1000℃之範圍,於該溫度下可熱分解該等材料。為了降低基板溫度,例如,可藉由自汞燈等所發光之光照射該基板表面而促進該等材料的熱分解。The germanium substrate is tied to a carbon pedestal. The susceptor is heated by a high frequency heater (RF coil) and is equipped with a thermocouple and temperature control system to control the temperature of the substrate. Typical substrate temperatures range from 400 ° C to 1000 ° C at which temperatures the materials can be thermally decomposed. In order to lower the substrate temperature, for example, thermal decomposition of the materials can be promoted by irradiating the surface of the substrate with light emitted from a mercury lamp or the like.

例如,乙醯丙酮銅(Cu(C5 H7 O2 )2 )與三甲銦(In(CH3 )3 )在室溫下為固態材料。此種材料可經加熱成液相。或者,可加熱此種材料以提高蒸氣壓力同時使其維持固態,然後使用之。For example, acetonitrile copper (Cu(C 5 H 7 O 2 ) 2 ) and trimethyl indium (In(CH 3 ) 3 ) are solid materials at room temperature. This material can be heated to a liquid phase. Alternatively, the material can be heated to increase the vapor pressure while maintaining it in a solid state and then used.

其次,茲將說明藉由分子束磊晶(MBE)製造晶體之方法。Next, a method of producing crystals by molecular beam epitaxy (MBE) will be explained.

在MBE生長中,晶體生長係使用例如圖44所示之MBE設備進行。In MBE growth, crystal growth is carried out using, for example, the MBE apparatus shown in FIG.

將元素銅、鎵(Ga)、鋁(Al)銦(In)硒(Se)以及硫(S)置於個別克努森容器(Knudsen cell)。將該等材料加熱至適當溫度以使得以分子束照射基板,如此生長晶體。在使用具有特別高蒸氣壓力的物質(諸如硫(S))之情況下,該物質之分子通量(molecular flux)可能不穩定。在此情況下,可以有閥之裂解元件使該分子通量安定。如同氣態來源MBE,該等來源材料之一部分可為氣態來源。即,可使用硒化氫(H2 Se)作為Se來源,以及硫化氫(H2 S)作為S來源。Elemental copper, gallium (Ga), aluminum (Al) indium (In) selenium (Se), and sulfur (S) are placed in individual Knudsen cells. The materials are heated to a suitable temperature such that the substrate is illuminated with a molecular beam, thus crystals are grown. In the case of using a substance having a particularly high vapor pressure such as sulfur (S), the molecular flux of the substance may be unstable. In this case, there may be a cleavage element of the valve to stabilize the molecular flux. As with the gaseous source MBE, one of the source materials may be a gaseous source. That is, hydrogen selenide (H 2 Se) can be used as a source of Se, and hydrogen sulfide (H 2 S) can be used as a source of S.

15. 第十五具體實例15. The fifteenth concrete example

攝像設備之結構的實例Example of the structure of the camera device

下文茲參看圖45之方塊圖說明根據本發明具體實例的攝像設備。該攝像設備包括根據本發明具體實例之固態影像裝置。Hereinafter, an image pickup apparatus according to a specific example of the present invention will be described with reference to a block diagram of Fig. 45. The image pickup apparatus includes a solid-state image device according to a specific example of the present invention.

如圖45所示,攝像設備200包括配備有固態影像裝置(未圖示)之攝像單元201。經配置以形成影像之聚光光學系統202係放置在攝像單元201的入射光側。該攝像單元201係連接至信號處理單元203,該信號處理單元203包括經配置以驅動攝像單元201之驅動電路以及處理藉由固態影像裝置對光進行光電轉換所獲得之信號以形成影像的信號處理電路。經信號處理單元203處理的影像信號可貯存在一影像貯存單元(未圖示)。可使用前述具體實例中所述之固態影像裝置1至10以及71至75中任一者作為攝像設備200之固態影像裝置。As shown in FIG. 45, the imaging apparatus 200 includes an imaging unit 201 equipped with a solid-state imaging device (not shown). The collecting optical system 202 configured to form an image is placed on the incident light side of the imaging unit 201. The image capturing unit 201 is connected to a signal processing unit 203, which includes a driving circuit configured to drive the image capturing unit 201 and a signal processed by a signal obtained by photoelectrically converting light by the solid-state image device to form an image. Circuit. The image signal processed by the signal processing unit 203 can be stored in an image storage unit (not shown). Any of the solid-state image devices 1 to 10 and 71 to 75 described in the foregoing specific examples can be used as the solid-state image device of the image pickup apparatus 200.

根據本發明具體實例之攝像設備200包括根據本發明具體實例之固態影像裝置1至10以及71至75中任一者。藉此,抑制暗電流發生,因而抑制因亮點瑕疵造成之影像品質降低。此外該固態影像裝置具有高敏感度且以高敏感度捕捉影像。因而,以高敏感度捕捉影像以及抑制影像品質降低有利地使得甚至在黑暗環境(例如,夜間)也可能捕捉具有高品質之影像。The image pickup apparatus 200 according to a specific example of the present invention includes any of the solid-state image devices 1 to 10 and 71 to 75 according to specific examples of the present invention. Thereby, the occurrence of dark current is suppressed, and thus the image quality deterioration due to the bright spot is suppressed. In addition, the solid-state imaging device has high sensitivity and captures images with high sensitivity. Thus, capturing images with high sensitivity and suppressing image quality degradation advantageously makes it possible to capture images of high quality even in dark environments (eg, nighttime).

