JP2015212213A - INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET - Google Patents

INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET Download PDF

Info

Publication number
JP2015212213A
JP2015212213A JP2014096012A JP2014096012A JP2015212213A JP 2015212213 A JP2015212213 A JP 2015212213A JP 2014096012 A JP2014096012 A JP 2014096012A JP 2014096012 A JP2014096012 A JP 2014096012A JP 2015212213 A JP2015212213 A JP 2015212213A
Authority
JP
Japan
Prior art keywords
graphene sheet
zinc oxide
zno
substrate
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014096012A
Other languages
Japanese (ja)
Inventor
洋 市川
Hiroshi Ichikawa
洋 市川
伸哉 廣芝
Nobuya Hiroshiba
伸哉 廣芝
竜二 奥村
Ryuji Okumura
竜二 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014096012A priority Critical patent/JP2015212213A/en
Publication of JP2015212213A publication Critical patent/JP2015212213A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To synthesize a ZnO nanorod oriented to one direction onto a graphene sheet by a simple method, and to make zinc oxide nanorods integrated with the graphene sheet obtained by the method into a device.SOLUTION: Provided are plurality of oriented zinc oxide nanorods integrated with a graphene sheet at the edge faces in the longitudinal direction, where a plurality of zinc oxide nanorods are formed on the graphene sheet by hydrothermal synthesis. Then the surface of each zinc oxide nanorod is stuck with specially prepared graphene sheet, and the graphene sheet is integrated into both the edge faces in the longitudinal direction of each zinc oxide nanorod.

Description

本発明はZnO微粒子を用いた振動子あるいはセンサー等に関わる。   The present invention relates to a vibrator or sensor using ZnO fine particles.

ZnO(酸化亜鉛)は紫外線発光デバイス、圧電センサー、化学センサー、光触媒、さらには色素増感太陽電池等の電極として幅広い用途が検討されている。これらの用途には一般的に化学的気相成長(CVD)法あるいは物理的気相成長(PVD)法により、薄膜化あるいは微粒子化が実現されている。一方、気相法の他に、液相法として、電解析出法、ゾルーゲル法等が検討されている。ゾルーゲル法の場合、コーティング液を基板に塗布した後、400℃以上の温度で焼成しなければ酸化亜鉛膜を形成することが出来ない。また、1マイクロメートル以上の膜厚を有する膜を調製するには、基板への塗布と焼成とを繰り返し行わなければならないという問題点がある。 ZnO (zinc oxide) has been studied for a wide range of applications as an electrode for ultraviolet light-emitting devices, piezoelectric sensors, chemical sensors, photocatalysts, and dye-sensitized solar cells. In these applications, a thin film or fine particles are generally realized by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method. On the other hand, in addition to the vapor phase method, an electrolytic deposition method, a sol-gel method, and the like have been studied as a liquid phase method. In the case of the sol-gel method, a zinc oxide film cannot be formed unless the coating liquid is applied to the substrate and then baked at a temperature of 400 ° C. or higher. In addition, in order to prepare a film having a thickness of 1 micrometer or more, there is a problem in that application to a substrate and baking must be repeated.

液相法の他の方法として、pH8以上で安定なテトラヒドロキシ亜鉛酸イオンを含有する水溶液を酸化亜鉛粒子又は酸化亜鉛膜製造のための前駆体として用い、この水溶液中で100℃未満の温度での加熱処理により一次粒子径が1μm以上の酸化亜鉛粒子又は酸化亜鉛膜を製造する方法が開示されている(特許文献1参照)。この方法によれば、例えば、容器に入れた蒸留水に硝酸亜鉛6水和物を室温で溶解して0.1mol/lの濃度の亜鉛塩水溶液50mlを調製し、室温で攪拌しながら1.5mol/lのアンモニア水50mlを加え、最終的に得られた透明なテトラヒドロキシ亜鉛酸イオンを含有する水溶液にガラス基板を設置し、容器を密封して95℃の恒温槽中に2時間静置した後、ガラス基板を取り出し、蒸留水ですすぎ、乾燥することで酸化亜鉛膜が付着したガラス基板が得られるとのことである。そして、得られた酸化亜鉛膜の膜厚は0.1mmであり、長さが5μmから10μmの酸化亜鉛ウイスカーが凝集した構造が観察されている。 As another method of the liquid phase method, an aqueous solution containing tetrahydroxyzincate ions that are stable at pH 8 or higher is used as a precursor for producing zinc oxide particles or a zinc oxide film, and in this aqueous solution at a temperature of less than 100 ° C. Discloses a method for producing zinc oxide particles or zinc oxide films having a primary particle diameter of 1 μm or more by heat treatment (see Patent Document 1). According to this method, for example, zinc nitrate hexahydrate is dissolved in distilled water in a container at room temperature to prepare 50 ml of a 0.1 mol / l concentration zinc salt aqueous solution. Add 50 ml of 5 mol / l ammonia water, place the glass substrate in the finally obtained aqueous solution containing transparent tetrahydroxyzincate ion, seal the container and leave it in a thermostatic bath at 95 ° C. for 2 hours. After that, the glass substrate is taken out, rinsed with distilled water, and dried to obtain a glass substrate with a zinc oxide film attached thereto. And the film thickness of the obtained zinc oxide film | membrane is 0.1 mm, and the structure where the zinc oxide whisker whose length is 5-10 micrometers aggregated was observed.

上記液相法は簡便な酸化亜鉛微粒子の製造方法であるが、紫外線発光デバイス、圧電センサー、あるいは化学センサー等に利用する場合、各種デバイスの特性を向上させるためには、酸化亜鉛微粒子がランダムに配向しているよりも一方向に配向していることが好ましい。そして、デバイスにするには配向した複数微粒子の端面を連続化して電極を形成することが必要である。 The above liquid phase method is a simple method for producing zinc oxide fine particles. However, when used for ultraviolet light emitting devices, piezoelectric sensors, chemical sensors, etc., zinc oxide fine particles are randomly added to improve the characteristics of various devices. It is preferable to be oriented in one direction rather than oriented. In order to form a device, it is necessary to continuously form the end faces of the aligned fine particles to form an electrode.

