JP4986062B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4986062B2
JP4986062B2 JP2008000987A JP2008000987A JP4986062B2 JP 4986062 B2 JP4986062 B2 JP 4986062B2 JP 2008000987 A JP2008000987 A JP 2008000987A JP 2008000987 A JP2008000987 A JP 2008000987A JP 4986062 B2 JP4986062 B2 JP 4986062B2
Authority
JP
Japan
Prior art keywords
conductive polymer
electrolytic
solution
electrolytic polymerization
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008000987A
Other languages
Japanese (ja)
Other versions
JP2009164367A (en
Inventor
智之 布目
幹夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2008000987A priority Critical patent/JP4986062B2/en
Publication of JP2009164367A publication Critical patent/JP2009164367A/en
Application granted granted Critical
Publication of JP4986062B2 publication Critical patent/JP4986062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、電解重合法による導電性高分子形成用の電解重合用電解液及びその用途に関し、より詳しくは該電解液を使用し形成した導電性高分子並びに該導電性高分子を固体電解質とした固体電解コンデンサ及びその製造方法に関する。   The present invention relates to an electrolytic solution for electrolytic polymerization for forming a conductive polymer by an electrolytic polymerization method and its use, and more specifically, a conductive polymer formed using the electrolytic solution and the conductive polymer as a solid electrolyte. The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

近年、導電性高分子に関する研究が飛躍的に発展し、その導電性・発光性・容易な製膜性などの特長を活かして各種用途への応用(例えば、固体電解コンデンサ、有機ELディスプレイ、有機トランジスタ、ポリマー電池、太陽電池、各種センサー材料、電磁波シールド材料、帯電防止材料、人工筋肉など)が期待されている。   In recent years, research on conductive polymers has developed dramatically, and its applications such as solid electrolytic capacitors, organic EL displays, and organic materials are utilized by taking advantage of its features such as conductivity, light emission, and easy film formation. Transistors, polymer batteries, solar batteries, various sensor materials, electromagnetic shielding materials, antistatic materials, artificial muscles, etc.) are expected.

導電性高分子の工業的利用の代表的な例としては固体電解コンデンサの電解質としての適用が挙げられ、先行技術としては、導電率が10−3〜10S/cmの範囲である真性導電性高分子の使用(特開平1−169914号公報)、ポリアニリンの使用(特開昭61−239617号公報)、ポリピロールの使用(特開昭61−240625号公報)、ポリチオフェン誘導体の使用(特開平2−15611号公報)、ポリイソチアナフテンの使用(特開昭62−118511号公報)等が開示されている。これらのπ共役系構造を有する導電性高分子の多くはドーパントアニオンを含んだ組成物として使用される。 A typical example of industrial use of a conductive polymer is application as an electrolyte of a solid electrolytic capacitor, and as a prior art, intrinsic conductivity having a conductivity in the range of 10 −3 to 10 3 S / cm. Use of a conductive polymer (JP-A-1-169914), use of polyaniline (JP-A-61-239617), use of polypyrrole (JP-A-61-240625), use of a polythiophene derivative (JP-A-6-142625) 2-15611), use of polyisothianaphthene (Japanese Patent Laid-Open No. 62-118511) and the like are disclosed. Many of these conductive polymers having a π-conjugated structure are used as a composition containing a dopant anion.

上記に代表される導電性高分子の多くは、ほとんどの有機溶媒に不溶かつ不融であるため加工成形性に乏しく、目的に適した形態の導電性高分子膜を得るために、様々な合成法および合成条件が検討されてきた。導電性高分子の形成方法としては、主に化学酸化重合法と電解酸化重合法が知られている。   Many of the conductive polymers represented above are insoluble and infusible in most organic solvents, so their workability is poor, and various synthetic compounds are used to obtain conductive polymer films in a form suitable for the purpose. Methods and synthesis conditions have been investigated. As a method for forming a conductive polymer, a chemical oxidative polymerization method and an electrolytic oxidative polymerization method are mainly known.

前者は、モノマーに酸化剤を作用させ、酸化反応によって重合を進行させる(化学酸化重合)方法であり、得られる導電性高分子は粒子状の沈殿物となるため二次加工が必要となる。一方後者は、モノマーを電気化学的に酸化する(電解酸化重合)方法であり、導電性高分子は電極上に薄膜として生成するため、直接導電性フィルムや被覆膜などを形成することが可能である。   The former is a method in which an oxidant is allowed to act on the monomer and the polymerization proceeds by an oxidation reaction (chemical oxidative polymerization), and the resulting conductive polymer becomes a particulate precipitate, so that secondary processing is required. On the other hand, the latter is a method in which the monomer is oxidized electrochemically (electrolytic oxidation polymerization). Since the conductive polymer is formed as a thin film on the electrode, it is possible to directly form a conductive film or coating film. It is.

この電解重合法では、通常、ドーパントを放出可能な支持電解質及び必要な添加剤を含む電解液中にモノマーを加え、この電解液中に作用電極を含む一対の電極を設置して両電極間に電圧を印加することで作用電極上に導電性高分子を析出させて薄膜を形成する。   In this electrolytic polymerization method, a monomer is usually added to an electrolytic solution containing a supporting electrolyte capable of releasing a dopant and a necessary additive, and a pair of electrodes including a working electrode is placed in the electrolytic solution, and the electrode is interposed between the two electrodes. By applying a voltage, a conductive polymer is deposited on the working electrode to form a thin film.

特に固体電解コンデンサ用途においては、その導電性高分子の導電性および耐熱安定性が著しく優れたものが求められている。含有するドーパントおよび添加剤の種類により、形成される導電性高分子の特性が大きく変化することが知られており、これまでにも、各種ドーパントおよび添加剤の検討がなされてきた。   Particularly for use in solid electrolytic capacitors, there is a demand for a conductive polymer that is remarkably excellent in conductivity and heat stability. It is known that the characteristics of the conductive polymer formed vary greatly depending on the type of dopant and additive contained, and various dopants and additives have been studied so far.

特許文献1には、化学酸化重合導電性高分子の導電率の損失に対しアントラキノン−2−スルホン酸をドーパントアニオンとして選択することが記載されている。   Patent Document 1 describes that anthraquinone-2-sulfonic acid is selected as a dopant anion for the loss of conductivity of a chemical oxidation polymerization conductive polymer.

また、特許文献2には、導電性高分子の安定性を高める方法として、ピロール化合物、酸化剤及びドーパントアニオンの水溶液中でポリピロール化合物を化学酸化重合する際、ベンゾフェノン系化合物にて例示された安定化剤の水溶液を添加することを特徴とする方法が開示されており、該ドーパントアニオンとしては具体的にアントラキノン−2−スルホン酸を用いることが記載されている。   Patent Document 2 discloses a method exemplified by a benzophenone compound as a method for improving the stability of a conductive polymer, when a polypyrrole compound is chemically oxidatively polymerized in an aqueous solution of a pyrrole compound, an oxidizing agent and a dopant anion. A method characterized by adding an aqueous solution of an agent is disclosed, and it is described that anthraquinone-2-sulfonic acid is specifically used as the dopant anion.

これら特許文献1及び2から、ピロールをドーパント及び酸化剤存在下で化学酸化重合する際に、ドーパントとしてアントラキノン−2−スルホン酸を選択することにより高温下においても導電率の経時変化が少なく、耐熱安定性に優れるポリピロールが得られることが示唆されている。   From these Patent Documents 1 and 2, when pyrrole is chemically oxidatively polymerized in the presence of a dopant and an oxidant, by selecting anthraquinone-2-sulfonic acid as a dopant, there is little change in conductivity over time even at high temperatures, and heat resistance It has been suggested that polypyrrole having excellent stability can be obtained.

このアントラキノンスルホン酸系ドーパントを含有し、安定性の高い導電性高分子を固体電解コンデンサの固体電解質に適用し、信頼性に優れる固体電解コンデンサを得る方法についてもいくつか開示されている。   Several methods for obtaining a solid electrolytic capacitor having excellent reliability by applying a highly stable conductive polymer containing the anthraquinonesulfonic acid-based dopant to the solid electrolyte of the solid electrolytic capacitor are also disclosed.

例えば、特許文献3には固体電解質中に、スルホキノンアニオンを含み、かつそれ以外のアニオンを含ませる方法、特許文献4にはアントラキノン−1,5−ジスルホン酸をドープした導電性ポリピロールを固体電解質層とする方法が開示されている。   For example, Patent Document 3 discloses a method in which a solid electrolyte includes a sulfoquinone anion and other anions, and Patent Document 4 includes a conductive polypyrrole doped with anthraquinone-1,5-disulfonic acid as a solid electrolyte. A method of layering is disclosed.

上記特許文献1〜4に記載された重合方法は、いずれも化学酸化重合によるものであり、得られる導電性高分子は粒子状の沈殿物となるため二次加工が必要となる。また、化学重合法では強度の強い膜が形成できないため、固体電解コンデンサに適用した際、拡面化処理によって微細孔が形成された誘電体上に、導電性高分子層を緻密に形成するために重合浸漬処理工程を数回〜数十回必要とし、工程が極めて煩雑となるという問題点がある。   All of the polymerization methods described in Patent Documents 1 to 4 are based on chemical oxidative polymerization, and the obtained conductive polymer becomes a particulate precipitate, so that secondary processing is required. In addition, since a strong film cannot be formed by the chemical polymerization method, when applied to a solid electrolytic capacitor, a conductive polymer layer is densely formed on a dielectric in which micropores are formed by a surface enlargement process. In addition, there is a problem that the polymerization immersion treatment process is required several times to several tens of times, and the process becomes extremely complicated.

一方、電解重合法によって形成した導電性高分子膜は強靱な膜となるため、該電解重合膜を固体電解コンデンサの固体電解質とすることで、電気的特性に優れ、高耐久性の固体電解コンデンサが得られることが知られている。   On the other hand, since the conductive polymer film formed by the electrolytic polymerization method is a tough film, by using the electrolytic polymer film as a solid electrolyte of a solid electrolytic capacitor, the solid electrolytic capacitor has excellent electrical characteristics and high durability. Is known to be obtained.

特許文献5にアントラキノン−2−スルホン酸Naを支持電解質として含む電解液中でポリピロールを電解重合によって形成し、固体電解コンデンサを得る方法、また、特許文献6に、3,4−エチレンジオキシチオフェン及びアントラキノン−2−スルホン酸ナトリウムのアセトニトリル溶液を準備し、さらにフェノール若しくはニトロフェノール誘導体を添加した電解液を用いて電解重合によってポリ(3,4−エチレンジオキシチオフェン)を形成した例が記載されている。   Patent Document 5 discloses a method of forming a solid electrolytic capacitor by forming polypyrrole by electrolytic polymerization in an electrolytic solution containing sodium anthraquinone-2-sulfonate as a supporting electrolyte, and Patent Document 6 discloses 3,4-ethylenedioxythiophene. And an anthraquinone-2-sulfonate sodium chloride solution was prepared, and poly (3,4-ethylenedioxythiophene) was formed by electrolytic polymerization using an electrolytic solution to which phenol or a nitrophenol derivative was added. ing.

米国特許第5108829号明細書US Pat. No. 5,188,829 特開平9−286902号公報JP-A-9-286902 特開2000−12394号公報(第42頁、実施例23、24)JP 2000-12394 A (page 42, Examples 23 and 24) 特開昭64−49211号公報(第3頁、実施例5)JP-A 64-49211 (page 3, Example 5) 特開平3−34304号公報(第4頁、実施例4)JP-A-3-34304 (Page 4, Example 4) 特開平11−312627号公報(第8頁、実施例9)Japanese Patent Laid-Open No. 11-312627 (Page 8, Example 9)

本発明者等は上記特許文献5で示された電解重合を追試したところ支持電解質であるアントラキノン−2−スルホン酸ナトリウムは室温にて水に難溶であるため、0.1M程度の高濃度の電解液とする場合、加温が必要であり電解液調整が困難であること、また、室温に長時間該電解液を放置した場合支持電解質の析出が見られ、使用する際、別途濾過等の処理が必要であること等の問題点が明らかになった。   The inventors of the present invention made additional trials on the electropolymerization shown in Patent Document 5, and as a result, sodium anthraquinone-2-sulfonate, which is a supporting electrolyte, is hardly soluble in water at room temperature. When the electrolyte is used, heating is necessary and adjustment of the electrolyte is difficult, and when the electrolyte is left at room temperature for a long time, the supporting electrolyte is deposited. Problems such as the need for processing became clear.

また、そのように長期間保存した電解液を用い固体電解コンデンサを作製した場合、得られる固体電解コンデンサの初期特性及び耐久性が著しく劣ることが明らかとなった。   In addition, when a solid electrolytic capacitor was produced using an electrolytic solution stored for such a long period of time, it was revealed that the initial characteristics and durability of the obtained solid electrolytic capacitor were remarkably inferior.

従って本発明の第1の目的は、強靱な機械的強度を有し、高導電性かつ高耐熱性の導電性高分子を与える導電性高分子形成用の電解重合用電解液を提供することである。また、第2の目的は、長時間の保存安定性に優れた電解重合用電解液を提供することである。さらに、第3の目的は、上記電解液を用い、低抵抗で電気特性に優れ、長期信頼性に優れた固体電解コンデンサを提供することにある。   Accordingly, a first object of the present invention is to provide an electrolytic solution for electropolymerization for forming a conductive polymer that has a tough mechanical strength and provides a highly conductive and heat-resistant conductive polymer. is there. A second object is to provide an electrolytic solution for electrolytic polymerization that is excellent in long-term storage stability. A third object is to provide a solid electrolytic capacitor using the above electrolytic solution, having low resistance, excellent electrical characteristics, and excellent long-term reliability.

本発明者等は上記課題に鑑み、鋭意検討した結果、導電性高分子単量体とアントラキノン−2−スルホン酸塩とを所定濃度に調整し、好ましくは特定の添加剤を含有させた水系電解重合液を準備し電解重合した所、著しく高い電導度および熱耐久性を有する導電性高分子が得られることを見出した。
また、該電解液を用いて作製した固体電解コンデンサは上記課題を解決できることを見出し、本発明を完成するに至った。
As a result of intensive studies in view of the above problems, the present inventors have adjusted the conductive polymer monomer and anthraquinone-2-sulfonate to a predetermined concentration, and preferably an aqueous electrolysis containing a specific additive. When a polymerization solution was prepared and electropolymerized, it was found that a conductive polymer having extremely high electrical conductivity and thermal durability was obtained.
Moreover, it discovered that the solid electrolytic capacitor produced using this electrolyte solution can solve the said subject, and came to complete this invention.

すなわち本発明は以下に示すものである。   That is, the present invention is as follows.

第1の発明は、導電性高分子単量体と支持電解質とが、主溶媒が水である溶媒に溶解されてなる導電性高分子形成用の電解重合用電解液において、
該電解質塩が下記一般式(1)で示される化合物であることを特徴とする電解重合用電解液である。
The first invention is an electropolymerization electrolytic solution for forming a conductive polymer in which a conductive polymer monomer and a supporting electrolyte are dissolved in a solvent whose main solvent is water.
An electrolytic solution for electrolytic polymerization, wherein the electrolyte salt is a compound represented by the following general formula (1).

Figure 0004986062
(式中、Rはそれぞれ同一でも異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基を示す。Xは対カチオンを示す。)
Figure 0004986062
(In the formula, each R is the same or different and represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. X + represents a counter cation.)

第2の発明は、対カチオンが、アルカリ金属カチオン、アンモニウムカチオン、第四級アンモニウムカチオンからなる群から選ばれる少なくとも一つのカチオンであることを特徴とする第1の発明に記載の電解重合用電解液である。   In the second invention, the counter cation is at least one cation selected from the group consisting of an alkali metal cation, an ammonium cation, and a quaternary ammonium cation. It is a liquid.

第3の発明は、さらに、下記一般式(2)〜(4)で示される少なくとも一つの化合物が添加剤として溶解されてなることを特徴とする第1又は2の発明に記載の電解重合用電解液である。   The third invention further comprises at least one compound represented by the following general formulas (2) to (4) dissolved as an additive for electrolytic polymerization according to the first or second invention. Electrolytic solution.

Figure 0004986062
(式中、Rはそれぞれ同一でも異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示す。)
Figure 0004986062
(In the formula, each R is the same or different and represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a phenyl group.)

第4の発明は、前記導電性高分子単量体がピロール及び/又はピロール誘導体であることを特徴とする第1〜3の発明のいずれかに記載の電解重合用電解液である。   A fourth invention is the electrolytic solution for electrolytic polymerization according to any one of the first to third inventions, wherein the conductive polymer monomer is pyrrole and / or a pyrrole derivative.

第5の発明は、pH調整剤が添加されてなり、pHが8以上に制御されたことを特徴する第1〜4の発明のいずれかに記載の電解重合用電解液である。   A fifth invention is the electrolytic solution for electrolytic polymerization according to any one of the first to fourth inventions, characterized in that a pH adjuster is added and the pH is controlled to 8 or more.

第6の発明は、第1〜5の発明のいずれかに記載の電解液中にて電解酸化反応により形成されたことを特徴とする導電性高分子である。   A sixth invention is a conductive polymer formed by an electrolytic oxidation reaction in the electrolytic solution according to any one of the first to fifth inventions.

第7の発明は、弁作用金属に誘電体酸化被膜が形成された素子を有し、第6の発明に記載の導電性高分子を固体電解質層とすることを特徴とする固体電解コンデンサである。   A seventh invention is a solid electrolytic capacitor characterized in that it has an element in which a dielectric oxide film is formed on a valve action metal and the conductive polymer described in the sixth invention is a solid electrolyte layer. .

第8の発明は、誘電体酸化被膜が形成された弁作用金属上に、プレコート層として導電性高分子層(A)を形成する工程と、前記導電性高分子層(A)上に導電性高分子層(B)を電解重合により形成する工程と、
を有する固体電解コンデンサの製造方法であって、
前記電解重合が、下記一般式(1)
According to an eighth aspect of the present invention, there is provided a step of forming a conductive polymer layer (A) as a precoat layer on a valve metal having a dielectric oxide film formed thereon, and a conductive property on the conductive polymer layer (A). Forming a polymer layer (B) by electrolytic polymerization;
A method for producing a solid electrolytic capacitor having
The electrolytic polymerization is represented by the following general formula (1)

Figure 0004986062
により表される化合物が0.005〜0.09mol/Lの濃度に調整された水系電解液を用い実施されることを特徴とする固体電解コンデンサの製造方法である。
Figure 0004986062
The solid electrolytic capacitor is produced by using an aqueous electrolytic solution in which the compound represented by the formula is adjusted to a concentration of 0.005 to 0.09 mol / L.

第9の発明は、前記一般式(1)により表される化合物が、アントラキノン−2−スルホン酸アルカリ金属塩、アントラキノン−2−スルホン酸アンモニウム塩及びアントラキノン−2−スルホン酸第四級アンモニウム塩からなる群より選ばれる少なくとも一つであることを特徴とする、第8の発明に記載の固体電解コンデンサの製造方法である。   In a ninth invention, the compound represented by the general formula (1) is an anthraquinone-2-sulfonic acid alkali metal salt, an anthraquinone-2-sulfonic acid ammonium salt and an anthraquinone-2-sulfonic acid quaternary ammonium salt. The method for producing a solid electrolytic capacitor according to the eighth invention, wherein the method is at least one selected from the group consisting of:

本発明によれば、導電性、耐熱特性に優れた導電性高分子を提供することができ、また特に該導電性高分子を固体電解コンデンサの固体電解質として使用することで、従来の固体電解コンデンサと比較して著しく優れたESR特性、熱耐久性を示す固体電解質コンデンサを提供することができる。   According to the present invention, it is possible to provide a conductive polymer excellent in conductivity and heat resistance, and in particular, by using the conductive polymer as a solid electrolyte of a solid electrolytic capacitor, a conventional solid electrolytic capacitor can be provided. It is possible to provide a solid electrolyte capacitor exhibiting remarkably superior ESR characteristics and thermal durability as compared with the above.

また、電解液濃度を上記特定濃度とし、pHを8以上に保持することで電解液の変性を防止でき、保存寿命の長い電解液を提供することが可能である。   Further, by setting the electrolytic solution concentration to the above-mentioned specific concentration and maintaining the pH at 8 or more, the electrolytic solution can be prevented from being denatured and an electrolytic solution having a long shelf life can be provided.

最初に、本発明の電解重合用電解液について説明する。
本発明の電解重合用電解液は、ドーパントを放出できる支持電解質塩および導電性高分子単量体であるモノマーが、主溶媒が水である溶媒中に溶解されたものである。
First, the electrolytic solution for electrolytic polymerization of the present invention will be described.
The electrolytic solution for electrolytic polymerization of the present invention is a solution in which a supporting electrolyte salt capable of releasing a dopant and a monomer which is a conductive polymer monomer are dissolved in a solvent whose main solvent is water.

ドーパントとしては、例えば、ヨウ素、臭素、塩素等のハロゲンイオン、ヘキサフロロリン、ヘキサフロロヒ素、ヘキサフロロアンチモン、テトラフロロホウ素、過塩素酸等のハロゲン化物イオン、またはメタンスルホン酸、ドデシルスルホン酸等のアルキル置換有機スルホン酸イオン、カンファースルホン酸イオンなどの環状スルホン酸イオン、またはベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、ベンゼンジスルホン酸等のアルキル置換もしくは無置換のベンゼンモノもしくはジスルホン酸イオン、2−ナフタレンスルホン酸、1,7−ナフタレンジスルホン酸等のスルホン酸基を1〜4個置換したナフタレンスルホン酸のアルキル置換もしくは無置換イオン、アントラセンスルホン酸イオン、アントラキノンスルホン酸イオン、アルキルビフェニルスルホン酸、ビフェニルジスルホン酸等のアルキル置換もしくは無置換のビフェニルスルホン酸イオン、ポリスチレンスルホン酸、ナフタレンスルホン酸ホルマリン縮合体等の高分子スルホン酸イオン等、に例示される置換または無置換の芳香族スルホン酸イオン、またはビスサルチレートホウ素、ビスカテコレートホウ素等のホウ素化合物イオン、またはモリブドリン酸、タングストリン酸、タングストモリブドリン酸等のヘテロポリ酸イオンがあげられるが、本発明で用いる支持電解質塩は下記一般式(1)で示される化合物である。   Examples of the dopant include halogen ions such as iodine, bromine, and chlorine, halide ions such as hexafluoroline, hexafluoroarsenic, hexafluoroantimony, tetrafluoroboron, and perchloric acid, or methanesulfonic acid and dodecylsulfonic acid. Cyclic sulfonate ions such as alkyl-substituted organic sulfonate ions and camphor sulfonate ions, or alkyl-substituted or unsubstituted benzene mono- or disulfonate ions such as benzene sulfonic acid, paratoluene sulfonic acid, dodecyl benzene sulfonic acid, and benzene disulfonic acid Alkyl substituted or unsubstituted ions of naphthalenesulfonic acid substituted with 1 to 4 sulfonic acid groups such as 2-naphthalenesulfonic acid and 1,7-naphthalenedisulfonic acid, anthracenesulfonic acid ion, anthracene Substitutions exemplified by alkyl-substituted or unsubstituted biphenyl sulfonate ions such as non-sulfonate ions, alkylbiphenyl sulfonates and biphenyl disulfonates, and polymer sulfonate ions such as polystyrene sulfonate and naphthalene sulfonate formalin condensates Or an unsubstituted aromatic sulfonate ion, or a boron compound ion such as bissaltylate boron and biscatecholate boron, or a heteropolyacid ion such as molybdophosphoric acid, tungstophosphoric acid, tungstomolybdophosphoric acid, The supporting electrolyte salt used in the present invention is a compound represented by the following general formula (1).

Figure 0004986062
Figure 0004986062

上式中、Rはそれぞれ同一でも異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基を示す。Xは対カチオンを示す。 In the above formula, each R represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, which may be the same or different. X + represents a counter cation.

前記炭素数1〜6の直鎖状または分岐鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基(各種異性体を含む)の1種もしくは2種以上を挙げることができる。   Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include one or two of a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group (including various isomers). More than species can be mentioned.

前記対カチオンとしては、アルカリ金属カチオン、アンモニウムカチオン、第四級アンモニウムカチオンが挙げられる。
前記アルカリ金属カチオンとしては、リチウム、ナトリウム、カリウム等のアルカリ金属類、マグネシウム、カルシウム等のアルカリ土類金属類の1種もしくは2種以上を挙げることができる。
前記第四級アンモニウムカチオンとしては、テトラフェニルアンモニウムイオン(各種異性体を含む)等の芳香族第四級アンモニウムカチオン、脂肪族第四級アンモニウムカチオンを用いることができ、好ましくは溶解性の面から炭素数1〜6の直鎖脂肪族第四級アンモニウムカチオンである。具体的には、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラプロピルアンモニウムカチオン、テトラブチルアンモニウムカチオン、テトラペンチルアンモニウムカチオン、テトラヘキシルアンモニウムカチオンが挙げられる。
Examples of the counter cation include alkali metal cations, ammonium cations, and quaternary ammonium cations.
Examples of the alkali metal cation include one or more of alkali metals such as lithium, sodium and potassium, and alkaline earth metals such as magnesium and calcium.
As the quaternary ammonium cation, aromatic quaternary ammonium cations such as tetraphenylammonium ions (including various isomers) and aliphatic quaternary ammonium cations can be used, preferably from the viewpoint of solubility. It is a C1-C6 linear aliphatic quaternary ammonium cation. Specific examples include tetramethylammonium cation, tetraethylammonium cation, tetrapropylammonium cation, tetrabutylammonium cation, tetrapentylammonium cation, and tetrahexylammonium cation.

従って、前記一般式(1)により表される化合物の具体例としては、例えば、アントラキノン−2−スルホン酸、3−メチルアントラキノン−2−スルホン酸、6−メチルアントラキノン−2−スルホン酸、7−メチルアントラキノン−2−スルホン酸、3−ヘキシルアントラキノン−2−スルホン酸、6−ヘキシルアントラキノン−2−スルホン酸、7−ヘキシルアントラキノン−2−スルホン酸類の上記塩が挙げられ、前記アントラキノン−2−スルホン酸類のリチウム塩、ナトリウム塩、カリウム塩等の前記アントラキノン−2−スルホン酸アルカリ金属塩類、又は、アントラキノン−2−スルホン酸類のテトラメチルアンモニウム塩、テトラエチルアンモニウム塩、テトラプロピルアンモニウム塩、テトラブチルアンモニウム塩、テトラペンチルアンモニウム塩、テトラヘキシルアンモニウム塩、テトラフェニルアンモニウム塩等の前記アントラキノン−2−スルホン酸類のアンモニウム塩類を挙げることができる。前記一般式(1)により表される化合物は、1種もしくは2種以上を使用することができる。   Therefore, specific examples of the compound represented by the general formula (1) include, for example, anthraquinone-2-sulfonic acid, 3-methylanthraquinone-2-sulfonic acid, 6-methylanthraquinone-2-sulfonic acid, 7- Examples include methylanthraquinone-2-sulfonic acid, 3-hexylanthraquinone-2-sulfonic acid, 6-hexylanthraquinone-2-sulfonic acid, and the above-mentioned salts of 7-hexylanthraquinone-2-sulfonic acid, and the anthraquinone-2-sulfone Anthraquinone-2-sulfonic acid alkali metal salts such as lithium salts, sodium salts and potassium salts of acids, or tetramethylammonium salts, tetraethylammonium salts, tetrapropylammonium salts, tetrabutylammonium salts of anthraquinone-2-sulfonic acids , Te It can be exemplified La pentyl ammonium salts, tetra hexyl ammonium salts, the ammonium salts of the anthraquinone-2-sulfonic acids such as tetraphenyl ammonium salt. 1 type (s) or 2 or more types can be used for the compound represented by the said General formula (1).

これらの中でも一般式(1)おいてRがそれぞれ水素原子であることが好ましく、アントラキノン−2−スルホン酸アルカリ金属塩、アントラキノン−2−スルホン酸第四級アンモニウム塩およびアントラキノンスルホン酸アンモニウム塩からなる群より選ばれる少なくとも1つであればより好ましい。
前記アントラキノン−2−スルホン酸第四級アンモニウム塩はテトラエチルアンモニウム塩であればさらにさらに好ましく、特に該テトラエチルアンモニウム塩は極性溶媒への溶解度が著しく高いことから、低温下における電解重合液の安定性が高いという特徴を有する。
Among these, in general formula (1), it is preferable that each R is a hydrogen atom, and consists of an anthraquinone-2-sulfonic acid alkali metal salt, an anthraquinone-2-sulfonic acid quaternary ammonium salt, and an anthraquinonesulfonic acid ammonium salt. It is more preferable if it is at least one selected from the group.
More preferably, the anthraquinone-2-sulfonic acid quaternary ammonium salt is a tetraethylammonium salt. Particularly, since the tetraethylammonium salt has a remarkably high solubility in a polar solvent, the stability of the electrolytic polymerization solution at a low temperature is improved. It has the feature of being high.

本発明の電解液中には添加剤を含有することができる。本発明にて使用される添加剤は、主に酸化防止剤、界面活性剤のいずれかの特性を有するものが好ましい。そのような添加剤としてより好ましくは下式(2)〜(4)で示される化合物である。   The electrolyte solution of the present invention can contain an additive. The additive used in the present invention is preferably one having mainly the characteristics of either an antioxidant or a surfactant. More preferred as such additives are compounds represented by the following formulas (2) to (4).

Figure 0004986062
Figure 0004986062

上式中、Rはそれぞれ同一であっても異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基又はフェニル基を示す。   In the above formula, R represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a phenyl group, which may be the same or different.

前式(2)で表される化合物の具体例としては、例えば、4−ニトロフェノール、2−メチル−4−ニトロフェノール、3−メチル−4−ニトロフェノール、2−エチル−4−ニトロフェノール、3−エチル−4−ニトロフェノール、2−ヘキシル−4−ニトロフェノール、3−ヘキシル−4−ニトロフェノール等のニトロフェノール類が挙げられる。
前式(3)で表される化合物の具体例としては、例えば、4−ニトロ−1−ナフトール等のニトロナフトール類が挙げられる。
前式(4)で表される化合物の具体例としては、例えば、1−ヒドロキシ−4−ニトロアントラキノン等のニトロアントラキノン類を挙げることができる。
Specific examples of the compound represented by the formula (2) include, for example, 4-nitrophenol, 2-methyl-4-nitrophenol, 3-methyl-4-nitrophenol, 2-ethyl-4-nitrophenol, Examples thereof include nitrophenols such as 3-ethyl-4-nitrophenol, 2-hexyl-4-nitrophenol, and 3-hexyl-4-nitrophenol.
Specific examples of the compound represented by formula (3) include nitronaphthols such as 4-nitro-1-naphthol.
Specific examples of the compound represented by formula (4) include nitroanthraquinones such as 1-hydroxy-4-nitroanthraquinone.

前記一般式(2)〜(4)により表される化合物は、1種もしくは2種以上を使用することができる。前記一般式(2)により表される化合物は、得られる導電性高分子の熱耐久性の面から、4−ニトロフェノール、4−ニトロ−1−ナフトール、1−ヒドロキシ−4−ニトロアントラキノンであることが好ましい。   The compounds represented by the general formulas (2) to (4) can be used alone or in combination of two or more. The compound represented by the general formula (2) is 4-nitrophenol, 4-nitro-1-naphthol, or 1-hydroxy-4-nitroanthraquinone from the viewpoint of thermal durability of the obtained conductive polymer. It is preferable.

次いで本発明に使用できる導電性高分子単量体について説明する。
本発明に使用されるモノマーとしては、ピロール、アニリン、フラン、チオフェンあるいはこれらの誘導体を用いることができる。該誘導体としては、3−アルキルピロール、3−アルキルチオフェン、3,4−アルキレンジオキシピロール、3,4−アルキレンジオキシチオフェンなどが挙げられる。前記モノマーは1種もしくは2種以上を同時に含有することができる。これらの中でも、得られる導電性高分子の強靱性、導電性及び耐久性の面から、ピロール及び/又はその誘導体が好ましい。
Next, the conductive polymer monomer that can be used in the present invention will be described.
As the monomer used in the present invention, pyrrole, aniline, furan, thiophene, or derivatives thereof can be used. Examples of the derivatives include 3-alkylpyrrole, 3-alkylthiophene, 3,4-alkylenedioxypyrrole, 3,4-alkylenedioxythiophene. The monomer may contain one kind or two or more kinds at the same time. Among these, pyrrole and / or a derivative thereof are preferable from the viewpoint of toughness, conductivity, and durability of the obtained conductive polymer.

本発明に使用する電解重合電解液の溶媒は主溶媒として水を用いたものであり、またはテトラヒドロフラン(THF)やジオキサン、ジエチルエーテル等のエーテル類、あるいはアセトン、メチルエチルケトン等のケトン類、ジメチルホルムアミド(DMF)やアセトニトリル、ベンゾニトリル、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒、酢酸エチルや酢酸ブチル等のエステル類、クロロホルムや塩化メチレン等の非芳香族性の塩素系溶媒、ニトロメタンやニトロエタン、ニトロベンゼン等のニトロ化合物、あるいはメタノールやエタノール、プロパノール等のアルコール類、またはギ酸や酢酸、プロピオン酸等の有機酸または該有機酸の酸無水物(無水酢酸等)を0〜30%以下の割合で水と混合した混合溶媒を挙げることができる。これらの中でも、環境負荷、安全性の面から、水を単独で使用したものが好ましい。
また、電解重合液の保存安定性を高めるため、該電解液にpH調整剤を添加し、pHを8以上に維持することが好ましい。
本発明で使用できるpH調整剤としては、例えば、炭酸塩類やリン酸塩類等を挙げることができる。好ましくは、炭酸水素ナトリウムである。
The solvent of the electropolymerization electrolytic solution used in the present invention is one in which water is used as a main solvent, or ethers such as tetrahydrofuran (THF), dioxane and diethyl ether, ketones such as acetone and methyl ethyl ketone, dimethylformamide ( DMF), acetonitrile, benzonitrile, N-methylpyrrolidone (NMP), aprotic polar solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and butyl acetate, non-aromatics such as chloroform and methylene chloride Chlorine solvents, nitro compounds such as nitromethane, nitroethane and nitrobenzene, alcohols such as methanol, ethanol and propanol, or organic acids such as formic acid, acetic acid and propionic acid, or acid anhydrides of such organic acids (such as acetic anhydride) 0-30% or less Solvent mixture with water in a total may be mentioned. Among these, from the viewpoint of environmental load and safety, those using water alone are preferable.
In order to improve the storage stability of the electrolytic polymerization solution, it is preferable to add a pH adjuster to the electrolytic solution and maintain the pH at 8 or more.
Examples of the pH adjuster that can be used in the present invention include carbonates and phosphates. Sodium bicarbonate is preferable.

次に本発明の電解重合用電解液の組成について説明する。
本発明の電解重合液においては、導電性高分子単量体を0.05〜0.7mol/L、好ましくは0.1〜0.3mol/Lの濃度で含有するものである。
また、前記支持電解質は0.005〜0.09mol/L、好ましくは0.01〜0.05mol/Lの濃度で含有するものである。
添加剤を含有させる場合、前記添加剤を0.002〜0.1mol/L、好ましくは0.003〜0.01mol/Lの濃度で含有するものである。
本組成の電解重合用電解液を用いることで著しく耐熱性に優れかつ強靱な導電性高分子が得られるとともに、長期間の保存安定性を有する電解重合用電解液とすることができる。
Next, the composition of the electrolytic solution for electrolytic polymerization of the present invention will be described.
In the electrolytic polymerization solution of the present invention, the conductive polymer monomer is contained at a concentration of 0.05 to 0.7 mol / L, preferably 0.1 to 0.3 mol / L.
The supporting electrolyte is contained at a concentration of 0.005 to 0.09 mol / L, preferably 0.01 to 0.05 mol / L.
When the additive is contained, the additive is contained at a concentration of 0.002 to 0.1 mol / L, preferably 0.003 to 0.01 mol / L.
By using the electrolytic solution for electropolymerization of this composition, a conductive polymer that is remarkably excellent in heat resistance and tough can be obtained, and an electrolytic solution for electrolytic polymerization having long-term storage stability can be obtained.

さらに、前記電解質塩および添加剤を含有せしめる電解重合用電解液を用いて電解重合を実施することで、耐熱性に著しく優れた導電性高分子が得られる。   Furthermore, by conducting electrolytic polymerization using an electrolytic solution for electrolytic polymerization containing the electrolyte salt and the additive, a conductive polymer remarkably excellent in heat resistance can be obtained.

次いで、本発明の電解重合液を用い、固体電解コンデンサを製造する方法について説明する。弁作用金属表面の誘電体酸化皮膜上にプレコート層として導電性高分子層を予め形成しておき、次に前記プレコート層上に新たな導電性高分子層を本発明の電解重合液を用いて電解重合により形成することで固体電解質層を形成した後、該固体電解質層にカーボンペースト、銀ペースト等の導電ペーストを塗布乾燥することによって陰極層を形成する。
プレコート層の導電性高分子の形成方法としては(1)化学重合による導電性高分子層を形成する方法、(2)導電性高分子溶液を塗布乾燥して導電性高分子層を形成する方法が挙げられる。
次に弁作用金属から陽極リード端子、陰極層から陰極リード端子を接続して電極を取り出して素子を形成し、この素子全体をエポキシ樹脂等の絶縁性樹脂、あるいはセラミック製や金属製の外装ケース等により封止することで固体電解コンデンサを得ることができる。
Next, a method for producing a solid electrolytic capacitor using the electrolytic polymerization solution of the present invention will be described. A conductive polymer layer is preliminarily formed as a precoat layer on the dielectric oxide film on the surface of the valve metal, and then a new conductive polymer layer is formed on the precoat layer using the electrolytic polymerization solution of the present invention. After forming a solid electrolyte layer by forming by electropolymerization, a cathode layer is formed by applying and drying a conductive paste such as carbon paste and silver paste on the solid electrolyte layer.
As a method for forming the conductive polymer of the precoat layer, (1) a method of forming a conductive polymer layer by chemical polymerization, (2) a method of forming a conductive polymer layer by applying and drying a conductive polymer solution Is mentioned.
Next, the anode lead terminal is connected from the valve action metal, the cathode lead terminal is connected from the cathode layer, and the electrode is taken out to form an element. A solid electrolytic capacitor can be obtained by sealing with, for example.

前記電解液を用いることによって、導電性に優れ、かつ高温に暴露された際に特定の安定構造をとる導電性高分子が得られ、さらに前記導電性高分子を固体電解質とすることにより、従来よりも格段に優れたインピーダンス特性、ESR特性、耐熱特性を有する固体電解コンデンサを得ることができる。   By using the electrolytic solution, it is possible to obtain a conductive polymer that has excellent conductivity and takes a specific stable structure when exposed to a high temperature. Further, by using the conductive polymer as a solid electrolyte, It is possible to obtain a solid electrolytic capacitor having impedance characteristics, ESR characteristics, and heat resistance characteristics far superior to each other.

以下、本発明について実施例を挙げより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(電解重合形成高分子フィルムの評価)
実施例1
3mm×5mmサイズのスズ含有酸化インジウムからなる透明導電膜付きの基板を用意し、これをアセトン、純水にて洗浄後、105℃乾燥機中で10分間乾燥させた。つぎに、電解重合液(アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)中に浸漬し、透明導電膜側を陽極として、電流値を0.4mAに固定して電解重合を行い、基板上に導電性高分子層を形成した。
(Evaluation of polymer film formed by electrolytic polymerization)
Example 1
A substrate with a transparent conductive film made of tin-containing indium oxide having a size of 3 mm × 5 mm was prepared, washed with acetone and pure water, and then dried in a dryer at 105 ° C. for 10 minutes. Next, it is immersed in an electrolytic polymerization solution (mixed solution of sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g)) and transparent. Using the conductive film side as an anode, the current value was fixed at 0.4 mA, and electrolytic polymerization was performed to form a conductive polymer layer on the substrate.

次に、上記透明導電膜付き基板上に形成された導電性高分子層を剥離し、導電性高分子フィルムを完成させた。   Next, the conductive polymer layer formed on the substrate with the transparent conductive film was peeled off to complete a conductive polymer film.

上記導電性高分子フィルムについて、4端子法を用いて電導度を測定した。また、155℃大気中放置による熱耐久性試験を行い、所定時間経過毎に電導度を評価した。結果を表1、2および図1に示した。従来の電解重合液を用いた比較例1と比較して、高い電導度と熱耐久性を示した。   About the said conductive polymer film, the electrical conductivity was measured using the 4-terminal method. In addition, a thermal durability test was performed by leaving in the air at 155 ° C., and the electrical conductivity was evaluated every predetermined time. The results are shown in Tables 1 and 2 and FIG. Compared with the comparative example 1 using the conventional electrolytic polymerization liquid, the high electrical conductivity and thermal durability were shown.

実施例2
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアントラキノン−2−スルホン酸アンモニウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。比較例1と比較して、高い電導度と熱耐久性を示した。
Example 2
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of ammonium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, A conductive polymer layer was formed. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared with Comparative Example 1, it showed high electrical conductivity and thermal durability.

実施例3
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。比較例1と比較して、高い電導度と、著しく高い熱耐久性を示した。
Example 3
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, anthraquinone-2-sulfonate sodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 (mmol) in the electrolytic polymerization solution An electropolymerization was carried out using the mixed solution to form a conductive polymer layer. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared with Comparative Example 1, it showed high electrical conductivity and extremely high thermal durability.

比較例1
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。実施例1と比較して、電導度、熱耐久性が著しく低下することを確認した。
Comparative Example 1
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium alkylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as the electrolytic polymerization solution, and the conductive property is obtained. A polymer layer was formed. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared to Example 1, it was confirmed that the conductivity and thermal durability were significantly reduced.

比較例2
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。実施例1と比較して、電導度、熱耐久性に劣ることを確認した。
Comparative Example 2
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared to Example 1, it was confirmed that the electrical conductivity and thermal durability were inferior.

比較例3
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアントラキノン−1−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。実施例1と比較して、電導度が低く、熱耐久性が著しく低下することを確認した。
Comparative Example 3
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium anthraquinone-1-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, A conductive polymer layer was formed. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared with Example 1, it was confirmed that the electrical conductivity was low and the thermal durability was significantly reduced.

比較例4
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。実施例1と比較して、電導度が低く、熱耐久性が著しく低いことを確認した。
Comparative Example 4
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, a mixture of sodium alkylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 (mmol) in the electrolytic polymerization solution Electrolytic polymerization was performed using the liquid to form a conductive polymer layer. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared to Example 1, it was confirmed that the electrical conductivity was low and the thermal durability was extremely low.

比較例5
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして、導電性高分子フィルムを得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。4端子法を用いた電導度評価を実施例1と同様に行い、その結果を表1、2および図1に示した。実施例1と比較して、電導度、熱耐久性が著しく低下することを確認した。
Comparative Example 5
A conductive polymer film was obtained in the same manner as in Example 1 except that the production method of the conductive polymer was changed to the following method. That is, anthraquinone-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 Electrolytic polymerization was performed using a mixed solution of (mmol) to form a conductive polymer layer. Conductivity evaluation using the four-terminal method was performed in the same manner as in Example 1, and the results are shown in Tables 1 and 2 and FIG. Compared to Example 1, it was confirmed that the conductivity and thermal durability were significantly reduced.

Figure 0004986062
Figure 0004986062

Figure 0004986062
Figure 0004986062

以上の結果より、ドーパントとしてアントラキノン−2−スルホン酸塩を含む電解重合用電解液を使用することで、電導度および熱耐久性に優れた導電性高分子を得られることが確認された。また、前記ドーパントを含む電解重合用電解液において、添加剤として4−ニトロフェノールを含有せしめ、これを電解重合用電解液として使用することで、得られる導電性高分子の熱耐久性が向上することが確認された。   From the above results, it was confirmed that a conductive polymer excellent in conductivity and thermal durability can be obtained by using an electrolytic solution for electrolytic polymerization containing anthraquinone-2-sulfonate as a dopant. Moreover, in the electrolyte solution for electrolytic polymerization containing the said dopant, the thermal durability of the conductive polymer obtained improves by making 4-nitrophenol contain as an additive and using this as an electrolytic solution for electrolytic polymerization. It was confirmed.

(固体電解コンデンサの評価)
実施例4
表面に誘電体酸化皮膜が形成された3mm×5mmサイズのエッチドアルミニウム化成箔を105℃乾燥機中で10分間乾燥させた。これを、18℃サーモプレート上に10分間静置した。次に18℃に冷却したモノマー液(ピロール:3(g)+エタノール:5(g)+HO:18.4(g)の混合液):4μlを箔上に滴下し、1分間静置した。さらに、酸化剤液(p−トルエンスルホン酸テトラエチルアンモニウム(PTS−TEA):5.6(mmol)+ペルオキソ二硫酸アンモニウム:1.56(g)+HO:10.63(g)の混合液):12μlを箔上に滴下し、10分間静置することで化学酸化重合しプレコート層を形成した。これを純水にて洗浄し、105℃乾燥機中で10分間乾燥させた。
(Evaluation of solid electrolytic capacitors)
Example 4
A 3 mm × 5 mm size etched aluminum formed foil having a dielectric oxide film formed on the surface was dried in a 105 ° C. dryer for 10 minutes. This was left to stand on an 18 ° C. thermoplate for 10 minutes. Next, 4 μl of a monomer liquid (pyrrole: 3 (g) + ethanol: 5 (g) + H 2 O: 18.4 (g) mixed liquid) cooled to 18 ° C. was dropped on the foil and left for 1 minute. did. Furthermore, an oxidizing agent solution (p-toluenesulfonate tetraethylammonium (PTS-TEA): 5.6 (mmol) + ammonium peroxodisulfate: 1.56 (g) + H 2 O: 10.63 (g)) : 12 μl was dropped on the foil and left to stand for 10 minutes for chemical oxidative polymerization to form a precoat layer. This was washed with pure water and dried in a 105 ° C. dryer for 10 minutes.

つぎに、炭酸水素ナトリウムを添加してpHを8に調整した電解重合液(アントラキノン−2−スルホン酸テトラエチルアンモニウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)を用意し、使用直前に硫酸を添加してpHを7に調整した。 Next, an electropolymerization liquid (anthraquinone-2-sulfonic acid tetraethylammonium salt: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45. 8 (g) mixture) was prepared, and the pH was adjusted to 7 by adding sulfuric acid just before use.

プレコート層形成済みエッチドアルミニウム化成箔を電解重合液中に浸漬し、アルミニウム箔側を陽極として、電流値を0.4mAに固定して電解重合を行い、導電性高分子層(固体電解質層)を形成した。   A pre-coated layer-formed etched aluminum formed foil is immersed in an electrolytic polymerization solution, the aluminum foil side is used as an anode, the current value is fixed at 0.4 mA, and electrolytic polymerization is performed, and a conductive polymer layer (solid electrolyte layer) Formed.

次に、上記アルミニウム箔の導電性高分子層を形成した部分にカーボンペーストと銀ペーストを順に塗布し、乾燥させて、合計20個のコンデンサ素子を完成させた。   Next, a carbon paste and a silver paste were sequentially applied to the portion of the aluminum foil where the conductive polymer layer was formed and dried to complete a total of 20 capacitor elements.

これら20個のコンデンサ素子について、初期特性として120Hzにおける静電容量(Cs)と損失係数(tanδ×100)、100kHzにおける静電容量(Cs)と等価直列抵抗(ESR)を測定した。また、155℃大気中放置による熱耐久性試験を行い、所定時間経過後に前記特性を評価した。結果を表3〜7及び図2〜9に示した。なお、熱耐久性試験中には素子のモールドは行わなかった。   With respect to these 20 capacitor elements, electrostatic capacity (Cs) and loss factor (tan δ × 100) at 120 Hz, electrostatic capacity (Cs) and equivalent series resistance (ESR) at 100 kHz were measured as initial characteristics. In addition, a thermal durability test was performed by leaving in the atmosphere at 155 ° C., and the characteristics were evaluated after a predetermined time. The results are shown in Tables 3-7 and FIGS. The element was not molded during the thermal durability test.

従来の電解重合液を用いた比較例6と比較して、コンデンサのESR低減および優れた熱耐久性が確認された。   Compared with the comparative example 6 using the conventional electrolytic polymerization liquid, the ESR reduction of the capacitor | condenser and the outstanding thermal durability were confirmed.

実施例5
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2−スルホン酸アンモニウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。比較例4と比較して、コンデンサのESR低減および優れた熱耐久性が確認された。
Example 5
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of ammonium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, A conductive polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared to Comparative Example 4, it was confirmed that the capacitor had reduced ESR and excellent thermal durability.

実施例6
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。比較例4と比較して、コンデンサのESR低減および優れた熱耐久性が確認された。
Example 6
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution, A conductive polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared to Comparative Example 4, it was confirmed that the capacitor had reduced ESR and excellent thermal durability.

実施例7
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4-ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6と比較して、コンデンサの熱耐久性に関して、著しく高い性能を示した。
Example 7
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2-sulfonate sodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 (mmol) An electropolymerization was carried out using the mixed solution to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the capacitor showed remarkably high performance regarding the thermal durability.

実施例8
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロナフトール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6と比較して、コンデンサの熱耐久性に関して、著しく高い性能を示した。
Example 8
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, in the electrolytic polymerization solution, sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitronaphthol: 0.229 (mmol) An electropolymerization was carried out using the mixed solution to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the capacitor showed remarkably high performance regarding the thermal durability.

実施例9
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+1−ヒドロキシ−4−ニトロアントラキノン:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6と比較して、コンデンサの熱耐久性に関して、高い性能を示した。
Example 9
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 1-hydroxy-4-nitroanthraquinone: 0.0. Electrolytic polymerization was performed using a mixed solution of 229 (mmol) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4-6, it showed the high performance regarding the thermal durability of a capacitor | condenser.

比較例6
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 6
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium alkylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as the electrolytic polymerization solution, and the conductive property is obtained. A polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例7
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にn−ドデシルベンゼンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 7
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of sodium n-dodecylbenzenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, A conductive polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例8
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にナフタレン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 8
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of naphthalene-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例9
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に4−スルホフタル酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 9
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electropolymerization was performed using a mixed solution of sodium 4-sulfophthalate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, and the conductive property. A polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例10
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に4,4−ビフェニルジスルホン酸ナトリウム:1.4(mmol)+ピロール:0.9(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層(固体電解質層)を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 10
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using a mixed solution of sodium 4,4-biphenyldisulfonate: 1.4 (mmol) + pyrrole: 0.9 (g) + H 2 O: 45.8 (g) as the electrolytic polymerization solution. A conductive polymer layer (solid electrolyte layer) was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例11
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に1−ナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 11
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of 1-naphthalenesulfonic acid sodium salt: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution, A functional polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例12
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 12
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization is performed using a mixed solution of sodium anthraquinone-1-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution, A conductive polymer layer was formed. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例13
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン-1,5-ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 13
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-1,5-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例14
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1,8−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 14
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-1,8-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例15
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,6−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表2および図4、6、9、13に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 15
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-2,6-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Table 2 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例16
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 16
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization using a mixed solution of anthraquinone-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) as an electrolytic polymerization solution. To form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例17
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に3,4−ジヒドロキシ-アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR・熱耐久性に劣る結果を示した。
Comparative Example 17
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, a mixed solution of sodium 3,4-dihydroxy-anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) was used as the electrolytic polymerization solution. Then, electropolymerization was performed to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared to Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例18
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に1−アミノ−4−ブロモ−アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 18
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, a mixed solution of 1-amino-4-bromo-anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) in the electrolytic polymerization solution. Was used for electrolytic polymerization to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例19
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例1と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液に4,8−ジアミノ−1,5−ジヒドロキシ−アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 19
Twenty capacitor elements were obtained in the same manner as in Example 1 except that the method for producing the conductive polymer was changed to the following method. That is, sodium 4,8-diamino-1,5-dihydroxy-anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g ) Was used for electrolytic polymerization to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例20
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアルキルナフタレンスルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 20
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, a mixture of sodium alkylnaphthalenesulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 (mmol) in the electrolytic polymerization solution Electrolytic polymerization was performed using the liquid to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例21
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−1−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 21
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-1-sulfonic acid sodium salt: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 (mmol) in the electrolytic polymerization solution An electropolymerization was carried out using the mixed solution to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

比較例22
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして20個のコンデンサ素子を得た。すなわち、電解重合液にアントラキノン−2,7−ジスルホン酸二ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)+4−ニトロフェノール:0.229(mmol)の混合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表3〜7及び図2〜9に示した。実施例4〜6に比べて、コンデンサのESR及び熱耐久性に劣る結果を示した。
Comparative Example 22
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, anthraquinone-2,7-disulfonic acid disodium: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g) + 4-nitrophenol: 0.229 Electrolytic polymerization was performed using a mixed solution of (mmol) to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4, and the results are shown in Tables 3 to 7 and FIGS. Compared with Examples 4 to 6, the results were inferior to the ESR and thermal durability of the capacitors.

Figure 0004986062
Figure 0004986062

Figure 0004986062
Figure 0004986062

Figure 0004986062
Figure 0004986062

Figure 0004986062
Figure 0004986062

Figure 0004986062
Figure 0004986062

上記の結果から、支持電解質としてアントラキノン−2−スルホン酸塩を含む電解重合用電解液を使用することで、ESR及び熱耐久性に優れた固体電解コンデンサを作製できることが確認された。さらに、前記ドーパントを含む電解重合用電解液において、添加剤として4−ニトロフェノール、4−ニトロ−1−ナフトール、1−ヒドロキシ−4−ニトロアントラキノンのいずれか一つ以上を含有せしめることで、これを電解重合用電解液として使用し作製した固体電解コンデンサの熱耐久性がさらにさらに向上することが確認された。   From the above results, it was confirmed that a solid electrolytic capacitor excellent in ESR and thermal durability can be produced by using an electrolytic solution for electrolytic polymerization containing anthraquinone-2-sulfonate as a supporting electrolyte. Furthermore, in the electrolytic solution for electropolymerization containing the dopant, by adding at least one of 4-nitrophenol, 4-nitro-1-naphthol, and 1-hydroxy-4-nitroanthraquinone as an additive, It was confirmed that the thermal durability of the solid electrolytic capacitor produced by using as an electrolytic solution for electrolytic polymerization was further improved.

(電解重合用電解液の寿命評価)
実施例10
電解重合液(アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)を作製後、炭酸水素ナトリウムを添加してpHを8に調整した。寿命評価試験として、電解重合液を大気中、温度40℃の環境下で3ヶ月間静置した。
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、3ヶ月間静置後の電解重合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表8および図10に示した。比較例24と比較して、同等のコンデンサ初期特性および熱耐久性が確認された。
(Evaluation of life of electrolytic solution for electrolytic polymerization)
Example 10
After preparing an electrolytic polymerization solution (sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g)), sodium bicarbonate was added. The pH was adjusted to 8. As a life evaluation test, the electrolytic polymerization solution was allowed to stand in the atmosphere at a temperature of 40 ° C. for 3 months.
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using the electrolytic polymerization solution after standing for 3 months to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4. The results are shown in Table 8 and FIG. Compared to Comparative Example 24, equivalent capacitor initial characteristics and thermal durability were confirmed.

比較例23
電解重合液(アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)を作成後、炭酸水素ナトリウムを添加してpHを8に調整。実施例10との比較のため、大気中・気温40℃の環境下における電解重合液の静置は実施せず。
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、調整直後の電解重合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表8および図10に示した。実施例10と比較して、コンデンサの熱耐久性が同等であることが確認された。
Comparative Example 23
After making an electrolytic polymerization solution (mixed solution of sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g)), sodium bicarbonate was added. And adjust the pH to 8. For comparison with Example 10, the electrolytic polymerization solution was not allowed to stand in the atmosphere at a temperature of 40 ° C.
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electropolymerization was performed using the electropolymerization solution immediately after adjustment to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4. The results are shown in Table 8 and FIG. Compared to Example 10, it was confirmed that the thermal durability of the capacitor was equivalent.

比較例24
電解重合液(アントラキノン−2−スルホン酸ナトリウム:4.67(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)を作成後、炭酸水素ナトリウムを添加してpHを8に調整。寿命評価試験として、電解重合液を大気中、温度40℃の環境下で3ヶ月間静置した。
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、3ヶ月間静置後の電解重合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表8および図10に示した。実施例10と比較して、コンデンサ熱耐久性に劣ることが確認された。
Comparative Example 24
After preparing an electrolytic polymerization solution (sodium anthraquinone-2-sulfonate: 4.67 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g)), sodium bicarbonate was added. And adjust the pH to 8. As a life evaluation test, the electrolytic polymerization solution was allowed to stand in the atmosphere at a temperature of 40 ° C. for 3 months.
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, electrolytic polymerization was performed using the electrolytic polymerization solution after standing for 3 months to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4. The results are shown in Table 8 and FIG. Compared to Example 10, it was confirmed that the capacitor thermal durability was inferior.

比較例25
電解重合液(アントラキノン−2−スルホン酸ナトリウム:1.4(mmol)+ピロール:0.6(g)+HO:45.8(g)の混合液)を作成。実施例10との比較のため炭酸水素ナトリウム添加によるpH調整を実施しなかった。寿命評価試験として、電解重合液を大気中・気温40℃の環境下で3ヶ月間静置した。
導電性高分子の製造方法を以下の方法に代えたこと以外は実施例4と同様にして、20個のコンデンサ素子を得た。すなわち、3ヶ月静置後の電解重合液を用いて電解重合を行い、導電性高分子層を形成した。コンデンサ素子の特性評価を実施例4と同様に行い、その結果を表8および図10に示した。実施例10と比較して、コンデンサ熱耐久性に劣ることが確認された。
Comparative Example 25
An electrolytic polymerization solution (a mixed solution of sodium anthraquinone-2-sulfonate: 1.4 (mmol) + pyrrole: 0.6 (g) + H 2 O: 45.8 (g)) was prepared. For comparison with Example 10, pH adjustment by adding sodium bicarbonate was not performed. As a life evaluation test, the electrolytic polymerization solution was allowed to stand for 3 months in the atmosphere at a temperature of 40 ° C.
Twenty capacitor elements were obtained in the same manner as in Example 4 except that the method for producing the conductive polymer was changed to the following method. That is, the electropolymerization was performed using the electropolymerization liquid after standing for 3 months to form a conductive polymer layer. The characteristics of the capacitor element were evaluated in the same manner as in Example 4. The results are shown in Table 8 and FIG. Compared to Example 10, it was confirmed that the capacitor thermal durability was inferior.

Figure 0004986062
Figure 0004986062

支持電解質を低濃度に含有した本電解液は、長期保存試験実施前後において、これを用いたコンデンサの熱耐久性低下が生じなかった。また、支持電解質を高濃度に含有した電解液とは違い、電解液中での支持電解質の析出が生じなかった。つまり、長い液寿命を有することが示された。   The electrolytic solution containing the supporting electrolyte at a low concentration did not cause a decrease in thermal durability of the capacitor using the electrolytic solution before and after the long-term storage test. Further, unlike the electrolytic solution containing the supporting electrolyte at a high concentration, the supporting electrolyte was not deposited in the electrolytic solution. That is, it was shown to have a long liquid life.

pHを8に調整した本電解重合液は、長期保存試験実施前後において、これを用いたコンデンサの熱耐久性低下が生じなかった。つまり、長い液寿命を有することが示された。   The electrolytic polymerization solution whose pH was adjusted to 8 did not cause a decrease in thermal durability of the capacitor using the electrolytic polymerization solution before and after the long-term storage test. That is, it was shown to have a long liquid life.

本発明の電解重合液により得られる導電性高分子は、固体電解コンデンサはもとより、有機ELディスプレイ、有機トランジスタ、ポリマー電池、太陽電池、各種センサー材料、電磁波シールド材料、帯電防止材料、エレクトロクロミック材料、人工筋肉などに好適に使用できる。   The conductive polymer obtained by the electrolytic polymerization solution of the present invention is not only a solid electrolytic capacitor, but also an organic EL display, an organic transistor, a polymer battery, a solar battery, various sensor materials, an electromagnetic shielding material, an antistatic material, an electrochromic material, It can be suitably used for artificial muscles.

実施例1〜3および比較例1〜5により得られた導電性高分子フィルムの熱耐久性試験時間に対する電導度の変化率を示す図。The figure which shows the change rate of the electrical conductivity with respect to the heat durability test time of the conductive polymer film obtained by Examples 1-3 and Comparative Examples 1-5. 実施例4〜9により得られた固体電解コンデンサの熱耐久性試験時間に対する静電容量(Cs)の変化率を示す図。The figure which shows the change rate of the electrostatic capacitance (Cs) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Examples 4-9. 比較例6〜11により得られた固体電解コンデンサの熱耐久性試験時間に対する静電容量(Cs)の変化率を示す図。The figure which shows the change rate of the electrostatic capacitance (Cs) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Comparative Examples 6-11. 比較例12〜17により得られた固体電解コンデンサの熱耐久性試験時間に対する静電容量(Cs)の変化率を示す図。The figure which shows the change rate of the electrostatic capacitance (Cs) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Comparative Examples 12-17. 比較例18〜22により得られた固体電解コンデンサの熱耐久性試験時間に対する静電容量(Cs)の変化率を示す図。The figure which shows the change rate of the electrostatic capacitance (Cs) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Comparative Examples 18-22. 実施例4〜9により得られた固体電解コンデンサの熱耐久性試験時間に対する等価直列抵抗(ESR)の変化を示す図。The figure which shows the change of the equivalent series resistance (ESR) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Examples 4-9. 比較例6〜11により得られた固体電解コンデンサの熱耐久性試験時間に対する等価直列抵抗(ESR)の変化を示す図。The figure which shows the change of equivalent series resistance (ESR) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Comparative Examples 6-11. 比較例12〜17により得られた固体電解コンデンサの熱耐久性試験時間に対する等価直列抵抗(ESR)の変化を示す図。The figure which shows the change of an equivalent series resistance (ESR) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Comparative Examples 12-17. 比較例18〜22により得られた固体電解コンデンサの熱耐久性試験時間に対する等価直列抵抗(ESR)の変化を示す図。The figure which shows the change of the equivalent series resistance (ESR) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Comparative Examples 18-22. 実施例10および比較例23、24、25により得られた固体電解コンデンサの熱耐久性試験時間に対する等価直列抵抗(ESR)の変化を示す図。The figure which shows the change of an equivalent series resistance (ESR) with respect to the thermal durability test time of the solid electrolytic capacitor obtained by Example 10 and Comparative Examples 23, 24, and 25. FIG.

Claims (2)

誘電体酸化被膜が形成された弁作用金属上に、プレコート層として導電性高分子層(A)を形成する工程と、前記導電性高分子層(A)上に導電性高分子層(B)を電解重合により形成する工程と、
を有する固体電解コンデンサの製造方法であって、
前記電解重合が、下記一般式(1)
Figure 0004986062
(式中、Rはそれぞれ同一でも異なっていてもよい、水素原子、炭素数1〜6の直鎖状又は分岐鎖状アルキル基を示す。Xは対カチオンを示す。)
により表される化合物が0.005〜0.09mol/Lの濃度に調整され、さらに、炭酸水素ナトリウムが添加されpHが8以上に制御された水系電解液を用い実施されることを特徴とする固体電解コンデンサの製造方法。
A step of forming a conductive polymer layer (A) as a precoat layer on the valve action metal on which the dielectric oxide film is formed, and a conductive polymer layer (B) on the conductive polymer layer (A). Forming by electropolymerization;
A method for producing a solid electrolytic capacitor having
The electrolytic polymerization is represented by the following general formula (1)
Figure 0004986062
(In the formula, each R is the same or different and represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. X + represents a counter cation.)
The compound represented by the formula is adjusted to a concentration of 0.005 to 0.09 mol / L , and further, an aqueous electrolytic solution in which sodium bicarbonate is added and the pH is controlled to 8 or more is used. A method for producing a solid electrolytic capacitor.
前記一般式(1)により表される化合物が、アントラキノン−2−スルホン酸アルカリ金属塩、アントラキノン−2−スルホン酸アンモニウム塩及びアントラキノン−2−スルホン酸第四級アンモニウム塩からなる群より選ばれる少なくとも一つであることを特徴とする、請求項に記載の固体電解コンデンサの製造方法。 The compound represented by the general formula (1) is at least selected from the group consisting of an anthraquinone-2-sulfonic acid alkali metal salt, an anthraquinone-2-sulfonic acid ammonium salt and an anthraquinone-2-sulfonic acid quaternary ammonium salt. The method for producing a solid electrolytic capacitor according to claim 1 , wherein the number is one.
JP2008000987A 2008-01-08 2008-01-08 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4986062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000987A JP4986062B2 (en) 2008-01-08 2008-01-08 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000987A JP4986062B2 (en) 2008-01-08 2008-01-08 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009164367A JP2009164367A (en) 2009-07-23
JP4986062B2 true JP4986062B2 (en) 2012-07-25

Family

ID=40966639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000987A Expired - Fee Related JP4986062B2 (en) 2008-01-08 2008-01-08 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4986062B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261954B (en) * 2018-11-30 2021-07-16 中国科学院物理研究所 High-salt water system electrolyte, battery and application thereof
CN111312526A (en) * 2019-11-11 2020-06-19 中国科学院福建物质结构研究所 Battery-super capacitor hybrid energy storage device and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101418B2 (en) * 1989-06-29 1994-12-12 松下電器産業株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2964345B2 (en) * 1990-02-28 1999-10-18 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor
JPH05121273A (en) * 1991-10-28 1993-05-18 Elna Co Ltd Manufacture of solid electrolyte capacitor
JP4019968B2 (en) * 2003-02-19 2007-12-12 松下電器産業株式会社 Solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009164367A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
KR101144526B1 (en) Dopant solution for electroconductive polymer, oxidizing agent and concurrently dopant solution for electroconductive polymer, electroconductive composition and solid electrolytic capacitor
JP5637544B2 (en) Solid electrolytic capacitor
JP4986062B2 (en) Manufacturing method of solid electrolytic capacitor
WO2012137968A1 (en) Conductive polymer aqueous suspension, method for producing same, conductive organic material, solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2010248487A (en) Electroconductive coating composition, and method for producing electroconductive coating film
WO2011052237A1 (en) Solid electrolytic capacitor and method for producing same
JP5327844B2 (en) Electrolytic polymerization liquid for forming conductive polymer, conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP5289183B2 (en) Manufacturing method of solid electrolytic capacitor
JP2014192183A (en) Solid electrolytic capacitor and method of manufacturing the same
JP4925144B2 (en) Manufacturing method of solid electrolytic capacitor
JP2012028709A (en) Oxidizing agent solution for manufacturing electroconductive polymer, and method for manufacturing solid electrolytic capacitor using the same
JP2012054258A (en) Electrolytic polymerization solution for forming conductive polymer, solid electrolytic capacitor, and method for manufacturing the same
JP5305351B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010090324A (en) Dopant solution for conductive polymer, dopant solution also serving as oxidizer for conductive polymer, conductive composition, solid electrolytic capacitor and method for manufacturing the same
JP2011236339A (en) Electrolytic polymerization liquid for forming conductive polymer and method for manufacturing solid electrolytic capacitor using the same
JP2013157591A (en) Polyaniline solution for manufacturing solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor using the same
JP2003137982A (en) Method for producing heat-resistant polyethylene dioxythiophene, electrically conductive polymer material and solid electrolytic capacitor
JP4204061B2 (en) Oxidizing agent and dopant for conductive polymer synthesis
JP2005259807A (en) Solid electrolytic capacitor and its manufacturing method
JP5289212B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP5062694B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2008186881A (en) Solid electrolytic capacitor
JP2015199787A (en) Conductive polymer solution, method for producing the same, conductive polymer material and solid electrolytic capacitor
JP5481639B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP2012025919A (en) Oxidizing agent solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4986062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees