TWI395613B - 微粒及其形成方法 - Google Patents

微粒及其形成方法 Download PDF

Info

Publication number
TWI395613B
TWI395613B TW98110627A TW98110627A TWI395613B TW I395613 B TWI395613 B TW I395613B TW 98110627 A TW98110627 A TW 98110627A TW 98110627 A TW98110627 A TW 98110627A TW I395613 B TWI395613 B TW I395613B
Authority
TW
Taiwan
Prior art keywords
precursor
solution
irradiated
particle
particles
Prior art date
Application number
TW98110627A
Other languages
English (en)
Other versions
TW201034745A (en
Inventor
Yeu Kuang Hwu
Chang-Hai Wang
Chi Jen Liu
cheng liang Wang
Pei Cheng Hsu
Tsung Yeh Yang
Sheng Feng Lai
Ye Wen Mau
Yi Hsiu Tseng
Chung Shi Yang
Hong Ming Lin
Wen Chang Chen
Yu Ching Yang
Jung-Ho Je
Giorgio Margartondo
Original Assignee
Yeu Kuang Hwu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yeu Kuang Hwu filed Critical Yeu Kuang Hwu
Priority to TW98110627A priority Critical patent/TWI395613B/zh
Priority to US12/545,822 priority patent/US10114016B2/en
Publication of TW201034745A publication Critical patent/TW201034745A/zh
Application granted granted Critical
Publication of TWI395613B publication Critical patent/TWI395613B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/5434Magnetic particles using magnetic particle immunoreagent carriers which constitute new materials per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Description

微粒及其形成方法
本發明係有關於微粒,且特別有關於以高能且高劑量放射線製備微粒膠體的方法及其所形成之微粒。
奈米微粒已多應用於物理、化學及生物領域中,其可作為如生物感測、生物影像、以及奈米級治療。例如,金奈米在藥學上具有良好的生物相容性及對癌症細胞或組織具有良好的選擇性聚集,因此可作為藥物載體或放射線治療促進劑(R. Shukla,V.Bansal,M. Chudhary,A. Basu,R. R. Bhonde,and MSastry,Langmuir 21(2005)10644;G. F. Paciotti,L. Myer,D. Weinreich,D. Goia,N. Pavel,R. Mclaughlin,L. Tamarkin,Drug Deliv. 11(2004 169;J. L. West,N.J. Halas,Curr. Opin. Biotechnol. 11(2000)215))。
然而,奈米微粒的作用受到尺寸、表面性質、膠體穩定度等性質影響。為獲得良好的奈米微粒,通常使用化學還原法來形成奈米微粒,但以化學還原法所形成之微粒粒徑皆大於30nm(Nature Physical Science 241,20-22(1973);Paciotti G F,Myer L,Weinreich D,Goia D,Pavel N,Mclaughlin R,Tamarkin L 2004Durg Deliv. 11 169;Kawano T,Yamagata M,Takahasi H,Nidome Y,Yamada S,Katayama Y and Niidome T 2006J. Controlled Release 111382;Bergen J M,H. Recum A V,Goodman T T,Massey A P and Pun S H 2006Macromol. Biosci. 6 506)。為獲得更小的奈米微粒,需額外添加多孔矽、膠質粒子或乳膠。雖然可因此縮小奈米微粒的粒徑,但仍需將多孔矽、膠質粒子或乳膠移除。此外,因傳統方法的產率不高,因此必須使用高轉速之離心機進行濃縮。