ところで、ナノ構造材料として、グラフェンが注目を集めている。グラフェンとは、炭素原子同士がsp結合でつながった1原子のシートで、蜂の巣のような六角形格子構造をとっている。グラフェンの特徴としては、室温で銀(Ag)並みの高い電気伝導性、熱伝導性、軽量、高強度、高柔軟性、可視光に対する透明性などの特徴から、様々な機能性材料、デバイス創成を目論んだ関連の研究開発が精力的に行われている。そこで、グラフェンシート上に酸化亜鉛微粒子を配向して形成、あるいは当該配向した酸化亜鉛微粒子群の端面にグラフェンからなる電極を形成してデバイスを作製することが考えられる。 By the way, graphene is attracting attention as a nanostructured material. Graphene is a one-atom sheet in which carbon atoms are connected by sp 2 bonds, and has a hexagonal lattice structure like a honeycomb. Graphene is characterized by high electrical conductivity, thermal conductivity, light weight, high strength, high flexibility, transparency to visible light, and the creation of various functional materials and devices similar to silver (Ag) at room temperature. Related research and development aimed at Therefore, it is conceivable to produce a device by orienting and forming zinc oxide fine particles on a graphene sheet, or by forming an electrode made of graphene on the end face of the oriented zinc oxide fine particle group.

グラフェンシートの作製は、レーザーアブレーション法、スパッタ法などの物理的気相成長法(PVD)、あるいは化学的気相成長(CVD)法で作製が試みられており、量産に適した方法を選択する必要がある。   Production of graphene sheets has been attempted by physical vapor deposition (PVD) such as laser ablation and sputtering, or chemical vapor deposition (CVD), and a method suitable for mass production is selected. There is a need.

前記のように、ZnOナノロッドの合成には、CVD法、PVD法、液相成長法があるが、CVD法、PVD法では、基板を600℃以上の高温に加熱する必要があり、また酸素ガスを必要とするので、基板としてのグラフェンの酸化、気化、劣化が生じるので、グラフェンシート上へのZnOナノロッド合成の例は無い。一方、液相成長法では、基板上にZnOナノロッドを配向成長させるためには、基板上に、ナノロッドの核になるZnO薄膜を、まず堆積させる必要があり、直接成長は無理であった(非特許文献1、2)。また、基板にZnO薄膜を設けずに水熱合成処理を施しても、配向したZnOナノロッドは得られてはいない(非特許文献3)。 As described above, the synthesis of ZnO nanorods includes CVD, PVD, and liquid phase growth. In CVD and PVD, it is necessary to heat the substrate to a high temperature of 600 ° C. or higher, and oxygen gas. Therefore, there is no example of synthesis of ZnO nanorods on a graphene sheet because graphene as a substrate is oxidized, vaporized, and deteriorated. On the other hand, in the liquid phase growth method, in order to align and grow ZnO nanorods on a substrate, it is necessary to first deposit a ZnO thin film that becomes the core of the nanorods on the substrate, and direct growth is impossible (non- Patent Documents 1 and 2). Moreover, even if a hydrothermal synthesis process is performed without providing a ZnO thin film on a substrate, oriented ZnO nanorods have not been obtained (Non-patent Document 3).

特開2004−149367号公報JP 2004-149367 A

U.Alver,W.Zhou,A.B.Belay,R.Krueger,K.O.Davis,N.S.Hickman:Appl. Surf. Sci.258(2012)3109−3114U. Alver, W .; Zhou, A .; B. Belay, R.A. Krueger, K. et al. O. Davis, N .; S. Hickman: Appl. Surf. Sci. 258 (2012) 3109-3114 L.L.Wang,B.Z.Lin,M.P.Hung,L.Zhou,G.N.Panin,T.W.Kang,D.J.Fu:Solid−State Electronics 82(2013)99−102L. L. Wang, B.W. Z. Lin, M .; P. Hung, L.M. Zhou, G .; N. Panin, T .; W. Kang, D.C. J. et al. Fu: Solid-State Electronics 82 (2013) 99-102 J.Liu,R.Lu,G.Xu,P.Thapa,D.Moore:Adv.Funct.Mater.23(2013)4941−4948J. et al. Liu, R.A. Lu, G .; Xu, P .; Thapa, D.A. Moore: Adv. Funct. Mater. 23 (2013) 4941-4948 J.Liu,R.Lu,G.Xu,P.Thapa,D.Moore:Adv.Funct.Mater.23(2013)4941−4948J. et al. Liu, R.A. Lu, G .; Xu, P .; Thapa, D.A. Moore: Adv. Funct. Mater. 23 (2013) 4941-4948

本発明の課題は、グラフェンシート上に一方向に配向したZnOナノロッドを簡易な方法で合成することである。   An object of the present invention is to synthesize ZnO nanorods oriented in one direction on a graphene sheet by a simple method.

本発明者らは、まず、基板上にグラフェン膜を作製し、当該グラフェン膜の形状を維持しつつその上に一方向に配向したZnOナノロッドを形成することを創案した。   The inventors of the present invention first created a graphene film on a substrate, and formed ZnO nanorods oriented in one direction on the graphene film while maintaining the shape of the graphene film.

[1]グラフェンシートと長手方向端面で一体化した複数の配向した酸化亜鉛ナノロッド。 [1] A plurality of oriented zinc oxide nanorods integrated with a graphene sheet at a longitudinal end face.

[2]前記グラフェンシートのシート面に対して90°±15°に配向した前記[1]に記載の酸化亜鉛ナノロッド。 [2] The zinc oxide nanorod according to [1], which is oriented at 90 ° ± 15 ° with respect to the sheet surface of the graphene sheet.

[3]前記[1]または[2]に記載の酸化亜鉛ナノロッドを用いた振動子またはセンサー。 [3] A vibrator or sensor using the zinc oxide nanorod according to [1] or [2].

[4]グラフェンシート上に水熱合成により複数の配向した酸化亜鉛ナノロッドを形成する酸化亜鉛ナノロッドの製造方法。 [4] A method for producing zinc oxide nanorods, wherein a plurality of oriented zinc oxide nanorods are formed on a graphene sheet by hydrothermal synthesis.

[5]前記[4]に記載の酸化亜鉛ナノロッドの表面に別途用意したグラフェンシートを固着させて、酸化亜鉛ナノロッドの長手方向の両端面にグラフェンシートが一体化された酸化亜鉛ナノロッドの製造方法。
[5] A method for producing a zinc oxide nanorod in which a separately prepared graphene sheet is fixed to the surface of the zinc oxide nanorod according to [4], and the graphene sheet is integrated with both end faces in the longitudinal direction of the zinc oxide nanorod.

