TWI393669B - Carbon nanotube composite and method for making the same - Google Patents

Carbon nanotube composite and method for making the same Download PDF

Info

Publication number
TWI393669B
TWI393669B TW98111930A TW98111930A TWI393669B TW I393669 B TWI393669 B TW I393669B TW 98111930 A TW98111930 A TW 98111930A TW 98111930 A TW98111930 A TW 98111930A TW I393669 B TWI393669 B TW I393669B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon
composite material
nanotube composite
reaction raw
Prior art date
Application number
TW98111930A
Other languages
Chinese (zh)
Other versions
TW201036911A (en
Inventor
Jia-Ping Wang
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98111930A priority Critical patent/TWI393669B/en
Publication of TW201036911A publication Critical patent/TW201036911A/en
Application granted granted Critical
Publication of TWI393669B publication Critical patent/TWI393669B/en

Links

Description

奈米碳管複合材料及其製備方法 Nano carbon tube composite material and preparation method thereof

本發明涉及一種奈米複合材料及其製備方法,尤其涉及一種奈米碳管複合材料及其製備方法。 The invention relates to a nano composite material and a preparation method thereof, in particular to a nano carbon tube composite material and a preparation method thereof.

奈米碳管(Carbon Nanotube,CNT)係一種新型奈米線結構。奈米碳管具有極大的比表面積,優良的機械及光電性能,被廣泛應用於複合材料的製備。奈米顆粒本身具有極大的比表面積及光催化等優異特性,然,奈米顆粒本身容易團聚。故,將奈米顆粒分散於奈米碳管表面,以製備奈米碳管複合材料成為研究的熱點。 Carbon Nanotube (CNT) is a new type of nanowire structure. Nano carbon tubes have a large specific surface area, excellent mechanical and photoelectric properties, and are widely used in the preparation of composite materials. The nanoparticle itself has excellent characteristics such as a large specific surface area and photocatalysis, and the nanoparticle itself is easily agglomerated. Therefore, dispersing nanoparticles on the surface of carbon nanotubes to prepare nanocarbon tube composites has become a research hotspot.

2007年3月14日公告的公告號為CN1304280C的中國大陸專利揭示一種奈米碳管複合材料及其製備方法。該奈米碳管複合材料包括複數個奈米碳管粉體及包覆於奈米碳管粉體表面的四氧化三鈷奈米晶,且四氧化三鈷奈米晶與奈米碳管形成複合粉體。該奈米碳管複合材料的製備方法主要包括以下步驟:將奈米碳管於濃硝酸中功能化處理6小時~8小時,於奈米碳管表面引入羥基、羧基等活性功能團;用去離子水清洗功能化處理後的奈米碳管,並烘乾;將六水合硝酸鈷溶於正乙醇中形成混合溶液;將奈米碳管加入到該混合溶液中超聲處理15分鐘~60分鐘,六水合硝酸鈷吸附於奈米碳管表面;將混合溶液於矽油浴中回流處理5小時~10小時,吸附於奈米碳管表面的六水合硝酸鈷分解為四氧化三鈷,從而得到四氧化三鈷包覆的奈米碳管;及將四氧化三鈷包覆的奈米碳管用乙 烷、乙醇分別清洗,從而得到四氧化三鈷包覆的奈米碳管粉體。然而,該奈米碳管複合材料及其製備方法具有以下不足:奈米碳管複合材料的製備方法工藝複雜,成本較高,而且採用濃硝酸等化學藥品,容易造成環境污染。 The Chinese patent of CN1304280C, published on March 14, 2007, discloses a nano carbon tube composite material and a preparation method thereof. The carbon nanotube composite material comprises a plurality of carbon nanotube powders and a cobalt trioxide nanocrystal coated on the surface of the carbon nanotube powder, and the cobalt tetraoxide nanocrystals form a composite powder with the carbon nanotubes. The preparation method of the carbon nanotube composite material mainly comprises the following steps: functionalizing the carbon nanotubes in concentrated nitric acid for 6 hours to 8 hours, introducing active functional groups such as hydroxyl groups and carboxyl groups on the surface of the carbon nanotubes; The functionalized carbon nanotubes are washed with ionized water and dried; the cobalt nitrate hexahydrate is dissolved in n-ethanol to form a mixed solution; the carbon nanotubes are added to the mixed solution for sonication for 15 minutes to 60 minutes, The cobalt nitrate hexahydrate is adsorbed on the surface of the carbon nanotube; the mixed solution is refluxed in a simmering oil bath for 5 hours to 10 hours, and the cobalt nitrate hexahydrate adsorbed on the surface of the carbon nanotube is decomposed into tricobalt tetroxide to obtain a lanthanum oxychloride coated naphthalene Carbon tube; and carbon nanotube coated with carbon tetraoxide The alkane and the ethanol are separately washed to obtain a carbon tetraoxide coated carbon nanotube powder. However, the nano carbon tube composite material and the preparation method thereof have the following disadvantages: the preparation method of the nano carbon tube composite material is complicated, the cost is high, and the use of chemicals such as concentrated nitric acid is likely to cause environmental pollution.

2008年9月3日公開的公開號為CN101255591A的中國大陸專利申請揭示一種奈米碳管與奈米鎳的複合薄膜材料及其製備方法。該奈米碳管與奈米鎳的複合薄膜材料包括一層沈積於金屬箔上的奈米碳管膜及沈積於該奈米碳管膜上的奈米鎳顆粒。該奈米碳管與奈米鎳的複合薄膜材料的製備方法主要包括以下步驟:提供一金屬箔基底,並對該金屬箔基底進行表面拋光及除油脫脂處理;將奈米碳管與乙醯丙酮混合後超聲處理,以形成一電泳懸浮液;以金屬箔基底為陰極,於上述電泳懸浮液中通入直流電,進行電泳沈積,於金屬箔基底表面沈積一層奈米碳管膜;以沈積有奈米碳管膜的金屬箔基底為陰極於一鎳電鍍液中進行電鍍,於奈米碳管膜表面沈積奈米鎳顆粒,從而得到一奈米碳管與奈米鎳的複合薄膜材料。然而,該奈米碳管與奈米鎳的複合薄膜材料及其製備方法具有以下不足:第一,該奈米碳管與奈米鎳的複合薄膜材料中,由於採用電鍍方法製備鎳顆粒,複數個奈米鎳顆粒連續地形成於奈米碳管膜表面,易於團聚,使得整個複合薄膜材料的比表面積降低,故,限制其應用。第二,該奈米碳管與奈米鎳的複合薄膜材料的製備方法需要電泳沈積及電鍍,工藝複雜,成本較高。 The Chinese Patent Application Publication No. CN101255591A, published on Sep. 3, 2008, discloses a composite film material of a carbon nanotube and a nano nickel and a preparation method thereof. The composite film material of the carbon nanotube and the nano nickel comprises a carbon nanotube film deposited on the metal foil and nano nickel particles deposited on the carbon nanotube film. The preparation method of the composite film material of the carbon nanotube and the nano nickel mainly comprises the following steps: providing a metal foil substrate, and performing surface polishing and degreasing treatment on the metal foil substrate; and the carbon nanotubes and the acetonitrile After acetone is mixed and sonicated to form an electrophoretic suspension; a metal foil substrate is used as a cathode, a direct current is applied to the electrophoretic suspension, and electrophoretic deposition is performed to deposit a layer of carbon nanotube film on the surface of the metal foil substrate; The metal foil substrate of the carbon nanotube film is electroplated in a nickel plating solution, and nano nickel particles are deposited on the surface of the carbon nanotube film to obtain a composite film material of a carbon nanotube and a nano nickel. However, the composite film material of the carbon nanotube and the nano nickel and the preparation method thereof have the following disadvantages: First, in the composite film material of the carbon nanotube and the nano nickel, nickel particles are prepared by electroplating, plural The nano nickel particles are continuously formed on the surface of the carbon nanotube film, and are easy to agglomerate, so that the specific surface area of the entire composite film material is lowered, so that the application thereof is limited. Second, the preparation method of the composite film material of the carbon nanotube and the nano nickel needs electrophoretic deposition and electroplating, and the process is complicated and the cost is high.

有鑒於此,確有必要提供一種具有較大的比表面積的奈米碳管複合材料,且該奈米碳管複合材料的製備方法簡單、成本較低。 In view of this, it is indeed necessary to provide a carbon nanotube composite material having a large specific surface area, and the preparation method of the carbon nanotube composite material is simple and low in cost.

一種奈米碳管複合材料,其包括:一奈米碳管結構及複數個奈米顆粒,該奈米碳管結構包括複數個奈米碳管,其中,所述奈米碳管結構為複數個奈米碳管通過凡得瓦力結合形成的自支撐結構,所述奈米顆粒附著於上述奈米碳管表面上,並沿其所附著的奈米碳管間隔地排列。 A carbon nanotube composite material comprising: a carbon nanotube structure and a plurality of nano particles, the carbon nanotube structure comprising a plurality of carbon nanotubes, wherein the carbon nanotube structure is plural The carbon nanotubes are formed by a self-supporting structure formed by the combination of van der Waals force, and the nano-particles are attached to the surface of the above-mentioned carbon nanotubes and are arranged at intervals along the carbon nanotubes to which they are attached.