根據本發明一具體實例之攝像設備200不侷限於上述配置,而是亦可應用於包括固態影像裝置之攝像設備的任何配置。The image pickup apparatus 200 according to an embodiment of the present invention is not limited to the above configuration, but can be applied to any configuration of an image pickup apparatus including a solid-state image device.

固態影像裝置1至10以及71至75各可形成為單一晶片,或可呈具有捕捉影像功能且封裝有攝像單元與信號處理單元或光學系統的模組形式。The solid-state imaging devices 1 to 10 and 71 to 75 may each be formed as a single wafer, or may be in the form of a module having an image capturing function and enclosing an imaging unit and a signal processing unit or an optical system.

攝像設備200係指例如具有捕捉影像功能之照相機或可攜式裝置。廣義地說,「攝像」一辭不僅包括使用照相機正常捕捉影像,亦包括指紋偵測。The image pickup apparatus 200 refers to, for example, a camera or a portable device having a function of capturing images. Broadly speaking, the term "camera" includes not only the normal capture of images using a camera, but also fingerprint detection.

本申請案含有與2009年1月21日在日本專利局中申請之日本優先權專利申請案JP 2009-010787中所揭示之標的物有關的標的物,該案之全部內容特此以引用之方式倂入。The present application contains the subject matter related to the subject matter disclosed in Japanese Priority Patent Application No. JP 2009-010787, filed on Jan. In.

熟習此項技術者應理解,各種變體、組合、子組合及變更可在其處於隨附申請專利範圍或其等效物之範疇內的情況下取決於設計要求及其他因素而發生。It will be understood by those skilled in the art that various modifications, combinations, sub-combinations and variations may occur depending on the design requirements and other factors in the context of the scope of the appended claims.

11...矽基板11. . .矽 substrate

12...第一電極層12. . . First electrode layer

13...光電轉換層13. . . Photoelectric conversion layer

14...第二電極層14. . . Second electrode layer

14p...p型電極14p. . . P-electrode

14n...n型電極14n. . . N-type electrode

21...第一光電轉換層twenty one. . . First photoelectric conversion layer

22...第二光電轉換層twenty two. . . Second photoelectric conversion layer

23...第三光電轉換層twenty three. . . Third photoelectric conversion layer

31...CuInS231. . . CuInS 2 layer

32...CuGaS232. . . CuGaS 2 layer

113...光電轉換層113. . . Photoelectric conversion layer

121...光電轉換層121. . . Photoelectric conversion layer

122...光電轉換層122. . . Photoelectric conversion layer

123...光電轉換層123. . . Photoelectric conversion layer

15...讀出電極15. . . Readout electrode

41...閘極MOS電晶體41. . . Gate MOS transistor

51...讀出電路51. . . Readout circuit

17...電極17. . . electrode

18...引線18. . . lead

16...中間層16. . . middle layer

24...第一光電轉換部分twenty four. . . First photoelectric conversion portion

25...第二光電轉換部分25. . . Second photoelectric conversion portion

26...第三光電轉換部分26. . . Third photoelectric conversion portion

1...固態影像裝置1. . . Solid-state imaging device

2...固態影像裝置2. . . Solid-state imaging device

3...固態影像裝置3. . . Solid-state imaging device

4...固態影像裝置4. . . Solid-state imaging device

5...固態影像裝置5. . . Solid-state imaging device

6...固態影像裝置6. . . Solid-state imaging device

7...固態影像裝置7. . . Solid-state imaging device

8...固態影像裝置8. . . Solid-state imaging device

9...固態影像裝置9. . . Solid-state imaging device

10...固態影像裝置10. . . Solid-state imaging device

71...固態影像裝置71. . . Solid-state imaging device

75...固態影像裝置75. . . Solid-state imaging device

200...攝像設備200. . . Camera equipment

201...攝像單元201. . . Camera unit

202...聚光光學系統202. . . Concentrating optical system

203...信號處理單元203. . . Signal processing unit

M1...重設電晶體M1. . . Reset transistor

M2...放大電晶體M2. . . Amplifying the transistor

M3...選擇電晶體M3. . . Select transistor

FD...浮置擴散節點FD. . . Floating diffusion node

VR ,VG ,VB ...反向偏壓V R , V G , V B . . . Reverse bias

MFC...質量流量控制器MFC. . . Mass flow controller

圖1係根據本發明第一具體實例之固態影像裝置的第一實例之示意斷面圖;1 is a schematic cross-sectional view showing a first example of a solid-state image device according to a first embodiment of the present invention;

圖2顯示以黃銅礦為基礎之混合晶體的示意結構;Figure 2 shows a schematic structure of a mixed crystal based on chalcopyrite;