本発明において基板上にグラフェンシートを形成するCVD装置の概略図である。It is the schematic of the CVD apparatus which forms a graphene sheet on a board | substrate in this invention. CVDによりCu基板上に形成したグラフェン膜表面を走査型電子顕微鏡で観察した図である。It is the figure which observed the graphene film surface formed on Cu substrate by CVD with the scanning electron microscope. グラフェン膜を石英基板に転写した試料の透過率の分光特性を示す図である。It is a figure which shows the spectral characteristic of the transmittance | permeability of the sample which transcribe | transferred the graphene film to the quartz substrate. グラフェンシート上に酸化亜鉛ナノロッドが形成された酸化亜鉛ナノロッドの表面の走査型電子顕微鏡で観察した図である。It is the figure observed with the scanning electron microscope on the surface of the zinc oxide nanorod in which the zinc oxide nanorod was formed on the graphene sheet. R面サファイア基板上にZnOシード層が形成された領域とシード層が形成されていない領域での酸化亜鉛ナノロッドの形状の違いを示す光学顕微鏡観察を示す図である。It is a figure which shows the optical microscope observation which shows the difference in the shape of the zinc oxide nanorod in the area | region where the ZnO seed layer was formed on the R surface sapphire substrate, and the area | region where the seed layer is not formed. 図6は、図5の領域(a)と(b)の境界部分の電子顕微鏡観察を示す図である。FIG. 6 is a view showing an electron microscope observation of a boundary portion between regions (a) and (b) in FIG.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明のグラフェンシートの合成には、CVD法が好ましく、独立に温度制御ができる
管状炉二つで構成されることが好ましい。合成用キャリアガスとしてのアルゴン(Ar)とグラフェンの成長を促進させる水素(H)ガスを流す。グラフェンの原料として樟脳、ポリスチレン等の固形物、あるいはメタン(CH)などの炭化水素ガスを用いる。グラフェンシート合成用の基板として、銅(Cu)などの触媒性金属、あるいは触媒性金属が塗布された石英板、シリコン(Si)板等が一般的に用いる。グラフェンの原料を加熱して基板上にグラフェンシートを合成する。
For the synthesis of the graphene sheet of the present invention, a CVD method is preferable, and it is preferable that the graphene sheet is composed of two tubular furnaces capable of independently controlling the temperature. Argon (Ar) as a synthesis carrier gas and hydrogen (H 2 ) gas for promoting the growth of graphene are flowed. As a raw material for graphene, a solid material such as camphor, polystyrene, or a hydrocarbon gas such as methane (CH 4 ) is used. As a substrate for synthesizing a graphene sheet, a catalytic metal such as copper (Cu), a quartz plate coated with a catalytic metal, a silicon (Si) plate, or the like is generally used. A graphene sheet is synthesized on a substrate by heating a raw material of graphene.

前記Cu基板上に生成した膜状の物質(グラフェンシート)を、PMMA(ポリメチルメタクリレート樹脂)の熱可塑性樹脂等でグラフェンシートの表面を覆い、その後、当該試料を別途用意した基板に転写する。すなわち、硫酸鉄(FeSO)を溶かした蒸留水に、前記試料を浸し、Cu基板を溶解し、残ったPMMA膜上のグラフェンシートを基板面に合わせ、温度60〜80℃に上げて水分を取り除き、その後、温度を150〜200℃に上げ、60〜90分保持して、グラフェン膜と基板と接着する。次に試料をアセトン等に浸し、PMMAを溶かす。なお、膜の合成を確認しやすい石英あるいはサファイア等の基板を用いることが好ましい。 The film-like substance (graphene sheet) generated on the Cu substrate is covered with a PMMA (polymethyl methacrylate resin) thermoplastic resin or the like, and then the sample is transferred to a separately prepared substrate. That is, the sample is immersed in distilled water in which iron sulfate (FeSO 4 ) is dissolved, the Cu substrate is dissolved, the remaining graphene sheet on the PMMA film is aligned with the substrate surface, and the temperature is raised to 60 to 80 ° C. After that, the temperature is raised to 150 to 200 ° C. and held for 60 to 90 minutes to bond the graphene film and the substrate. Next, the sample is immersed in acetone or the like to dissolve PMMA. Note that it is preferable to use a substrate such as quartz or sapphire which allows easy confirmation of film synthesis.

次に、グラフェン膜が転写された基板上に水熱合成法にてZnOナノロッドを合成する。すなわち硝酸亜鉛等の亜鉛塩水溶液と水酸化ナトリウム水溶液等のアルカリ水溶液の混合溶液(pH12〜13)に浸漬し、水溶液温度を70〜90℃の一定に保ち、所定時間保持すると、グラフェンシート上に配向性のZnOナノロッドが形成される。なお、水酸化ナトリウムの代わりに、水酸化リチウム(LiOH)、水酸化カリウム(KOH)、水酸化セシウム(CsOH)を用いても良い。ZnOロッドの径が50nm〜300nm、ロッドの長軸の長さが1μm〜20μmに形成する。
Next, ZnO nanorods are synthesized on the substrate onto which the graphene film has been transferred by a hydrothermal synthesis method. That is, when immersed in a mixed solution (pH 12 to 13) of a zinc salt aqueous solution such as zinc nitrate and an alkaline aqueous solution such as sodium hydroxide aqueous solution, the aqueous solution temperature is kept constant at 70 to 90 ° C. and kept for a predetermined time, Oriented ZnO nanorods are formed. Note that lithium hydroxide (LiOH), potassium hydroxide (KOH), or cesium hydroxide (CsOH) may be used instead of sodium hydroxide. The diameter of the ZnO rod is 50 nm to 300 nm, and the length of the long axis of the rod is 1 μm to 20 μm.

以上のようにして、基板に転写されたグラフェン膜上にZnOナノロッドが合成され、当該ZnOナノロッドの長手方向の両端面にグラフェンからなる電極を形成してデバイス化するには、ZnOナノロッドの表面にグラフェンシートを60℃〜200℃で固着させる。グラフェンシート接合性を上げるためにPMMA等の樹脂材料で成る中間膜を設けてもよい。 As described above, ZnO nanorods are synthesized on the graphene film transferred to the substrate, and in order to form a device by forming graphene electrodes on both end faces in the longitudinal direction of the ZnO nanorods, the surface of the ZnO nanorods is formed. The graphene sheet is fixed at 60 to 200 ° C. An intermediate film made of a resin material such as PMMA may be provided in order to improve the graphene sheet bondability.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定さ
れない。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

(グラフェンシートの作製)
後のZnOナノロッド成長を考え、また将来的なデバイスへの展開を踏まえて、大面積化が容易なCVD法でグラフェンシートの作製を行った。図1に、CVD装置概略図を示す。本CVD装置は、それぞれ独立に温度制御が可能な管状炉二つで構成されている。管状炉には、外径100mm、内径96mm、長さ1mの石英管が通っており、キャリアガスとしてのアルゴン(Ar)と水素(H)ガスを流した。管状炉1の石英管内部には、石英ボートを置き、その中にグラフェンの原料として、樟脳(純度95%)3mgを置いた。樟脳はC1016Oで表される二環性モノ
1399443077834_0
1399443077834_1
の一種で、IUPAC命名法による系統名は“1,7,7−トリメチルビシクロ[2.2.1]ヘプタン−2−2オンである。管状炉2の石英管内部には、石英ボートの上に基板を置いた。本実施例では、厚み20μmのCuシート(純度99.9%)を基板(15mm×20mm)に用いた。グラフェンシートは、基板の結晶粒の上に成長することが知られているので、まずCu結晶を作り、それからグラフェン原料を供給してCu結晶粒上にグラフェンシートを成長させる。そのために、最初は、図1の管状炉2の温度だけを上げ、Cu基板の結晶化を行ったところ、管状炉2の温度が1000℃のとき、Cu結晶粒の大きさが数10μmと最も大きくなった。しかし、電気炉2が1000℃と高温になるので、隣接する管状炉1内の樟脳の温度も上がり、昇華してグラフェン成長前に無くなる可能性がある。そこで、管状炉1と2の間に、50mm程度の隙間をあけて、石英管外側を送風機で冷やし、管状炉1の温度上昇を抑えた。管状炉2内のCu基板の温度が1000℃に到達後、その温度を保持して保持時間30〜60分でCu結晶を充分に成長させ、その後、管状炉1の温度を上げて、樟脳を蒸発させた。樟脳の融点は180℃、沸点は208℃であるが、管状炉1の温度を昇温速度5℃/分で上げ、100〜210℃の設定温度にすると、Cu基板上にグラフェンシートと思われる白いくすみのような膜状物質が肉眼で観察された。例えば、管状炉1の温度が110℃に到達後、その温度を5分保持したとき、その膜状物質は、Cu基板上のほぼ全面に観られた。CVDによる成膜終了後のCu基板の表面を走査型電子顕微鏡で観測すると、図2のように、幾何学的な模様の構造が発生しており、明らかに基板のCuが結晶化していることがわかる。このCu基板表面に成長した膜状物質は、グラフェンシートと考えられるが、成長していても数原子層であり、ラマン分光法、X線回折法などの結晶構造解析においては、結晶化したCuから生じるスペクトルに埋もれて、その結晶性の確認は難しい。
(Production of graphene sheet)
Considering the later growth of ZnO nanorods, and taking into consideration the future development of devices, graphene sheets were prepared by the CVD method, which can easily increase the area. FIG. 1 shows a schematic diagram of a CVD apparatus. This CVD apparatus is composed of two tubular furnaces that can be controlled independently. A quartz tube having an outer diameter of 100 mm, an inner diameter of 96 mm, and a length of 1 m passed through the tubular furnace, and argon (Ar) and hydrogen (H 2 ) gases as carrier gases were flowed. A quartz boat was placed inside the quartz tube of the tubular furnace 1, and 3 mg of camphor (purity 95%) was placed therein as a raw material for graphene. Camphor is a bicyclic mono represented by C 10 H 16 O
1399443077834_0
1399443077834_1
The system name according to the IUPAC nomenclature is “1,7,7-trimethylbicyclo [2.2.1] heptane-2-2one. Inside the quartz tube of the tubular furnace 2 is a quartz boat. In this example, a 20 μm thick Cu sheet (purity 99.9%) was used as the substrate (15 mm × 20 mm), and the graphene sheet is known to grow on the crystal grains of the substrate. First, a Cu crystal is formed, and then a graphene raw material is supplied to grow a graphene sheet on the Cu crystal grains.To this end, only the temperature of the tubular furnace 2 in FIG. As a result of crystallization, when the temperature of the tubular furnace 2 was 1000 ° C., the size of the Cu crystal grains became the largest at several tens of μm, but the temperature of the electric furnace 2 was as high as 1000 ° C. Camphor in furnace 1 The temperature rises and may sublimate before the growth of graphene, so there is a gap of about 50 mm between the tube furnaces 1 and 2, and the outside of the quartz tube is cooled with a blower to raise the temperature of the tube furnace 1. After the temperature of the Cu substrate in the tubular furnace 2 reaches 1000 ° C., the temperature is maintained and Cu crystals are sufficiently grown in a holding time of 30 to 60 minutes, and then the temperature of the tubular furnace 1 is increased. The camphor was evaporated at a melting point of 180 ° C. and a boiling point of 208 ° C. When the temperature of the tubular furnace 1 was increased at a heating rate of 5 ° C./min to a set temperature of 100 to 210 ° C., Cu A film-like substance such as white dullness that seems to be a graphene sheet was observed with the naked eye on the substrate, for example, when the temperature of the tubular furnace 1 reached 110 ° C. and kept at that temperature for 5 minutes, the film-like substance Was observed on almost the entire surface of the Cu substrate. When the surface of the Cu substrate after the film formation by D is observed with a scanning electron microscope, a geometric pattern structure is generated as shown in FIG. 2, and the Cu of the substrate is clearly crystallized. Although the film-like substance grown on the surface of the Cu substrate is considered to be a graphene sheet, it is a few atomic layers even if grown, and in crystal structure analysis such as Raman spectroscopy and X-ray diffraction, It is difficult to confirm the crystallinity because it is buried in the spectrum generated from the oxidized Cu.

(グラフェンシートの転写)
グラフェンシートの結晶性、物性を測定するため、また、グラフェンシート上にZnOナノロッドを形成するために、グラフェンシートの無機基板への転写を行った。グラフェンシートの転写は、デバイス化の上でも重要なプロセスであるが、グラフェンシートを機能性ナノ微粒子、あるいは薄膜の基板として考える場合、後続のナノ微粒子、薄膜の製造方法を考慮する必要がある。つまり、グラフェンシートが、ZnOナノロッド合成のために、PVD法、CVD法の気相成長法を用いることで、変質することが予想される。一般に、気相成長法では、基板の加熱、酸化性ガスの導入が欠かせない。このような環境では、グラフェンシートは酸化され二酸化炭素(CO)もしくは一酸化炭素(CO)になり気化する。またスパッタ法などプラズマ用いた気相成長法では、グラフェンシートがプラズマ中のイオンでエッチングされ消失する。本実施例では、前記Cu基板上に生成した膜状の物質を、まずPMMA(ポリメチルメタクリレート樹脂)で保持し、そして透明性の基板に転写することを行った。前記CVDによる膜形成後、ビーカーにアセトン5mlを入れ、PMMA100mgを加えて、ホットプレートで60℃に加熱する。そして、PMMAが充分に溶けた溶剤をCu基板に滴下し、グラフェン表面をコーティングする。滴下溶剤の温度が下がり硬化したら、膜状物質とPMMAの接着性を上げるため試料温度を120℃に上げ3〜5分間保持して固める。続いて、硫酸鉄(FeSO)3〜5gを溶かした100mlの蒸留水に、試料を浸し、Cu基板を溶解し、残ったPMMA膜上のグラフェンシートと思われる膜状物質の面を別途用意した石英、サファイア等の透明基板面に基板に合わせ、ホットプレートに乗せる。ホットプレートの温度を60〜80℃に上げ、試料の水分を蒸発させ取り除く。試料が乾燥したら、ホットプレートの温度を150〜180℃に上げ、60〜90分保持して、膜状物質と基板との接着性を上げる。次に試料をアセトンに浸し、PMMAを溶かす。PMMAは室温のアセトン中では15〜20分で完全に溶ける。試料の色が薄緑色のときは、Cu基板を溶かした時の硫酸鉄が残っていることが考えられるので、そのときには試料を、試料の淡緑色が消えるまで、硝酸(HNO)5mlを溶かした蒸留水50mlに漬ける。そして、充分に乾燥させた試料を分析に適用する。なお、このような酸性の処理において、グラフェンシートと思われる膜状物質に、色変化、剥がれ等の変質は観られなかった。
(Graphene sheet transfer)
In order to measure the crystallinity and physical properties of the graphene sheet and to form ZnO nanorods on the graphene sheet, the graphene sheet was transferred to an inorganic substrate. Transfer of the graphene sheet is an important process in terms of device fabrication. However, when the graphene sheet is considered as a functional nanoparticle or a thin film substrate, it is necessary to consider the subsequent nanoparticle and thin film manufacturing methods. That is, it is expected that the graphene sheet is altered by using a vapor phase growth method such as a PVD method or a CVD method for synthesizing ZnO nanorods. In general, in the vapor phase growth method, it is indispensable to heat the substrate and introduce an oxidizing gas. In such an environment, the graphene sheet is oxidized to carbon dioxide (CO 2 ) or carbon monoxide (CO) and vaporizes. In the vapor phase growth method using plasma such as sputtering, the graphene sheet is etched away by ions in the plasma and disappears. In this example, the film-like substance formed on the Cu substrate was first held with PMMA (polymethyl methacrylate resin) and transferred to a transparent substrate. After the film formation by CVD, 5 ml of acetone is put into a beaker, 100 mg of PMMA is added, and heated to 60 ° C. with a hot plate. Then, a solvent in which PMMA is sufficiently dissolved is dropped onto the Cu substrate to coat the graphene surface. When the temperature of the dropping solvent is lowered and cured, the sample temperature is raised to 120 ° C. and held for 3 to 5 minutes to solidify the film-like substance and PMMA. Subsequently, the sample is immersed in 100 ml of distilled water in which 3 to 5 g of iron sulfate (FeSO 4 ) is dissolved, the Cu substrate is dissolved, and a surface of a film-like substance that seems to be a graphene sheet on the remaining PMMA film is prepared separately. Aligned with a transparent substrate surface such as quartz or sapphire and placed on a hot plate. The temperature of the hot plate is raised to 60-80 ° C. to evaporate and remove the moisture from the sample. When the sample is dried, the temperature of the hot plate is raised to 150 to 180 ° C. and held for 60 to 90 minutes to increase the adhesion between the film-like substance and the substrate. Next, the sample is immersed in acetone to dissolve PMMA. PMMA dissolves completely in acetone at room temperature in 15-20 minutes. If the color of the sample is light green, it is considered that iron sulfate remains when the Cu substrate is dissolved. At that time, dissolve 5 ml of nitric acid (HNO 3 ) until the light green color of the sample disappears. Soak in 50 ml of distilled water. The fully dried sample is then applied to the analysis. In addition, in such an acidic treatment, no alteration such as color change or peeling was observed in the film-like substance that is considered to be a graphene sheet.

(グラフェンシートの特定)
図3は、前記プロセスで膜状物質を石英基板に転写した試料透過率の分光特性を示している。可視光領域では、70%程度の透過率を示しているが、波長260nm付近の紫外域に吸収が確認された。これはグラフェンシートに特徴的な光学特性に合致していることから、この膜状物質はシート状のグラフェン、すなわちグラフェンシートであることが確認された。ただ本実験で得られたグラフェンシートは、可視光領域での透過率が低く、紫外域での吸収が大きいことから、単層ではなく、数層の多層構造になっていることが予想される。
(Identification of graphene sheet)
FIG. 3 shows the spectral characteristics of the transmittance of the sample obtained by transferring the film-like substance to the quartz substrate in the above process. In the visible light region, the transmittance was about 70%, but absorption was confirmed in the ultraviolet region near the wavelength of 260 nm. Since this is consistent with the optical characteristics characteristic of the graphene sheet, it was confirmed that the film-like substance is a sheet-like graphene, that is, a graphene sheet. However, the graphene sheet obtained in this experiment has a low transmittance in the visible light region and a large absorption in the ultraviolet region, so it is expected to have a multilayer structure of several layers instead of a single layer. .

(シード層無しでグラフェンシート上へのZnOナノロッドの直接合成)
本実施例では、量産性に優れること、プロセス温度が水の蒸発温度100℃を超えない低温であることから、液相成長法の一つである水熱合成法による、グラフェンシート上へのZnOナノロッド成長を試みた。配向性のZnOナノロッドを得るためには、一般的に基板上にナノロッド成長の核になるZnO薄膜(シード層)を堆積する必要があるが、まずはシード層無しの場合で、水熱合成法でグラフェンシート上にどのような構造体が形成されるか否か検討した。グラフェンシートが転写された石英基板を、硝酸亜鉛水溶液(Zn(NO、0.1M、50ml)と水酸化ナトリウム水溶液(NaOH、1.5 M、 50ml)の混合溶液(pH13)に浸漬し、水溶液温度を90℃一定に保ち、2時間放置した。図4に水熱処理後、充分に純水で洗浄し、乾燥させた試料のグラフェンシート表面の電子顕微鏡(SEM)観察像を示す。基板表面に対して、真上から観察した像である。ZnOシード層無しでも、ZnOナノロッドが基板表面に対してほぼ垂直(グラフェンシートのシート面に対して90°±15°)に配向して成長していることが確認できた。
(Direct synthesis of ZnO nanorods on graphene sheet without seed layer)
In this example, since ZnO is excellent in mass productivity and the process temperature is a low temperature that does not exceed the evaporation temperature of water of 100 ° C., ZnO on a graphene sheet by a hydrothermal synthesis method that is one of liquid phase growth methods We tried nanorod growth. In order to obtain oriented ZnO nanorods, it is generally necessary to deposit a ZnO thin film (seed layer) that becomes the nucleus of nanorod growth on a substrate. First, in the case of no seed layer, a hydrothermal synthesis method is used. We examined what structures would be formed on graphene sheets. The quartz substrate onto which the graphene sheet has been transferred is immersed in a mixed solution (pH 13) of a zinc nitrate aqueous solution (Zn (NO 3 ) 2 , 0.1M, 50 ml) and a sodium hydroxide aqueous solution (NaOH, 1.5 M, 50 ml). The aqueous solution temperature was kept constant at 90 ° C. and left for 2 hours. FIG. 4 shows an electron microscope (SEM) observation image of the surface of the graphene sheet of a sample that has been sufficiently washed with pure water and dried after hydrothermal treatment. It is the image observed from right above the substrate surface. Even without the ZnO seed layer, it was confirmed that the ZnO nanorods were grown while being oriented substantially perpendicular to the substrate surface (90 ° ± 15 ° with respect to the sheet surface of the graphene sheet).

(シード層有無によるZnOナノロッドの成長状態の比較)
さらに、グラフェンシート上へのZnOナノロッド成長を確認するため、ZnOシード層上と、グラフェンシート上へのZnOナノロッドの成長状態を比較した。まず基板として、R面サファイア単結晶基板を用意する。R面サファイア基板上に、ZnOシード層を高周波マグネトロンスパッタ法により成膜速度20nm/minで成膜した。スパッタは、酸化亜鉛の焼結ターゲット(高純度化学研究所社製、直径100mm、厚み5mm、純度99.99%)を用い、アルゴンガス(Ar、99.9995%以上)と酸素ガス(O、純度99.999%以上)を圧力比率4:1で混合したガス雰囲気中で、基板温度600℃、成膜圧力1Pa、高周波電力100Wで行った。成膜時間は5分とした。本発明者らの予備実験では、この条件で作製されたZnOシード層上には、ZnOナノロッド同士が互いに交差する、すなわちX字状にナノロッドが成長することが確認されている。R面サファイア基板上に形成されたZnOシード層の一部分を覆うようにグラフェンシートを転写し、水熱合成処理を施した。図5、図6は、水熱合成処理後の試料表面の、それぞれ光学顕微鏡観察像と電子顕微鏡観察像を示している。図5中、透明の領域はR面サファイア基板上にZnOシード層が直接堆積している領域(領域(a))、灰色に見える長方形の領域は、グラフェンシートが転写された箇所(領域(b))を示している。図6は、図5の領域(a)と(b)の境界部分の電子顕微鏡観察像である。図6中、領域(a)では、予想通りZnOナノロッドがX字状に成長しているが、領域(b)ではZnOナノロッドがグラフェンシート面にほぼ垂直方向に配向して成長していることが確認した。この結果は、グラフェンシート表面には、ZnOナノロッドがシート面に垂直に配向して成長することを示している。
(Comparison of growth state of ZnO nanorods with and without seed layer)
Furthermore, in order to confirm the growth of the ZnO nanorods on the graphene sheet, the growth state of the ZnO nanorods on the ZnO seed layer and the graphene sheet was compared. First, an R-plane sapphire single crystal substrate is prepared as a substrate. On the R-plane sapphire substrate, a ZnO seed layer was deposited at a deposition rate of 20 nm / min by high frequency magnetron sputtering. Sputtering uses a sintered target of zinc oxide (manufactured by High-Purity Chemical Laboratory, diameter 100 mm, thickness 5 mm, purity 99.99%), argon gas (Ar, 99.9995% or more) and oxygen gas (O 2 And a purity of 99.999% or higher) in a gas atmosphere mixed at a pressure ratio of 4: 1 at a substrate temperature of 600 ° C., a film forming pressure of 1 Pa, and a high frequency power of 100 W. The film formation time was 5 minutes. In preliminary experiments by the present inventors, it has been confirmed that ZnO nanorods cross each other, that is, nanorods grow in an X shape on the ZnO seed layer produced under these conditions. The graphene sheet was transferred so as to cover a part of the ZnO seed layer formed on the R-plane sapphire substrate, and a hydrothermal synthesis process was performed. 5 and 6 show an optical microscope observation image and an electron microscope observation image, respectively, of the sample surface after the hydrothermal synthesis treatment. In FIG. 5, a transparent region is a region where a ZnO seed layer is directly deposited on an R-plane sapphire substrate (region (a)), and a rectangular region that appears gray is a portion where a graphene sheet is transferred (region (b) )). FIG. 6 is an electron microscope observation image of a boundary portion between regions (a) and (b) in FIG. In FIG. 6, ZnO nanorods grow in an X shape as expected in region (a), but in region (b), ZnO nanorods grow in an orientation substantially perpendicular to the graphene sheet surface. confirmed. This result indicates that ZnO nanorods grow on the graphene sheet surface while being oriented perpendicular to the sheet surface.

グラフェンシート上にZnOナノロッドが、ZnOシード層無しで直接配向成長できた理由は不明であるが、グラフェンの持つ炭素元素から構成される六角形の網状構造が、ZnO結晶がc軸成長しやすい条件を充たすのではないかと考えられる。一方、同じく水熱合成法で、グラフェンシート上へのZnOナノロッドの成長を試みた先例(非特許文献4)では、ZnOナノロッド等のナノ構造が、グラフェンシート上に不規則に成長しているが、この先例では、水酸化アンモニウム(NHOH)を用いている。それに対して、本実施例では、NHOHを用いていないこと、加えて、水熱合成溶剤にNaOHを用いて溶剤をアルカリ性にしていることがグラフェンシート上へのZnOナノロッドの直接かつ配向成長につながっているのではないかと考えられる。なお、本発明者らは、PH7以上のアルカリ性溶液で、グラフェンシート上にZnOナノロッドが直接配向成長することを確認している。なお、グラフェンシートは、本実施例のように加熱されたアルカリ性雰囲気でも、基板、ZnOナノロッドから剥がれることもなく、機械的強度を保持していることを確認した。 The reason why ZnO nanorods can be directly oriented and grown without a ZnO seed layer on a graphene sheet is unknown, but the hexagonal network structure composed of carbon elements of graphene is a condition that allows ZnO crystals to grow c-axis easily. It is thought that On the other hand, in the precedent (Non-Patent Document 4) in which growth of ZnO nanorods on a graphene sheet is attempted by the same hydrothermal synthesis method, nanostructures such as ZnO nanorods grow irregularly on the graphene sheet. In this precedent, ammonium hydroxide (NH 4 OH) is used. In contrast, in this example, NH 4 OH is not used, and in addition, NaOH is used as the hydrothermal synthesis solvent to make the solvent alkaline, and direct growth of ZnO nanorods on the graphene sheet. It is thought that it is connected to. Note that the present inventors have confirmed that ZnO nanorods are directly oriented and grown on a graphene sheet with an alkaline solution of PH7 or higher. The graphene sheet was confirmed to maintain mechanical strength without being peeled off from the substrate and the ZnO nanorods even in a heated alkaline atmosphere as in this example.

一方、合成したZnOナノロッド上にもグラフェンシートを転写できる。すなわち、別途用意したPMMA膜上のグラフェンシートを、グラフェンシート面とZnOナノロッド先端が接触するように60〜80℃に上げ、試料の水分を蒸発させて取り除き、さらに150〜180℃に上げ、60〜90分保持する。最後に、アセトンに15〜20分間浸し、PMMAを溶かす。このプロセスを施すことによりグラフェンシートがZnOナノロッドに固着することを確認しており、これによって配向したZnOナノロッドの両端面にそれぞれグラフェンシートからなる電極を形成することができ、振動子あるいはセンサー等の素子を形成できることが分かった。 On the other hand, the graphene sheet can also be transferred onto the synthesized ZnO nanorods. That is, the graphene sheet on the PMMA film prepared separately is raised to 60 to 80 ° C. so that the graphene sheet surface and the tip of the ZnO nanorod are in contact with each other, the moisture of the sample is removed by evaporation, and further raised to 150 to 180 ° C. Hold for ~ 90 minutes. Finally, soak in Pace for 15-20 minutes to dissolve PMMA. By applying this process, it has been confirmed that the graphene sheet is fixed to the ZnO nanorods, whereby electrodes made of graphene sheets can be formed on both end faces of the oriented ZnO nanorods, respectively. It was found that an element can be formed.

本発明は、振動子あるいはセンサーに応用することができる。

The present invention can be applied to a vibrator or a sensor.

Claims (5)

グラフェンシートと長手方向端面で一体化した複数の配向した酸化亜鉛ナノロッド。 A plurality of oriented zinc oxide nanorods integrated with a graphene sheet at the longitudinal end face. 前記グラフェンシートのシート面に対して90°±15°に配向した請求項1の酸化亜鉛ナノロッド。 The zinc oxide nanorods according to claim 1, oriented at 90 ° ± 15 ° with respect to the sheet surface of the graphene sheet. 請求項1または2に記載の酸化亜鉛ナノロッドを用いた振動子またはセンサー。 A vibrator or sensor using the zinc oxide nanorod according to claim 1. グラフェンシート上に水熱合成により複数の配向した酸化亜鉛ナノロッドを形成する酸化亜鉛ナノロッドの製造方法。 A method for producing zinc oxide nanorods, wherein a plurality of oriented zinc oxide nanorods are formed on a graphene sheet by hydrothermal synthesis. 請求項4に記載の酸化亜鉛ナノロッドの表面に別途用意したグラフェンシートを固着させて、酸化亜鉛ナノロッドの長手方向の両端面にグラフェンシートが一体化された酸化亜鉛ナノロッドの製造方法。
A method for producing zinc oxide nanorods, wherein a separately prepared graphene sheet is fixed to the surface of the zinc oxide nanorods according to claim 4, and the graphene sheets are integrated with both longitudinal end faces of the zinc oxide nanorods.
JP2014096012A 2014-05-07 2014-05-07 INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET Pending JP2015212213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014096012A JP2015212213A (en) 2014-05-07 2014-05-07 INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014096012A JP2015212213A (en) 2014-05-07 2014-05-07 INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET

Publications (1)

Publication Number Publication Date
JP2015212213A true JP2015212213A (en) 2015-11-26

Family

ID=54696731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096012A Pending JP2015212213A (en) 2014-05-07 2014-05-07 INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET

Country Status (1)

Country Link
JP (1) JP2015212213A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099075A (en) * 2016-08-22 2016-11-09 电子科技大学 A kind of preparation method of Graphene/zinc oxide composite material of core-shell structure
CN106746725A (en) * 2017-03-21 2017-05-31 天津城建大学 A kind of preparation method of new ZnO nano laminated structure coating
ITUB20159348A1 (en) * 2015-12-21 2017-06-21 Univ Degli Studi Di Roma La Sapienza 00185 Roma / It PRODUCTION OF GRAPHEN-BASED COMPOSITE NANOSTRUCTURES OBTAINED BY SUSPENSION GROWTH OF NANOROD AND ZnO MICROROD ON UNSUPPORTED GNP FLAKES
CN107381618A (en) * 2017-09-01 2017-11-24 北京化工大学 A kind of preparation method of club shaped structure nano zine oxide
JP2020515078A (en) * 2017-03-20 2020-05-21 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Nanowire structures and methods of making such structures
JP2021195265A (en) * 2020-06-09 2021-12-27 東レエンジニアリング株式会社 Method for manufacturing nanowire
KR20220003372A (en) * 2020-07-01 2022-01-10 한양대학교 산학협력단 Photocatalytic Filters Having Physical Entrapment of Pollutants and Method for Purifying Gaseous Medium Using the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129675A1 (en) * 2009-12-01 2011-06-02 Samsung Electronics Co., Ltd. Material including graphene and an inorganic material and method of manufacturing the material
JP2011110694A (en) * 2009-11-25 2011-06-09 Samsung Electronics Co Ltd Composite structure of graphene and nanostructure, and method for manufacturing the same
CN103482683A (en) * 2013-10-15 2014-01-01 哈尔滨理工大学 Synthesis method of zinc oxide nano wire harness array/foam graphene composite material and application thereof
CN103558273A (en) * 2013-10-15 2014-02-05 哈尔滨理工大学 Preparation method of zinc oxide nanowire array/ foamy graphene composite material and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110694A (en) * 2009-11-25 2011-06-09 Samsung Electronics Co Ltd Composite structure of graphene and nanostructure, and method for manufacturing the same
US20110129675A1 (en) * 2009-12-01 2011-06-02 Samsung Electronics Co., Ltd. Material including graphene and an inorganic material and method of manufacturing the material
CN103482683A (en) * 2013-10-15 2014-01-01 哈尔滨理工大学 Synthesis method of zinc oxide nano wire harness array/foam graphene composite material and application thereof
CN103558273A (en) * 2013-10-15 2014-02-05 哈尔滨理工大学 Preparation method of zinc oxide nanowire array/ foamy graphene composite material and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. GUO ET AL.: "Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexibl", APPL. PHYS. LETT., vol. 99, JPN7017004356, 2011, pages 083111-1〜083111-3 *
R. ZOU ET AL.: "A General Approach for the Growth of Metal Oxide Nanorod Arrays on Graphene Sheets and Their Applica", CHEM. EUR. J., vol. 17, JPN6017050864, 2011, pages 13912-13917. *
T. V. CUONG ET AL.: "Solution-processed ZnO-chemically converted graphene gas sensor", MATERIALS LETTERS, vol. 64, JPN6017050862, 2010, pages 2479-2482. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698849B (en) * 2015-12-21 2021-04-13 罗马大学 Production of graphene-based composite nanostructures by growing zinc oxide nanorods or nanorods on suspended non-loaded graphene nanoplates
ITUB20159348A1 (en) * 2015-12-21 2017-06-21 Univ Degli Studi Di Roma La Sapienza 00185 Roma / It PRODUCTION OF GRAPHEN-BASED COMPOSITE NANOSTRUCTURES OBTAINED BY SUSPENSION GROWTH OF NANOROD AND ZnO MICROROD ON UNSUPPORTED GNP FLAKES
WO2017109693A1 (en) * 2015-12-21 2017-06-29 Universita' Degli Studi Di Roma "La Sapienza" Production of graphene based composite nanostructures obtained through the growth of zinc-oxide nanorods or microrods on unsupported graphene nanoplatelets in suspension
CN108698849A (en) * 2015-12-21 2018-10-23 罗马大学 Pass through the production of the graphene-based composite nanostructure of non-loading type graphene nano on piece growing zinc oxide nanorod or the micron bar acquisition in suspension
CN106099075B (en) * 2016-08-22 2020-05-12 四川英能基科技有限公司 Preparation method of graphene/zinc oxide core-shell structure composite material
CN106099075A (en) * 2016-08-22 2016-11-09 电子科技大学 A kind of preparation method of Graphene/zinc oxide composite material of core-shell structure
JP7370863B2 (en) 2017-03-20 2023-10-30 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Nanowire structures and methods of manufacturing such structures
JP2020515078A (en) * 2017-03-20 2020-05-21 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス Nanowire structures and methods of making such structures
CN106746725A (en) * 2017-03-21 2017-05-31 天津城建大学 A kind of preparation method of new ZnO nano laminated structure coating
CN106746725B (en) * 2017-03-21 2019-05-28 天津城建大学 A kind of preparation method of novel ZnO nano laminated structure coating
CN107381618A (en) * 2017-09-01 2017-11-24 北京化工大学 A kind of preparation method of club shaped structure nano zine oxide
JP2021195265A (en) * 2020-06-09 2021-12-27 東レエンジニアリング株式会社 Method for manufacturing nanowire
JP7412281B2 (en) 2020-06-09 2024-01-12 東レエンジニアリング株式会社 Nanowire manufacturing method
KR20220003372A (en) * 2020-07-01 2022-01-10 한양대학교 산학협력단 Photocatalytic Filters Having Physical Entrapment of Pollutants and Method for Purifying Gaseous Medium Using the Same
KR102494685B1 (en) 2020-07-01 2023-01-31 한양대학교 산학협력단 Photocatalytic Filters Having Physical Entrapment of Pollutants and Method for Purifying Gaseous Medium Using the Same

Similar Documents

Publication Publication Date Title
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
Yang et al. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism
Singh et al. Effect of heat and time-period on the growth of ZnO nanorods by sol–gel technique
Guo et al. Low-temperature preparation of (002)-oriented ZnO thin films by sol–gel method
Wang et al. Control growth of catalyst-free high-quality ZnO nanowire arrays on transparent quartz glass substrate by chemical vapor deposition
Tan et al. Formation of highly crystallized ZnO nanostructures by hot-water treatment of etched Zn foils
Chen et al. Growth mechanism of ZnO nanostructures in wet-oxidation process
Chen et al. Zinc oxide nanostructures and porous films produced by oxidation of zinc precursors in wet-oxygen atmosphere
Mouet et al. Growth and characterization of thin ZnO films deposited on glass substrates by electrodeposition technique
JP5099324B2 (en) Porous ZnO particle-bonded free-standing film and method for producing the same
Petrović et al. Hydrothermal processing of electrospun fibers in the synthesis of 1D ZnO nanoparticles
Pelicano et al. pH-controlled surface engineering of nanostructured ZnO films generated via a sustainable low-temperature H2O oxidation process
Kumar et al. Growth of novel ZnO nanostructures by soft chemical routes
Laurenti et al. Selective growth of ZnO nanowires on substrates patterned by photolithography and inkjet printing
He et al. Vertically well-aligned ZnO nanowires generated with self-assembling polymers
Nouneh et al. Structural and spectral properties of ZnO nanorods by wet chemical method for hybrid solar cells applications
Hu et al. Fabrication of Zn (OH) 2/ZnO Nanosheet‐ZnO Nanoarray Hybrid Structured Films by a Dissolution–Recrystallization Route
KR20120010388A (en) Manufacturing method of zinc oxide nanorods with nano pore on surface and zinc oxide nanorods with nano pore on surface made by the same
CN113718227B (en) Two-dimensional layered ternary compound and preparation method thereof
Reddy et al. Nanostructured alumina films by E-beam evaporation
Fan et al. In Situ crystallization to zinc aluminate films with controlled surface microstructure and anticorrosion performance
Islam et al. Effect of deposition time on nanostructure ZnO thin films synthesized by modified thermal evaporation technique
Tu et al. Synthesis and photoluminescence properties of the ZnO@ SnO 2 core–shell nanorod arrays
George et al. Electrodeposition of ZnO nanostructures on graphene for optoelectronic applications
Mo et al. Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180710