一種奈米碳管複合材料,其包括:一個由複數個奈米碳管形成的自支撐結構及複數個奈米顆粒,每個奈米顆粒皆附著於奈米碳管的表面,所述複數個奈米顆粒並沿其所附著的奈米碳管間隔地排列。 A carbon nanotube composite material comprising: a self-supporting structure formed by a plurality of carbon nanotubes and a plurality of nano particles, each of which is attached to a surface of a carbon nanotube, the plurality of The nanoparticles are arranged at intervals along the carbon nanotubes to which they are attached.

一種奈米碳管複合材料的製備方法,其包括以下步驟:提供一奈米碳管結構,該奈米碳管結構包括複數個奈米碳管;向該奈米碳管結構中引入至少兩種反應原料,於該奈米碳管結構的表面形成厚度為1奈米~100奈米的反應原料層;及引發反應原料進行反應,生成奈米顆粒,從而得到一奈米碳管複合材料。 A method for preparing a carbon nanotube composite material, comprising the steps of: providing a carbon nanotube structure, the carbon nanotube structure comprising a plurality of carbon nanotubes; introducing at least two into the carbon nanotube structure The reaction raw material forms a reaction raw material layer having a thickness of 1 nm to 100 nm on the surface of the carbon nanotube structure; and the reaction raw material is reacted to form nano particles, thereby obtaining a carbon nanotube composite material.

相較於先前技術,由於所述奈米碳管複合材料中的複數個奈米顆粒間隔設置於奈米碳管結構中,故該奈米碳管複合材料具有較大的比表面積,可用作優異的催化劑材料。而且,通過採用引發形成於奈米碳管結構的表面的反應原料反應生成奈米顆粒的方法來製備奈米碳管複合材料,工藝簡單,成本低廉。 Compared with the prior art, since the plurality of nano particles in the carbon nanotube composite are disposed in the carbon nanotube structure at intervals, the carbon nanotube composite has a large specific surface area and can be used as Excellent catalyst material. Moreover, the carbon nanotube composite material is prepared by a method of generating a nanoparticle by reacting a reaction raw material formed on a surface of a carbon nanotube structure, which is simple in process and low in cost.

以下將結合附圖對本發明提供的奈米碳管複合材料及其製備方法的各個實施例作進一步的詳細說明。 Hereinafter, various embodiments of the carbon nanotube composite material and the preparation method thereof provided by the present invention will be further described in detail with reference to the accompanying drawings.

請參閱圖1,本發明實施例提供一種奈米碳管複合材料10,其包括一奈米碳管結構100及複數個奈米顆粒104。所述奈米碳管結構100可包括複數個奈米碳管通過凡得瓦力緊密連接形成一自支撐結構。所謂自支撐結構指該結構可無需一基底而保持一特定形狀,如線狀或膜狀。所述複數個奈米顆粒104均勻分佈於該奈米碳管結構100中。 Referring to FIG. 1 , an embodiment of the present invention provides a carbon nanotube composite material 10 including a carbon nanotube structure 100 and a plurality of nano particles 104 . The carbon nanotube structure 100 can include a plurality of carbon nanotubes that are tightly joined by van der Waals to form a self-supporting structure. By self-supporting structure is meant that the structure can be maintained in a particular shape, such as a line or film, without the need for a substrate. The plurality of nanoparticles 104 are uniformly distributed in the carbon nanotube structure 100.

所述奈米碳管結構100中的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。所述奈米碳管的長度大於50微米。優選地,該奈米碳管的長度為200微米~900微米。 The carbon nanotubes in the carbon nanotube structure 100 include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 10 nm, the double-walled carbon nanotube has a diameter of 1.0 nm to 15 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano. The carbon nanotubes have a length greater than 50 microns. Preferably, the carbon nanotubes have a length of from 200 micrometers to 900 micrometers.

所述奈米碳管結構100包括至少一奈米碳管膜、至少一奈米碳管線狀結構或其組合。所述奈米碳管膜包括複數個均勻分佈的奈米碳管。該奈米碳管膜中的奈米碳管有序排列或無序排列。有序排列指奈米碳管膜中的大多數奈米碳管沿一個或多個方向擇優取向排列。無序排列指奈米碳管膜中的奈米碳管相互纏繞或雜亂排列。當奈米碳管膜包括無序排列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列;當奈米碳管膜包括有序排列的奈米碳管時,奈米碳管沿一個方向或者複數個方向擇優取向排列。具體地,該奈米碳管膜可包括奈米碳管絮化膜、奈 米碳管碾壓膜或奈米碳管拉膜。該奈米碳管線狀結構包括至少一非扭轉的奈米碳管線、至少一扭轉的奈米碳管線或其組合。當所述奈米碳管線狀結構包括多根非扭轉的奈米碳管線或扭轉的奈米碳管線時,該非扭轉的奈米碳管線或扭轉的奈米碳管線可相互平行呈一束狀結構,或相互扭轉呈一絞線結構。 The carbon nanotube structure 100 includes at least one carbon nanotube film, at least one nanocarbon line structure, or a combination thereof. The carbon nanotube membrane comprises a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes in the carbon nanotube film are ordered or disorderly arranged. The ordered arrangement means that most of the carbon nanotubes in the carbon nanotube film are arranged in a preferred orientation in one or more directions. The disordered arrangement means that the carbon nanotubes in the carbon nanotube film are intertwined or disorderly arranged. When the carbon nanotube membrane comprises a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or isotropically arranged; when the carbon nanotube membrane comprises an ordered arrangement of carbon nanotubes, the carbon nanotubes Arrange in a preferred direction in one direction or in multiple directions. Specifically, the carbon nanotube film may include a carbon nanotube film, a naphthalene film. Carbon tube rolled film or carbon nanotube film. The nanocarbon line-like structure includes at least one non-twisted nanocarbon line, at least one twisted nanocarbon line, or a combination thereof. When the nanocarbon line-like structure comprises a plurality of non-twisted nano carbon pipelines or twisted nanocarbon pipelines, the non-twisted nanocarbon pipeline or the twisted nanocarbon pipeline may be parallel to each other in a bundle structure. , or twisted to each other in a twisted line structure.

請參閱圖2及圖3,具體地,該奈米碳管拉膜包括複數個連續且定向排列的奈米碳管片段143。該複數個奈米碳管片段143通過凡得瓦力首尾相連。每一奈米碳管片段143包括複數個相互平行的奈米碳管145,該複數個相互平行的奈米碳管145通過凡得瓦力緊密結合。該奈米碳管片段143具有任意的寬度、厚度、均勻性及形狀。該奈米碳管拉膜中的奈米碳管145沿同一方向擇優取向排列。可理解,由複數個奈米碳管拉膜組成的奈米碳管結構100中,相鄰兩個奈米碳管拉膜中的奈米碳管的排列方向有一夾角α,且0° α 90°,從而使相鄰兩層奈米碳管拉膜中的奈米碳管相互交叉組成一網狀結構,該網狀結構包括複數個微孔,該複數個微孔均勻且規則分佈於奈米碳管結構中,其中,該微孔直徑為1奈米~0.5微米。所述奈米碳管拉膜的厚度為0.01微米~100微米。所述奈米碳管拉膜可通過拉取一奈米碳管陣列直接獲得。所述奈米碳管拉膜的結構及其製備方法請參見范守善等人於2007年2月9日申請的,於2008年8月13公開的第CN101239712A號中國大陸公開專利申請“碳納米管薄膜結構及其製備方法”。 Referring to FIG. 2 and FIG. 3, in particular, the carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of mutually parallel carbon nanotubes 145 that are tightly coupled by van der Waals forces. The carbon nanotube segment 143 has any width, thickness, uniformity, and shape. The carbon nanotubes 145 in the carbon nanotube film are arranged in a preferred orientation in the same direction. It can be understood that in the carbon nanotube structure 100 composed of a plurality of carbon nanotube film, the arrangement of the carbon nanotubes in the adjacent two carbon nanotube films has an angle α and 0° α 90 °, so that the carbon nanotubes in the adjacent two layers of carbon nanotube film are intersected to form a network structure, the network structure includes a plurality of micropores, and the plurality of micropores are uniformly and regularly distributed in the nanometer. In the carbon tube structure, the micropore has a diameter of from 1 nm to 0.5 μm. The carbon nanotube film has a thickness of 0.01 μm to 100 μm. The carbon nanotube film can be directly obtained by pulling an array of carbon nanotubes. The structure of the carbon nanotube film and the preparation method thereof are described in the Chinese Patent Application No. CN101239712A, filed on Feb. 9, 2008, the disclosure of which is incorporated herein by reference. Structure and preparation method thereof".

所述奈米碳管碾壓膜包括均勻分佈的奈米碳管。請參閱圖4,奈米碳管沿同一方向擇優取向排列。請參閱圖5,奈米碳管沿不同方向擇優取向排列。優選地,所述奈米碳管碾壓膜中的奈米碳管平行於奈米碳管碾壓膜的表面。所述奈米碳管碾壓膜中的奈米碳管相互交疊,且通過凡得瓦力相互吸引,緊密結合,使得該奈米碳管碾壓膜具有很好的柔韌性,可彎曲折疊成任意形狀而不破裂。且由於奈米碳管碾壓膜中的奈米碳管之間通過凡得瓦力相互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐的結構,可無需基底支撐。所述奈米碳管碾壓膜可通過碾壓一奈米碳管陣列獲得。所述奈米碳管碾壓膜中的奈米碳管與形成奈米碳管陣列的基底的表面形成一夾角β,其中,β大於等於0度且小於等於15度(0 β 15°),該夾角β與施加於奈米碳管陣列上的壓力有關,壓力越大,該夾角越小。所述奈米碳管碾壓膜的長度及寬度不限。所述碾壓膜包括複數個微孔結構,該微孔結構均勻且規則分佈於奈米碳管碾壓膜中,其中微孔直徑為1奈米~0.5微米。所述奈米碳管碾壓膜及其製備方法請參見范守善等人於2007年6月1日申請的,於2008年12月3日公開的第CN101314464A號中國大陸專利申請“碳納米管薄膜的製備方法”。 The carbon nanotube rolled film includes a uniformly distributed carbon nanotube. Referring to Figure 4, the carbon nanotubes are arranged in the same direction. Referring to Figure 5, the carbon nanotubes are arranged in different orientations. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube film are overlapped with each other, and are attracted to each other by the van der Waals force, so that the carbon nanotube film has good flexibility and can be bent and folded. In any shape without breaking. Moreover, since the carbon nanotubes in the carbon nanotube rolled film are mutually attracted by the van der Waals force and tightly combined, the carbon nanotube film is a self-supporting structure, and the substrate support can be eliminated. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotubes in the carbon nanotube rolled film form an angle β with the surface of the substrate forming the carbon nanotube array, wherein β is greater than or equal to 0 degrees and less than or equal to 15 degrees (0 β 15°), The angle β is related to the pressure applied to the array of carbon nanotubes, the greater the pressure, the smaller the angle. The length and width of the carbon nanotube rolled film are not limited. The laminated film comprises a plurality of microporous structures uniformly and regularly distributed in a carbon nanotube rolled film, wherein the micropores have a diameter of from 1 nm to 0.5 μm. The carbon nanotube film and the preparation method thereof are described in the Chinese Patent Application No. CN101314464A, published on Jun. 3, 2007, by Fan Shoushan et al. Preparation".

所述奈米碳管絮化膜的長度、寬度及厚度不限,可根據實際需要選擇。本發明實施例提供的奈米碳管絮化膜的長度為1厘米~10厘米,寬度為1厘米~10厘米,厚度為1微米~2毫米。請參閱圖6,所述奈米碳管絮化膜包括相互 纏繞的奈米碳管,奈米碳管的長度大於10微米。所述奈米碳管之間通過凡得瓦力相互吸引、纏繞,形成網絡狀結構。所述奈米碳管絮化膜中的奈米碳管均勻分佈,無規則排列,使該奈米碳管絮化膜各向同性,所述奈米碳管絮化膜中的奈米碳管之間形成大量的微孔,微孔孔徑為1奈米~0.5微米。所述奈米碳管絮化膜及其製備方法請參見范守善等人於2007年4月13日申請的,於2008年10月15日公開的第CN101284662A號中國大陸專利申請“碳納米管薄膜的製備方法”。 The length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube flocculation film provided by the embodiment of the invention has a length of 1 cm to 10 cm, a width of 1 cm to 10 cm, and a thickness of 1 μm to 2 mm. Referring to FIG. 6, the carbon nanotube flocculation film includes mutual The entangled carbon nanotubes have a length of more than 10 microns. The carbon nanotubes are attracted and entangled with each other by van der Waals force to form a network structure. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and arranged irregularly, so that the carbon nanotube flocculation membrane is isotropic, and the carbon nanotubes in the carbon nanotube flocculation membrane are isotactic. A large number of micropores are formed between them, and the pore diameter of the micropores is from 1 nm to 0.5 μm. The carbon nanotube film of the carbon nanotube film is disclosed in the Chinese Patent Application No. CN101284662A, filed on Oct. 15, 2008, which is hereby incorporated by reference. Preparation".

請參閱圖7,該非扭轉的奈米碳管線包括複數個沿該非扭轉的奈米碳管線長度方向排列的奈米碳管。具體地,該非扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。非扭轉的奈米碳管線為將奈米碳管拉膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管拉膜中的相互平行的複數個奈米碳管通過凡得瓦力緊密結合,從而使奈米碳管拉膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比 表面積減小,黏性降低。 Referring to FIG. 7, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length direction of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The non-twisted nano carbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. The non-twisted nano carbon pipeline is obtained by treating the carbon nanotube film with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, a plurality of nano carbons parallel to each other in the carbon nanotube film are drawn. The tube is tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. The ratio of the non-twisted nanocarbon pipeline treated by the organic solvent to the carbon nanotube membrane not treated with the organic solvent The surface area is reduced and the viscosity is lowered.

所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管拉膜兩端沿相反方向扭轉獲得。請參閱圖8,該扭轉的奈米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。 The twisted nanocarbon pipeline is obtained by twisting both ends of the carbon nanotube film in the opposite direction by a mechanical force. Referring to FIG. 8, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes axially arranged around the twisted nanocarbon pipeline. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Derived tightly combined with carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted nanocarbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength.

所述奈米碳管線狀結構及其製備方法請參見等人於2002年9月16日申請的,於2008年8月20日公告的第CN100411979C號中國大陸公告專利“一種碳納米管繩及其製造方法”,及於2005年12月16日申請的,於2007年6月20日公開的第CN1982209A號中國大陸公開專利申請“奈米碳管絲及其製作方法”。 The nanocarbon line-like structure and the preparation method thereof can be referred to the Chinese Patent Publication No. CN100411979C, which was filed on September 16, 2008, et al. "Manufacturing method", and the Chinese Patent Application No. CN1982209A, published on Dec. 16, 2005, which is published on Jun. 20, 2007, "Nano Carbon Tube and Its Manufacturing Method".

所述複數個奈米顆粒104間隔一定距離設置於奈米碳管結構100中。所述奈米顆粒104附著於奈米碳管表面上,並沿其所附著的奈米碳管間隔地排列。優選地,相鄰的奈米顆粒104之間的距離可大於等於所述奈米顆粒104的粒 徑。所述奈米顆粒104的粒徑可大於等於1奈米且小於等於500奈米。優選地,所述奈米顆粒104的粒徑大於等於50奈米且小於等於200奈米。所述奈米碳管複合材料10中,每個奈米顆粒104包覆於至少一奈米碳管的部分表面,即每個奈米顆粒104中都有至少一奈米碳管部分被包覆於其中。可理解,當奈米碳管的尺寸小於奈米顆粒104的尺寸時,該奈米顆粒104可包覆於整個奈米碳管的表面,即整個奈米碳管被包覆於一奈米顆粒104中。所述複數個奈米碳管組成一奈米碳管束,且至少部分奈米顆粒104間隔附著於上述奈米碳管束上,並沿該奈米碳管束長度方向排列。所述複數個奈米碳管相互纏繞,複數個相互纏繞的奈米碳管的至少部分被包覆於一奈米顆粒104中。一個奈米碳管或奈米碳管束表面可形成有複數個間隔設置的奈米顆粒104將該奈米碳管或奈米碳管束部分包覆。由於奈米顆粒104包覆於至少一奈米碳管表面,所述奈米顆粒104與奈米碳管之間通過凡得瓦力或化學鍵緊密結合,故,奈米顆粒104與奈米碳管牢固的結合於一起。由於奈米碳管結構中的奈米碳管之間具有間隙,且複數個奈米顆粒104間隔設置於該奈米碳管結構中,故,該奈米碳管複合材料10具有較大的比表面積。 The plurality of nanoparticles 104 are disposed in the carbon nanotube structure 100 at a distance. The nanoparticles granules 104 are attached to the surface of the carbon nanotubes and are spaced apart along the carbon nanotubes to which they are attached. Preferably, the distance between adjacent nanoparticles 104 may be greater than or equal to the particles of the nanoparticle 104. path. The particle size of the nanoparticle 104 may be greater than or equal to 1 nm and less than or equal to 500 nm. Preferably, the nanoparticle 104 has a particle diameter of 50 nm or more and 200 nm or less. In the carbon nanotube composite material 10, each of the nanoparticles 104 is coated on a part of the surface of at least one carbon nanotube, that is, at least one carbon nanotube is partially coated in each of the nanoparticles 104. In it. It can be understood that when the size of the carbon nanotube is smaller than the size of the nanoparticle 104, the nanoparticle 104 can be coated on the surface of the entire carbon nanotube, that is, the entire carbon nanotube is coated on one nanometer particle. 104. The plurality of carbon nanotubes constitute a bundle of carbon nanotubes, and at least a portion of the nanoparticles 104 are intermittently attached to the bundle of carbon nanotubes and arranged along the length of the bundle of carbon nanotubes. The plurality of carbon nanotubes are intertwined with each other, and at least a portion of the plurality of intertwined carbon nanotubes are coated in one nanoparticle 104. A surface of a carbon nanotube or carbon nanotube bundle may be formed with a plurality of spaced-apart nanoparticles 104 partially covering the carbon nanotube or carbon nanotube bundle. Since the nanoparticle 104 is coated on the surface of at least one carbon nanotube, the nanoparticle 104 and the carbon nanotube are tightly bonded by van der Waals or chemical bonds, so the nanoparticle 104 and the carbon nanotube Firmly combined together. Since the carbon nanotubes in the carbon nanotube structure have a gap between each other, and a plurality of nano-particles 104 are disposed in the nanocarbon tube structure, the carbon nanotube composite material 10 has a large ratio. Surface area.

所述奈米顆粒104包括金屬奈米顆粒、非金屬奈米顆粒、合金奈米顆粒、金屬氧化物奈米顆粒及聚合物奈米顆粒中的一種或幾種。所述金屬氧化物奈米顆粒包括二氧化鈦奈米顆粒、氧化鋅奈米顆粒、氧化鎳奈米顆粒及氧化鋁奈米顆粒中的一種或幾種。本實施例中,所述奈米顆 粒104為二氧化鈦奈米顆粒。所述奈米顆粒104的形狀不限,可為球狀、橢球狀等中的一種或幾種。當所述奈米碳管結構100包括複數個平行或交叉設置的奈米碳管線時,所述複數個奈米顆粒104沿著每一個奈米碳管線定向排列。相鄰兩個奈米顆粒104間隔設置,且每個奈米顆粒104將所述奈米碳管線中的至少一奈米碳管包覆。所述奈米顆粒104的大小均勻,即奈米顆粒104的粒徑尺寸分佈範圍較小。本實施例中,所述奈米顆粒104的粒徑尺寸為大於等於80奈米且小於等於120奈米。 The nanoparticle 104 includes one or more of metal nanoparticle, non-metallic nanoparticle, alloy nanoparticle, metal oxide nanoparticle, and polymer nanoparticle. The metal oxide nanoparticle includes one or more of titanium dioxide nanoparticle, zinc oxide nanoparticle, nickel oxide nanoparticle, and alumina nanoparticle. In this embodiment, the nanoparticle The pellet 104 is titanium dioxide nanoparticle. The shape of the nanoparticles 104 is not limited and may be one or more of a spherical shape, an ellipsoidal shape, and the like. When the carbon nanotube structure 100 includes a plurality of parallel or intersecting carbon nanotubes, the plurality of nanoparticles 104 are aligned along each of the nanocarbon lines. Two adjacent nanoparticles 104 are spaced apart, and each of the nanoparticles 104 coats at least one carbon nanotube in the nanocarbon pipeline. The size of the nanoparticles 104 is uniform, that is, the particle size distribution range of the nanoparticles 104 is small. In this embodiment, the nanoparticle 104 has a particle size of 80 nm or more and 120 nm or less.

本發明所提供的奈米碳管複合材料10具有以下優點:第一,由於奈米碳管結構中的奈米碳管之間具有間隙,且複數個奈米顆粒104間隔設置於該奈米碳管結構中,故,該奈米碳管複合材料10具有較大的比表面積,可作為優異的催化劑材料。第二,由於所述奈米碳管結構100中的奈米碳管均勻分佈,且每個奈米顆粒104包覆於至少一奈米碳管部分表面,故,奈米顆粒104不易形成團聚。第三,由於所述奈米碳管結構100具有自支撐特性,故,該奈米碳管複合材料10為一自支撐結構。而且,該奈米碳管結構100中的奈米碳管具有良好的導電與導熱性,故,奈米碳管結構100可起到支撐及傳輸的功能。 The carbon nanotube composite material 10 provided by the invention has the following advantages: First, since there are gaps between the carbon nanotubes in the carbon nanotube structure, and a plurality of nano particles 104 are spaced apart from the nano carbon In the tube structure, the carbon nanotube composite material 10 has a large specific surface area and can be used as an excellent catalyst material. Second, since the carbon nanotubes in the carbon nanotube structure 100 are evenly distributed, and each of the nanoparticles 104 is coated on at least one surface of the carbon nanotubes, the nanoparticles 104 are less likely to form agglomeration. Third, since the carbon nanotube structure 100 has self-supporting properties, the carbon nanotube composite 10 is a self-supporting structure. Moreover, the carbon nanotubes in the carbon nanotube structure 100 have good electrical and thermal conductivity, so that the carbon nanotube structure 100 can function as a support and transport.

請參閱圖9及圖10,本發明實施例進一步提供上述奈米碳管複合材料10的製備方法,其包括以下步驟: Referring to FIG. 9 and FIG. 10, an embodiment of the present invention further provides a method for preparing the carbon nanotube composite material 10, which includes the following steps:

步驟一,提供一奈米碳管結構100,該奈米碳管結構包括複數個奈米碳管。 In step one, a carbon nanotube structure 100 is provided, the carbon nanotube structure comprising a plurality of carbon nanotubes.

所述奈米碳管結構100包括複數個奈米碳管,且複數個奈米碳管通過凡得瓦力緊密結合形成一自支撐結構。具體地,所述奈米碳管結構100包括至少一奈米碳管膜、至少一奈米碳管線狀結構或其組合。所述奈米碳管膜可包括奈米碳管絮化膜、奈米碳管碾壓膜或奈米碳管拉膜。所述奈米碳管拉膜,奈米碳管碾壓膜,奈米碳管絮化膜及奈米碳管線狀結構的製備方法請參見相關專利或專利申請。 The carbon nanotube structure 100 includes a plurality of carbon nanotubes, and the plurality of carbon nanotubes are tightly combined by van der Waals to form a self-supporting structure. Specifically, the carbon nanotube structure 100 includes at least one carbon nanotube film, at least one nano carbon line structure, or a combination thereof. The carbon nanotube film may include a carbon nanotube film, a carbon nanotube film or a carbon nanotube film. For the preparation method of the carbon nanotube film, the carbon nanotube film, the carbon nanotube film and the nano carbon line structure, please refer to related patents or patent applications.

所述奈米碳管結構100可進一步設置於一支撐體上。該支撐體可為基板或框架。 The carbon nanotube structure 100 can be further disposed on a support. The support can be a substrate or a frame.

本實施例中,將兩個奈米碳管拉膜層疊鋪設於一金屬環上得到一奈米碳管結構100,且兩個奈米碳管拉膜中的奈米碳管的排列方向相同。 In this embodiment, two carbon nanotube film are laminated on a metal ring to obtain a carbon nanotube structure 100, and the carbon nanotubes in the two carbon nanotube films are arranged in the same direction.

步驟二,向該奈米碳管結構100中引入至少兩種反應原料102,於該奈米碳管結構100的表面形成厚度為1奈米~100奈米的反應原料層(圖未示)。 In the second step, at least two kinds of reaction raw materials 102 are introduced into the carbon nanotube structure 100, and a reaction raw material layer (not shown) having a thickness of 1 nm to 100 nm is formed on the surface of the carbon nanotube structure 100.

所述反應原料102的材料與所需形成的奈米顆粒104的材料相關。所述反應原料102可為固態、液態或氣態。所述向奈米碳管結構100中引入至少兩種反應原料102的方法具體包括兩種情形。 The material of the reaction material 102 is related to the material of the nanoparticle 104 to be formed. The reaction feedstock 102 can be in a solid, liquid or gaseous state. The method of introducing at least two reaction materials 102 into the carbon nanotube structure 100 specifically includes two cases.

第一種:首先,於該奈米碳管結構100表面形成一層厚度為1奈米~100奈米的第一反應原料層。 First: First, a first reaction material layer having a thickness of 1 nm to 100 nm is formed on the surface of the carbon nanotube structure 100.

所述第一反應原料層的材料與所要製備的奈米顆粒104的材料有關,可為金屬、非金屬及半導體中的一種或多種 。例如,當奈米顆粒104的材料為金屬化合物,如金屬氧化物或金屬矽化物,第一反應原料層為金屬層,如鈦層、鋁層或鎳層等;當奈米顆粒104的材料為非金屬化合物,如氮化矽或碳化矽,第一反應原料層為矽層。 The material of the first reaction raw material layer is related to the material of the nanoparticle 104 to be prepared, and may be one or more of a metal, a nonmetal, and a semiconductor. . For example, when the material of the nanoparticle 104 is a metal compound such as a metal oxide or a metal halide, the first reaction material layer is a metal layer such as a titanium layer, an aluminum layer or a nickel layer; and when the material of the nanoparticle 104 is A non-metallic compound such as tantalum nitride or tantalum carbide, and the first reaction raw material layer is a tantalum layer.

所述於奈米碳管結構100表面形成一第一反應原料層的方法不限,可包括物理氣相沈積法、化學氣相沈積法、浸漬法、噴塗法及絲網列印法等中的一種或多種。可理解,根據第一反應原料層的材料不同,可選擇不同的方法於奈米碳管結構100中的奈米碳管表面形成第一反應原料層。例如,通過物理氣相沈積法可將金屬濺射到奈米碳管表面;通過化學氣相沈積法可於奈米碳管表面形成非金屬;通過噴塗法或絲網列印法可將含有金屬的有機漿料形成於奈米碳管的表面。 The method for forming a first reaction raw material layer on the surface of the carbon nanotube structure 100 is not limited, and may include physical vapor deposition, chemical vapor deposition, dipping, spraying, screen printing, and the like. One or more. It can be understood that different methods can be used to form the first reaction raw material layer on the surface of the carbon nanotubes in the carbon nanotube structure 100 according to the material of the first reaction raw material layer. For example, metal can be sputtered onto the surface of the carbon nanotube by physical vapor deposition; non-metal can be formed on the surface of the carbon nanotube by chemical vapor deposition; metal can be deposited by spray coating or screen printing The organic slurry is formed on the surface of the carbon nanotubes.

其次,向該奈米碳管結構100引入氣態或液態第二反應原料。 Next, a gaseous or liquid second reaction feedstock is introduced to the carbon nanotube structure 100.

所述氣態第二反應原料可為氧氣、氮氣、矽源氣體及碳源氣體中的一種或多種。所述向奈米碳管結構100引入氣態第二反應原料的方法可包括直接將氣態第二反應原料通入到設置有奈米碳管結構100的反應室(圖未示)或將奈米碳管結構100設置於一含有氣態第二反應原料的氣氛中,從而使氣態第二反應原料分佈於奈米碳管結構100及第一反應原料層周圍。 The gaseous second reaction raw material may be one or more of oxygen, nitrogen, helium source gas and carbon source gas. The method of introducing a gaseous second reaction raw material to the carbon nanotube structure 100 may include directly introducing the gaseous second reaction raw material into a reaction chamber (not shown) provided with the carbon nanotube structure 100 or by using nanocarbon The tube structure 100 is disposed in an atmosphere containing a gaseous second reaction material such that the gaseous second reaction material is distributed around the carbon nanotube structure 100 and the first reaction material layer.

所述液態第二反應原料可為甲醇、乙醇、丙酮及液態樹脂等中的一種或多種。所述向奈米碳管結構100引入液態 第二反應原料的方法可包括直接將液態第二反應原料滴到奈米碳管結構100表面或將奈米碳管結構100浸潤於一液態第二反應原料中,從而使液態第二反應原料分佈於奈米碳管結構100及第一反應原料層周圍。 The liquid second reaction raw material may be one or more of methanol, ethanol, acetone, and a liquid resin. Introducing a liquid into the carbon nanotube structure 100 The method for the second reaction raw material may include directly dropping the liquid second reaction raw material onto the surface of the carbon nanotube structure 100 or impregnating the carbon nanotube structure 100 into a liquid second reaction raw material, thereby distributing the liquid second reaction raw material. Around the carbon nanotube structure 100 and the first reaction material layer.

第二種:首先,於該奈米碳管結構100表面形成一第一反應原料層;其次,於該第一反應原料層上形成一第二反應原料層。所述第一反應原料層與第二反應原料層的總厚度為1奈米~100奈米。如,第一反應原料層為金屬層,第二反應原料層為矽層;第一反應原料層與第二反應原料層均為金屬層,如:第一反應原料層與第二反應原料層均分別為鋁層與鈦層、鋁層與鎳層等。 Secondly, first, a first reaction raw material layer is formed on the surface of the carbon nanotube structure 100; secondly, a second reaction raw material layer is formed on the first reaction raw material layer. The total thickness of the first reaction raw material layer and the second reaction raw material layer is from 1 nm to 100 nm. For example, the first reaction raw material layer is a metal layer, and the second reaction raw material layer is a ruthenium layer; the first reaction raw material layer and the second reaction raw material layer are both metal layers, such as: the first reaction raw material layer and the second reaction raw material layer are both They are an aluminum layer and a titanium layer, an aluminum layer and a nickel layer, respectively.

可理解,當沈積於所述奈米碳管結構100表面的反應原料層的厚度較小時,如厚度為1奈米~100奈米,反應原料反應後可形成複數個間隔的奈米顆粒104。當所述奈米碳管結構100表面的反應原料層的厚度較大時,如大於100奈米,反應原料反應後容易形成連續的奈米線。 It can be understood that when the thickness of the reaction raw material layer deposited on the surface of the carbon nanotube structure 100 is small, such as a thickness of 1 nm to 100 nm, a plurality of spaced nano particles 104 can be formed after the reaction raw materials are reacted. . When the thickness of the reaction raw material layer on the surface of the carbon nanotube structure 100 is large, for example, more than 100 nm, the reaction raw material is likely to form a continuous nanowire after the reaction.

可理解,不同的反應原料102對厚度的要求不同。本實施例中,通過磁控濺射法於奈米碳管結構100相對的兩面分別沈積一鈦層。本實施例製備3個樣品,其中,樣品1至3中鈦層的厚度分別為10奈米、20奈米、50奈米。然後,將該沈積有鈦層的奈米碳管結構100置於大氣環境中,使得奈米碳管結構100表面的鈦顆粒與大氣中的氧氣接觸。當鈦層的厚度為10奈米~50奈米時,鈦層與氧氣反應後可形成複數個間隔的二氧化鈦奈米顆粒。當鈦層的厚度大於50奈米時,鈦層與氧氣反應後容易形成連續的二氧化 鈦奈米線。 It will be appreciated that different reaction materials 102 have different thickness requirements. In this embodiment, a titanium layer is deposited on opposite sides of the carbon nanotube structure 100 by magnetron sputtering. In this example, three samples were prepared, wherein the thickness of the titanium layer in the samples 1 to 3 was 10 nm, 20 nm, and 50 nm, respectively. Then, the carbon nanotube structure 100 deposited with the titanium layer is placed in an atmosphere such that the titanium particles on the surface of the carbon nanotube structure 100 are in contact with oxygen in the atmosphere. When the thickness of the titanium layer is from 10 nm to 50 nm, the titanium layer reacts with oxygen to form a plurality of spaced titanium dioxide nanoparticles. When the thickness of the titanium layer is greater than 50 nm, the titanium layer easily forms a continuous oxidation after reacting with oxygen. Titanium nanowire.

步驟三,引發反應原料102進行反應,生成奈米顆粒104,從而得到一奈米碳管複合材料10。 In the third step, the reaction raw material 102 is initiated to react to form the nanoparticle 104, thereby obtaining a carbon nanotube composite material 10.

所述引發反應原料102進行反應的方法包括加熱,用電火花,及用雷射掃描中的一種或多種。可理解,根據反應條件的不同,可選擇不同的方法來引發反應原料102進行反應。如通過加熱可使矽與碳源氣反應製備碳化矽奈米顆粒;通過雷射掃描可使金屬與氧氣反應製備金屬氧化物奈米顆粒。 The method of initiating the reaction of the reaction starting material 102 includes one or more of heating, sparking, and laser scanning. It will be appreciated that depending on the reaction conditions, different methods may be employed to initiate the reaction of the reaction feedstock 102. For example, the cerium carbide and the carbon source gas can be reacted to prepare the cerium carbide nanoparticle by heating; the metal oxide and the oxygen can be reacted by the laser to prepare the metal oxide nanoparticle.

本實施例中,採用雷射掃描引發反應原料102進行反應。採用雷射掃描引發反應原料102進行反應包括兩種情形:第一種為採用雷射掃描整個奈米碳管結構100的表面,使奈米碳管結構100表面的反應原料102進行反應;第二種為採用雷射掃描奈米碳管結構100的部分表面,使奈米碳管結構100表面的反應原料102由雷射掃描的位置開始沿著奈米碳管排列方向進行自擴散反應。當採用第二種方法時,可將奈米碳管結構100設置於一基板(圖未示)上,通過選擇不同導熱係數的基板以控制生長奈米顆粒104的速度。所述基板的導熱係數越大,熱量向基板傳導就越快,而沿奈米碳管方向傳導就越慢,奈米顆粒104的生長速度越慢。反之則生長速度越快。由於空氣的導熱係數很小,故,當奈米碳管結構100懸空設置時,奈米顆粒104具有最快的生長速度。另,通過選擇雷射掃描的位置還可實現奈米碳管結構100的部分表面可選擇地生長奈米顆粒104。 In this embodiment, the reaction raw material 102 is initiated by laser scanning to carry out the reaction. The use of laser scanning to initiate the reaction of the starting material 102 for the reaction includes two cases: the first is to scan the surface of the entire carbon nanotube structure 100 by laser, and react the reaction raw material 102 on the surface of the carbon nanotube structure 100; The partial surface of the laser scanning carbon nanotube structure 100 is used to cause the reaction raw material 102 on the surface of the carbon nanotube structure 100 to self-diffusion reaction in the direction of arrangement of the carbon nanotubes from the position of the laser scanning. When the second method is employed, the carbon nanotube structure 100 can be disposed on a substrate (not shown) to control the growth of the nanoparticle 104 by selecting substrates of different thermal conductivity. The greater the thermal conductivity of the substrate, the faster the heat is conducted to the substrate, and the slower the conduction along the direction of the carbon nanotubes, the slower the growth rate of the nanoparticles 104. Otherwise, the faster the growth rate. Since the thermal conductivity of the air is small, the nanoparticle 104 has the fastest growth rate when the carbon nanotube structure 100 is suspended. Alternatively, the surface of the carbon nanotube structure 100 can optionally grow the nanoparticle 104 by selecting the location of the laser scan.

可理解,由於所述反應原料層的厚度為1奈米~100奈米,反應原料102反應後無法形成連續的奈米膜或奈米線,而生長得到複數個奈米顆粒104。該奈米顆粒104均勻分散,且包覆於奈米碳管表面與奈米碳管緊密結合。由於本發明中所採用的奈米碳管結構100中的奈米碳管通過凡得瓦力緊密結合形成一具有自支撐特性的奈米碳管結構100,故,該反應得到奈米碳管複合材料10也具有自支撐結構。 It can be understood that since the thickness of the reaction raw material layer is from 1 nm to 100 nm, the reaction raw material 102 cannot form a continuous nano film or a nanowire after the reaction, and a plurality of nano particles 104 are grown. The nanoparticle 104 is uniformly dispersed and coated on the surface of the carbon nanotube to be tightly bonded to the carbon nanotube. Since the carbon nanotubes in the carbon nanotube structure 100 used in the present invention are tightly combined by van der Waals force to form a carbon nanotube structure 100 having self-supporting properties, the reaction is obtained by a carbon nanotube composite. Material 10 also has a self supporting structure.

本實施例中,採用雷射掃描奈米碳管結構100邊緣,引發自擴散反應,得到奈米碳管二氧化鈦奈米顆粒複合材料。其中,雷射掃描的速度為10厘米/秒~200厘米/秒,雷射掃描的功率大於等於0.5瓦。該自擴散反應的速度大於10厘米/秒。 In this embodiment, the edge of the laser scanning carbon nanotube structure 100 is used to initiate a self-diffusion reaction to obtain a nano carbon nanotube titanium dioxide nanoparticle composite material. Among them, the speed of laser scanning is 10 cm / sec ~ 200 cm / sec, the power of laser scanning is greater than or equal to 0.5 watt. The rate of the self-diffusion reaction is greater than 10 cm/sec.

請參見圖11至13,其分別為本實施例採用樣品1至3製備的奈米碳管二氧化鈦奈米顆粒複合材料。所述奈米碳管二氧化鈦奈米顆粒複合材料包括奈米碳管結構及複數個均勻分佈的二氧化鈦奈米顆粒。當奈米碳管結構100表面沈積的鈦層厚度較小時,形成的二氧化鈦奈米顆粒的大小均勻,即二氧化鈦奈米顆粒的粒徑尺寸分佈範圍較小。而且,隨著奈米碳管結構100表面沈積的鈦層厚度增加,形成的二氧化鈦奈米顆粒的粒徑尺寸分佈範圍變大。請參見圖14,為圖11中的奈米碳管複合材料的透射電鏡照片。每一個二氧化鈦奈米顆粒包覆於複數個奈米碳管表面,即由複數個奈米碳管形成的奈米碳管束部分被包覆於二氧化鈦奈米顆粒中。 Referring to Figures 11 to 13, respectively, the carbon nanotube titanium dioxide nanoparticle composite prepared by using the samples 1 to 3 of the present embodiment. The carbon nanotube titanium dioxide nano particle composite material comprises a carbon nanotube structure and a plurality of uniformly distributed titanium dioxide nano particles. When the thickness of the titanium layer deposited on the surface of the carbon nanotube structure 100 is small, the size of the formed titanium dioxide nanoparticles is uniform, that is, the particle size distribution range of the titanium dioxide nanoparticles is small. Moreover, as the thickness of the titanium layer deposited on the surface of the carbon nanotube structure 100 increases, the particle size size distribution range of the formed titanium dioxide nanoparticles becomes large. Please refer to FIG. 14 , which is a transmission electron micrograph of the carbon nanotube composite material of FIG. 11 . Each of the titanium dioxide nanoparticles is coated on the surface of a plurality of carbon nanotubes, that is, a portion of the carbon nanotube bundle formed by a plurality of carbon nanotubes is coated in the titanium dioxide nanoparticles.

本發明通過引發形成於奈米碳管結構100的表面的反應原料102反應生長奈米顆粒104來製備奈米碳管複合材料10,工藝簡單,成本低廉。 The present invention prepares the carbon nanotube composite material 10 by initiating the growth of the nanoparticle 104 by reacting the reaction raw material 102 formed on the surface of the carbon nanotube structure 100, which is simple in process and low in cost.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧奈米碳管複合材料 10‧‧‧Nano Carbon Tube Composites

100‧‧‧奈米碳管結構 100‧‧‧Nano carbon nanotube structure

102‧‧‧反應原料 102‧‧‧Reactive raw materials

104‧‧‧奈米顆粒 104‧‧‧Nano granules

圖1為本發明提供的奈米碳管複合材料的結構示意圖。 FIG. 1 is a schematic structural view of a carbon nanotube composite material provided by the present invention.

圖2為本發明採用的奈米碳管拉膜的掃描電鏡照片。 2 is a scanning electron micrograph of a carbon nanotube film taken in the present invention.

圖3為圖2中的奈米碳管拉膜中的奈米碳管片段的結構示意圖。 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of FIG. 2.

圖4及圖5為本發明採用的奈米碳管碾壓膜的掃描電鏡照片。 4 and 5 are scanning electron micrographs of a carbon nanotube rolled film used in the present invention.

圖6為本發明採用的奈米碳管絮化膜的掃描電鏡照片。 Figure 6 is a scanning electron micrograph of a carbon nanotube flocculation membrane used in the present invention.

圖7為本發明採用的非扭轉的奈米碳管線的掃描電鏡照片。 Figure 7 is a scanning electron micrograph of a non-twisted nanocarbon line employed in the present invention.

圖8為本發明採用的扭轉的奈米碳管線的掃描電鏡照片。 Figure 8 is a scanning electron micrograph of a twisted nanocarbon line employed in the present invention.

圖9為本發明提供的奈米碳管複合材料的製備方法流程圖。 FIG. 9 is a flow chart of a method for preparing a carbon nanotube composite material provided by the present invention.

圖10為本發明提供的奈米碳管複合材料的製備工藝流程圖。 FIG. 10 is a flow chart showing the preparation process of the carbon nanotube composite material provided by the present invention.

圖11為本發明實施例採用樣品1製備的奈米碳管複合材料的掃描電鏡照片。 Figure 11 is a scanning electron micrograph of a carbon nanotube composite prepared using Sample 1 in accordance with an embodiment of the present invention.

圖12為本發明實施例採用樣品2製備的奈米碳管複合材料的掃描電鏡照片。 Figure 12 is a scanning electron micrograph of a carbon nanotube composite prepared using Sample 2 in accordance with an embodiment of the present invention.

圖13為本發明實施例採用樣品3製備的奈米碳管複合材料的掃描電鏡照片。 Figure 13 is a scanning electron micrograph of a carbon nanotube composite prepared using Sample 3 in accordance with an embodiment of the present invention.

圖14為圖11中的奈米碳管複合材料的透射電鏡照片。 Figure 14 is a transmission electron micrograph of the carbon nanotube composite of Figure 11.

10‧‧‧奈米碳管複合材料 10‧‧‧Nano Carbon Tube Composites

100‧‧‧奈米碳管結構 100‧‧‧Nano carbon nanotube structure

104‧‧‧奈米顆粒 104‧‧‧Nano granules

Claims (31)

一種奈米碳管複合材料,其包括:一奈米碳管結構及複數個奈米顆粒,該奈米碳管結構包括複數個奈米碳管,其改良在於,所述奈米碳管結構為複數個奈米碳管通過凡得瓦力結合形成的自支撐結構,所述奈米顆粒附著於上述奈米碳管表面上,並沿其所附著的奈米碳管間隔地排列。 A carbon nanotube composite material comprising: a carbon nanotube structure and a plurality of nano particles, the carbon nanotube structure comprising a plurality of carbon nanotubes, wherein the modification is that the carbon nanotube structure is A plurality of carbon nanotubes are formed by a combination of van der Waals and a self-supporting structure, and the nanoparticles are attached to the surface of the carbon nanotubes and arranged at intervals along the carbon nanotubes to which they are attached. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,每個奈米顆粒附著於至少一奈米碳管的表面。 The carbon nanotube composite material according to claim 1, wherein each of the nanoparticles is attached to a surface of at least one carbon nanotube. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,每個奈米顆粒中都有至少一奈米碳管的至少部分被包覆於奈米顆粒中。 The carbon nanotube composite material according to claim 1, wherein at least a portion of at least one carbon nanotube in each of the nanoparticles is coated in the nanoparticle. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,所述複數個奈米碳管組成至少一奈米碳管束,且至少部分奈米顆粒間隔附著於上述奈米碳管束上,並沿該奈米碳管束長度方向排列。 The carbon nanotube composite material according to claim 1, wherein the plurality of carbon nanotubes constitute at least one carbon nanotube bundle, and at least a portion of the nanoparticles are attached to the carbon nanotube bundle at intervals And arranged along the length of the carbon nanotube bundle. 如申請專利範圍第4項所述的奈米碳管複合材料,其中,一個奈米碳束表面形成有複數個間隔設置的奈米顆粒將該奈米碳束部分包覆。 The carbon nanotube composite material according to claim 4, wherein a surface of a nano carbon bundle is formed with a plurality of spaced-apart nano particles to partially coat the nano carbon bundle. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,所述複數個奈米碳管相互纏繞,複數個相互纏繞的奈米碳管的至少部分被包覆於一奈米顆粒中。 The carbon nanotube composite material according to claim 1, wherein the plurality of carbon nanotubes are intertwined, and at least a portion of the plurality of intertwined carbon nanotubes are coated with one nanometer particle. in. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,所述奈米顆粒的粒徑為大於等於1奈米且小於等於500奈米。 The carbon nanotube composite material according to claim 1, wherein the nanoparticle has a particle diameter of 1 nm or more and 500 nm or less. 如申請專利範圍第7項所述的奈米碳管複合材料,其中, 所述相鄰的奈米顆粒之間的距離大於等於所述奈米顆粒的粒徑。 The carbon nanotube composite material as described in claim 7 of the patent application, wherein The distance between the adjacent nanoparticles is greater than or equal to the particle size of the nanoparticles. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,所述奈米碳管結構包括至少一奈米碳管膜、至少一奈米碳管線狀結構或其組合。 The carbon nanotube composite material according to claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film, at least one nano carbon line structure, or a combination thereof. 如申請專利範圍第9項所述的奈米碳管複合材料,其中,所述奈米碳管結構包括複數個平行、交叉或編織設置的奈米碳管線狀結構。 The carbon nanotube composite material according to claim 9, wherein the carbon nanotube structure comprises a plurality of carbon nanotube-like structures arranged in parallel, intersecting or braided. 如申請專利範圍第9項所述的奈米碳管複合材料,其中,所述奈米碳管結構包括複數個層疊的奈米碳管膜。 The carbon nanotube composite material according to claim 9, wherein the carbon nanotube structure comprises a plurality of laminated carbon nanotube membranes. 如申請專利範圍第9項所述的奈米碳管複合材料,其中,所述奈米碳管膜包括複數個首尾相連且沿同一方向擇優取向排列的奈米碳管。 The carbon nanotube composite material according to claim 9, wherein the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction. 如申請專利範圍第9項所述的奈米碳管複合材料,其中,所述奈米碳管膜包括複數個相互纏繞的奈米碳管。 The carbon nanotube composite material according to claim 9, wherein the carbon nanotube film comprises a plurality of intertwined carbon nanotubes. 如申請專利範圍第9項所述的奈米碳管複合材料,其中,所述奈米碳管線狀結構包括至少一非扭轉的奈米碳管線、至少一扭轉的奈米碳管線或其組合。 The carbon nanotube composite of claim 9, wherein the nanocarbon line-like structure comprises at least one non-twisted nanocarbon line, at least one twisted nanocarbon line, or a combination thereof. 如申請專利範圍第14項所述的奈米碳管複合材料,其中,所述非扭轉的奈米碳管線包括複數個奈米碳管沿該非扭轉的奈米碳管線長度方向平行排列,所述扭轉的奈米碳管線包括複數個奈米碳管沿該扭轉的奈米碳管線長度方向呈螺旋狀排列。 The carbon nanotube composite according to claim 14, wherein the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotubes arranged in parallel along a length direction of the non-twisted nanocarbon pipeline, The twisted nanocarbon line includes a plurality of carbon nanotubes arranged in a spiral along the length of the twisted nanocarbon line. 如申請專利範圍第1項所述的奈米碳管複合材料,其中,所述奈米顆粒包括金屬奈米顆粒、非金屬奈米顆粒、合金奈米顆粒、金屬氧化物奈米顆粒及聚合物奈米顆粒中的一 種或幾種。 The carbon nanotube composite material according to claim 1, wherein the nano particles comprise metal nanoparticles, non-metallic nanoparticles, alloy nanoparticles, metal oxide nanoparticles and polymers. One of the nanoparticles Kind or several. 如申請專利範圍第16項所述的奈米碳管複合材料,其中,所述金屬氧化物奈米顆粒包括二氧化鈦奈米顆粒、氧化鋅奈米顆粒、氧化鎳奈米顆粒及氧化鋁奈米顆粒中的一種或幾種。 The carbon nanotube composite material according to claim 16, wherein the metal oxide nanoparticle comprises titanium dioxide nano particles, zinc oxide nano particles, nickel oxide nanoparticles and alumina nanoparticles. One or several of them. 一種奈米碳管複合材料,其改良在於,該奈米碳管複合材料包括:一個由複數個奈米碳管形成的自支撐結構及複數個奈米顆粒,每個奈米顆粒附著於奈米碳管的表面,所述複數個奈米顆粒沿其所附著的奈米碳管間隔地排列。 A nano carbon tube composite material is improved in that the carbon nanotube composite material comprises: a self-supporting structure formed by a plurality of carbon nanotubes and a plurality of nano particles, each nano particle attached to the nanometer The surface of the carbon tube, the plurality of nano-particles are arranged at intervals along the carbon nanotube to which they are attached. 一種奈米碳管複合材料的製備方法,其包括以下步驟:提供一奈米碳管結構,該奈米碳管結構包括複數個奈米碳管;向該奈米碳管結構中引入至少兩種反應原料,於該奈米碳管結構的表面形成厚度為1奈米~100奈米的反應原料層;及引發反應原料進行反應,生成奈米顆粒,從而得到一奈米碳管複合材料。 A method for preparing a carbon nanotube composite material, comprising the steps of: providing a carbon nanotube structure, the carbon nanotube structure comprising a plurality of carbon nanotubes; introducing at least two into the carbon nanotube structure The reaction raw material forms a reaction raw material layer having a thickness of 1 nm to 100 nm on the surface of the carbon nanotube structure; and the reaction raw material is reacted to form nano particles, thereby obtaining a carbon nanotube composite material. 如申請專利範圍第19項所述的奈米碳管複合材料的製備方法,其中,所述向該奈米碳管結構中引入至少兩種反應原料的方法包括以下步驟:於該奈米碳管結構表面形成一第一反應原料層;於該第一反應原料層上形成一第二反應原料層。 The method for preparing a carbon nanotube composite material according to claim 19, wherein the method for introducing at least two reaction raw materials into the carbon nanotube structure comprises the following steps: the carbon nanotube The surface of the structure forms a first reaction raw material layer; a second reaction raw material layer is formed on the first reaction raw material layer. 如申請專利範圍第20項所述的奈米碳管複合材料的製備方法,其中,所述第一反應原料層為金屬層,第二反應原料層為矽層或所述第一反應原料層與第二反應原料層均為金屬層。 The method for preparing a carbon nanotube composite material according to claim 20, wherein the first reaction raw material layer is a metal layer, and the second reaction raw material layer is a ruthenium layer or the first reaction raw material layer and The second reaction raw material layers are all metal layers. 如申請專利範圍第20項所述的奈米碳管複合材料的製備方法,其中,所述於該奈米碳管結構表面形成反應原料層的方法包括物理氣相沈積法、化學氣相沈積法、浸漬法、噴塗法及絲網列印法中的一種或多種。 The method for preparing a carbon nanotube composite material according to claim 20, wherein the method for forming a reaction raw material layer on the surface of the carbon nanotube structure comprises physical vapor deposition, chemical vapor deposition One or more of the dipping method, the spraying method, and the screen printing method. 如申請專利範圍第21項所述的奈米碳管複合材料的製備方法,其中,所述向該奈米碳管結構中引入至少兩種反應原料的方法包括以下步驟:於該奈米碳管結構表面形成一層厚度為1奈米~100奈米的第一反應原料層;及向該奈米碳管結構中引入氣態或液態第二反應原料。 The method for preparing a carbon nanotube composite material according to claim 21, wherein the method for introducing at least two kinds of reaction raw materials into the carbon nanotube structure comprises the following steps: the carbon nanotube Forming a first reaction material layer having a thickness of 1 nm to 100 nm on the surface of the structure; and introducing a gaseous or liquid second reaction material into the structure of the carbon nanotube. 如申請專利範圍第23項所述的奈米碳管複合材料的製備方法,其中,所述第一反應原料層為金屬層或矽層。 The method for preparing a carbon nanotube composite material according to claim 23, wherein the first reaction raw material layer is a metal layer or a tantalum layer. 如申請專利範圍第24項所述的奈米碳管複合材料的製備方法,其中,所述金屬層為鈦層、鋁層或鎳層。 The method for preparing a carbon nanotube composite material according to claim 24, wherein the metal layer is a titanium layer, an aluminum layer or a nickel layer. 如申請專利範圍第23項所述的奈米碳管複合材料的製備方法,其中,所述氣態第二反應原料為氧氣、氮氣、矽源氣體及碳源氣體中的一種或多種。 The method for preparing a carbon nanotube composite material according to claim 23, wherein the gaseous second reaction raw material is one or more of oxygen, nitrogen, a helium source gas, and a carbon source gas. 如申請專利範圍第23項所述的奈米碳管複合材料的製備方法,其中,所述液態第二反應原料為甲醇、乙醇、丙酮及液態樹脂等中的一種或多種。 The method for preparing a carbon nanotube composite material according to claim 23, wherein the liquid second reaction material is one or more of methanol, ethanol, acetone, and a liquid resin. 如申請專利範圍第23項所述的奈米碳管複合材料的製備方法,其中,所述於該奈米碳管結構表面形成反應原料層的方法包括物理氣相沈積法、化學氣相沈積法、浸漬法、噴塗法及絲網列印法中的一種或多種。 The method for preparing a carbon nanotube composite material according to claim 23, wherein the method for forming a reaction raw material layer on the surface of the carbon nanotube structure comprises physical vapor deposition, chemical vapor deposition One or more of the dipping method, the spraying method, and the screen printing method. 如申請專利範圍第19項所述的奈米碳管複合材料的製備方法,其中,所述引發反應原料進行反應的方法包括加熱,電火花,及雷射掃描中的一種或多種。 The method for preparing a carbon nanotube composite according to claim 19, wherein the method for initiating the reaction of the reaction raw material comprises one or more of heating, electric spark, and laser scanning. 如申請專利範圍第29項所述的奈米碳管複合材料的製備方法,其中,所述採用雷射掃描引發反應原料進行反應的方法包括:採用雷射掃描奈米碳管結構的整個表面,使奈米碳管結構表面的反應原料進行反應。 The method for preparing a carbon nanotube composite material according to claim 29, wherein the method for initiating a reaction using a laser scanning initiation reaction material comprises: scanning the entire surface of the carbon nanotube structure with a laser, The reaction raw material on the surface of the carbon nanotube structure is reacted. 如申請專利範圍第29項所述的奈米碳管複合材料的製備方法,其中,所述採用雷射掃描引發反應原料進行反應的方法包括:採用雷射掃描奈米碳管結構的部分表面,使奈米碳管結構表面的反應原料進行自擴散反應。 The method for preparing a carbon nanotube composite material according to claim 29, wherein the method for performing a reaction by using a laser scanning to initiate a reaction raw material comprises: scanning a part of a surface of a carbon nanotube structure by using a laser, The reaction raw material on the surface of the carbon nanotube structure is subjected to a self-diffusion reaction.
TW98111930A 2009-04-10 2009-04-10 Carbon nanotube composite and method for making the same TWI393669B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98111930A TWI393669B (en) 2009-04-10 2009-04-10 Carbon nanotube composite and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98111930A TWI393669B (en) 2009-04-10 2009-04-10 Carbon nanotube composite and method for making the same

Publications (2)

Publication Number Publication Date
TW201036911A TW201036911A (en) 2010-10-16
TWI393669B true TWI393669B (en) 2013-04-21

Family

ID=44856469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98111930A TWI393669B (en) 2009-04-10 2009-04-10 Carbon nanotube composite and method for making the same

Country Status (1)

Country Link
TW (1) TWI393669B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463715B (en) * 2010-10-29 2014-03-26 清华大学 Method for preparing carbon nano-tube composite material and application thereof
CN102201311B (en) * 2011-04-19 2013-04-10 清华大学 Method for preparing carbon nano tube paste
WO2019240094A1 (en) * 2018-06-11 2019-12-19 ニッタ株式会社 Composite material, prepreg, carbon fiber reinforced molded product, and method for producing composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669642A (en) * 2004-12-24 2005-09-21 中国科学院上海硅酸盐研究所 Carbon nano tube/zinc oxide composite powder with photocatalysis performance and method for preparing the same
CN101314469A (en) * 2008-07-03 2008-12-03 浙江大学 Preparation of water-soluble carbon nano-tube and nano-precious metal particle load method
CN101348936A (en) * 2008-09-17 2009-01-21 吉林大学 Orientational alignment carbon nano-tube and carbon coating cobalt nano-particle complex and preparation thereof
CN101372330A (en) * 2008-10-08 2009-02-25 长沙理工大学 Method for coating carbon nano-tube with metal doped zinc oxide nano-particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669642A (en) * 2004-12-24 2005-09-21 中国科学院上海硅酸盐研究所 Carbon nano tube/zinc oxide composite powder with photocatalysis performance and method for preparing the same
CN101314469A (en) * 2008-07-03 2008-12-03 浙江大学 Preparation of water-soluble carbon nano-tube and nano-precious metal particle load method
CN101348936A (en) * 2008-09-17 2009-01-21 吉林大学 Orientational alignment carbon nano-tube and carbon coating cobalt nano-particle complex and preparation thereof
CN101372330A (en) * 2008-10-08 2009-02-25 长沙理工大学 Method for coating carbon nano-tube with metal doped zinc oxide nano-particle

Also Published As

Publication number Publication date
TW201036911A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
TWI327177B (en) Carbon nanotube film and method for making same
CN101837287B (en) Preparation of carbon nano-tube nano-particle composite material
TWI504436B (en) Reactor and a method for growing carbon nanotube
TWI545079B (en) Reactor and a method for growing carbon nanotube
CN101712468B (en) Carbon nanotube composite material and preparation method thereof
US9107292B2 (en) Carbon nanostructure-coated fibers of low areal weight and methods for producing the same
TWI490032B (en) Reactor and a method for growing carbon nanotube
CN104192792B (en) The preparation method of nanostructured
JP5438039B2 (en) Method of manufacturing transmission electron microscope grid, and method of manufacturing graphene sheet-carbon nanotube film composite structure used for transmission electron microscope grid
JP5243478B2 (en) Nanomaterial thin film
EP2402285B1 (en) Method for fabricating composite material comprising nano carbon and metal or ceramic
TWI481554B (en) Method for making nanowire structure
JP2011198749A (en) Transmission electron microscope grid and graphene sheet-carbon nanotube film composite structure to be used for the same
TWI411574B (en) Carbon nanotube composite material and method for making the same
CN101734618A (en) Preparation method of nanostructure
TWI393669B (en) Carbon nanotube composite and method for making the same
TWI387556B (en) Nano-material film structure
CN102431991A (en) Carbon nano-tube and nano-particle composite material
KR101395611B1 (en) Dense growth method of carbon nanowires on surface of pores or gaps inside structure, and hierarchical structure thereof
TWI413150B (en) Transmission electron microscope grid and method for making same
TWI501916B (en) Method for making carbon nanotube composite material
JP2020180028A (en) Multi-layer carbon nanotube, multi-layer carbon nanotube aggregate, and method for producing multi-layer carbon nanotube
Liao et al. High-voltage electric-field-induced growth of aligned “cow-nipple-like” submicro-nano carbon isomeric structure via chemical vapor deposition
Ghaleb et al. Carbon Nanotube-Metal Oxide Hybrid Nanocomposites Synthesis and Applications
KR101349041B1 (en) Synthesis method of carbon nanofibers thin film and the structure thereof