為了改善上述缺點,已有多篇論文採用不需還原劑之外部激發光源來形成奈米微粒膠體(Nature 196(1962)666、New J. Chem.(1998)1239;Belloni J.,Mostafavi M.,Remita H.,Marignier J.-L. & Belloni J.(1998)New J .Chem . 1257-1265)。然而,低能量之γ射線的照射時間需數小時,且產率不高。在J. Phys. Chem. B 107(2003)14240中,Su利用音波化學合成法。在J. Appl. Phys. 42(2003)4152中,Liu利用微波加熱法。在Langmuir 21(2005)437中,Karadas利用一般的X光。然而上述方法則必需使用水溶性高分子作為穩定劑以避免奈米粒子再聚集。此外,上述方法的速率太慢。在以傳統x光照射四氯金酸時,因反應速率緩慢,X-光需要照射至少30小時,長時間的照射會導致溶液溫度上升,其可能會導致奈米微粒的瓦解。
因此,業界亟需一種具良好分散性、形狀、及大小之微粒及其製備方法。
本發明係提供一種微粒及具有披覆之微粒的形成方法,包括提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之一前驅物,以及利用一高能高劑量之游離輻射線照射照射該前驅物溶液,此使該前驅物轉變為一微粒。
本發明另提供一種微粒及具有披覆之微粒的形成方法,包括提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之一前驅物,以及利用一高能高劑量之游離輻射線照射照射該前驅物溶液,使該前驅物轉變為一微粒,其中該高能且高劑量放射線包括X光、電子束、中子束或離子束。
本發明另提供一種微粒及具有披覆之微粒的形成方法,包括提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之一前驅物,以及利用一高能高劑量之游離輻射線照射照射該前驅物溶液,使該前驅物轉變為一微粒,其中該高能且高劑量游離輻射線的劑量率大於0.3J/cm2 sec。
本發明另提供一種微粒及具有披覆之微粒的形成方法,包括提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之一前驅物,以及利用一高能高劑量之游離輻射線照射照射該前驅物溶液,使該前驅物轉變為一微粒,該高能且高劑量游離輻射線包括X光,且該X光劑量率大於0.3J/cm2 sec。
本發明更提供一種微粒及含有該微粒之溶液,該微粒係採用上述方法所形成。
本發明更提供一種表面披覆有微粒之顆粒,該微粒係採用上述之方法形成。
本發明更提供一種具有內部空孔且該空孔含有微粒之顆粒,該微粒係採用上述之方法形成。
本發明更提供一種表面披覆有微粒之表面,該微粒係採用上述之方法形成。
為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖示,作詳細說明如下:
本發明係提供微粒的形成方法,包括提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之一前驅物,以及利用一高能高劑量之游離輻射線照射照射該前驅物溶液,使該前驅物轉變為一微粒。
首先,將一前驅物溶於一溶液中,以形成一前驅物溶液。本發明之前驅物溶液為一可被游離輻射之前驅物溶液。
本發明中所述之“前驅物”並無特別限定,可視所欲形成之微粒而定。一般來說,前驅物包括,但不限於,AgNO3 、HAuCl4 、FeCl2 ‧4H2 O、NiSO4 - 、CuSO4 - 或ZnCl4 等。在一實施例中,為形成銀微粒,可以AgNO3 作為前驅物。在另一實施例中,為形成氧化鐵微粒,可以FeCl2 ‧4H2 O作為前驅物。前驅物的起始濃度並無任何限制,一般可介於約0.5-2mM。
本發明所述之“溶液”一般係指水、去離子水或醇類(包括甲醇、乙醇、丙醇、丁醇等),並無特別限制。此技術領域人士也可利用其他適當的溶液,如四氯化碳或氯仿等。
接著,利用一高能且高劑量游離輻射線照射該前驅物溶液,使該前驅物轉變為一微粒。
本發明所使用之“高能且高劑量游離輻射線照射”係指劑量率大於0.3J/cm2 sec的放射線,應注意的是,若劑量率低於0.3J/cm2 sec,則無法形成本發明之微粒。在此劑量率限定的範圍,游離輻射線使被照射之溶液瞬間產生大量的自由基可以與所有之前驅物同時反應,避免低劑量率長時間照射導致微粒過度成長及互相團聚,以至微粒尺寸過大及沉降的問題。本發明之高能游離輻射線包括,但不限於,X光、中子束、電子束或離子束等。可產生大量的自由基以進行前述相關的化學反應之高能游離輻射線,均可作為本發明之應用。
高能且高劑量游離輻射線的照射時間可小於30分鐘,較佳為小於30秒,更可縮短至1秒。事實上,高能且高劑量游離輻射線的照射時間與前驅物溶液的體積體有關,當前驅物溶液體積愈大時,高能且高劑量游離輻射線的照射時間也愈長。在一實施例中,當前驅物溶液的體積為10ml時,高能且高劑量游離輻射線的照射時間較佳大於5分鐘。
此外,可在高能且高劑量游離輻射線照射前,額外添加聚乙二醇(PEG)、聚醯胺醯亞胺(PEI)、聚乙烯吡咯烷酮(PVP)或異丙醇(IPA)至前驅物溶液中,以增加微粒的穩定性。聚乙二醇、聚醯胺醯亞胺、聚乙烯吡咯烷酮或異丙醇與前驅物的濃度比可介於0.0001至0.12之間。聚乙二醇的分子量可介於1000至250000之間。
另一方面,為了獲得最佳的效果,可利用NaOH或HCl溶液調整前驅物溶液之pH值,使前驅物溶液之pH值介於4至10之間。
在一實施例中,本發明之前驅物溶液可更包括一顆粒。本發明中所述之“顆粒”並無特別限定,一般可為金屬或金屬氧化物。例如,磷、金、銀、氧化鈦、氧化鋅或氧化鋯顆粒等。此顆粒可為市售商品,或以本發明方法所形成之微粒。
若前驅物溶液中含有顆粒,則微粒會形成於顆粒表面上。參照第1a-1b圖,微粒2可完全包覆顆粒4的表面(第1a圖),或可部份地形成於顆粒4的表面上(第1b圖)。
本發明之形成方法具有以下優點:(1)一鍋反應(one-pot)簡化製程,不需還原劑;(2)反應物及產物單純,不需界面活性劑亦沒有副產物;(3)不似習知技藝需要OH自由基之捕捉劑,如2-丙醇;(4)反應均在室溫下進行,且反應時間短;(5)沒有放大的問題,且易製備出高濃度之微粒膠體;(6)在濃縮微粒時,昔知技藝需要大於10000rpm之高轉速,然而本發明只需小於4000rpm之低轉速,可有效維持微粒之分散性、形狀、及大小,使回收率高達85%;(7)具有良好的體外(in vitro)穩定性;以及(8)可應用於形成各種材質的微粒。
此外,本發明另提供一種微粒膠體,包括一溶液,以及複數個微粒分散於溶液中。本發明之微粒膠體可不含有界面活性劑或穩定劑。
可利用離心機濃縮微粒膠體。此濃縮液可加水再分散形成另一溶液,在此濃縮及再分散的過程中,奈米微粒的尺寸始終保持固定。
本發明微粒的材料並無特別限定。在一實施例中,微粒可為金屬,例如,金、銀、銅、鎳、鉑、鐵、鈦、鋅、鋯或鎢等。在另一實施例中,微粒可為金屬氧化物,例如,氧化鐵、氧化鎳、氧化矽、氧化鋅、氧化鋯、氧化鈰、氧化鎢、氧化鈦或氧化銅等。
本發明微粒的表面可披聚乙二醇(PEG)、聚醯胺醯亞胺(PEI)、聚乙烯吡咯烷酮(PVP)或異丙醇(IPA)等。
本發明之微粒可形成於一顆粒上。例如,微粒可完全包覆顆粒的表面,或可部份地形成於顆粒的表面上。
本發明之微粒可為奈米微粒,其粒徑並無任何限制,較佳可為約15±5nm,且本發明之微粒具有具良好的分散性、形狀、及大小。
【實施例】 1.銀微粒的製備
在本實施例中,利用同步輻射X光照射硝酸銀溶液(AgNO3 ,0.1N,Acros Organics Inc. NJ US.,購自Acros Organics Inc. NJ US.)以形成銀微粒。將硝酸銀溶於去離子水中(18.2MΩ cm,Millipore,Milli-Q,MA,U.S.),並利用NaOH溶液調整硝酸銀溶液的pH值。將0.5、1或2mM的硝酸銀溶液裝入聚丙烯錐形管(2或15mL,購自Falcon,Becton Dickinson,N. J. US)後,以台灣新竹的國家同步輻射研究中心(National Synchorotron Radiation Reserch Centei,簡稱NSRRC)之儲存環中BL01A射束線照射(Margaritondo G,Hwu Y and Je J H 2004Rivista del Nuovo Cimento 27 7)。射束線的能量分佈為8-15keV,中心為約12keV。劑量率為5.1±0.9kGy/sec,經夫瑞克劑量計(Fricke dosimeter)測量後可測得G值為13。詳細的實驗步驟可參照Kim C C,Wang C H,Yang Y C,Hwu Y,Seol S K,Kwon Y B,Chen C H,Liou H W,Lin H M,Margaritondo G and Je J H 2006Mater Chem. Phys . 100 292;Yang Y C,Wang C H,Hwu and Y,Je J H 2006Mater Chem. Phys . 100 72;Wang C H,Hua T E,Chien C C,Yu Y L,Yang T Y,Liu C J,Leng W H,Hwu Y,Yang Y C,Kim C C,Je J H,Chen C H,Lin H M and Margaritondo G. 2007Mater Chem. Phys . 106 323;Wang C H,Chien C H,Yu Y L,Liu C J,Lee C F,Chen C H,Hwu Y,Yang C H,Je J H and Margaritondo G. 2007J. Synchrotron Radiation 14 477。上述射束線為非單光之X光射束線,且利用狹縫系統將上述射束線形成13*10mm2 之橫向束。照射的時間為1秒至3分鐘。
在X光照射前,添加PEG(MW 6000,購自Showa Inc.,Japan)、PVP(MW 10000,購自Tokyo Chemical Industry Co.,Ltd. Japan)或Isopropanol(購自Mallinckrodt Baker Inc. NJ,US)至射硝酸銀溶液中,以增加膠體的穩定度、尺寸分佈、及生物相容性。此外,並以檸檬酸還原法形成之銀微粒作為對照組,其製備方法為一般習知的方法。
本實施例所獲得的銀微粒可穩定地保存超過1年。相較之下,以檬酸還原法形成之銀微粒(未經x光照射)會逐漸產生聚集及沉澱。第2圖顯示銀微粒之UV-VIS吸收光譜,本實施例之X光照射法為:[AgNO3 ]=0.5mM,照射時間=5分鐘,[PEG]=0.3mM,[PVP]=0.12mM。檸檬酸還原法為:[AgNO3 ]=0.833mM,[檸檬酸]=6.47mM。參照第2圖,銀微粒之SPR(Surface Plasmon Resonance)波峰分別位於404nm、422nm或432nm,且PEG-Ag、PVP-Ag及檸檬酸-Ag微粒的天體高斯函數半高全寬(full width at half maximum,FWHM)分別為83nm、113nm或149nm。相較於PEG-Ag微粒(經X光照射),檸檬酸-Ag微粒的吸收波峰具有28nm的紅移(red-shift),且明顯較為寬廣,表示微粒發生顯著的凝聚現象。
2.X光照射時間的影響
此外,並探討X光照射時間對實施例1之銀微粒結構及穩定性的影響。第3(a)及3(c)圖為一穿透式電子顯微鏡(TEM)照片,其分別顯示照射5秒鐘及5分鐘後所獲得之PEG-Ag微粒,且第3(b)及3(d)圖分別顯示照射5秒鐘及5分鐘之PEG-Ag的粒徑分佈。在照射5秒鐘下,銀微粒的粒徑為7.2±2,且其粒徑分佈較為分散。在5分鐘照射下,銀微粒的粒徑為5.2±0.9nm,且其粒徑分佈較為集中。而在PVP-Ag微粒中也可發現相類似的結果。如第3(e)至3(h)圖所示,其PVP-Ag微粒的粒徑分別為6.2±2.9nm(照射5秒鐘)及3.8±1.1nm(照射5分鐘)。此外,參照第3(i)至3(j)圖之Au微粒的TEM電顯圖可知,在以同步輻射X光照射1秒下,其Au微粒粒徑小於10nm。由此結果可知,即使是以極短時間同步輻射X光照射(1秒)亦能合成穩定之微粒。
3.Ni-P微粒的製備
在本實施例中,以實施例1之方法(同步輻射X光照射)形成Ni-P微粒。由於此鎳-磷(Ni-P)微粒具有良好的抗腐蝕、抗氧化及防水特性,因此可廣泛地應用於電子業、醫藥業、航太業、汽車業及油氣業。
本實施例之渡浴包括26g/l的硫酸鎳、30g/l的次亞磷酸鈉、20g/l的氯化銨及30g/l的醋酸鈉,其中次亞磷酸鈉作為還原劑,而醋酸鈉作為錯合劑。利用稀釋的HCl及NaOH將溶液的pH值調整至4、5、6、7及8。第4圖顯示本實施例之Ni-P微粒的TEM電顯圖,其為X光照射1分鐘後所獲得之結果,且其微粒粒徑小於200nm。
4.氧化鐵微粒膠體的製備
在本實施例中,利用同步X光輻射照射氯化鐵(FeCl2 ‧4H2 O)溶液以形成氧化鐵(Fe3 O4 ,SDCIO)微粒,同步x光輻射的條件與實施例1相同。為了最佳化照射的條件,以NH4 OH溶液調整氯化鐵溶液的pH值,且每10ml的氯化鐵溶液照射5分鐘。
參照第5圖,經X光繞射儀(X-ray diffraction,XRD)分析,其結果顯示Fe3 O4 微粒較佳的結構及相純度。第5圖顯示6個波峰,2θ=25.8、30.4、36.9、45.6、48.6及53.1,其為Fe3 O4 不同的繞射波峰。上述波峰分別與3維空間(220)、(311)、(400)、(422)、(511)及(440)有關。微粒的平均粒徑可由最大波峰(311)推導出來,依據Scherrer’s公式可得到氧化鐵微粒的粒徑為12.4nm。
此外,為了增加Fe3 O4 膠體的穩定度,在照射X光前,添加葡萄聚糖至氯化鐵溶液中。第6圖顯示在不同濃度的葡萄聚糖下Fe3 O4 微粒的外觀,第6a-6d圖的葡萄聚糖濃度分別為5%、10%、20%及50%。由第6圖可知,Fe3 O4 膠體溶液的穩定度會隨著葡萄聚糖的濃度增加而增加,且Fe3 O4 溶液可為磁性流體(分子量:10kDa)。
參照第7圖,其顯示葡萄聚糖包覆之氧化鐵溶液的界達電位(ξ-potential),即pH值對氧化鐵溶液的影響。
在pH 7.4下,萄聚糖包覆之氧化鐵帶有負電荷。當pH值增加時,界達電位降低,其表示可藉由增加pH值來促進膠體的穩定度。
5.Au/TiO微粒膠體的製備
金屬氧化物,如TiO2 、ZnO或ZrO2 等,其光催化效率在微粒的應用,如太陽能電池、衛生處理及癌症的治療上,扮演非常重要的角色。可藉由添加金至金屬氧化物的表面以增加光催化效率。金具有生物相容性及受輻射反應催化的優點。為了維持反應效率,金屬微粒部份覆蓋氧化物的催化表面。氧化物與金屬微粒的表面必須最佳化以獲得最大的效率。
取0.01g的市售P25 TiO2 (鈦礦相,表面積為50±15m2 /g,平均粒徑為21±3nm,純度>99.5%)添加至10ml的去離子水中以形成TiO2 溶液。取均勻混合的0.02M金氯酸溶液(HAuCl4 ‧3H2 O,購自Aldrich)加入適當的NaOH(0.1M)溶液並均勻攪拌。合成方式與實施例1之方法(同步輻射X光照射)相同。
第8圖顯示Au、TiO2 及Au/TiO2 微粒之SP-X光繞射儀(XRD)結果,其中a為以x光照射5分鐘合成之Au/TiO2 ;b為以x光照射10分鐘合成之Au/TiO2 ;c為以x光照射15分鐘合成之Au/TiO2 ;d為銳鈦礦TiO2 ;e為純金微粒。
由第8圖之XRD的結果可知,Au/TiO2 微粒最佳的結構及相純度。金微粒的平均粒徑可由Au(111)的波峰依據Scherrer’s公式推導出來。X光照射5、10及15分鐘後所獲得的Au/TiO2 微粒,其金微粒的粒徑分別為1.11、0.98及0.83nm,具有金粒徑隨合成時間增長而縮小的趨勢。
此外,以穿透式電子顯微鏡(TEM)分析金微粒的尺寸及外觀。第9圖顯示Au/TiO2 微粒之TEM影像,第9a-9d圖分別顯示以X光照射1、5、10及15分鐘的結果。由此TEM影像可得知Au微粒可均勻的形成於TiO2 的表面。相較之下,短時間x光照射所產生的金微粒(如,第3(a)及(b)的1分鐘或3分鐘),其粒徑大於長時間x光照射所產生的微粒粒徑(如,第3(c)及(d)圖鬼10分鐘或15分鐘),此結果與XRD的結合相符。依據x光的照射時間,金奈粒微粒的尺寸介於2-5nm之間。例如,由TEM影像可得知,以x光照射1分鐘可產生粒徑4.58±1.06nm的金微粒,若以x光照射15分鐘則可產生粒徑2.59±0.88nm的金微粒。此粒徑下的金具有較高的催化活性。
第10圖顯示以TiO2 及Au/TiO2 分解甲基藍(MB)之可見光甲基藍光譜變化。以紫外光(波長‧254nm)照射30至60分鐘之TiO2 或Au/TiO2 溶液,起始濃度分別為:TiO2 =0.5mM;Au/TiO2 =0.028mM/0.5mM。由甲基藍吸光波長(664nm)其吸光值下降的結果可知,相較於純TiO2 ,以本發明之方法所形成之Au/TiO2 微粒可有效地促進光催化以加速分解甲基藍。
Au/TiO2 與TiO2 在RPMI培養液或去離子水中靜置4小時後,經動態光散射儀(Dynamic Light Scattering)評估此粒子在上述溶液中之穩定性,如表一所示。
將微粒分散於去離子水中,Au/TiO2 溶液的起始流體動力學尺寸為225.3nm,其幾乎與TiO2 溶液相同(239.1nm)。然而,當TiO2 微粒在去離子水中靜置4小時後,其平均流體動力學尺寸增加至約342.5nm;相反地,Au/TiO2 微粒的平均尺寸並未改變(246.2nm)。
相較於分散於去離子水,分散於細胞培養液之TiO2 及Au/TiO2 微粒的起始流體動力學尺寸(487.2nm及318.7nm)較大。在靜置4小時後,TiO2 微粒粒徑明顯地增加至635.1nm,然而,此粒徑增加的現象在Au/TiO2 微粒上並不明顯(341nm)。由以上結果可知,Au/TiO2 溶液的膠體穩定性比純TiO2 在去離子水及細胞培養基好。在細胞培養基中,微粒的粒徑增加可能與蛋白質的吸附有關。
處理條件:MB=0.25mM;TiO2 =0.5mM;Au/TiO2 =0.028mM/0.5mM
6.Au/ZnO及Au/ZrO2 微粒的製備
除實施例5之Au/TiO2 外,同樣也可利用實施例5之方法形成其他的金屬氧化物微粒,如Au/Zn及Au/ZrO2 微粒。
第11圖顯示Au/ZnO及Au/ZrO2 微粒之TEM電顯圖。由第11圖可知,金微粒均勻地沉積於金屬氧化物的表面。沉積的金微粒粒徑為5-20nm。
第12圖顯示Au/ZnO的XRD分析結果。第11圖之(a)為純ZnO,而(b)、(c)、(d)分別為以X光照射1分鐘、3分鐘及10分鐘所形的Au/ZnO。
比較例1
在比較例中,使用兩種不同的X光光源:(1)in house X光繞射儀(光能8KeV,劑量為0.3J/cm2 sec);以及(2)光能11.919KeV之同步X光BL 17C1射束射(與Au L3 角度相符)。以上述兩種光源照射塑膠盤中或包覆於塑膠管中的金氯酸溶液,並藉由觀察照射後溶液色顏的變化來判斷金粒子是否被還原成0價金。經照射2小時後,金氯酸溶液的顏色並無明顯改變,表示不管何種光源,皆因劑量過低而無法產生金微粒。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
2...微粒
4...顆粒
第1a-1b圖顯示本發明之微粒與形成於一顆粒的表面。
第2圖顯示銀微粒之UV-VIS吸收光譜,
第3a-3j圖顯示銀微粒之穿透式電子顯微鏡(TEM)影像,及其粒徑分佈。
第4圖顯示Ni-P微粒之TEM電顯圖。
第5圖顯示Fe3 O4 微粒的X光繞射(X-ray diffraction,XRD)分析結果。
第6a-6d圖顯示在不同濃度的葡萄聚糖下,Fe3 O4 微粒的外觀。
第7圖顯示葡萄聚糖包覆之氧化鐵溶液的表面界達電位。
第8圖顯示Au、TiO2 及Au/TiO2 微粒之XRD分析結果。
第9a-9d圖顯示Au/TiO2 微粒之TEM電顯圖。
第10圖顯示添加於甲基藍溶液中TiO2 或Au/TiO2 在經光分解後之甲基藍的光譜變化。
第11a-11b圖顯示Au/ZnO及Au/ZrO2 微粒之TEM電顯圖。
第12圖顯示ZnO及Au/ZnO之XRD分析結果。

Claims (21)

  1. 一種微粒的形成方法,包括:提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之前驅物,且不包括界面活性劑、還原劑、以及捕捉劑;以及利用一游離輻射線照射該可被游離輻射之前驅物溶液,使該前驅物轉變為一微粒,其中該游離輻射線的劑量率大於0.3J/cm2 sec。
  2. 一種具有披覆之微粒的形成方法,包括:提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之前驅物,且不包括界面活性劑、還原劑、以及捕捉劑;以及利用一游離輻射線照射該可被游離輻射之前驅物溶液,使該前驅物轉變為一微粒,其中該游離輻射線的劑量率大於0.3J/cm2 sec。
  3. 一種微粒的形成方法,包括:提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之前驅物,且不包括界面活性劑、還原劑、以及捕捉劑;以及利用一高能且高劑量游離輻射線照射該可被游離輻射之前驅物溶液,使該前驅物轉變為一微粒,其中該游離輻射線包括X光、電子束、中子束或離子束,且該游離輻射線的劑量率大於0.3J/cm2 sec。
  4. 一種具有披覆之微粒的形成方法,包括:提供一可被游離輻射之前驅物溶液,其包括一溶解於 一溶液中之前驅物,且不包括界面活性劑、還原劑、以及捕捉劑;以及利用一游離輻射線照射該可被游離輻射之前驅物溶液,使該前驅物轉變為一微粒,其中該游離輻射線包括X光、電子束、中子束或離子束,且該游離輻射線的劑量率大於0.3J/cm2 sec。
  5. 一種微粒的形成方法,包括:提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之前驅物,且不包括界面活性劑、還原劑、以及捕捉劑;以及利用一游離輻射線照射該可被游離輻射之前驅物溶液,使該前驅物轉變為一微粒,其中該游離輻射線為X光,且該X光劑量率大於0.3J/cm2 sec。
  6. 一種具有披覆之微粒的形成方法,包括:提供一可被游離輻射之前驅物溶液,其包括一溶解於一溶液中之前驅物,且不包括界面活性劑、還原劑、以及捕捉劑;以及利用一游離輻射線照射該可被游離輻射之前驅物溶液,使該前驅物轉變為一微粒,其中該游離輻射線為X光,且該X光劑量率大於0.3J/cm2 sec。
  7. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,更包括添加聚乙二醇(PEG)、聚醯胺醯亞胺(PEI)、聚乙烯吡咯烷酮(PVP)或異丙醇(IPA)於該前驅物溶液中。
  8. 如申請專利範圍第1、2、3、4、5或6項所述之微粒 的形成方法,其中該游離輻射線照射該前驅物溶液的時間小於30分鐘。
  9. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該游離輻射線照射該前驅物溶液的時間小於30秒。
  10. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該游離輻射線照射該前驅物溶液的時間小於1秒。
  11. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該溶液為水、乙醇或上述之組合。
  12. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該前驅物包括銷酸銀、氯化金、氯化亞鐵、硫酸鎳、硫酸銅或氯化鋅。
  13. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該前驅物的濃度介於0.5-2 mM。
  14. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該前驅物的pH值介於4-10。
  15. 如申請專利範圍第1、2、3、4、5或6項所述之微粒的形成方法,其中該前驅物溶液中更包括一顆粒,使該微粒包覆於該顆粒上。
  16. 如申請專利範圍第5項所述之微粒的形成方法,其中該顆粒包括磷、金、銀、氧化鈦、氧化鋅、或氧化鋯顆粒。
  17. 一種具有內部空孔且該空孔含有微粒之顆粒,該微 粒係採用申請專利範圍第1、2、3、4、5或6項之微粒形成方法。
  18. 如申請專利範圍17項所述之具有內部空孔且該空孔含有微粒之顆粒,其中該顆粒存在於一溶液中,且該溶液為水、乙醇或上述之組合。
  19. 如申請專利範圍第17項所述之具有內部空孔且該空孔含有微粒之顆粒,其中該微粒部份或全部地形成於該顆粒之空孔內。
  20. 如申請專利範圍第17項所述之具有內部空孔且該空孔含有微粒之顆粒,其中該顆粒為多孔氧化矽或奈米碳管。
  21. 如申請專利範圍第17項所述之具有內部空孔且該空孔含有微粒之顆粒,其中該微粒包括金、銀、銅、鎳、鉑、鐵、鈦、鋅、鋯、或鎢。
TW98110627A 2009-03-31 2009-03-31 微粒及其形成方法 TWI395613B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW98110627A TWI395613B (zh) 2009-03-31 2009-03-31 微粒及其形成方法
US12/545,822 US10114016B2 (en) 2009-03-31 2009-08-22 Particles and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98110627A TWI395613B (zh) 2009-03-31 2009-03-31 微粒及其形成方法

Publications (2)

Publication Number Publication Date
TW201034745A TW201034745A (en) 2010-10-01
TWI395613B true TWI395613B (zh) 2013-05-11

Family

ID=42784738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110627A TWI395613B (zh) 2009-03-31 2009-03-31 微粒及其形成方法

Country Status (2)

Country Link
US (1) US10114016B2 (zh)
TW (1) TWI395613B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287104B1 (ko) * 2006-10-31 2013-07-17 한국원자력연구원 연료 전지용 촉매의 제조 방법
WO2009090748A1 (ja) * 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、その製法及び製造装置
TWI458549B (zh) * 2012-01-13 2014-11-01 Univ Nat Central 奈米金-銀承載於二氧化鈰觸媒之製法及其在去除空氣中一氧化碳之應用
KR101422090B1 (ko) 2012-02-14 2014-07-23 강원대학교산학협력단 단일 공정을 이용한 코어 쉘 구조의 산화철 미립자 제조 방법 및 이에 의해 제조된 산화철 미립자 중공구체
WO2013151066A1 (ja) * 2012-04-06 2013-10-10 コニカミノルタ株式会社 アナライトの検出または定量方法、アナライトを検出または定量するためのキット、およびアナライトを検出または定量するためのラテラルフロー型クロマト法用テストストリップ
TWI500451B (zh) * 2013-07-04 2015-09-21 Academia Sinica 無對流效應之流動式反應器及流動式合成方法
US10807109B2 (en) * 2017-12-19 2020-10-20 The United States Of America As Represented By The Secretary Of The Army Deposition of particles at desired locations using plasmonic enhancement
CN108524954A (zh) * 2018-07-10 2018-09-14 天津工业大学 一种具备光热和成像效应的氧化钨晶体复合材料的制备方法
CN112376020B (zh) * 2020-10-28 2021-07-20 武汉大学 激光诱导纳米单元生长形成取向、手性和复杂结构的方法
CN112520690B (zh) * 2020-12-07 2021-08-24 广东工业大学 一种金属辅助化学刻蚀离散型硅纳米孔图案的方法及装置
CN113201681B (zh) * 2021-04-29 2022-04-01 西安建筑科技大学 一种氧化物强化奥氏体不锈钢及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068800A (en) * 1995-09-07 2000-05-30 The Penn State Research Foundation Production of nano particles and tubes by laser liquid interaction
JP2008246394A (ja) * 2007-03-30 2008-10-16 3R Corp ナノ粒子製造方法およびナノ粒子製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057384A1 (en) * 2004-04-01 2006-03-16 Benoit Simard Methods for the fabrication of gold-covered magnetic nanoparticles
WO2006049479A1 (en) * 2004-11-08 2006-05-11 Bio Dreams Co. Ltd. Antimicrobial spray compositions
US20070044590A1 (en) * 2005-08-26 2007-03-01 National Chung-Hsing University Method for producing metal nanoparticle
WO2008001815A1 (en) * 2006-06-30 2008-01-03 N.E. Chemcat Corporation Process for producing metal nanoparticle and metal nanoparticle produced by the process
US7998239B1 (en) * 2008-11-20 2011-08-16 Sandia Corporation Alloy nanoparticle synthesis using ionizing radiation
AU2009333387B2 (en) * 2008-12-17 2012-11-29 National Health Research Institutes Radioactive gold nanoparticles and methods of making and using them
US8246714B2 (en) * 2009-01-30 2012-08-21 Imra America, Inc. Production of metal and metal-alloy nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068800A (en) * 1995-09-07 2000-05-30 The Penn State Research Foundation Production of nano particles and tubes by laser liquid interaction
JP2008246394A (ja) * 2007-03-30 2008-10-16 3R Corp ナノ粒子製造方法およびナノ粒子製造装置

Also Published As

Publication number Publication date
TW201034745A (en) 2010-10-01
US10114016B2 (en) 2018-10-30
US20100248297A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
TWI395613B (zh) 微粒及其形成方法
Nidhin et al. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates
Beketova et al. One-step decoration of TiO2 nanotubes with Fe3O4 nanoparticles: synthesis and photocatalytic and magnetic properties
Goia Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions
Sastry et al. New approaches to the synthesis of anisotropic, core–shell and hollow metal nanostructures
Naghibi et al. Application of the statistical Taguchi method to optimize TiO2 nanoparticles synthesis by the hydrothermal assisted sol–gel technique
Cao et al. Synthesis and UV shielding properties of zinc oxide ultrafine particles modified with silica and trimethyl siloxane
Gharibshahi et al. Size‐controlled and optical properties of platinum nanoparticles by gamma radiolytic synthesis
Emam et al. Emerging use of homogenic and heterogenic nano-colloids synthesized via size-controllable technique in catalytic potency
Li et al. One-pot synthesis of Ag@ SiO2@ Ag sandwich nanostructures
Van de Broek et al. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols
Liu et al. Foamed single-crystalline anatase nanocrystals exhibiting enhanced photocatalytic activity
Dou et al. Preparation of non-spherical vaterite CaCO3 particles by flash nano precipitation technique for targeted and extended drug delivery
MX2013011245A (es) Suspensiones novedosas de nanocristales bimetalicos basados en oro-platino, procedimientos de fabricacion electroquimica para las mismas y sus usos.
Samanta et al. Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities
Yin et al. Green chemistry synthesis of gold nanoparticles using lactic acid as a reducing agent
KR101814001B1 (ko) 코어-쉘 타입의 판상형 나노입자 및 이의 제조방법
Zhang et al. Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration
Braim et al. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design
Shvedchenko et al. Mechanism of formation of silver nanoparticles in MAG–DMAEMA copolymer aqueous solutions
Charpentier et al. Photocatalytic and antibacterial activities of silver and iron doped titania nanoparticles in solution and polyaspartic coatings
Yakutik et al. The formation of monodisperse spherical silver particles
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Francis et al. Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process
KR20150143359A (ko) 중공 금속 나노입자의 제조방법 및 이에 의해 제조된 중공 금속 나노입자