圖3顯示以黃銅礦為基礎之材料的能帶隙與晶格常數之間的關係;Figure 3 shows the relationship between the band gap and the lattice constant of a chalcopyrite-based material;

圖4顯示以黃銅礦為基礎之材料的能帶隙與晶格常數之間的關係;Figure 4 shows the relationship between the band gap and the lattice constant of a chalcopyrite-based material;

圖5係由以黃銅礦為基礎之材料所組成的光電轉換層之實例的示意斷面圖;Figure 5 is a schematic cross-sectional view showing an example of a photoelectric conversion layer composed of a chalcopyrite-based material;

圖6係使用超晶格而由以黃銅礦為基礎之材料所組成的光電轉換層之實例的示意斷面圖;Figure 6 is a schematic cross-sectional view showing an example of a photoelectric conversion layer composed of a chalcopyrite-based material using a superlattice;

圖7係顯示吸收係數α與由能帶隙所預測的波長之間的關係圖;Figure 7 is a graph showing the relationship between the absorption coefficient α and the wavelength predicted by the energy band gap;

圖8係根據本發明一具體實例之固態影像裝置實例(其中測量光譜敏感度)之示意斷面圖;Figure 8 is a schematic cross-sectional view showing an example of a solid-state image device (in which spectral sensitivity is measured) according to an embodiment of the present invention;

圖9係顯示根據本發明一具體實例之固態影像裝置的光譜敏感度特徵的圖;9 is a view showing spectral sensitivity characteristics of a solid-state image device according to an embodiment of the present invention;

圖10係根據先前技術之固態影像裝置實例(其中測量光譜敏感度)之示意斷面圖;Figure 10 is a schematic cross-sectional view of an example of a solid-state imaging device according to the prior art in which spectral sensitivity is measured;

圖11係顯示先前技術中之固態影像裝置的範例光譜敏感度特徵之圖;Figure 11 is a diagram showing exemplary spectral sensitivity characteristics of a prior art solid state imaging device;

圖12係根據本發明第二具體實例之固態影像裝置的第二實例之示意斷面圖;Figure 12 is a schematic cross-sectional view showing a second example of a solid-state image device according to a second embodiment of the present invention;

圖13係顯示讀出電路實例之示意電路圖;Figure 13 is a schematic circuit diagram showing an example of a readout circuit;

圖14係根據第二具體實例之固態影像裝置的能帶圖;Figure 14 is an energy band diagram of a solid-state imaging device according to a second specific example;

圖15係當讀取R信號時之能帶圖;Figure 15 is an energy band diagram when the R signal is read;

圖16係當讀取G信號時之能帶圖;Figure 16 is an energy band diagram when reading a G signal;

圖17係當讀取B信號時之能帶圖;Figure 17 is an energy band diagram when the B signal is read;

圖18係根據第二具體實例之包括讀出電極的固態影像裝置之變體的示意斷面圖;Figure 18 is a schematic cross-sectional view showing a variation of a solid-state image device including a readout electrode according to a second specific example;

圖19係根據本發明第三具體實例之固態影像裝置於零偏壓下的能帶圖;19 is an energy band diagram of a solid-state imaging device according to a third embodiment of the present invention under zero bias;

圖20係根據該本發明第三具體實例之固態影像裝置於反向偏壓下的能帶圖;Figure 20 is an energy band diagram of a solid-state image device according to a third embodiment of the present invention under reverse bias;

圖21係根據該本發明第三具體實例之固態影像裝置的第三實例之示意斷面圖;Figure 21 is a schematic cross-sectional view showing a third example of the solid-state image device according to the third embodiment of the present invention;

圖22係顯示讀出電路實例之示意電路圖;Figure 22 is a schematic circuit diagram showing an example of a readout circuit;

圖23係根據該本發明第三具體實例之固態影像裝置的能帶圖;Figure 23 is an energy band diagram of a solid-state image device according to a third embodiment of the present invention;

圖24係根據本發明第四具體實例之固態影像裝置的第四實例之示意斷面圖;Figure 24 is a schematic cross-sectional view showing a fourth example of the solid-state image device according to the fourth embodiment of the present invention;

圖25係根據該本發明第四具體實例之固態影像裝置的能帶圖;Figure 25 is an energy band diagram of a solid-state image device according to a fourth embodiment of the present invention;

圖26係根據本發明第五具體實例之固態影像裝置的第五實例之示意斷面圖;Figure 26 is a schematic cross-sectional view showing a fifth example of the solid-state image device according to the fifth embodiment of the present invention;

圖27係顯示根據該第五具體實例之固態影像裝置的光譜敏感度特徵的圖;Figure 27 is a view showing spectral sensitivity characteristics of a solid-state image device according to the fifth specific example;

圖28係顯示根據本發明第六具體實例之固態影像裝置的實例之能帶隙與晶格常數之間的關係圖;Figure 28 is a graph showing the relationship between the band gap and the lattice constant of an example of the solid-state image device according to the sixth embodiment of the present invention;

圖29係根據本發明第六具體實例之固態影像裝置的第六實例之示意斷面圖;Figure 29 is a schematic cross-sectional view showing a sixth example of the solid-state image device according to the sixth embodiment of the present invention;

圖30係根據本發明第七具體實例之固態影像裝置的第七實例之示意斷面圖;Figure 30 is a schematic cross-sectional view showing a seventh example of the solid-state image device according to the seventh embodiment of the present invention;

圖31係顯示讀出電路實例之示意電路圖;Figure 31 is a schematic circuit diagram showing an example of a readout circuit;

圖32係該固態影像裝置之第七實例的第一變體之示意斷面圖;Figure 32 is a schematic cross-sectional view showing a first variation of the seventh example of the solid-state image device;

圖33係該固態影像裝置之第七實例的第二變體之示意斷面圖;Figure 33 is a schematic cross-sectional view showing a second variation of the seventh example of the solid-state image device;

圖34係顯示應用固態影像裝置之CMOS影像感測器的電路方塊圖;Figure 34 is a circuit block diagram showing a CMOS image sensor to which a solid-state imaging device is applied;

圖35係顯示應用固態影像裝置之CCD的方塊圖;Figure 35 is a block diagram showing a CCD to which a solid-state imaging device is applied;

圖36係圖解說明根據本發明第十二具體實例之固態影像裝置的製造方法之第五實例的示意斷面圖;Figure 36 is a schematic sectional view showing a fifth example of a method of manufacturing a solid-state image device according to a twelfth embodiment of the present invention;

圖37係顯示該本發明第十二具體實例之能帶隙與晶格常數之間的關係圖;Figure 37 is a graph showing the relationship between the band gap and the lattice constant of the twelfth embodiment of the present invention;

圖38係經配置以讀取電洞之固態影像裝置的實例之示意斷面圖;38 is a schematic cross-sectional view of an example of a solid-state imaging device configured to read a hole;

圖39係經配置以讀取電洞之固態影像裝置的實例之示意斷面圖;39 is a schematic cross-sectional view of an example of a solid-state imaging device configured to read a hole;

圖40係經配置以讀取電洞之固態影像裝置的實例之示意斷面圖;40 is a schematic cross-sectional view of an example of a solid-state imaging device configured to read a hole;

圖41係經配置以讀取電洞之固態影像裝置的實例之示意斷面圖;41 is a schematic cross-sectional view of an example of a solid-state imaging device configured to read a hole;

圖42係經配置以讀取電洞之固態影像裝置的實例之示意斷面圖;42 is a schematic cross-sectional view of an example of a solid-state imaging device configured to read a hole;

圖43係顯示MOCVD設備之實例的方塊圖;Figure 43 is a block diagram showing an example of an MOCVD apparatus;

圖44係顯示MBE設備之實例的示意圖;Figure 44 is a schematic diagram showing an example of an MBE device;

圖45係顯示根據本發明一具體實例之攝像設備的方塊圖;及Figure 45 is a block diagram showing an image pickup apparatus according to an embodiment of the present invention;

圖46顯示半導體材料的光學吸收光譜。Figure 46 shows the optical absorption spectrum of a semiconductor material.

11...矽基板11. . .矽 substrate

Claims (19)

一種固態影像裝置,其包含:矽基板;及設置於該矽基板上且與該矽基板晶格匹配之光電轉換層,該光電轉換層係由以銅-鋁-鎵-銦-硫-硒為基礎之混合晶體或以銅-鋁-鎵-銦-鋅-硫-硒為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。A solid-state imaging device comprising: a germanium substrate; and a photoelectric conversion layer disposed on the germanium substrate and lattice-matched to the germanium substrate, wherein the photoelectric conversion layer is made of copper-aluminum-gallium-indium-sulfur-selenium A basic mixed crystal or a chalcopyrite-based compound semiconductor composed of a copper-aluminum-gallium-indium-zinc-sulfur-selenium-based mixed crystal. 如申請專利範圍第1項之固態影像裝置,其中該光電轉換層係由超晶格所形成,該超晶格具有厚度各等於或小於臨界厚度之多層。The solid-state image device of claim 1, wherein the photoelectric conversion layer is formed by a superlattice having a plurality of layers each having a thickness equal to or less than a critical thickness. 如申請專利範圍第1項之固態影像裝置,其中該光電轉換層包括經配置以分離紅光且能帶隙為2.00 eV±0.1 eV的第一光電轉換層;經配置以分離綠光且能帶隙為2.20 eV±0.15 eV的第二光電轉換層;及經配置以分離藍光且能帶隙為2.51 eV±0.2 eV的第三光電轉換層。The solid-state imaging device of claim 1, wherein the photoelectric conversion layer comprises a first photoelectric conversion layer configured to separate red light and having a band gap of 2.00 eV ± 0.1 eV; configured to separate green light and energy band a second photoelectric conversion layer having a gap of 2.20 eV ± 0.15 eV; and a third photoelectric conversion layer configured to separate blue light and having a band gap of 2.51 eV ± 0.2 eV. 如申請專利範圍第3項之固態影像裝置,其中該第一光電轉換層、第二光電轉換層及第三光電轉換層係以此順序從該矽基板側堆疊。The solid-state imaging device of claim 3, wherein the first photoelectric conversion layer, the second photoelectric conversion layer, and the third photoelectric conversion layer are stacked from the side of the substrate in this order. 如申請專利範圍第4項之固態影像裝置,其中在介於該第一光電轉換層與該第二光電轉換層之間以及介於該第二光電轉換層與該第三光電轉換層之間的界面的寬隙側形成載子障壁,或其中在介於該矽基板與該第一光電轉換層之間的界面的寬隙側形成載子障壁。The solid-state imaging device of claim 4, wherein between the first photoelectric conversion layer and the second photoelectric conversion layer and between the second photoelectric conversion layer and the third photoelectric conversion layer The wide gap side of the interface forms a carrier barrier, or wherein a carrier barrier is formed on a wide gap side of the interface between the germanium substrate and the first photoelectric conversion layer. 如申請專利範圍第1項之固態影像裝置,其中該光電轉換層具有逐漸改變或逐步改變之能帶隙與能不連續性,且其中藉由施加反向偏壓造成突崩倍增。The solid-state image device of claim 1, wherein the photoelectric conversion layer has a band gap and a energy discontinuity which are gradually changed or gradually changed, and wherein the collapse is multiplied by applying a reverse bias. 如申請專利範圍第5項之固態影像裝置,其中依序連續施加VR 、VG 與VB 之反向偏壓至該光電轉換層以連續讀取R信號、G信號與B信號,其中VR 表示用於讀取對應於紅光之R信號的反向偏壓,VG 表示用於讀取對應於綠光之G信號的反向偏壓,且VB 表示用於讀取對應於藍光之B信號的反向偏壓,其先決條件係VB >VG >VRThe solid-state imaging device of claim 5, wherein the reverse bias of V R , V G and V B is sequentially applied to the photoelectric conversion layer to continuously read the R signal, the G signal and the B signal, wherein V R represents a reverse bias for reading an R signal corresponding to red light, V G represents a reverse bias for reading a G signal corresponding to green light, and V B represents a read for blue light The reverse bias of the B signal is a prerequisite V B >V G >V R . 如申請專利範圍第7項之固態影像裝置,其中該光電轉換層具有電位不連續性,該第一光電轉換層、第二光電轉換層與第三光電轉換層在深度方向將光分離成紅色、綠色與藍色分量,藉由載子障壁累積光電子,以三個步驟依序施加VR 、VG 與VB 之反向偏壓以讀取該R信號、G信號與B信號,且由該電位不連續性造成突崩倍增。The solid-state imaging device of claim 7, wherein the photoelectric conversion layer has a potential discontinuity, and the first photoelectric conversion layer, the second photoelectric conversion layer, and the third photoelectric conversion layer separate the light into a red color in a depth direction, The green and blue components, by accumulating photoelectrons by the carrier barrier, sequentially apply reverse biases of V R , V G and V B in three steps to read the R signal, the G signal and the B signal, and The potential discontinuity causes a sudden collapse. 如申請專利範圍第1至8項中任一項之固態影像裝置,其另外包含:支撐基板;設置在該支撐基板上之配線部分;設置在該配線部分上且包括經配置以將入射光光電轉換成電信號之光電轉換部分的像素;及包括設置在該像素周圍之週邊電路的矽層,其中該光電轉換部分係設置在該矽層之入射光側的最上表面,且包括設置在該矽基板中之第一電極層、該光電轉換層,以及設置在該光電轉換層上之第二電極層。The solid-state image device of any one of claims 1 to 8, further comprising: a support substrate; a wiring portion disposed on the support substrate; disposed on the wiring portion and configured to photoelectrically incident light a pixel converted into a photoelectric conversion portion of the electrical signal; and a germanium layer including a peripheral circuit disposed around the pixel, wherein the photoelectric conversion portion is disposed on an uppermost surface of the incident light side of the germanium layer, and is disposed at the crucible a first electrode layer in the substrate, the photoelectric conversion layer, and a second electrode layer disposed on the photoelectric conversion layer. 如申請專利範圍第3或4項之固態影像裝置,其另外包含:在該矽基板之水平方向延伸之PIN結構或PN結構;及在接近介於該第二光電轉換層與該第三光電轉換層之間、介於該第一光電轉換層與該第二光電轉換層之間,或介於該第一光電轉換層與該矽基板之間的界面之部分的寬隙側所形成之障壁,該障壁的能量超過26 meV。The solid-state imaging device of claim 3 or 4, further comprising: a PIN structure or a PN structure extending in a horizontal direction of the germanium substrate; and being in proximity to the second photoelectric conversion layer and the third photoelectric conversion a barrier formed between the layers, between the first photoelectric conversion layer and the second photoelectric conversion layer, or between the wide gap side of a portion of the interface between the first photoelectric conversion layer and the germanium substrate, The energy of the barrier exceeds 26 meV. 如申請專利範圍第1至3項中任一項之固態影像裝置,其另外包含:包括光電轉換層之第一光電轉換部分;包括光電轉換層之第二光電轉換部分;及包括光電轉換層之第三光電轉換部分,該第一光電轉換部分至第三光電轉換部分係在該矽基板之平面方向設置,其中在該第一光電轉換部分中之光電轉換層係為經配置以分離紅光的第一光電轉換層,在該第二光電轉換部分中之光電轉換層係為經配置以分離綠光的第二光電轉換層,且在該第三光電轉換部分中之光電轉換層係為經配置以分離藍光的第三光電轉換層。The solid-state imaging device according to any one of claims 1 to 3, further comprising: a first photoelectric conversion portion including a photoelectric conversion layer; a second photoelectric conversion portion including a photoelectric conversion layer; and a photoelectric conversion layer a third photoelectric conversion portion, the first photoelectric conversion portion to the third photoelectric conversion portion being disposed in a planar direction of the germanium substrate, wherein the photoelectric conversion layer in the first photoelectric conversion portion is configured to separate red light a first photoelectric conversion layer, the photoelectric conversion layer in the second photoelectric conversion portion is a second photoelectric conversion layer configured to separate green light, and the photoelectric conversion layer in the third photoelectric conversion portion is configured To separate the third photoelectric conversion layer of blue light. 如申請專利範圍第3至5、7及8項中任一項之固態影像裝置,其中該第一光電轉換層係由CuAlx Gay Inz S2 所組成,其中0≦x≦0.12,0.38≦y≦0.52,0.48≦z≦0.50且x+y+z=1,該第二光電轉換層係由CuAlx Gay Inz S2 所組成,其中0.06≦x≦0.41,0.01≦y≦0.45,0.49≦z≦0.58且x+y+z=1,且該第三光電轉換層係由CuAlx Gay Su Sev 所組成,其中0.31≦x≦0.52,0.48≦y≦0.69,1.33≦u≦1.38,0.62≦v≦0.67,且x+y+u+v=3或者x+y=1且u+v=2。The solid-state image device of any one of claims 3 to 5, 7 and 8, wherein the first photoelectric conversion layer is composed of CuAl x Ga y In z S 2 , wherein 0 ≦ x ≦ 0.12, 0.38 ≦y≦0.52, 0.48≦z≦0.50 and x+y+z=1, the second photoelectric conversion layer is composed of CuAl x Ga y In z S 2 , wherein 0.06≦x≦0.41, 0.01≦y≦0.45 0.49≦z≦0.58 and x+y+z=1, and the third photoelectric conversion layer is composed of CuAl x Ga y S u Se v , wherein 0.31≦x≦0.52, 0.48≦y≦0.69, 1.33≦ u ≦ 1.38, 0.62 ≦ v ≦ 0.67, and x + y + u + v = 3 or x + y = 1 and u + v = 2. 如申請專利範圍第11項之固態影像裝置,其中該第一光電轉換層係由CuAlx Gay Inz S2 所組成,其中0≦x≦0.12,0.38≦y≦0.52,0.48≦z≦0.50且x+y+z=1,該第二光電轉換層係由CuAlx Gay Inz S2 所組成,其中0.06≦x≦0.41,0.01≦y≦0.45,0.49≦z≦0.58且x+y+z=1,且該第三光電轉換層係由CuAlx Gay Su Sev 所組成,其中0.31≦x≦0.52,0.48≦y≦0.69,1.33≦u≦1.38,0.62≦v≦0.67,且x+y+u+v=3或者x+y=1且u+v=2。The solid-state imaging device of claim 11, wherein the first photoelectric conversion layer is composed of CuAl x Ga y In z S 2 , wherein 0≦x≦0.12, 0.38≦y≦0.52, 0.48≦z≦0.50 And x+y+z=1, the second photoelectric conversion layer is composed of CuAl x Ga y In z S 2 , wherein 0.06≦x≦0.41, 0.01≦y≦0.45, 0.49≦z≦0.58 and x+y +z=1, and the third photoelectric conversion layer is composed of CuAl x Ga y S u Se v , wherein 0.31≦x≦0.52, 0.48≦y≦0.69, 1.33≦u≦1.38, 0.62≦v≦0.67, And x+y+u+v=3 or x+y=1 and u+v=2. 如申請專利範圍第12項之固態影像裝置,其中該第一光電轉換層係由CuGa0.52 In0.48 S2 所組成,該第二光電轉換層係由CuAl0.24 Ga0.23 In0.53 S2 所組成,且該第三光電轉換層係由CuAl0.36 Ga0.64 S1.28 Se0.72 所組成。The solid-state imaging device of claim 12, wherein the first photoelectric conversion layer is composed of CuGa 0.52 In 0.48 S 2 , and the second photoelectric conversion layer is composed of CuAl 0.24 Ga 0.23 In 0.53 S 2 , and The third photoelectric conversion layer is composed of CuAl 0.36 Ga 0.64 S 1.28 Se 0.72 . 如申請專利範圍第3至5、7及8項中任一項之固態影像裝置,其中該第一光電轉換層係由CuGay Inz Su Sev 所組成,其中0.52≦y≦0.76,0.24≦z≦0.48,1.70≦u≦2.00,0≦v≦0.30,且y+z+u+v=3或者y+z=1且u+v=2,該第二光電轉換層係由CuGay Inz Znw Su Sev 所組成,其中0.64≦y≦0.88,0≦z≦0.36,0≦w≦0.12,0.15≦u≦1.44,0.56≦v≦1.85,且y+z+w+u+v=2,且該第三光電轉換層係由CuGay Znw Su Sev 所組成,其中0.74≦y≦0.91,0.09≦w≦0.26,1.42≦u≦1.49,0.51≦v≦0.58,且y+w+u+v=3。The solid-state image device of any one of claims 3 to 5, 7 and 8, wherein the first photoelectric conversion layer is composed of CuGa y In z S u Se v , wherein 0.52 ≦ y ≦ 0.76, 0.24 ≦z≦0.48, 1.70≦u≦2.00, 0≦v≦0.30, and y+z+u+v=3 or y+z=1 and u+v=2, the second photoelectric conversion layer is CuGa y In z Zn w S u Se v , of which 0.64≦y≦0.88, 0≦z≦0.36, 0≦w≦0.12, 0.15≦u≦1.44, 0.56≦v≦1.85, and y+z+w+u +v=2, and the third photoelectric conversion layer is composed of CuGa y Zn w S u Se v , wherein 0.74≦y≦0.91, 0.09≦w≦0.26, 1.42≦u≦1.49, 0.51≦v≦0.58, And y+w+u+v=3. 如申請專利範圍第11項之固態影像裝置,其中該第一光電轉換層係由CuGay Inz Su Sev 所組成,其中0.52≦y≦0.76,0.24≦z≦0.48,1.70≦u≦2.00,0≦v≦0.30,且y+z+u+v=3或者y+z=1且u+v=2,該第二光電轉換層係由CuGay Inz Znw Su Sev 所組成,其中0.64≦y≦0.88,0≦z≦0.36,0≦w≦0.12,0.15≦u≦1.44,0.56≦v≦1.85,且y+z+w+u+v=2,且該第三光電轉換層係由CuGay Znw Su Sev 所組成,其中0.74≦y≦0.91,0.09≦w≦0.26,1.42≦u≦1.49,0.51≦v≦0.58,且y+w+u+v=3。The solid-state imaging device of claim 11, wherein the first photoelectric conversion layer is composed of CuGa y In z S u Se v , wherein 0.52 ≦ y ≦ 0.76, 0.24 ≦ z ≦ 0.48, 1.70 ≦ u ≦ 2.00 , 0≦v≦0.30, and y+z+u+v=3 or y+z=1 and u+v=2, the second photoelectric conversion layer is composed of CuGa y In z Zn w S u Se v , wherein 0.64≦y≦0.88, 0≦z≦0.36, 0≦w≦0.12, 0.15≦u≦1.44, 0.56≦v≦1.85, and y+z+w+u+v=2, and the third photoelectric The conversion layer consists of CuGa y Zn w S u Se v , where 0.74≦y≦0.91, 0.09≦w≦0.26, 1.42≦u≦1.49, 0.51≦v≦0.58, and y+w+u+v=3 . 一種製造固態影像裝置之方法,其包括以下步驟:在矽基板上形成光電轉換層,同時維持與該矽基板晶格匹配,該光電轉換層係由以銅-鋁-鎵-銦-硫-硒為基礎之混合晶體或以銅-鋁-鎵-銦-鋅-硫-硒為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。A method of manufacturing a solid-state image device, comprising the steps of: forming a photoelectric conversion layer on a germanium substrate while maintaining lattice matching with the germanium substrate, the photoelectric conversion layer being composed of copper-aluminum-gallium-indium-sulfur-selenium A compound crystal based on a chalcopyrite-based compound semiconductor based on a mixed crystal of copper-aluminum-gallium-indium-zinc-sulfur-selenium. 如申請專利範圍第17項之方法,其另外包括以下步驟:形成包括該光電轉換層之第一光電轉換部分、包括該光電轉換層之第二光電轉換部分,及包括該光電轉換層之第三光電轉換部分,彼等係以使該第一光電轉換部分至第三光電轉換部分在該矽基板之平面方向設置的方式形成,其中在該第一光電轉換部分中之光電轉換層係為經配置以分離紅光的第一光電轉換層,在該第二光電轉換部分中之光電轉換層係為經配置以分離綠光的第二光電轉換層,且在該第三光電轉換部分中之光電轉換層係為經配置以分離藍光的第三光電轉換層。The method of claim 17, further comprising the steps of: forming a first photoelectric conversion portion including the photoelectric conversion layer, a second photoelectric conversion portion including the photoelectric conversion layer, and a third portion including the photoelectric conversion layer Photoelectric conversion portions, which are formed in such a manner that the first to third photoelectric conversion portions to the third photoelectric conversion portion are disposed in a planar direction of the germanium substrate, wherein the photoelectric conversion layer in the first photoelectric conversion portion is configured To separate the first photoelectric conversion layer of red light, the photoelectric conversion layer in the second photoelectric conversion portion is a second photoelectric conversion layer configured to separate green light, and photoelectric conversion in the third photoelectric conversion portion The layer is a third photoelectric conversion layer configured to separate blue light. 一種攝像設備,其包含:經配置以聚集入射光之聚光光學系統,經配置以接收由該聚光光學系統所聚集之光且進行光電轉換的固態影像裝置,及經配置以處理由光電轉換所獲得之信號的信號處理單元,其中該固態影像裝置包括設置於矽基板上且與該矽基板晶格匹配之光電轉換層,該光電轉換層係由以銅-鋁-鎵-銦-硫-硒為基礎之混合晶體或以銅-鋁-鎵-銦-鋅-硫-硒為基礎之混合晶體的以黃銅礦為基礎之化合物半導體所組成。An imaging apparatus comprising: a collecting optical system configured to collect incident light, configured to receive light collected by the collecting optical system and to perform photoelectric conversion, and configured to process by photoelectric conversion a signal processing unit of the obtained signal, wherein the solid-state imaging device comprises a photoelectric conversion layer disposed on the germanium substrate and lattice-matched with the germanium substrate, the photoelectric conversion layer being composed of copper-aluminum-gallium-indium-sulfur- A selenium-based mixed crystal or a chalcopyrite-based compound semiconductor based on a copper-aluminum-gallium-indium-zinc-sulfur-selenium mixed crystal.
TW098145492A 2009-01-21 2009-12-29 Solid-state image device, method for producing the same, and image pickup apparatus TWI416716B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009010787 2009-01-21
JP2009288145 2009-12-18

Publications (2)

Publication Number Publication Date
TW201103132A TW201103132A (en) 2011-01-16
TWI416716B true TWI416716B (en) 2013-11-21

Family

ID=42587352

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145492A TWI416716B (en) 2009-01-21 2009-12-29 Solid-state image device, method for producing the same, and image pickup apparatus

Country Status (3)

Country Link
KR (1) KR20100085849A (en)
CN (1) CN101794836B (en)
TW (1) TWI416716B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609119B2 (en) * 2009-01-21 2014-10-22 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and imaging device
JP5585232B2 (en) 2010-06-18 2014-09-10 ソニー株式会社 Solid-state imaging device, electronic equipment
CN103531602B (en) * 2013-10-30 2019-04-23 上海集成电路研发中心有限公司 Export the pixel array of color image
JP2015119018A (en) * 2013-12-18 2015-06-25 ソニー株式会社 Solid state image sensor and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023020A (en) * 1996-10-15 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solar cell and method for manufacturing the same
US6504091B2 (en) * 2000-02-14 2003-01-07 Sharp Kabushiki Kaisha Photoelectric converting device
US20050224819A1 (en) * 2004-04-05 2005-10-13 Fuji Photo Film Co., Ltd. Imaging device and imaging method
US20060154034A1 (en) * 2004-07-06 2006-07-13 Fuji Photo Film Co., Ltd. Functional device
US20080157254A1 (en) * 2006-12-28 2008-07-03 Dongbu Hitek Co., Ltd. Compound semiconductor image sensor
TW200849572A (en) * 2007-05-15 2008-12-16 Sony Corp Solid-state image pickup device and a method of manufacturing the same, and image pickup apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023020A (en) * 1996-10-15 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solar cell and method for manufacturing the same
US6504091B2 (en) * 2000-02-14 2003-01-07 Sharp Kabushiki Kaisha Photoelectric converting device
US20050224819A1 (en) * 2004-04-05 2005-10-13 Fuji Photo Film Co., Ltd. Imaging device and imaging method
US20060154034A1 (en) * 2004-07-06 2006-07-13 Fuji Photo Film Co., Ltd. Functional device
US20080157254A1 (en) * 2006-12-28 2008-07-03 Dongbu Hitek Co., Ltd. Compound semiconductor image sensor
TW200849572A (en) * 2007-05-15 2008-12-16 Sony Corp Solid-state image pickup device and a method of manufacturing the same, and image pickup apparatus

Also Published As

Publication number Publication date
CN101794836A (en) 2010-08-04
CN101794836B (en) 2012-06-06
TW201103132A (en) 2011-01-16
KR20100085849A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
TWI463647B (en) Solid-state imaging device, method for producing the same, and imaging apparatus
US11037969B2 (en) Solid-state imaging device having an impurity region on an upper surface of a photoelectric conversion film
US9142584B2 (en) Solid-state imaging device with pixel isolation portion, method for manufacturing solid-state imaging device, and electronic apparatus
TWI596747B (en) Solid-state imaging device and electronic equipment
US8665363B2 (en) Solid-state image device, method for producing the same, and image pickup apparatus
JP2014127519A (en) Solid-state imaging element and electronic device
US11205668B2 (en) Light receiving device, method of manufacturing light receiving device, imaging device, and electronic apparatus
TWI523210B (en) Sensor, semiconductor substrate, and method for making a semiconductor substrate
TWI416716B (en) Solid-state image device, method for producing the same, and image pickup apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees