TWI400197B - Method of manufacturing zinc oxide nano-structure - Google Patents

Method of manufacturing zinc oxide nano-structure Download PDF

Info

Publication number
TWI400197B
TWI400197B TW97114124A TW97114124A TWI400197B TW I400197 B TWI400197 B TW I400197B TW 97114124 A TW97114124 A TW 97114124A TW 97114124 A TW97114124 A TW 97114124A TW I400197 B TWI400197 B TW I400197B
Authority
TW
Taiwan
Prior art keywords
zinc oxide
preparing
zinc
oxide nanostructure
reaction chamber
Prior art date
Application number
TW97114124A
Other languages
Chinese (zh)
Other versions
TW200944479A (en
Inventor
Hai-Lin Sun
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97114124A priority Critical patent/TWI400197B/en
Publication of TW200944479A publication Critical patent/TW200944479A/en
Application granted granted Critical
Publication of TWI400197B publication Critical patent/TWI400197B/en

Links

Description

氧化鋅奈米結構的製備方法 Method for preparing zinc oxide nanostructure

本發明涉及奈米材料的製備方法,尤其涉及一種氧化鋅奈米結構的製備方法。 The invention relates to a preparation method of a nano material, in particular to a preparation method of a zinc oxide nano structure.

半導體工業的發展方向為更小、更快、更低能耗。然而,從微米電子時代進入奈米電子時代之後,先前的半導體製造技術--光刻工藝(“自上而下”的技術)顯得越來越難以滿足現在及未來的要求。由此,“自下而上”的技術,或稱為自組裝技術被認為係未來發展的趨勢。目前,人們已經利用這種自組裝技術合成了各種奈米結構,包括奈米線、奈米管,其潛在的應用領域包括奈米電子、奈米光學、奈米感測器等。 The semiconductor industry is heading for smaller, faster, and lower energy consumption. However, after entering the nanoelectronics era from the microelectronics era, the previous semiconductor manufacturing technology, the lithography process ("top-down" technology), has become increasingly difficult to meet current and future requirements. Thus, "bottom-up" technology, or self-assembly technology, is considered a trend in the future. At present, various self-assembly techniques have been used to synthesize various nanostructures, including nanowires and nanotubes. Potential applications include nanoelectronics, nano-optics, and nanosensors.

氧化鋅奈米材料具有優異的力學、電學、光學性能,可以用來製備紫外雷射器,太陽能電池器件,還可以通過磁性摻雜製備成稀磁半導體器件等。佐治亞理工大學的王中林教授的課題組於氧化鋅奈米材料研究領域做出了開拓性貢獻。他們分別合成了氧化鋅的奈米帶,奈米螺旋等各色各樣的氧化鋅奈米結構(請參見,Nanobelts of Semiconducting Oxides,Science V291,P1947(2001))。目前,製備各種形態的氧化鋅奈米結構成為奈米材料領域研究的熱點之一。 Zinc oxide nanomaterials have excellent mechanical, electrical and optical properties and can be used to prepare ultraviolet lasers, solar cell devices, and magnetic semiconductor devices. Professor Wang Zhonglin from the Georgia Institute of Technology has made a pioneering contribution to the research of zinc oxide nanomaterials. They separately synthesized various zinc oxide nanostructures such as nanobelts of zinc oxide and nanohelices (see, Nanobelts of Semiconducting Oxides, Science V291, P1947 (2001)). At present, the preparation of various forms of zinc oxide nanostructures has become one of the hotspots in the field of nanomaterials.

先前技術揭示一種採用水熱分解法製備氧化鋅奈米結構的方法,其具體包括以下步驟:將品質百分比濃度為25%的濃氨水滴加到品質百分比濃度為0.06~0.15%的氯化鋅溶液中,並充分攪拌;調整溶液的PH值為9~11,然後 將溶液置入密閉的容器中;對溶液進行超聲處理25~35分鐘;將一經過清洗的襯底放入上述溶液中,並再次將上述溶液置入密閉的容器中;將該溶液放入80~98℃環境下靜置45~90分鐘後,冷卻至室溫,並保持5~9小時以使其老化;將襯底取出,用去離子水清洗,自然晾乾後得到一氧化鋅奈米管。 The prior art discloses a method for preparing a zinc oxide nanostructure by hydrothermal decomposition, which specifically comprises the steps of: adding concentrated ammonia having a mass percentage concentration of 25% to a zinc chloride solution having a mass percentage concentration of 0.06 to 0.15%; Medium and stir well; adjust the pH of the solution to 9~11, then The solution is placed in a closed container; the solution is sonicated for 25 to 35 minutes; a cleaned substrate is placed in the above solution, and the solution is again placed in a closed container; the solution is placed in 80 After standing at ~98 °C for 45~90 minutes, cool to room temperature and keep it for 5~9 hours to make it age; remove the substrate, wash it with deionized water, and dry it naturally to obtain zinc oxide nano tube.

然而,採用先前技術製備氧化鋅奈米結構具有以下不足:第一,濃氨水與氯化鋅溶液作為原料,殘留物不易回收處理,會造成環境污染;第二,採用水熱分解法製備氧化鋅奈米結構時間成本高,效率低;第三,該方法製備的氧化鋅奈米結構為氧化鋅奈米管,比表面積小。 However, the preparation of the zinc oxide nanostructure by the prior art has the following disadvantages: First, the concentrated ammonia water and the zinc chloride solution are used as raw materials, and the residue is not easily recycled, which causes environmental pollution; secondly, the zinc oxide is prepared by hydrothermal decomposition. The nanostructure has high time and low efficiency. Thirdly, the zinc oxide nanostructure prepared by the method is a zinc oxide nanotube with a small specific surface area.

有鑒於此,提供一種不會造成環境污染,時間成本低,效率高,且比表面積大的氧化鋅奈米結構的製備方法實為必要。 In view of the above, it is necessary to provide a method for preparing a zinc oxide nanostructure which does not cause environmental pollution, has low time cost, high efficiency, and large specific surface area.

一種氧化鋅奈米結構的製備方法,其具體包括以下步驟:提供一生長裝置,且該生長裝置包括一加熱爐與一反應室;提供一生長基底,並於該生長基底上形成一金屬層與一形成於該金屬層上的催化劑層,所述金屬層之厚度為0.5微米~1毫米;將一金屬鋅塊或金屬鋅粉與上述生長基底置入反應室內;以及向反應室通入含氧氣體,並加熱至500~1100℃,生長氧化鋅奈米管。 A method for preparing a zinc oxide nanostructure, comprising the steps of: providing a growth device, wherein the growth device comprises a heating furnace and a reaction chamber; providing a growth substrate, and forming a metal layer on the growth substrate a catalyst layer formed on the metal layer, the metal layer having a thickness of 0.5 μm to 1 mm; a metal zinc block or a metal zinc powder and the growth substrate are placed in the reaction chamber; and oxygen is introduced into the reaction chamber The gas is heated to 500~1100 ° C to grow a zinc oxide nanotube.

相對於先前技術,本發明提供的氧化鋅奈米結構的製備方法具有以下優點:第一,由於採用金屬鋅及含氧氣體作為原料,不存在污染的問題。第二,採用本發明提供的方法製備氧化鋅奈米結構,工藝簡單,易於實現。 Compared with the prior art, the method for preparing a zinc oxide nanostructure provided by the present invention has the following advantages: First, since metal zinc and an oxygen-containing gas are used as raw materials, there is no problem of contamination. Secondly, the zinc oxide nanostructure is prepared by the method provided by the invention, and the process is simple and easy to implement.

30‧‧‧生長裝置 30‧‧‧Growing device

302‧‧‧加熱爐 302‧‧‧heating furnace

304‧‧‧反應室 304‧‧‧Reaction room

306‧‧‧入氣口 306‧‧‧ inlet

308‧‧‧出氣口 308‧‧‧ gas outlet

310‧‧‧金屬鋅粉 310‧‧‧Metal zinc powder

312‧‧‧承載裝置 312‧‧‧ Carrying device

314‧‧‧催化劑層 314‧‧‧ catalyst layer

316‧‧‧生長基底 316‧‧‧ growth substrate

318‧‧‧金屬層 318‧‧‧metal layer

320‧‧‧氣流方向 320‧‧‧ Airflow direction

圖1為本技術方案實施例的氧化鋅奈米結構的製備方法流程圖。 1 is a flow chart of a method for preparing a zinc oxide nanostructure according to an embodiment of the present technical solution.

圖2為本技術方案實施例製備氧化鋅奈米結構的裝置的結構示意圖。 2 is a schematic structural view of an apparatus for preparing a zinc oxide nanostructure according to an embodiment of the present technical solution.

圖3為本技術方案實施例製備的氧化鋅奈米結構的掃描電鏡照片。 FIG. 3 is a scanning electron micrograph of a zinc oxide nanostructure prepared according to an embodiment of the present technical solution.

以下將結合附圖對本技術方案作進一步的詳細說明。 The technical solution will be further described in detail below with reference to the accompanying drawings.

請參閱圖1及圖2,本技術方案實施例提供一種氧化鋅奈米結構的製備方法,其具體包括以下步驟: 步驟一,提供一生長裝置30,且該生長裝置30包括一加熱爐302以及一反應室304。 Referring to FIG. 1 and FIG. 2 , an embodiment of the present technical solution provides a method for preparing a zinc oxide nanostructure, which specifically includes the following steps: In the first step, a growth device 30 is provided, and the growth device 30 includes a heating furnace 302 and a reaction chamber 304.

本實施例中,所述反應室304優選為一石英管,其兩端分別具有一入氣口306及一出氣口308。該石英管置於加熱爐302內可移動,且其長度比加熱爐302長,這樣使得實驗中推、拉移動石英管時,總能保持石英管有一部分可以置於加熱爐302的內部。 In this embodiment, the reaction chamber 304 is preferably a quartz tube having an air inlet 306 and an air outlet 308 at two ends. The quartz tube is movable in the heating furnace 302 and has a length longer than that of the heating furnace 302. Thus, when the quartz tube is pushed and pulled in the experiment, a part of the quartz tube can always be placed inside the heating furnace 302.

該反應室304內還包括一承載裝置312,該承載裝置312為一高熔點的容器。本實施例中,承載裝置312優選為一陶瓷反應舟,該陶瓷反應舟的形狀不限,其大小可以根據反應室304的大小而選擇。 The reaction chamber 304 further includes a carrier 312, which is a high melting point container. In this embodiment, the carrying device 312 is preferably a ceramic reaction boat. The shape of the ceramic reaction boat is not limited, and the size thereof may be selected according to the size of the reaction chamber 304.

步驟二,提供一生長基底316,並於該生長基底316上形成一金屬層318與一形成於該金屬層318上的催化劑層314。 In step two, a growth substrate 316 is provided, and a metal layer 318 and a catalyst layer 314 formed on the metal layer 318 are formed on the growth substrate 316.

沈積金屬層318之前,先對生長基底316進行超聲波清洗10~30分鐘。所述生長基底316可以為一非金屬耐高溫材料。如:矽片、石英片、藍寶石或玻璃等。本實施例中,生長基底316優選為一矽片。 Prior to depositing the metal layer 318, the growth substrate 316 is ultrasonically cleaned for 10 to 30 minutes. The growth substrate 316 can be a non-metallic, high temperature resistant material. Such as: enamel, quartz, sapphire or glass. In this embodiment, the growth substrate 316 is preferably a dome.

於生長基底316上形成金屬層318的方法可以為化學氣相沈積法、熱蒸發法或磁控濺射法、等離子輔助沈積法等。所述金屬層318材料為一任意金屬材 料,且其純度大於99.9%。所述金屬層318的厚度為0.5微米~1毫米。本實施例中,金屬層318優選為鋁膜,且其厚度優選為1微米。 The method of forming the metal layer 318 on the growth substrate 316 may be a chemical vapor deposition method, a thermal evaporation method or a magnetron sputtering method, a plasma assisted deposition method, or the like. The metal layer 318 material is an arbitrary metal material Material, and its purity is greater than 99.9%. The metal layer 318 has a thickness of 0.5 micrometers to 1 millimeter. In the present embodiment, the metal layer 318 is preferably an aluminum film, and its thickness is preferably 1 micrometer.

於上述金屬層318上形成催化劑層314的方法可以為化學氣相沈積法、熱蒸發法或磁控濺射法、等離子輔助沈積法等。所述催化劑層314的材料不同於上述金屬層318材料,可以為金、銅、鐵等。所述催化劑層314的厚度為1~500奈米。本實施例中,催化劑層314優選為金膜,且其厚度優選為5奈米。所述金膜的純度大於99.9%。 The method of forming the catalyst layer 314 on the metal layer 318 may be a chemical vapor deposition method, a thermal evaporation method or a magnetron sputtering method, a plasma assisted deposition method, or the like. The material of the catalyst layer 314 is different from the material of the metal layer 318 described above, and may be gold, copper, iron or the like. The catalyst layer 314 has a thickness of 1 to 500 nm. In the present embodiment, the catalyst layer 314 is preferably a gold film, and its thickness is preferably 5 nm. The purity of the gold film is greater than 99.9%.

步驟三,將一金屬鋅塊或金屬鋅粉310與上述生長基底316置入反應室304內。 In step three, a metal zinc block or metal zinc powder 310 and the growth substrate 316 are placed in the reaction chamber 304.

本實施例中,優選金屬鋅粉310作為鋅源,並將其置入上述承載裝置312內。將該金屬鋅粉310置入上述承載裝置312前,先將該金屬鋅粉310置入稀釋的酸性溶液中浸泡2~10分鐘,以除去金屬鋅粉310表面的氧化層以及其他雜質。所述酸性溶液為稀釋的鹽酸溶液。所述金屬鋅粉310的純度大於99.9%。 In the present embodiment, the metal zinc powder 310 is preferably used as a zinc source and placed in the above-mentioned carrier 312. Before the metal zinc powder 310 is placed in the above-mentioned carrier device 312, the metal zinc powder 310 is placed in a diluted acidic solution and immersed for 2 to 10 minutes to remove the oxide layer and other impurities on the surface of the metal zinc powder 310. The acidic solution is a diluted hydrochloric acid solution. The metal zinc powder 310 has a purity greater than 99.9%.

將上述生長基底316置入反應室304內後,生長基底316的設置位置不限。可以將生長基底316設置於所述承載裝置312正上方,也可以將生長基底316設置於所述承載裝置312與出氣口308之間。如果承載裝置312足夠大,還可以將生長基底316與所述金屬鋅粉310並列設置於所述承載裝置312內。且,生長基底316位於靠近出氣口308的一側。 After the growth substrate 316 is placed in the reaction chamber 304, the installation position of the growth substrate 316 is not limited. The growth substrate 316 may be disposed directly above the carrier device 312, or the growth substrate 316 may be disposed between the carrier device 312 and the air outlet 308. If the carrier device 312 is sufficiently large, the growth substrate 316 may be disposed in parallel with the metal zinc powder 310 in the carrier device 312. Moreover, the growth substrate 316 is located on the side close to the gas outlet 308.

步驟四,向反應室304通入含氧氣體,並加熱至生長溫度進行反應,生長氧化鋅奈米結構。 In step four, an oxygen-containing gas is introduced into the reaction chamber 304, and heated to a growth temperature for reaction to grow a zinc oxide nanostructure.

該生長氧化鋅奈米結構的過程具體包括以下步驟:首先,向反應室304通入保護氣體,用以將反應室304內的空氣排出,同時 形成氣流方向320從入氣口306到出氣口308。 The process of growing the zinc oxide nanostructure specifically includes the following steps: First, a shielding gas is introduced into the reaction chamber 304 to discharge the air in the reaction chamber 304 while A gas flow direction 320 is formed from the air inlet 306 to the air outlet 308.

通入保護氣體的流量為100~2000毫升/分。所述的保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 The flow rate of the protective gas is 100 to 2000 ml/min. The shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon.

其次,向反應室304通入含氧氣體。 Next, an oxygen-containing gas is introduced into the reaction chamber 304.

當反應室304內的空氣排出後,繼續通入保護氣體。同時,向反應室304通入含氧氣體。使反應室304內氣壓保持於1~50托。所述含氧氣體為高純度氧氣,其純度大於99.99%。所述含氧氣體流量為20~1000毫升/分。 After the air in the reaction chamber 304 is discharged, the shielding gas is continuously supplied. At the same time, an oxygen-containing gas is introduced into the reaction chamber 304. The gas pressure in the reaction chamber 304 was maintained at 1 to 50 Torr. The oxygen-containing gas is high purity oxygen having a purity greater than 99.99%. The flow rate of the oxygen-containing gas is 20 to 1000 ml/min.

最後,加熱反應室304至生長溫度進行反應,生長氧化鋅奈米結構。 Finally, the reaction chamber 304 is heated to a growth temperature for reaction to grow a zinc oxide nanostructure.

所述生長溫度為500~1100℃。生長氧化鋅奈米結構的時間約為10~90分鐘。所述金屬鋅310的熔點為419.5℃,當反應室304溫度達到生長溫度為時,金屬鋅310全部熔化,並蒸發。在催化劑作用下,蒸發的鋅與含氧氣體發生反應,並於生長基底316上生長氧化鋅奈米結構。可以理解,本實施例中,還可以先對反應室304進行加熱至生長溫度後,再通入含氧氣體,或者對反應室304進行加熱的同時通入含氧氣體。 The growth temperature is 500 to 1100 °C. The time to grow the zinc oxide nanostructure is about 10 to 90 minutes. The melting point of the metal zinc 310 is 419.5 ° C. When the temperature of the reaction chamber 304 reaches the growth temperature, the metal zinc 310 is completely melted and evaporated. Under the action of the catalyst, the evaporated zinc reacts with the oxygen-containing gas and grows a zinc oxide nanostructure on the growth substrate 316. It can be understood that in the present embodiment, the reaction chamber 304 may be heated to the growth temperature, and then the oxygen-containing gas may be introduced, or the oxygen-containing gas may be introduced while the reaction chamber 304 is heated.

本實施例中,金屬層318優選為鋁膜,催化劑層314優選為金膜。且於1000℃溫度條件下生長了氧化鋅奈米結構,如圖3所示。該氧化鋅奈米結構包括複數個氧化鋅奈米管,而且每個氧化鋅奈米管內包括複數個氧化鋅奈米薄膜。所述複數個氧化鋅奈米薄膜的表面平行於氧化鋅奈米管的管壁,且複數個氧化鋅奈米薄膜連接於一起,將氧化鋅奈米管的內部空間分隔成複數個空間。所述氧化鋅奈米管橫截面為六邊形,且其管徑為50奈米~1微米。所述氧化鋅奈米管長度為100奈米~100微米。由於該氧化鋅奈米結構包括複數個氧化鋅奈米管,而且每個氧化鋅奈米管內包括複數個氧化鋅奈米薄膜,故,具有較大的比表面積,為優良的氣體傳感材料。 In this embodiment, the metal layer 318 is preferably an aluminum film, and the catalyst layer 314 is preferably a gold film. The zinc oxide nanostructure was grown at a temperature of 1000 ° C, as shown in FIG. The zinc oxide nanostructure comprises a plurality of zinc oxide nanotubes, and each of the zinc oxide nanotubes comprises a plurality of zinc oxide nanofilms. The surface of the plurality of zinc oxide nano-films is parallel to the tube wall of the zinc oxide nanotube, and a plurality of zinc oxide nano-films are connected together to divide the inner space of the zinc oxide nanotube into a plurality of spaces. The zinc oxide nanotube has a hexagonal cross section and a diameter of 50 nm to 1 μm. The zinc oxide nanotube has a length of from 100 nm to 100 μm. Since the zinc oxide nanostructure comprises a plurality of zinc oxide nanotubes, and each zinc oxide nanotube comprises a plurality of zinc oxide nanofilms, it has a large specific surface area and is an excellent gas sensing material. .

採用本實施例提供的方法製備氧化鋅奈米結構,由於採用金屬鋅及含氧氣體作為原料,不存在污染的問題。而且,採用本實施例提供的方法製備氧化鋅奈米結構,工藝簡單,易於實現。另外,該氧化鋅奈米結構具有較大的比表面積,為優良的氣體傳感材料。 The zinc oxide nanostructure is prepared by the method provided in this embodiment. Since metal zinc and an oxygen-containing gas are used as raw materials, there is no problem of contamination. Moreover, the zinc oxide nanostructure is prepared by the method provided in the embodiment, and the process is simple and easy to implement. In addition, the zinc oxide nanostructure has a large specific surface area and is an excellent gas sensing material.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

Claims (12)

一種氧化鋅奈米結構的製備方法,其具體包括以下步驟:提供一生長裝置,且該生長裝置包括一加熱爐與一反應室;提供一生長基底,並於該生長基底上形成一金屬層與一形成於該金屬層上的催化劑層,所述金屬層之厚度為0.5微米~1毫米;將一金屬鋅塊或金屬鋅粉與上述生長基底置入反應室內;以及向反應室通入含氧氣體,並加熱至500~1100℃,生長氧化鋅奈米管。 A method for preparing a zinc oxide nanostructure, comprising the steps of: providing a growth device, wherein the growth device comprises a heating furnace and a reaction chamber; providing a growth substrate, and forming a metal layer on the growth substrate a catalyst layer formed on the metal layer, the metal layer having a thickness of 0.5 μm to 1 mm; a metal zinc block or a metal zinc powder and the growth substrate are placed in the reaction chamber; and oxygen is introduced into the reaction chamber The gas is heated to 500~1100 ° C to grow a zinc oxide nanotube. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,所述生長基底為一矽片、石英片、藍寶石或玻璃。 The method for preparing a zinc oxide nanostructure according to claim 1, wherein the growth substrate is a ruthenium plate, a quartz plate, sapphire or glass. 如請求項第2項所述的氧化鋅奈米結構的製備方法,其中,所述金屬層為鋁膜,其厚度為0.5微米~1毫米。 The method for preparing a zinc oxide nanostructure according to claim 2, wherein the metal layer is an aluminum film having a thickness of 0.5 μm to 1 mm. 如請求項第3項所述的氧化鋅奈米結構的製備方法,其中,所述催化劑層為金膜,其厚度為1奈米~500奈米。 The method for producing a zinc oxide nanostructure according to claim 3, wherein the catalyst layer is a gold film having a thickness of from 1 nm to 500 nm. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,反應室包括一入氣口與一出氣口,且生長基底置於金屬鋅塊或金屬鋅粉的正上方或置於金屬鋅塊或金屬鋅粉與出氣口之間。 The method for preparing a zinc oxide nanostructure according to claim 1, wherein the reaction chamber comprises an air inlet and an air outlet, and the growth substrate is placed directly above the metal zinc block or the metal zinc powder or placed on the metal Between the zinc block or the metal zinc powder and the gas outlet. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,所述含氧氣體流量為20~1000毫升/分。 The method for preparing a zinc oxide nanostructure according to the above item 1, wherein the oxygen-containing gas has a flow rate of 20 to 1000 ml/min. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,向反應室通入含氧氣體前,先向反應室通入流量為100~2000毫升/分的保護氣體。 The method for producing a zinc oxide nanostructure according to claim 1, wherein a shielding gas having a flow rate of 100 to 2000 ml/min is introduced into the reaction chamber before the oxygen-containing gas is introduced into the reaction chamber. 如請求項第7項所述的氧化鋅奈米結構的製備方法,其中,含氧氣體為高純度氧氣,保護氣體為氮氣或惰性氣體。 The method for preparing a zinc oxide nanostructure according to claim 7, wherein the oxygen-containing gas is high-purity oxygen, and the shielding gas is nitrogen or an inert gas. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,生長氧化鋅奈 米結構時,反應室內的氣壓為1~50托。 The method for preparing a zinc oxide nanostructure according to claim 1, wherein the zinc oxide naphthalene is grown In the case of a meter structure, the pressure in the reaction chamber is 1 to 50 Torr. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,所述生長氧化鋅奈米結構的時間為10~90分鐘。 The method for preparing a zinc oxide nanostructure according to claim 1, wherein the time for growing the zinc oxide nanostructure is 10 to 90 minutes. 如請求項第1項所述的氧化鋅奈米結構的製備方法,其中,該方法製備的氧化鋅奈米結構包括複數個氧化鋅奈米管以及位於氧化鋅奈米管內的複數個氧化鋅奈米薄膜,且複數個氧化鋅奈米薄膜的表面平行於氧化鋅奈米管的管壁。 The method for preparing a zinc oxide nanostructure according to claim 1, wherein the zinc oxide nanostructure prepared by the method comprises a plurality of zinc oxide nanotubes and a plurality of zinc oxides located in the zinc oxide nanotubes. The nano film, and the surface of the plurality of zinc oxide nano films is parallel to the tube wall of the zinc oxide nanotube. 如請求項第11項所述的氧化鋅奈米結構的製備方法,其中,所述氧化鋅奈米管的管徑為50奈米~1微米,長度為100奈米~100微米。 The method for preparing a zinc oxide nanostructure according to claim 11, wherein the zinc oxide nanotube has a diameter of 50 nm to 1 μm and a length of 100 nm to 100 μm.
TW97114124A 2008-04-18 2008-04-18 Method of manufacturing zinc oxide nano-structure TWI400197B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97114124A TWI400197B (en) 2008-04-18 2008-04-18 Method of manufacturing zinc oxide nano-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97114124A TWI400197B (en) 2008-04-18 2008-04-18 Method of manufacturing zinc oxide nano-structure

Publications (2)

Publication Number Publication Date
TW200944479A TW200944479A (en) 2009-11-01
TWI400197B true TWI400197B (en) 2013-07-01

Family

ID=44869377

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97114124A TWI400197B (en) 2008-04-18 2008-04-18 Method of manufacturing zinc oxide nano-structure

Country Status (1)

Country Link
TW (1) TWI400197B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105356A1 (en) * 2005-11-10 2007-05-10 Wei Wu Method of controlling nanowire growth and device with controlled-growth nanowire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105356A1 (en) * 2005-11-10 2007-05-10 Wei Wu Method of controlling nanowire growth and device with controlled-growth nanowire

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2003年出版,J. Mater. Res.,Vol.18,p2837-2844,「two-step oxygen injection process for growing Zno nanorod」,Yung-Kuan Tseng等撰寫 【摘要】 【實驗】 【結果與討論】 *
2007年出版,J. Phys. Chem.,V.111,p17500–17505,「Controlling the growth mechanism of ZnO nanowires by selecting catalysts」,Z. Zhang等撰寫 【實驗】 *

Also Published As

Publication number Publication date
TW200944479A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
Xia et al. CVD synthesis of large-area, highly crystalline MoSe 2 atomic layers on diverse substrates and application to photodetectors
Fan et al. Semiconductor nanowires: from self‐organization to patterned growth
Li et al. Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process
Cheng et al. High-quality ZnO nanowire arrays directly fabricated from photoresists
Zhu et al. Fabrication of ordered SnO2 nanotube arrays via a template route
US20100143234A1 (en) Methods of preparing and purifying carbon nanotubes, carbon nanotubes, and an element using the same
Wang et al. Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
Sosnowchik et al. Titanium dioxide nanoswords with highly reactive, photocatalytic facets
Xu et al. Low-temperature growth and optical properties of radial ZnO nanowires
Oh et al. Tailoring zinc oxide nanowire architectures collectively by catalytic vapor-liquid-solid growth, catalyst-free vapor-solid growth, and low-temperature hydrothermal growth
Zhang et al. UV-durable superhydrophobic ZnO/SiO2 nanorod arrays on an aluminum substrate using catalyst-free chemical vapor deposition and their corrosion performance
CN104805409B (en) Method for preparing Ag nanowire array electrode according to magnetron sputtering-masking assisted deposition
KR20120010388A (en) Manufacturing method of zinc oxide nanorods with nano pore on surface and zinc oxide nanorods with nano pore on surface made by the same
Li et al. Synthesis and properties of aligned ZnO microtube arrays
Nabi et al. Synthesis, characterization, growth mechanism, photoluminescence and field emission properties of novel dandelion-like gallium nitride
Filippo et al. Fabrication of α-TeO2 smooth and beaded microwires by thermal evaporation method
TWI400197B (en) Method of manufacturing zinc oxide nano-structure
Yang et al. Growth of amorphous SiO2 nano-wires on pre-oxidized silicon substrate via chemical vapor deposition
Eshghi et al. Synthesis of CuO nanowires on Cu-foil using thermal oxidation method, a novel annealing process
Gong et al. Synthesis, superhydrophobicity, enhanced photoluminescence and gas sensing properties of ZnO nanowires
Hutagalung et al. Oxide-assisted growth of silicon nanowires by carbothermal evaporation
JP5074446B2 (en) Zinc oxide nanostructure and manufacturing method thereof
Jeon et al. Synthesis of gallium-catalyzed silicon nanowires by hydrogen radical-assisted deposition method
Zamchiy et al. Tin-catalyzed oriented array of microropes of silicon oxide nanowires synthesized on different substrates