TWI412553B - Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same - Google Patents

Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same Download PDF

Info

Publication number
TWI412553B
TWI412553B TW99136650A TW99136650A TWI412553B TW I412553 B TWI412553 B TW I412553B TW 99136650 A TW99136650 A TW 99136650A TW 99136650 A TW99136650 A TW 99136650A TW I412553 B TWI412553 B TW I412553B
Authority
TW
Taiwan
Prior art keywords
solid capacitor
solid
electrolyte composition
capacitor
sulfonic acid
Prior art date
Application number
TW99136650A
Other languages
Chinese (zh)
Other versions
TW201217450A (en
Inventor
Kuo Liang Yeh
Kung Hsun Huang
Tz Bang Du
Shyue Ming Jang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99136650A priority Critical patent/TWI412553B/en
Priority to JP2011199224A priority patent/JP2012094835A/en
Publication of TW201217450A publication Critical patent/TW201217450A/en
Application granted granted Critical
Publication of TWI412553B publication Critical patent/TWI412553B/en

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide solid capacitor formation oxidant with a modified activation phenomenon of a solid electrolyte, thus having an effect on its micro structure and solid electrolyte. <P>SOLUTION: The solid capacitor formation oxidant includes trivalent iron ions and sulfonic acid ferric salt that is an ion compound having a constitution expressed in a specific chemical formula and comprised of at least one organic sulfonic acid ion. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

用於形成固態電容的氧化劑、包含其之電解質組成物、固態電容、及其製造方法Oxidizer for forming solid capacitor, electrolyte composition containing the same, solid capacitor, and manufacturing method thereof

本發明係關於一種用於形成固態電容的氧化劑,尤係關於一種可提高固態電容崩潰電壓的用於形成固態電容的氧化劑。The present invention relates to an oxidant for forming a solid capacitor, and more particularly to an oxidant for forming a solid capacitor that can increase the breakdown voltage of a solid capacitor.

新一代固態電容具有耐熱超過攝氏300度、高頻低阻抗(10毫歐)、快速放電、體積小、無漏液以及壽命最高可達四萬小時等特點。而現在中央處理器運算速度愈來愈快,傳統液態電解電容因無法承受高溫而易產生容爆現象,因此液態電解電容已無法滿足通訊、電腦及消費性電子等產品的需求,而慢慢被固態電容所取代。而固態電容目前是以單體如3,4-乙烯二氧噻吩(3,4-ethylenedioxythiophene,以下簡稱EDOT)以及鐵鹽氧化劑如對甲苯磺酸鐵(Iron(III)p-toluenesulfonate,以下簡稱FePTS)在固態電容器中進行聚合,生成聚3,4-乙烯二氧噻吩(poly-3,4-ethylenedioxy-thiophene,以下簡稱PEDOT)做為固態電解質。以此原料所得到之固態電容,超過30V之電壓將導致固態電容特性變差、信賴度不穩定或甚至發生短路現象。The new generation of solid-state capacitors has a heat resistance of more than 300 degrees Celsius, high frequency and low impedance (10 milliohms), fast discharge, small size, no leakage and a life expectancy of up to 40,000 hours. Nowadays, the CPU speed is getting faster and faster. Traditional liquid electrolytic capacitors are prone to explosion due to their inability to withstand high temperatures. Therefore, liquid electrolytic capacitors can no longer meet the needs of products such as communication, computer and consumer electronics. Replaced by solid capacitors. The solid capacitor is currently a monomer such as 3,4-ethylenedioxythiophene (EDOT) and an iron salt oxidant such as iron (I) (Iron (III) p-toluenesulfonate, hereinafter referred to as FePTS The polymerization is carried out in a solid capacitor to form poly-3,4-ethylenedioxy-thiophene (hereinafter referred to as PEDOT) as a solid electrolyte. The solid capacitor obtained from this material, the voltage exceeding 30V will cause the solid capacitor characteristics to deteriorate, the reliability is unstable or even a short circuit occurs.

影響固態電容崩潰電壓的原因包含導電傳導層耐溫不足、介電層穩定性不夠、隔離紙防穿刺效果不佳或其他原因。由於固態電容中漏電流的存在,在高電壓下導電高分子將會發熱,因而導致導電高分子材質劣化或甚至發生正負電極短路現象,這些現象都會造成固態電容耐電壓不足或是電容特性變差。文獻報導中,提升固態電容器耐電壓特性可經由下列幾種手段達到:A.將EDOT進行預聚合;B.改善隔離紙性能;C.於介電層鍍上保護層;D.使用新結構PEDOT;E.添加離子傳導性物質;F:添加試劑增強PEDOT穩定性。The reasons for the breakdown voltage of the solid capacitor include insufficient temperature resistance of the conductive conductive layer, insufficient stability of the dielectric layer, poor puncture resistance of the release paper, or other reasons. Due to the presence of leakage current in the solid capacitor, the conductive polymer will generate heat at high voltage, which may cause deterioration of the conductive polymer material or even short-circuiting of the positive and negative electrodes. These phenomena may cause insufficient voltage resistance of the solid capacitor or poor capacitance characteristics. . In the literature report, improving the withstand voltage characteristics of solid capacitors can be achieved by: A. pre-polymerizing EDOT; B. improving the performance of the release paper; C. plating the protective layer on the dielectric layer; D. using the new structure PEDOT ; E. Adding an ion conductive substance; F: adding a reagent to enhance PEDOT stability.

A.將EDOT進行預聚合的優點及缺點:A. Advantages and disadvantages of pre-polymerizing EDOT:

Udo Merker,Wilfried Lvenich,Klaus Wussow;Capacitor and Resistor Technology Symposium,2006在研討中發表【Conducting Polymer Dispersions for High-Capacitance Tantalum Capacitors】,將EDOT進行預聚合後再含浸到鉭質固態電容中。以此方法製作鉭質固態電容可降低ESR,也可提升耐電壓特性。Udo Merker, Wilfried L Venich, Klaus Wussow; Capacitor and Resistor Technology Symposium, 2006 published in the seminar [Conducting Polymer Dispersions for High-Capacitance Tantalum Capacitors], pre-polymerized EDOT and then impregnated into tantalum solid capacitors. The use of tantalum solid capacitors in this way reduces ESR and improves withstand voltage characteristics.

Yuri Freeman,William R. Harrell,Igor Luzinov,Brian Holman,and Philip Lessner;J. Electrochem. Soc. 2009,156,65.【Electrical Characterization of Polymer Tantalum Capacitors with Poly(3,4-ethylenedioxythiophene) Cathode】發表在鉭質固態電容製程中,原先利用EDOT與鐵鹽氧化劑進行聚合得到PEDOT,若將EDOT先進行預聚合,再製作成電容將可降低漏電流,並提高其耐電壓。Yuri Freeman, William R. Harrell, Igor Luzinov, Brian Holman, and Philip Lessner; J. Electrochem. Soc. 2009, 156, 65. [Electrical Characterization of Polymer Tantalum Capacitors with Poly (3,4-ethylenedioxythiophene) Cathode] In the tantalum solid capacitor process, PEDOT is originally obtained by polymerization using EDOT and iron salt oxidant. If EDOT is pre-polymerized, it can be made into a capacitor to reduce leakage current and increase the withstand voltage.

雖然EDOT進行預聚合可以提昇固態電容耐電壓特性,但是固態電容的生產設備需同步進行修改,需花費較大的設備投資成本。此外,不同的製程方式需調整不同製程條件,因此對於現階段固態電容廠來說並不適用。Although pre-polymerization of EDOT can improve the withstand voltage characteristics of solid capacitors, the production equipment of solid capacitors needs to be modified simultaneously, which requires a large investment cost of equipment. In addition, different process methods need to adjust different process conditions, so it is not applicable to the current solid capacitor factory.

B.改善隔離紙性能的優缺點:B. Advantages and disadvantages of improving the performance of the release paper:

JP2007059789中提到,控制隔離紙纖維長短、組成種類或密度等性質,這些調整將會影響固態電容的ESR、漏電流或耐電壓等特性。改善隔離紙特性雖然有助於耐電壓的提升,但是隔離紙僅能降低正負電極間的磨擦,減少介電層被破壞。導電高分子的特性若無法有效提升,終究無法提升固態電容耐電壓特性。JP2007059789 mentions the nature of the length, composition or density of the insulation paper, which will affect the ESR, leakage current or withstand voltage of the solid capacitor. Improving the properties of the separator paper contributes to the improvement of the withstand voltage, but the separator can only reduce the friction between the positive and negative electrodes and reduce the damage of the dielectric layer. If the characteristics of the conductive polymer cannot be effectively improved, the voltage resistance characteristics of the solid capacitor cannot be improved.

C.於介電層鍍上保護層的優缺點:C. Advantages and disadvantages of plating the protective layer on the dielectric layer:

Katsunori Nogami,Kiyoshi Sakamoto,Teruaki Hayakawa,Masa-aki Kakimoto;Journal of Power Sources 2007,166,584.【The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors】論文指出,利用高分子矽烷化合物做為介電層的保護膜,可提升固態電容之耐電壓。此保護層方法可直接降低介電層被破壞的機率,因而提升耐電壓特性。然而,保護層會填充到陽極多孔鋁箔的孔洞中,降低多孔鋁箔的表面積,因而降低固態電容的電容量。Katsunori Nogami, Kiyoshi Sakamoto, Teruaki Hayakawa, Masa-aki Kakimoto; Journal of Power Sources 2007, 166, 584. [The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors] The paper points out that the use of polymer decane compounds as The protective film of the dielectric layer can increase the withstand voltage of the solid capacitor. This protective layer method can directly reduce the probability of the dielectric layer being damaged, thereby improving the withstand voltage characteristics. However, the protective layer fills the pores of the anode porous aluminum foil, reducing the surface area of the porous aluminum foil, thereby reducing the capacitance of the solid capacitor.

D.使用新結構PEDOT的優缺點:D. Advantages and disadvantages of using the new structure PEDOT:

JP2008091589專利中揭露,使用新結構含硫雜環高分子poly-(3-carboxylic acid thiophene alkyl ammonium)做為電解質,可以提昇固態電容之耐電壓。使用新結構高分子可以提升固態電容的耐電壓特性,但是此結構高分子合成較困難,原料成本較高,若應用於固態電容生產將導致成本過高。JP2008091589 discloses that the use of a new structure of poly-(3-carboxylic acid thiophene alkyl ammonium) as an electrolyte can increase the withstand voltage of a solid capacitor. The use of new structural polymers can improve the withstand voltage characteristics of solid capacitors, but the structural polymer synthesis is difficult and the raw material cost is high. If it is applied to solid capacitor production, the cost will be too high.

E.添加離子傳導性物質的優缺點:E. Advantages and disadvantages of adding ion-conducting substances:

JP2009158547揭露導電高分子中添加羧酸高分子,此羧酸高分子可降低固態電容的漏電流,並可提升固態電容之耐電壓特性。添加羧酸高分子雖可提升固態電容耐電壓特性,但是因為羧酸高分子為不導電物質,添加後亦會影響導電高分子的導電度,因此會降低電容中電阻特性表現。JP2009158547 discloses the addition of a carboxylic acid polymer to a conductive polymer, which can reduce the leakage current of the solid capacitor and improve the withstand voltage characteristics of the solid capacitor. The addition of the carboxylic acid polymer can improve the withstand voltage characteristics of the solid capacitor. However, since the carboxylic acid polymer is a non-conductive substance, the conductivity of the conductive polymer is also affected after the addition, thereby lowering the resistance characteristics of the capacitor.

F:添加試劑增強PEDOT穩定性的優缺點:F: Advantages and disadvantages of adding reagents to enhance PEDOT stability:

2009年中國專利CN101385105報導中指出,使用不同的添加劑可以提昇固態電容的耐電壓。添加劑包含聚合高分子,如:PEG200,PEG400,PEG6000等;含氮分子,如乙烯基咪唑;離子傳導性化合物,如:離子液體;矽烷偶連劑,如:KBM503,等。這些添加劑的使用雖可提升PEDOT穩定性,但亦同時會降低導電高分子導電特性,使電阻上升能耗上升。In the 2009 China patent CN101385105 report, the use of different additives can increase the withstand voltage of solid capacitors. The additive comprises a polymeric polymer such as PEG200, PEG400, PEG6000 or the like; a nitrogen-containing molecule such as vinylimidazole; an ion conductive compound such as an ionic liquid; a decane coupling agent such as KBM503, and the like. Although the use of these additives can improve the stability of PEDOT, it also reduces the conductive properties of the conductive polymer and increases the energy consumption of the resistance increase.

上述專利及文獻雖揭露改善固態電容耐電壓的各種方式,但卻必須改變現有製程、降低固態電容的電容量、合成成本較高的導電高分子或影響導電高分子的導電特性,而仍有相當大的改善空間。Although the above patents and documents disclose various ways to improve the withstand voltage of the solid capacitor, it is necessary to change the existing process, reduce the capacitance of the solid capacitor, and the conductive polymer with high synthesis cost or affect the conductive properties of the conductive polymer, and still have considerable Great improvement space.

本發明揭露一種用於形成固態電容的氧化劑,主要藉由改變鐵鹽氧化劑的陰離子結構,導入不同磺酸陰離子,改變固態電解質的摻雜現象,進而影響到其微結構與固態電解質的特性。影響的特性包含導電度、熱穩定性等。由本發明所述氧化劑所形成之固態電容,其固態電容的崩潰電壓比一般磺酸鐵氧化劑形成之固態電容要高。這是因為本發明所述之有機磺酸鐵鹽其耐熱性較佳,因此得到之固態電解質耐熱性也隨之提升,進而提升固態電容的崩潰電壓。此應用新磺酸鐵鹽的方式將可直接套用於現階段固態電容廠的生產,不需更改設備,在條件參數部分只需針對現有參數進行微調即可開始生產。此外,上述方式亦不需降低固態電容的電容量,也不用合成成本較高的導電高分子,甚至在不會影響固態電解質的導電特性的同時,而能提高固態電容的崩潰電壓。The invention discloses an oxidant for forming a solid capacitor, mainly by changing the anion structure of the iron salt oxidant, introducing different sulfonic acid anions, changing the doping phenomenon of the solid electrolyte, thereby affecting the characteristics of the microstructure and the solid electrolyte. The properties that are affected include electrical conductivity, thermal stability, and the like. The solid capacitor formed by the oxidant of the present invention has a solid capacitor having a higher breakdown voltage than a solid capacitor formed by a general sulfonic acid iron oxidant. This is because the organic sulfonic acid iron salt of the present invention has better heat resistance, and thus the heat resistance of the obtained solid electrolyte is also increased, thereby increasing the breakdown voltage of the solid capacitor. The application of the new sulfonic acid iron salt method can be directly applied to the production of the current solid-state capacitor factory without changing the equipment. In the condition parameter part, it is only necessary to fine-tune the existing parameters to start production. In addition, the above method does not need to reduce the capacitance of the solid capacitor, nor does it use a conductive polymer with a high synthesis cost, and can improve the breakdown voltage of the solid capacitor even without affecting the conductive properties of the solid electrolyte.

本發明提供一種用於形成固態電容的氧化劑,包含:一磺酸鐵鹽,其中該磺酸鐵鹽係由一三價鐵離子與至少一有機磺酸離子所構成之離子化合物,該有機磺酸離子係具有式1、式2、式3、式4或式5所示之結構The present invention provides an oxidizing agent for forming a solid capacitor, comprising: an iron sulfonate salt, wherein the sulfonic acid iron salt is an ionic compound composed of a trivalent iron ion and at least one organic sulfonic acid ion, the organic sulfonic acid. The ion system has the structure shown in Formula 1, Formula 2, Formula 3, Formula 4 or Formula 5.

,其中R11 、R12 、R13 、R14 、R15 、R21 、R22 、R23 、R24 、R25 、R26 、R27 、R31 、R32 、R33 、R34 、R35 、R36 、R41 、R42 、R43 、R44 、R45 、R46 、R47 、R48 、R49 、R51 、R52 及R53 係各自獨立並係為H、C1-18 烷基、C1-18 酯基、C5-12 環烷基、硝基、磺酸基、羥基、或芳香基;且當該有機磺酸離子係為式1之結構,R13 為甲基時,R11 、R12 、R14 及R15 中至少一者不為H。Wherein R 11 , R 12 , R 13 , R 14 , R 15 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 49 , R 51 , R 52 and R 53 are each independently H and C. a 1-18 alkyl group, a C 1-18 ester group, a C 5-12 cycloalkyl group, a nitro group, a sulfonic acid group, a hydroxyl group, or an aryl group; and when the organic sulfonic acid ion is a structure of the formula 1, R 13 When it is a methyl group, at least one of R 11 , R 12 , R 14 and R 15 is not H.

本發明亦提供一種電解質組成物,包含:一溶劑;上述用於形成固態電容的氧化劑,以及一導電高分子。The present invention also provides an electrolyte composition comprising: a solvent; the above-mentioned oxidizing agent for forming a solid capacitor, and a conductive polymer.

本發明亦提供一種固態電容製造方法,包含:形成一介電層於一電容素子之表面;對上述電解質組成物進形聚合反應,得到一固態電解質溶液;將該電容素子含浸於該固態電解質溶液中;由該固態電解質溶液中取中該電容素子並進行一烘乾製程;以及,組裝該電容素子成為一固態電容。The invention also provides a method for manufacturing a solid capacitor, comprising: forming a dielectric layer on a surface of a capacitor element; forming a solid electrolyte solution by performing a polymerization reaction on the electrolyte composition; and impregnating the solid electrolyte solution with the capacitor element Taking the capacitor element from the solid electrolyte solution and performing a drying process; and assembling the capacitor element into a solid capacitor.

本發明亦提供一種固態電容,係由上述製造方法所製配而得。The invention also provides a solid capacitor obtained by the above manufacturing method.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出實施方式,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

本發明完成一種含有可提高固態電容崩潰電壓的磺酸鐵鹽,並利用上述磺酸鐵鹽完成本發明的電解質組成物與固態電容。若可開發高電壓固態電容,其市場可擴大到汽車、電源供應器等應用,電容價格與利潤將可大幅上升。The present invention accomplishes an electrolyte consisting of an iron sulfonate salt which increases the breakdown voltage of a solid capacitor, and the electrolyte composition and solid capacitor of the present invention are completed by using the above iron sulfonate. If high-voltage solid-state capacitors can be developed, the market can be expanded to applications such as automobiles and power supplies, and the price and profit of capacitors will increase dramatically.

首先合成各式結構之有機磺酸鐵氧化劑。合成方法為利用氯化鐵與各式有機磺酸分子於甲醇加熱後所產生的氫氣酸氣體,經過加熱共沸數次後可移除大部分氫氯酸雜質,最後各式結構有機磺酸鐵再經過三次再結晶即可得到相對應之高純度有機磺酸鐵,如反應式(1):First, an organic sulfonic acid iron oxidizing agent of various structures is synthesized. The synthesis method is a hydrogen acid gas generated by using ferric chloride and various organic sulfonic acid molecules heated in methanol, and after heating and azeotropic several times, most of the hydrochloric acid impurities can be removed, and finally, various structures of organic sulfonic acid iron are removed. After three times of recrystallization, the corresponding high-purity organic sulfonic acid iron can be obtained, as in the reaction formula (1):

FeCl3 +3XH→FeX3 +3HCl(g)................(1)FeCl 3 +3XH→FeX 3 +3HCl(g).....................(1)

其中X係指有機磺酸離子,可具有式1、式2、式3、式4或式5所示之結構Wherein X refers to an organic sulfonic acid ion, which may have the structure shown in Formula 1, Formula 2, Formula 3, Formula 4 or Formula 5.

,其中R11 、R12 、R13 、R14 、R15 、R21 、R22 、R23 、R24 、R25 、R26 、R27 、R31 、R32 、R33 、R34 、R35 、R36 、R41 、R42 、R43 、R44 、R45 、R46 、R47 、R48 、R49 、R51 、R52 及R53 係各自獨立並係為H、C1-18 烷基、C1-18 酯基、C5-12 環烷基、硝基、磺酸基、羥基、或芳香基;且當該有機磺酸離子係為式1之結構,R13 為甲基時,R11 、R12 、R14 及R15 中至少一者不為H。Wherein R 11 , R 12 , R 13 , R 14 , R 15 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 , R 49 , R 51 , R 52 and R 53 are each independently H and C. a 1-18 alkyl group, a C 1-18 ester group, a C 5-12 cycloalkyl group, a nitro group, a sulfonic acid group, a hydroxyl group, or an aryl group; and when the organic sulfonic acid ion is a structure of the formula 1, R 13 When it is a methyl group, at least one of R 11 , R 12 , R 14 and R 15 is not H.

在上述中,”芳香基(aryl)”代表一單環或多環系統之碳氫芳香環,例如:苯基,甲苯基,萘基,四氫化萘基(tetrahydronaphthyl),聯苯基(biphenyl),菲基(phenanthryl)、蒽基(anthracyl)等。“環烷基(cycloalkyl)”代表一非芳香族之碳氫單環或多環,可含有3~12個碳原子,例如環丙基、環丁基、環戊基、環己基、環辛基、二環[2.2.1]辛基等。In the above, "aryl" represents a hydrocarbon aromatic ring of a monocyclic or polycyclic ring system, for example: phenyl, tolyl, naphthyl, tetrahydronaphthyl, biphenyl. , phenanthryl, anthracyl, and the like. "Cycloalkyl" means a non-aromatic hydrocarbon monocyclic or polycyclic ring containing from 3 to 12 carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclooctyl , two rings [2.2.1] octyl and so on.

實施例1新結構有機磺酸鐵的合成Example 1 Synthesis of New Structure Iron Iron Sulfate

取10毫莫耳(mmol)氯化鐵,加入200毫升(mL)水以及30 mmol各式結構有機磺酸,之後加熱蒸餾移除100毫升(mL)水及副產品氯化氫,並再補加100毫升mL純水,重複移除並補加水3次,之後將水以減壓蒸餾移除。得到的固體再以適量的水或甲醇進行再結晶3-5次,得到相對應有機磺酸鐵,如表一。Take 10 millimoles (mmol) of ferric chloride, add 200 ml (mL) of water and 30 mmol of various structures of organic sulfonic acid, then remove 100 ml (mL) of water and by-product hydrogen chloride by heating and distill, and add 100 ml. mL of pure water was repeatedly removed and water was added 3 times, after which the water was removed by distillation under reduced pressure. The obtained solid was recrystallized 3-5 times with an appropriate amount of water or methanol to obtain a corresponding organic sulfonic acid iron, as shown in Table 1.

各式磺酸鐵鹽名稱如下,FeCS名稱為樟腦磺酸鐵鹽;FeNS名稱為萘磺酸鐵鹽;FeDBS名稱為二甲基苯磺酸鐵鹽;FeAT名稱為蒽磺酸鐵鹽;FeMNS名稱為2甲基-4硝基苯磺酸鐵鹽;FeDB名稱為4-12烷基苯磺酸鐵鹽;FeHB名稱為4-羥基苯磺酸鐵鹽;FeBPA名稱為二苯基-4-磺酸鐵鹽;FeIQA名稱為喹啉-8-磺酸鐵鹽。The names of various sulfonic acid iron salts are as follows, the FeCS name is iron salt of camphorsulfonate; the FeNS name is iron salt of naphthalenesulfonate; the name of FeDBS is iron salt of dimethylbenzenesulfonate; the name of FeAT is iron salt of sulfonate; the name of FeMNS Is 2 methyl-4 nitrobenzenesulfonic acid iron salt; FeDB name is 4-12 alkylbenzenesulfonic acid iron salt; FeHB name is 4-hydroxybenzenesulfonic acid iron salt; FeBPA name is diphenyl-4-sulfonate Acid iron salt; FeIQA name is quinoline-8-sulfonic acid iron salt.

此外,本發明亦提供一種應用於高電壓固態電容的上述磺酸鐵鹽氧化劑之製造方法,其具體步驟包含提供上述各式磺酸鐵鹽氧化劑的方法。In addition, the present invention also provides a method for producing the above sulfonic acid iron salt oxidizing agent applied to a high voltage solid capacitor, the specific step of which comprises the method for providing the above various sulfonic acid iron salt oxidizing agents.

實施例2固態電容製作Example 2 Solid capacitor fabrication

將蝕刻陽極鋁箔與陰極鋁箔分別釘上導針,在兩電極中間以隔離紙隔開,並將兩電極與隔離紙進行捲繞,最後以膠帶固定,此元件稱之為素子(element)。素子先於10%己二酸二銨水溶液中施加50V電壓進行氧化處理該素子表面,使表面形成介電層。接著在120℃下烘乾30分鐘,並在250℃將隔離紙進行碳化,冷卻後備用。The etched anode aluminum foil and the cathode aluminum foil are respectively pinned to the guide pins, separated by the separation paper between the two electrodes, and the two electrodes are wound with the release paper, and finally fixed by tape, and the element is called an element. The surface of the element was oxidized by applying a voltage of 50 V to a 10% aqueous solution of diammonium adipate to form a dielectric layer on the surface. It was then dried at 120 ° C for 30 minutes, and the separator paper was carbonized at 250 ° C, and cooled for use.

將上述各式磺酸鐵鹽氧化劑配製成1M甲醇溶液,在其他實施例中,溶劑可為具有1至10個碳原子之醇類,例如乙醇、丙醇、異丙醇、或正丁醇。取10mL上述溶液,並降溫到0℃(或0℃以下),在低溫下加入1.18克EDOT,形成電解質組成物。The above various sulfonic acid iron salt oxidizing agents are formulated into a 1 M methanol solution. In other embodiments, the solvent may be an alcohol having 1 to 10 carbon atoms, such as ethanol, propanol, isopropanol, or n-butanol. . 10 mL of the above solution was taken, and the temperature was lowered to 0 ° C (or below 0 ° C), and 1.18 g of EDOT was added at a low temperature to form an electrolyte composition.

當磺酸鐵鹽氧化劑與EDOT攪拌均勻後,將上述處理過之素子於此電解質組成物溶液中進行含浸,含浸時的溫度範圍為下列溫度範圍-20℃至-10℃、-10℃至-5℃、-5℃至10℃、5℃至25℃、10℃至50℃、15℃至50℃、20℃至45℃、25℃至35℃、35℃至50℃、45℃至65℃、45℃至80℃、50℃至115℃、65℃至120℃、80℃至115℃、115℃至150℃,或是上述任意溫度範圍之組合,例如-20℃至-10℃、-10℃至-5℃、-5℃至10℃、10℃至50℃、50℃至115℃、115℃至150℃的梯度溫度範圍的組合。換言之,即是-20℃至150℃之間的梯度溫度範圍組合。在此電解質組成物溶液中,磺酸鐵鹽氧化劑的重量百分比濃度範圍為下列濃度範圍中5%至40%、10%至75%、12%至55%、18%至74%、25%至48%、35%至79%、5%至80%、7%至71%、28%至68%、22%至72%及65%至76%中選其一。此外磺酸鐵鹽氧化劑與該導電高分子之莫爾比範圍為下列範圍中5:1至0.5:1、4.5:1至0.5:2、4.7:1至0.5:1.5、4.8:1至0.6:1、4.9:1至0.3:1.5、4.1:1至0.8:1、3.8:1至2.1:1及3.2:1至1.8:1選其一。相對應而言,導電高分子的濃度範圍為下列範圍中0.3M至2M、0.3.2M至1.8M、0.35M至2.5M、0.29M至2.2M、0.21M至1.5M、0.6M至1.2M、1.3M至1.7M、1.1M至1.9M及0.7M至1.1M中選其一。由上述含浸溫度範圍、磺酸鐵鹽氧化劑的重量百分比濃度範圍、磺酸鐵鹽氧化劑與該導電高分子之莫爾比範圍及導電高分子的濃度範圍等參數相互影響下,電容素子的含浸時間較佳為5分鐘至300分鐘之間。After the sulfonic acid iron salt oxidizing agent and the EDOT are uniformly stirred, the above-mentioned treated element is impregnated in the electrolyte composition solution, and the temperature range in the impregnation is the following temperature range -20 ° C to -10 ° C, -10 ° C to - 5 ° C, -5 ° C to 10 ° C, 5 ° C to 25 ° C, 10 ° C to 50 ° C, 15 ° C to 50 ° C, 20 ° C to 45 ° C, 25 ° C to 35 ° C, 35 ° C to 50 ° C, 45 ° C to 65 °C, 45 ° C to 80 ° C, 50 ° C to 115 ° C, 65 ° C to 120 ° C, 80 ° C to 115 ° C, 115 ° C to 150 ° C, or a combination of any of the above temperature ranges, such as -20 ° C to -10 ° C, A combination of gradient temperature ranges of -10 ° C to -5 ° C, -5 ° C to 10 ° C, 10 ° C to 50 ° C, 50 ° C to 115 ° C, 115 ° C to 150 ° C. In other words, it is a combination of gradient temperature ranges between -20 ° C and 150 ° C. In the electrolyte composition solution, the weight percentage concentration of the sulfonic acid iron salt oxidizing agent ranges from 5% to 40%, 10% to 75%, 12% to 55%, 18% to 74%, 25% to the following concentration ranges. One of 48%, 35% to 79%, 5% to 80%, 7% to 71%, 28% to 68%, 22% to 72%, and 65% to 76%. Further, the molar ratio of the sulfonic acid iron salt oxidizing agent to the conductive polymer is in the range of 5:1 to 0.5:1, 4.5:1 to 0.5:2, 4.7:1 to 0.5:1.5, 4.8:1 to 0.6: 1, 4.9:1 to 0.3:1.5, 4.1:1 to 0.8:1, 3.8:1 to 2.1:1, and 3.2:1 to 1.8:1 to choose one. Correspondingly, the concentration of the conductive polymer ranges from 0.3 M to 2 M, 0.3.2 M to 1.8 M, 0.35 M to 2.5 M, 0.29 M to 2.2 M, 0.21 M to 1.5 M, and 0.6 M to 1.2 M in the following ranges. Choose one of 1.3M to 1.7M, 1.1M to 1.9M, and 0.7M to 1.1M. The impregnation time of the capacitor element is affected by the above impregnation temperature range, the concentration range of the weight percentage of the sulfonic acid iron salt oxidant, the molar ratio of the sulfonic acid iron salt oxidant to the Mobi ratio of the conductive polymer, and the concentration range of the conductive polymer. It is preferably between 5 minutes and 300 minutes.

含浸完成後在40℃反應30分鐘,並以溫度60℃至200℃範圍烘乾1小時,之後直接供給不同電壓直到電壓崩潰。該崩潰電壓即為其耐電壓,不同結構其耐電壓結果如表二所示。每一種鐵鹽氧化劑均製作三顆電容,並量測其特性。在此實施例中,固態電解質組成物包含導電高分子與實施例1中的各式磺酸鐵鹽氧化劑。具體而言,導電高分子可為3,4-乙烯二氧噻吩、苯胺、吡咯(pyrrole)或其衍生物。此外,本發明亦提供一種上述固態電解質組成物之製造方法以應用於高電壓固態電,其具體步驟包含混合一種上述各式導電高分子(較佳為乙烯二氧噻吩)與一種上述各式磺酸鐵鹽氧化劑(較佳為蒽磺酸鐵鹽)的方法。After the impregnation was completed, the reaction was carried out at 40 ° C for 30 minutes, and dried at a temperature of 60 ° C to 200 ° C for 1 hour, after which different voltages were directly supplied until the voltage collapsed. The breakdown voltage is its withstand voltage, and the withstand voltage results of different structures are shown in Table 2. Each of the iron salt oxidants is made up of three capacitors and their characteristics are measured. In this embodiment, the solid electrolyte composition contains the conductive polymer and the various sulfonic acid iron salt oxidizing agents in Example 1. Specifically, the conductive polymer may be 3,4-ethylenedioxythiophene, aniline, pyrrole or a derivative thereof. In addition, the present invention also provides a method for producing the above solid electrolyte composition for application to high voltage solid state electricity, the specific step of which comprises mixing a plurality of the above-mentioned conductive polymers (preferably ethylene dioxythiophene) with a sulfonate of the above formula. A method of an acid iron salt oxidizing agent, preferably an iron sulfonate sulfonate.

若電容特性通過≧40V耐電壓測試之電容,將進行漏電流(LC)、電容值(Cs)、能耗係數(DF)以及等相串聯電阻(ESR)等電容特性的量測,其結果整理於表三。If the capacitance characteristic passes the capacitance of the ≧40V withstand voltage test, the capacitance characteristics such as leakage current (LC), capacitance value (Cs), energy consumption coefficient (DF), and isophase series resistance (ESR) will be measured. In Table 3.

從實施例數據中可發現,使用不同結構鐵鹽氧化劑影響耐電壓特性很大。若使用萘環(FeNS)或蒽環(FeAT)磺酸結構分子,其耐電壓可達40V以上。除了耐電壓高的效果,其漏電流、電容值、能耗係數以及等相串聯電阻的表現也符合產品的規格。因此,可直接應用於現階段固態電容設備的生產。It can be seen from the data of the examples that the use of different structural iron salt oxidants affects the withstand voltage characteristics. If a naphthalene ring (FeNS) or an anthracene ring (FeAT) sulfonic acid structural molecule is used, the withstand voltage can reach 40 V or more. In addition to the high voltage withstand voltage, its leakage current, capacitance value, energy consumption coefficient and the performance of the isophase series resistance also meet the specifications of the product. Therefore, it can be directly applied to the production of solid capacitor equipment at this stage.

比較例1傳統鐵鹽氧化劑於固態電容耐電壓測試Comparative Example 1 Traditional Iron Salt Oxidant in Solid Capacitance Withstand Voltage Test

實施方式請參考實施例2。其中鐵鹽氧化劑使用對甲苯磺酸鐵(FepTS),其餘做法與實施例2相同。耐電壓測試結果如表四。Please refer to Embodiment 2 for the embodiment. The iron salt oxidant used was iron p-toluenesulfonate (FepTS), and the rest was the same as in Example 2. The withstand voltage test results are shown in Table 4.

在如表四所顯示之比較例數據中,可以發現現階段使用之對甲苯磺酸鐵(FepTS)其耐電壓仍無法達到高電壓(≧40V)之需求。In the comparative data shown in Table 4, it can be found that the resistance voltage of iron p-toluenesulfonate (FepTS) used at this stage is still unable to reach a high voltage (≧40V).

本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims

Claims (15)

一種用於形成固態電容的氧化劑,包含:一磺酸鐵鹽,其中該磺酸鐵鹽係由一三價鐵離子與至少一有機磺酸離子所構成之離子化合物,該有機磺酸離子係具有式1、式2、式3、式4或式5所示之結構 ,其中R31 、R32 、R33 、R34 、R35 、R36 、R41 、R42 、R43 、R44 、R45 、R46 、R47 、R48 及R49 係各自獨立並係為H、C1-18 烷基、C1-18 酯基、C5-12 環烷基、硝基、磺酸基、羥基、或芳香基。An oxidizing agent for forming a solid capacitor, comprising: an iron sulfonate salt, wherein the sulfonic acid iron salt is an ionic compound composed of a trivalent iron ion and at least one organic sulfonic acid ion, the organic sulfonic acid ion having Structure shown in Formula 1, Formula 2, Formula 3, Formula 4 or Formula 5 Wherein R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 41 , R 42 , R 43 , R 44 , R 45 , R 46 , R 47 , R 48 and R 49 are each independently It is H, C 1-18 alkyl, C 1-18 ester, C 5-12 cycloalkyl, nitro, sulfonate, hydroxy, or aryl. 如申請專利範圍第1項所述之用於形成固態電容的氧化 劑,其中該有機磺酸離子之結構係為 An oxidizing agent for forming a solid capacitor according to claim 1, wherein the structural structure of the organic sulfonic acid ion is 如申請專利範圍第1項所述之用於形成固態電容的氧化劑,其中該有機磺酸離子之結構係為 An oxidizing agent for forming a solid capacitor according to claim 1, wherein the structural structure of the organic sulfonic acid ion is 一種電解質組成物,包含:一溶劑;如申請專利範圍第1項所述之用於形成固態電容的氧化劑;以及一導電高分子。 An electrolyte composition comprising: a solvent; an oxidizing agent for forming a solid capacitor according to claim 1; and a conductive polymer. 如申請專利範圍第4項所述之電解質組成物,其中該導電高分子係為3,4-乙烯二氧噻吩(3,4-ethylenedioxythiophene)、苯胺、或吡咯(pyrrole)。 The electrolyte composition according to claim 4, wherein the conductive polymer is 3,4-ethylenedioxythiophene, aniline or pyrrole. 如申請專利範圍第4項所述之電解質組成物,其中該用於形成固態電容的氧化劑之重量百分比濃度範圍係介於5%至80%之間,以該用於形成固態電容的氧化劑及導電高分子之總重為基準。 The electrolyte composition according to claim 4, wherein the oxidizing agent for forming the solid capacitor has a concentration percentage ranging from 5% to 80%, and the oxidizing agent and the conductive material for forming the solid capacitor. The total weight of the polymer is the benchmark. 如申請專利範圍第4項所述之電解質組成物,其中該用於形成固態電容的氧化劑與該導電高分子之莫爾比係 介於5:1至0.5:1之間。 The electrolyte composition according to claim 4, wherein the oxidizing agent for forming a solid capacitor and the molar ratio of the conductive polymer Between 5:1 and 0.5:1. 如申請專利範圍第4項所述之電解質組成物,其中該導電高分子的濃度係介於0.3M至2M之間。 The electrolyte composition according to claim 4, wherein the concentration of the conductive polymer is between 0.3 M and 2 M. 如申請專利範圍第4項所述之電解質組成物,其中該溶劑係為具有1至10個碳原子之醇類。 The electrolyte composition according to claim 4, wherein the solvent is an alcohol having 1 to 10 carbon atoms. 一種固態電容製造方法,包含:形成一介電層於一電容素子之表面;將該電容素子含浸於申請專利範圍第4項所述之電解質組成物中;對吸附於電容素子上之電解質組成物進行一聚合反應;以及組裝該電容素子成為一固態電容。 A solid capacitor manufacturing method comprising: forming a dielectric layer on a surface of a capacitor element; impregnating the capacitor element with the electrolyte composition described in claim 4; and adsorbing the electrolyte composition on the capacitor element Performing a polymerization reaction; and assembling the capacitor element into a solid capacitor. 如申請專利範圍第10項所述之固態電容製造方法,其中該電容素子含浸於申請專利範圍第4項所述之電解質組成物之溫度範圍係介於-20℃至150℃之間。 The method of manufacturing a solid capacitor according to claim 10, wherein the capacitor element is impregnated with the electrolyte composition of claim 4 in a temperature range of between -20 ° C and 150 ° C. 如申請專利範圍第10項所述之固態電容製造方法,其中該電容素子含浸於申請專利範圍第4項所述之電解質組成物之時間係介於5分鐘至300分鐘之間。 The method of manufacturing a solid capacitor according to claim 10, wherein the time period in which the octophan element is impregnated with the electrolyte composition described in claim 4 is between 5 minutes and 300 minutes. 如申請專利範圍第10項所述之固態電容製造方法,在完成該聚合反應後,更包含一對該電容素子進行一烘乾製程。 The method for manufacturing a solid capacitor according to claim 10, further comprising a pair of the capacitors for performing a drying process after the polymerization is completed. 如申請專利範圍第13項所述之固態電容製造方法,其中該烘乾製程之溫度係介於60℃至200℃之間。 The method of manufacturing a solid capacitor according to claim 13, wherein the temperature of the drying process is between 60 ° C and 200 ° C. 一種固態電容,係由申請專利範圍第10項所述之固態電 容製造方法所製備而得。A solid capacitor is the solid state electric power described in claim 10 Prepared by the manufacturing method.
TW99136650A 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same TWI412553B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99136650A TWI412553B (en) 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same
JP2011199224A JP2012094835A (en) 2010-10-27 2011-09-13 Solid capacitor formation oxidant, electrolyte composition containing the same, solid capacitor, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99136650A TWI412553B (en) 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201217450A TW201217450A (en) 2012-05-01
TWI412553B true TWI412553B (en) 2013-10-21

Family

ID=46387809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99136650A TWI412553B (en) 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2012094835A (en)
TW (1) TWI412553B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506031B (en) * 2014-11-05 2015-11-01 Ind Tech Res Inst Ferric salt oxidant, solid electrolytic capacitor, and method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434602B (en) * 1998-05-21 2001-05-16 Showa Denko Kk Solid electrolytic capacitor and method for preparing the same
TW200414244A (en) * 2002-11-21 2004-08-01 Showa Denko Kk Solid electrolytic capacitor and method for producing the same
TW200948848A (en) * 2008-03-04 2009-12-01 Nec Tokin Corp Conductive polymer and solid electrolytic capacitor using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0643736T3 (en) * 1992-06-03 1998-08-10 Zipperling Kessler & Co Thermally stable, electrically conductive, conjugated polymer complexes having hydrogen bonding counterions
JP3076259B2 (en) * 1997-03-07 2000-08-14 富山日本電気株式会社 Oxidant solution for synthesis of heat-resistant conductive polymer and method for producing conductive polymer
JPH1187182A (en) * 1997-09-11 1999-03-30 Tdk Corp Organic solid electrolytic capacitor and its manufacture
JP2000299253A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Manufacture of capacitor
JP2001044079A (en) * 1999-07-27 2001-02-16 Matsushita Electric Ind Co Ltd Manufacture of capacitor
JP2001110683A (en) * 1999-08-03 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor
JP3868202B2 (en) * 2000-11-01 2007-01-17 テイカ株式会社 Oxidizing agent for conductive polymer production
JP4035639B2 (en) * 2001-11-08 2008-01-23 日立エーアイシー株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP4475669B2 (en) * 2006-08-14 2010-06-09 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2008186874A (en) * 2007-01-27 2008-08-14 Nippon Chemicon Corp Solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434602B (en) * 1998-05-21 2001-05-16 Showa Denko Kk Solid electrolytic capacitor and method for preparing the same
TW200414244A (en) * 2002-11-21 2004-08-01 Showa Denko Kk Solid electrolytic capacitor and method for producing the same
TW200948848A (en) * 2008-03-04 2009-12-01 Nec Tokin Corp Conductive polymer and solid electrolytic capacitor using the same

Also Published As

Publication number Publication date
JP2012094835A (en) 2012-05-17
TW201217450A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
US8014128B2 (en) Method for forming oxide film on metal surface using ionic liquid, electrolytic capacitor and electrolyte thereof
US8940191B2 (en) Electroconductive polymer solution, electroconductive polymer composition, and solid electrolytic capacitor therewith and method for producing same
JP5093915B2 (en) Solid electrolytic capacitor
JP5745881B2 (en) Solid electrolytic capacitor
Shi et al. Excellent low temperature performance electrolyte of spiro-(1, 1′)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor
JP2008166364A (en) Solid electrolytic capacitor
WO2011108255A1 (en) Process for producing solid electrolytic capacitor, and solid electrolytic capacitor
TWI412553B (en) Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same
TWI464934B (en) Electrolytic material formulation, electrolytic material polymer formed therefrom and use thereof
WO2011052237A1 (en) Solid electrolytic capacitor and method for producing same
JP2012191085A (en) Electrolyte composition and ionic liquid
KR20140057194A (en) Polymerization solution, conductive polymer film obtained from polymerization solution, and solid eletrolytic capacitor
JP7049127B2 (en) Capacitors, their manufacturing methods, and conductive polymer dispersions
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
TWI465503B (en) Electrolytic material formulation, electrolytic material composition formed therefrom and use thereof
JP2012054258A (en) Electrolytic polymerization solution for forming conductive polymer, solid electrolytic capacitor, and method for manufacturing the same
JP4986062B2 (en) Manufacturing method of solid electrolytic capacitor
CN102321341B (en) Conductive polymer material and capacitor comprising the same
JP2008060556A (en) Solid-state electrolytic capacitor, and its manufacturing process
JP4204061B2 (en) Oxidizing agent and dopant for conductive polymer synthesis
CN102321342B (en) Conductive polymer material and capacitor comprising same
CN102464795A (en) Oxidant for forming solid capacitor, electrolyte composition comprising oxidant, solid capacitor and manufacturing method of solid capacitor
JP2015199787A (en) Conductive polymer solution, method for producing the same, conductive polymer material and solid electrolytic capacitor
JP2008262991A (en) Composition for conductive polymer capacitor electrolyte and method for manufacturing conductive polymer capacitor electrolyte employing the composition
CN102321343B (en) Conductive high polymer material and capacitor comprising same