TWI393285B - 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池 - Google Patents

聚烯烴微多孔膜及其製法、以及電池用隔離材與電池 Download PDF

Info

Publication number
TWI393285B
TWI393285B TW095143467A TW95143467A TWI393285B TW I393285 B TWI393285 B TW I393285B TW 095143467 A TW095143467 A TW 095143467A TW 95143467 A TW95143467 A TW 95143467A TW I393285 B TWI393285 B TW I393285B
Authority
TW
Taiwan
Prior art keywords
temperature
polyethylene
polyolefin
polyolefin microporous
resin
Prior art date
Application number
TW095143467A
Other languages
English (en)
Other versions
TW200803015A (en
Inventor
Kotaro Kimishima
Norimitsu Kaimai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW200803015A publication Critical patent/TW200803015A/zh
Application granted granted Critical
Publication of TWI393285B publication Critical patent/TWI393285B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0032Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

聚烯烴微多孔膜及其製法、以及電池用隔離材與電池
本發明係關於聚烯烴微多孔膜及其製法、以及電池用隔離材與電池,尤以阻絕特性、耐熔融收縮性及熔潰特性之均衡佳之聚烯烴微多孔膜及其製法、以及電池用隔離材與電池。
聚乙烯微多孔膜主要用作電池隔離材。尤以鋰離子電池用隔離材不只優良機械特性、透過性,尚有隨電池發熱而細孔閉塞停止電池反應之性質(阻絕特性)、超過阻絕溫度之溫度下防止破膜之性質(熔潰特性)等要求。
聚乙烯微多孔膜之物性改善方法已有,原料組成、製造條件等予以最適化之提議。例如日本專利第2132327號揭示強度及透過性優良之聚烯烴微多孔膜,其係由含質量平均分子量(Mw)7×105 以上之超高分子量聚烯烴1重量%以上,分子量分布[質量平均分子量/數量平均分子量(Mw)/(Mn)]為10~300之聚烯烴組成物構成,空孔率35~95%,平均貫通孔徑0.001~0.2μm,15mm寬之斷裂強度0.2kg以上。
日本專利特開2004-196870號揭示,聚乙烯及質量平均分子量5×105 以上,用掃描式微差熱量計測得之熔化熱90J/g以上之聚丙烯構成之聚烯烴微多孔膜。特開2004-196871號揭示,聚乙烯及質量平均分子量5×105 以上,用掃描式微差熱量計以升溫速度3~20℃/min測得之熔點163℃以上之聚丙烯構成之聚烯烴微多孔膜。特開2004-196870號及特開2004-196871號之聚烯烴微多孔膜,阻絕溫度120~140℃,熔潰溫度165℃以上,機械特性及透過性俱優。
WO 97/23554揭示高耐短路性(阻絕特性)之聚乙烯微多孔膜,係由紅外分光法得之末端乙烯基濃度為每10,000個碳原子2個以上之高密度聚乙烯或線狀共聚乙烯構成,融合溫度(阻絕溫度)131~136℃之微多孔膜。
可是電池起失控反應時,因阻絕後電池內溫度短時間內上升,隔離材收縮,則於其端部發生短路,再起失控反應。可是上述各文獻所述之微多孔膜,超過阻絕溫度仍可保持形狀以防短路之性能(耐熔融收縮性)不足。
本發明之目的在提供,阻絕特性、耐熔融收縮性及熔潰特性之均衡佳之聚烯烴微多孔膜及其製法、以及電池用隔離材與電池。
為上述目的精心研究之結果,本發明人等發現(1)由含特定升溫速度下以微差掃描熱量分析測得之結晶熔化熱量達其60%時之溫度在135℃以下之聚乙烯系樹脂之聚烯烴樹脂,可得阻絕特性優良之聚烯烴微多孔膜,及(2)含上述聚乙烯系樹脂之聚烯烴樹脂與成膜用溶劑予以熔融混煉,調製特定溫度之熔融黏彈性測定得之儲存彈性模量及損失彈性模量一致之角頻率0.1rad/sec以上,且該熔融黏彈性測定中角頻率為0.01rad/sec時複黏性率為1×104 Pa.s以上之聚烯烴樹脂溶液,得到之聚烯烴樹脂溶液經模頭擠壓,冷卻成凝膠片,自得到之凝膠片去除成膜用溶劑,可得阻絕特性、耐熔融收縮性及熔潰特性之均衡佳之聚烯烴微多孔膜,而想出本發明。
亦即,本發明之聚烯烴微多孔膜係以含聚乙烯系樹脂,(a)升溫速度5℃/min加熱下測得之透氣度達1×105 sec/100cm3 之溫度(阻絕溫度)135℃以下,(b)以荷重2gf及升溫速度5℃/min由熱機械分析測得之135~145℃溫度範圍之橫向最大熔融收縮率在40%以下,且(c)達到上述阻絕溫度後繼續升溫測定上述透氣度再達1×105 sec/100cm3 時之溫度得之熔潰溫度在150℃以上為其特徵。
上述聚乙烯系樹脂較佳者為,以3~20℃/min範圍內之一定升溫速度由微差掃描熱量分析測得之結晶熔化熱量達其60%時之溫度在135℃以下。
本發明聚烯烴微多孔膜之製法其特徵為,含以3~20℃/min範圍內之一定升溫速度由微差掃描熱量分析測得之結晶熔化熱量達其60%時之溫度在135℃以下之聚乙烯系樹脂之聚烯烴樹脂及成膜用溶劑予以熔融混煉,調製以160~220℃之一定溫度下之熔融黏彈性測定得之儲存彈性模量及損失彈性模量一致之角頻率0.1rad/sec以上,且該熔融黏彈性測定中角頻率為0.01rad/sec時複黏性率為1×104 Pa.s以上之聚烯烴樹脂溶液,得到之聚烯烴樹脂溶液經模頭擠壓,冷卻成凝膠片,自得到之凝膠片去除成膜用溶劑。
上述聚烯烴樹脂及成膜用溶劑之熔融混煉係以使用雙軸擠壓機,上述聚烯烴樹脂及成膜用溶劑之合計投入量Q(kg/h)對於上述雙軸擠壓機之螺桿轉數Ns(rpm)之比Q/Ns係0.1~0.55kg/h/rpm為佳。上述凝膠片拉伸前拉伸軸向之長度為100%時,沿拉伸軸向以1~80%/秒之速度拉伸為較佳。
本發明之電池用隔離材係由上述聚烯烴微多孔膜形成。
本發明之電池具備上述聚烯烴微多孔膜構成之電池用隔離材。
以本發明可得,阻絕特性、耐熔融收縮性及熔潰特性之均衡優,且透過性及機械特性亦優之聚烯烴微多孔膜。以本發明之聚烯烴微多孔膜用作電池隔離材可得安全性、耐熱性、保存特性及生產力佳之電池。
[1]聚烯烴樹脂
形成本發明之聚烯烴微多孔膜之聚烯烴樹脂含下述之聚乙烯系樹脂。
(1)聚乙烯系樹脂之結晶熔化熱量聚乙烯系樹脂以3~20℃/min範圍內之一定升溫速度由微差掃描熱量(DSC)分析測得之結晶熔化熱量△Hm 達其60%時之溫度(以下表示為「T(60%)」)在135℃以下。T(60%)係受聚乙烯[單聚物或乙烯.α-烯烴共聚物(下同)]之分子量、分子量分布、分枝度、分枝鏈之分子量、分枝點分布、共聚物分率等一次構造,以及結晶之大小及其分布、結晶格子之規則性等高次構造形態影響之參數,乃聚烯烴微多孔膜之阻絕溫度之指標。T(60%)超過135℃則以聚烯烴微多孔膜用作鋰電池之隔離材時阻絕溫度高,過熱時阻斷回應性差。
聚乙烯系樹脂之結晶熔化熱量△Hm 係依JIS K7122經以下手續測得。亦即,將聚乙烯系樹脂樣本[於210℃熔融壓製之成形品(厚度0.5mm)]靜置於微差掃描熱量計(Perkin Elmer,Inc.製,Pyris Diamond DSC)之樣本架內,氮氛圍中於230℃熱處理1分鐘,以10℃/分鐘冷卻至30℃,於30℃保持1分鐘,以3~20℃/分鐘之速度加熱至230℃。升溫速度以5~15℃/min為佳,10℃/min更佳。如第1圖,由升溫過程得之DSC曲線(熔化吸熱曲線)與基線圍成之區域(斜線部分)之面積S1 算出熱量。熱量(單位:J)除以樣本重量(單位:g)求出結晶熔化熱量△Hm (單位:J/g)。T(60%)係如第2圖,上述區域由正交於溫度軸之直線L1 分割時,低溫側區域(斜線部分)面積S2 達面積S1 之60%時之溫度。
(2)聚乙烯系樹脂之成分聚乙烯系樹脂只要T(60%)在上述範圍,可係單一物質或二種以上聚乙烯之組成物。聚乙烯系樹脂係以(a)超高分子量聚乙烯,(b)超高分子量聚乙烯以外之聚乙烯,或(c)超高分子量聚乙烯與其它聚乙烯之混合物(聚乙烯組成物)為佳。無論何者,聚乙烯系樹脂之質量平均分子量(Mw)無特殊限制,以1×104 ~1×107 為佳,5×104 ~15×106 更佳,1×105 ~5×106 尤佳。
(a)由超高分子量聚乙烯構成時超高分子量聚乙烯之Mw在7×105 以上。超高分子量聚乙烯,不只乙烯之單聚物,亦可係另含少量α-烯烴之乙烯.α-烯烴共聚物。乙烯以外之α-烯烴以丙烯、丁烯-1、戊烯-1、己烯-1、4-甲戊烯-1、辛烯-1、乙酸乙烯酯、甲基丙烯酸甲酯及苯乙烯為佳。超高分子量聚乙烯之Mw以1×106 ~15×106 為佳,1×106 ~5×106 更佳。
(b)由超高分子量聚乙烯以外之聚乙烯構成時超高分子量聚乙烯以外之聚乙烯之Mw在1×104 以上未達7×105 ,以高密度聚乙烯、中密度聚乙烯、分枝低密度聚乙烯及鏈狀低密度聚乙烯為佳,高密度聚乙烯更佳。Mw在1×104 以上未達7×105 之聚乙烯不只乙烯之單聚物,亦可係含少量丙烯、丁烯-1、己烯-1等其它α-烯烴之共聚物。如此之共聚物以使用單部位觸媒製造者為佳。超高分子量聚乙烯以外之聚乙烯不限於單聚物,亦可係二種以上超高分子量聚乙烯以外之聚乙烯之混合物。
(c)由聚乙烯組成物構成時聚乙烯組成物係Mw在7×105 以上之超高分子量聚乙烯,與其它Mw在1×104 以上未達7×105 之聚乙烯(選自高密度聚乙烯、中密度聚乙烯、分枝低密度聚乙烯及鏈狀低密度聚乙烯群之至少一種)之混合物。超高分子量聚乙烯及其它聚乙烯同上即可。此聚乙烯組成物可依用途簡便控制分子量分布[質量平均分子量/數量平均分子量(Mw/Mn)]。較佳聚乙烯組成物係上述超高分子量聚乙烯與高密度聚乙烯之組成物。用於聚乙烯組成物之高密度聚乙烯係以Mw在1×105 以上未達7×105 為佳,1×105 ~5×105 更佳,2×105 ~4×105 尤佳。聚乙烯組成物中,超高分子量聚乙烯含量係以聚乙烯組成物全體為100質量%,為1質量%以上為佳,2~50質量%更佳。
(d)分子量分布Mw/Mn Mw/Mn係分子量分布之尺度,該值愈大分子量分布愈寬。聚乙烯系樹脂之Mw/Mn無限,聚乙烯系樹脂係由上述(a)~(c)中任一構成時皆以5~300為佳,10~100更佳。Mw/Mn未達5則高分子量成分過多,難以熔融擠壓,Mw/Mn超過300則低分子量成分過多而微多孔膜強度低。聚乙烯(單聚物或乙烯.α-烯烴共聚物)之Mw/Mn可藉多段聚合適當調整。多段聚合法係以第一段生成高分子量聚合物,第二段生成低分子量聚合物之二段聚合為佳。聚乙烯組成物者,Mw/Mn愈大則超高分子量聚乙烯與其它聚乙烯之Mw相差愈大,反之亦然。聚乙烯組成物之Mw/Mn可由各成分之分子量及混合比例適當調整。
(3)可添加之其它樹脂聚烯烴樹脂在無礙於本發明效果之範圍內,可係連同聚乙烯系樹脂,含聚乙烯以外之聚烯烴、聚烯烴以外之樹脂之組成物亦可。因此,「聚烯烴樹脂」一詞不僅聚烯烴,應理解為亦含聚烯烴以外之樹脂者。聚乙烯以外之聚烯烴可用選自Mw各在1×104 ~4×106 之聚丙烯、聚丁烯-1、聚戊烯-1、聚己烯-1、聚4-甲戊烯-1、聚辛烯-1、聚乙酸乙烯酯、聚甲基丙烯酸甲酯、聚苯乙烯及乙烯.α-烯烴共聚物,以及Mw在1×103 ~1×104 之聚乙烯蠟群之至少一種。聚丙烯、聚丁烯-1、聚戊烯-1、聚己烯-1、聚4-甲戊烯-1、聚辛烯-1、聚乙酸乙烯酯、聚甲基丙烯酸甲酯及聚苯乙烯不只單聚物,亦可係含其它α-烯烴之共聚物。
聚烯烴以外之樹脂有,熔點或玻璃轉移溫度(Tg)在150℃以上之耐熱性樹脂。耐熱性樹脂以熔點150℃以上之結晶性樹脂(含部分結晶性樹脂)及Tg在150℃以上之非晶性樹脂為佳。於此,熔點及Tg可依JIS K7121測定(下同)。
於聚乙烯系樹脂添加耐熱性樹脂則以聚烯烴微多孔膜用作電池隔離材時熔潰溫度進一步提升,故電池之高溫保存特性提升。耐熱性樹脂之熔點或Tg上限無特殊限制,由易於與聚乙烯系樹脂混煉之觀點係以350℃以下為佳。耐熱性樹脂之熔點或Tg以170~260℃為更佳。
耐熱性樹脂之具體例有聚酯[例如聚對酞酸丁二酯(熔點約160~230℃)、聚對酞酸乙二酯(熔點約250~270℃)等]、含氟樹脂、聚醯胺(熔點215~265℃)、聚烯丙硫醚、同排聚苯乙烯(熔點230℃)、聚醯亞胺(Tg:280℃以上)、聚醯胺醯亞胺(Tg:280℃)、聚醚碸(Tg:223℃)、聚醚醚酮(熔點334℃)、聚碳酸酯(熔點220~240℃)、乙酸纖維素(熔點220℃)、三乙酸纖維素(熔點300℃)、聚碸(Tg:190℃)、聚醚醯亞胺(熔點216℃)等。耐熱性樹脂不限於單一樹脂成分,可具複數樹脂成分。
耐熱性樹脂之添加量係以占聚乙烯系樹脂與耐熱性樹脂合計為100質量%時,為3~30質量%為佳,5~25質量%更佳。此含量超過30質量%則刺穿強度、拉伸斷裂強度及膜之平滑度低。
[2]無機填料
在無礙於本發明效果之範圍內,可於聚烯烴樹脂添加無機填料。無機填料有例如矽石、氧化鋁、矽石-氧化鋁、沸石、雲母、黏土、高嶺土、滑石、碳酸鈣、氧化鈣、硫酸鈣、碳酸鋇、硫酸鋇、碳酸鎂、硫酸鎂、氧化鎂、矽藻土、玻璃粉、氫氧化鋁、二氧化鈦、氧化鋅、緞光白、酸性白土等。無機填料不僅一種,可併用複數種。其中以用矽石或碳酸鈣為佳。
[3]聚烯烴微多孔膜之製法
本發明聚烯烴微多孔膜之製法包含(1)熔融混煉上述聚烯烴樹脂及成膜用溶劑,調製聚烯烴溶液之步驟,(2)得到之聚烯烴樹脂溶液之經模頭擠壓之步驟,(3)得到之擠壓成形體經冷卻形成凝膠片之步驟,(4)成膜用溶劑去除步驟,及(5)乾燥步驟。必要時,步驟(3)、(4)之間可設(6)拉伸步驟,(7)熱輥處理步驟,(8)熱溶劑處理步驟及(9)熱固定處理步驟之任一。步驟(5)之後,可設(10)微多孔膜之拉伸步驟,(11)熱處理步驟,(12)藉電離放射之交聯處理步驟,(13)親水化處理步驟,(14)表面被覆處理步驟等。
(1)聚烯烴樹脂溶液之調製步驟聚烯烴樹脂溶液係於聚烯烴樹脂添加適當之成膜用溶劑後,經熔融混煉調製。聚烯烴樹脂溶液必要時可在無礙於本發明效果之範圍內添加上述無機填料、抗氧化劑、紫外線吸收劑、抗黏結劑、顏料、染料等各種添加劑。可添加例如矽酸微粉作為孔形成劑。
成膜用溶劑可用液體溶劑或固體溶劑。液體溶劑有壬烷、癸烷、十氫萘、對二甲苯、十一烷、十二烷、流動石臘等脂肪族或環烴,及沸點對應於這些之礦油餾分。為得溶劑含量安定之凝膠片,以使用如流動石臘之非揮發性液體溶劑為佳。固體溶劑係以熔點80℃以下者為佳,如此之固體溶劑有石臘、十六醇、硬脂醇、酞酸二環己酯等。亦可併用液體溶劑及固體溶劑。
液體溶劑之25℃黏度係以30~500cSt為佳,30~200cSt更佳。25℃黏度未達30cSt則易於起泡,難以混煉。而超過500cSt則液體溶劑難以去除。
聚烯烴樹脂溶液係調製成,於160~220℃間之一定溫度由熔融黏彈性測定得之儲存彈性模量(G’)與損失彈性模量(G”)一致之角頻率ω0 為0.1rad/sec以上,且該熔融黏彈性測定中角頻率0.01 rad/sec時之複黏滯係數η (0.01)為1×104 Pa.s以上。
聚烯烴樹脂溶液之ω0 為低於0.1rad/sec,則聚烯烴微孔膜作為鋰電池用隔離材時,熔潰溫度低,恐發生由於阻絕後之溫度上昇造成之電極短路。聚烯烴樹脂溶液之ω0 為1~20rad/sec為宜。
聚烯烴樹脂溶液之ω0 係主要受聚乙烯系樹脂之質量平均分子量(Mw)、分子量分布、分枝度、分枝鏈之分子量、分枝點分布、分子間之絡合度、分子間絡合點之間之分子量等影響之參數。此外,ω0 亦受聚烯烴樹脂與成膜用溶劑之比例影響。一般,聚乙烯係直鏈狀並具對數常態分子量分布時,Mw愈大ω0 愈小。聚乙烯有長鏈分枝則ω0 小。
ω0 係用市售熔融黏彈性測定裝置(型號:RheoStress-300,Haake公司製),依以下條件求出。
測定溫度:160~220℃間之一定溫度固定夾具:平行盤(直徑:8mm)間隙(試樣厚度):0.3mm測定角頻率範圍:0.01~100rad/s應變(γ):0.5%樣本:聚烯烴樹脂溶液經模頭擠壓冷卻得之凝膠片切出之直徑8mm厚度0.5mm之圓片,於測定溫度安定化後壓縮為厚度0.3mm。
在上述條件下測定G’及G”對於角頻率ω之回應,如第3圖,畫出logω-logG’曲線及logω-logG”曲線,求出其交點之角頻率,為ω0
聚烯烴樹脂溶液之η (0.01)未達1×104 Pa.s則以聚烯烴微多孔膜用作鋰電池隔離材時耐熔融收縮性及熔潰特性差,阻絕後對於溫度上升之破膜防止性不良。聚烯烴樹脂溶液之η (0.01)以1.5×104 Pa.s以上為佳。聚烯烴樹脂溶液之η (0.01)其上限無特殊限制,為得良好之耐熔融收縮性則以40,000 Pa.s以下為佳。
聚烯烴樹脂溶液之η (0.01)係上述熔融黏彈性測定中,利用角頻率為0.01 rad/sec時得之G’(0.01)及G”(0.01)由下式(1):η (0.01)=(G’(0.01)2 +G”(0.01)2 )1 / 2 /0.01………(1)算出。
為調製聚烯烴樹脂溶液使其ω0 達0.1rad/sec以上,且η (0.01)達1×104 Pa.s以上,使用雙軸擠壓機熔融混煉,將聚烯烴樹脂及成膜用溶劑饋入雙軸擠壓機之際,聚烯烴樹脂及成膜用溶劑之合計投入量Q(kg/h)對於螺桿轉數Ns(rpm)之比Q/Ns比以0.1~0.55kg/h/rpm為佳。Q/Ns未達0.1kg/h/rpm時聚烯烴樹脂被過度剪切破壞,聚烯烴樹脂溶液之ω0 未達0.1rad/sec,η (0.01)未達1×104 Pa.s,導致強度、熔潰溫度下降。而Q/Ns超過0.55kg/h/rpm則無法均勻混煉。Q/Ns比係以0.2~0.5kg/h/rpm為更佳。螺桿轉數Ns以180rpm以上為佳,250rpm以上更佳。螺桿轉數Ns之上限無特殊限制,以500rpm為佳。
雙軸擠壓機可係咬合型同向迴轉雙軸擠壓機、咬合型異向迴轉雙軸擠壓機、非咬合型同向迴轉雙軸擠壓機及非咬合型異向迴轉雙軸擠壓機之任一。因有自行清潔作用,與異向迴轉型相比負荷小且轉數高,以咬合型同向迴轉雙軸擠壓機為佳。
雙軸擠壓機之螺桿長度(L)與直徑(D)之比(L/D)以20~100為佳,35~70更佳。L/D未達20則熔融混煉不充分。L/D超過100則聚烯烴樹脂溶液之滯留時間過長。螺桿形狀無特殊限制,習知者即可。雙軸擠壓機之筒內徑以40~100mm為佳。
聚烯烴樹脂溶液之熔融混煉溫度可依聚烯烴樹脂之成分適當設定,一般為聚烯烴樹脂之熔點Tm+10℃~Tm+110℃。聚烯烴樹脂之熔點Tm在聚烯烴樹脂係(a)超高分子量聚乙烯,(b)其它聚乙烯,或(c)聚乙烯組成物時,為這些之熔點,聚烯烴樹脂係含聚乙烯以外之聚烯烴或耐熱性樹脂之組成物時,為超高分子量聚乙烯、其它聚乙烯或聚乙烯組成物中上述組成物所含者之熔點(下同)。超高分子量聚乙烯、其它聚乙烯及聚乙烯組成物熔點約130~140℃。因此,熔融混煉溫度係以140~250℃為佳,170~240℃更佳。成膜用溶劑可於混煉開始前添加,亦可於混煉中添加至雙軸擠壓機,後者較佳。為防熔融混煉當中聚烯烴樹脂氧化,以添加抗氧化劑為佳。
聚烯烴樹脂溶液之樹脂濃度係,聚烯烴樹脂占聚烯烴樹脂與成膜用溶劑合計為100質量%時為10~50質量%,20~45質量%更佳。聚烯烴樹脂之比率未達10質量%時生產力低而不佳。且聚烯烴樹脂擠壓之際於模口之膨脹、頸縮(neck-in)大,擠壓為成形體之成形性及自我支持性差。而聚烯烴樹脂之比率超過50質量%則擠壓成形性差。
(2)擠壓步驟經熔融混煉之聚烯烴樹脂溶液直接或介著其它擠壓機,或一度冷卻丸粒化之後再度介著擠壓機由模頭擠壓。可用通常具長方形模口之薄片用模頭,亦可用雙重圓筒狀之中空模頭、吹塑模頭等。薄片用模頭者模頭之縫隙通常係0.1~5mm,擠壓時加熱至140~250℃。加熱溶液之擠壓速度以0.2~15m/分鐘為佳。
(3)凝膠片之形成步驟擠壓自模頭之成形體經冷卻形成凝膠片。冷卻係以50℃/分鐘之速度施行而至少達凝膠化溫度以下為佳。如此冷卻則聚烯烴樹脂相因成膜用溶劑微相分離構造(聚烯烴樹脂相及成膜用溶劑相構成之凝膠構造)可予固定化。冷卻以進行至25℃以下為佳。一般,降低冷卻速度則擬似細胞單元變大,得到之凝膠片其高次構造變粗大,加快冷卻速度則形成緻密細胞單元。冷卻速度未達50℃/分鐘則結晶度上升,難得適於拉伸之凝膠片。冷卻方法有以冷風、冷卻水等冷媒接觸之方法,接觸冷卻輥之方法等。以使用冷卻輥之方法為佳。
(4)成膜用溶劑去除步驟液體溶劑之去除(洗淨)係用洗淨溶劑。凝膠片中因聚烯烴樹脂相及成膜用溶劑相已分離,去除液體溶劑即得多孔膜。液體溶劑之去除(洗淨)可用習知洗淨溶劑為之。洗淨溶劑有例如戊烷、己烷、庚烷等飽和烴,二氯甲烷、四氯化碳等氯化烴,二***、二烷等醚類,甲基乙基酮等酮類,三氟乙烷、C6 F1 4 、C7 F1 6 等鏈狀氟碳化合物,C5 H3 F7 等環狀氫氟碳化合物,C4 F9 OCH3 、C4 F9 OC2 H5 等氫氟醚,C4 F9 OCF3 、C4 F9 OC2 F5 等全氟醚等高揮發性溶劑。這些洗淨溶劑表面張力低(例如25℃為24mN/m以下)。使用低表面張力之洗淨溶劑,形成微多孔之網狀組織於洗淨後乾燥時氣-液界面張力所致之收縮受到抑制,可得空孔率高,具透過性之微多孔膜。
膜之洗淨有浸泡於洗淨溶劑之方法、以洗淨溶劑淋灑之方法或這些之組合。洗淨溶劑係以對於洗淨前之膜100質量份使用300~30,000質量份為佳。以洗淨溶劑洗淨係以進行至液體溶劑殘留量未達當初添加量之1質量%為佳。
(5)膜之乾燥步驟去除成膜用溶劑得之聚烯烴微多孔膜係以加熱乾燥法、風乾法等乾燥。乾燥溫度係以在聚烯烴樹脂之結晶分散溫度Tcd以下為佳,比Tcd低5℃以上尤佳。
聚烯烴樹脂之結晶分散溫度Tcd在聚烯烴樹脂為上述(a)超高分子量聚乙烯,(b)超高分子量聚乙烯以外之聚乙烯或(c)聚乙烯組成物時,係這些之結晶分散溫度,聚烯烴樹脂為含聚乙烯以外之聚烯烴或耐熱性樹脂之組成物時,係超高分子量聚乙烯、其它聚乙烯或聚乙烯組成物中上述組成物所含者之結晶分散溫度(下同)。在此,結晶分散溫度指依ASTM D 4065由動態黏彈性之溫度特性測定求出之值。上述超高分子量聚乙烯、超高分子量聚乙烯以外之聚乙烯及聚乙烯組成物其結晶分散溫度約在90~100℃。
乾燥係以進行至微多孔膜係100質量%(乾燥重量)時殘留洗淨溶劑在5質量%以下為佳,3質量%以下更佳。乾燥不充分則後段熱處理時微多孔膜之空孔率低,透過性惡化而不佳。
(6)拉伸步驟洗淨前之凝膠片以至少於一軸向拉伸為佳。凝膠片在加熱後以藉拉幅機法、輥法、吹塑法、壓延法或這些方法之組合作特定倍率之拉伸為佳。因凝膠片含成膜用溶劑,可予均勻拉伸。拉伸則機械強度提升,同時細孔擴大,用作電池隔離材時尤佳。拉伸可係單軸拉伸或雙軸拉伸,以雙軸拉伸為佳。雙軸拉伸時可係同時雙軸拉伸、逐次拉伸或多段拉伸(例如同時雙軸拉伸與逐次拉伸之組合)之任一,同時雙軸拉伸尤佳。
單軸拉伸者拉伸倍率以2倍以上為佳,3~30倍更佳。雙軸拉伸則以任一方向皆至少3倍以上,面積倍率9倍以上為佳。面積倍率未達9倍則拉伸不充分,不得高彈性、高強度之微多孔膜。而面積倍率超過400倍則於拉伸裝置、拉伸操作等會受限。面積倍率之上限以50倍為佳。
拉伸溫度係以聚烯烴樹脂之熔點Tm+10℃以下為佳,上述Tcd以上未達上述Tm更佳。此拉伸溫度超過Tm+10℃則聚乙烯系樹脂熔化,分子鏈無法藉拉伸配向。而未達Tcd時聚乙烯系樹脂軟化不足,易因拉伸而破膜,無法作高倍率拉伸。如上聚乙烯系樹脂之結晶分散溫度約90~100℃,因此拉伸溫度通常在90~140℃,100~130℃更佳。
拉伸速度係以於拉伸軸向1~80%/秒為佳。例如單軸拉伸者於長度方向(MD方向)或橫向(TD方向)為1~80%/秒。雙軸拉伸者MD方向及TD方向各1~80%/秒。拉伸軸向之拉伸速度(%/秒)表凝膠片於拉伸部分在拉伸前之拉伸軸向長度為100%時,每秒之拉伸長度比率。此拉伸速度未達1%/秒則無法安定拉伸。而拉伸速度超過80%/秒則耐熔融收縮特性差。拉伸速度以2~70%/秒為更佳。雙軸拉伸時,只要MD方向及TD方向拉伸速度各在1~80%/秒,MD方向及TD方向可互不相同,但以相同為佳。
經如上拉伸聚乙烯結晶層間裂開,聚乙烯相(超高分子量聚乙烯、其它聚乙烯或聚乙烯組成物)微細化,形成多數之原纖。該原纖形成三維網狀構造(三維不規則連結之網絡構造)。
依所欲物性,可於膜厚方向造成溫度分布而拉伸,以此可得機械強度更上一層之微多孔膜。該方法具體如日本專利第3347854號所述。
(7)熱輥處理步驟可於凝膠片之至少一面以熱輥接觸作處理,以提升微多孔膜之耐壓縮性。其具體方法有例如特願2005-271046號之記載。
(8)熱溶劑處理步驟可使凝膠片接觸熱溶劑作處理以得機械強度及透過性更上一層之微多孔膜。該方法具體如WO2000/20493所述。
(9)熱固定處理可就經拉伸之凝膠片作熱固定處理。其具體方法有例如特開2002-256099號之記載。
(10)微多孔膜之拉伸步驟乾燥後之聚烯烴微多孔膜在無損於本發明效果之範圍內可至少於一軸向拉伸。此拉伸係將膜加熱,一邊以同上之拉幅機法等進行。
微多孔膜之拉伸溫度係以聚烯烴樹脂之熔點Tm以下為佳,上述Tcd~Tm更佳。具體而言係90~135℃,95~130℃更佳。雙軸拉伸時,以至少於一軸向1.1~2.5倍為佳,1.1~2.0倍更佳。此倍率超過2.5倍則恐於阻絕溫度有不良影響。
(11)熱處理步驟乾燥後之膜以藉習知方法作熱固定處理及/或熱緩和處理為佳。這些可依聚烯烴微多孔膜之要求特性適當選擇。經熱處理結晶安定化,晶層均勻化。
(12)膜之交聯處理步驟對於乾燥後之聚烯烴微多孔膜,可用α線、β線、γ線、電子束等電離放射線照射施以交聯處理。以電子束照射時,以0.1~100Mrad之電子束量為佳,加速電壓100~300kV為佳。經交聯處理微多孔膜之熔潰溫度上升。
(13)親水化處理步驟乾燥後之聚烯烴微多孔膜可藉習知方法作單體接枝處理、界面活性劑處理、電暈放電處理、電漿處理等而親水化。
(14)表面被覆處理步驟乾燥後之聚烯烴微多孔膜以聚二氟亞乙烯、聚四氟乙烯等含氟樹脂多孔質體,或聚醯亞胺、聚苯硫醚等多孔質體被覆於表面,可提升用作電池隔離材時之熔潰特性。乾燥後之聚烯烴微多孔膜亦可於至少一面形成含聚丙烯之被覆層。被覆用聚丙烯有例如WO2005-054350所揭示者。
[4]聚烯烴微多孔膜之物性
聚烯烴微多孔膜具以下物性。
(1)阻絕溫度135℃以下以阻絕溫度超過135℃之聚烯烴微多孔膜用作鋰電池隔離材,則過熱時阻斷回應性差。
(2)最大熔融收縮率40%以下以2gf之荷重及5℃/min之升溫速度作熱機械分析測得之135~145℃溫度範圍之橫向最大熔融收縮率(尺寸變化率之最大值)超過40%之聚烯烴微多孔膜用作電池隔離材,則因電池發熱隔離材收縮,於其端部發生短路之可能性升高。最大熔融收縮率以35%以下為佳。
(3)熔潰溫度150℃以上熔潰溫度未達150℃則阻絕後溫度上升時之破膜防止性差。
依本發明之較佳實施樣態,聚烯烴微多孔膜具以下物性。
(4)透氣度(以膜厚20μm換算)20~800sec/100cm3 以膜厚20μm換算之透氣度在20~800sec/100cm3 ,則以聚烯烴微多孔膜用作電池隔離材時,電池容量大,電池循環特性良好。透氣度未達20sec/100cm3 則電池內部溫度上升時阻絕不充分。
(5)空孔率25~80%空孔率未達25%則不得良好透氣度。而超過80%則以聚烯烴微多孔膜用作電池隔離材時強度不足,電池短路之危險大。
(6)刺穿強度3,000mN/20μm以上刺穿強度未達3,000mN/20μm則以聚烯烴微多孔膜用作電池隔離材時,電極有發生短路之虞。
(7)拉伸斷裂強度60,000kPa以上MD方向及TD方向之拉伸斷裂強度皆在60,000kPa以上則用作電池隔離材時無破膜之虞。
(8)拉伸斷裂伸度60%以上MD方向及TD方向之拉伸斷裂伸度皆在60%以上則用作電池隔離材時無破膜之虞。
(9)阻絕開始溫度130℃以下以阻絕開始溫度超過130℃之聚烯烴微多孔膜用作鋰電池隔離材,則過熱時阻斷回應性差。
(10)透氣度變化率9,000sec/100cm3 /℃以上阻絕開始後之透氣度變化率在9,000sec/100cm3 /℃以上。以透氣度變化率未達9,000sec/100cm3 /℃之聚烯烴微多孔膜用作電池隔離材,則過熱時阻斷回應性差。透氣度變化率以12,000sec/100cm3 /℃以上為佳。
如此,依本發明之較佳樣態,聚烯烴微多孔膜之阻絕特性、耐熔融收縮性及熔潰特性之均衡佳,且透過性及機械特性亦優。
[5]電池用隔離材
本發明之聚烯烴微多孔膜構成之電池用隔離材可依電池種類適當選擇,其膜厚以5~50μm為佳,7~35μm更佳。
[6]電池
本發明之聚烯烴微多孔膜適用作鎳-氫電池、鎳-鎘電池、鎳-鋅電池、銀-鋅電池、鋰二次電池、鋰聚合物二次電池等二次電池之隔離材,尤以用作鋰二次電池之隔離材為佳。以下以鋰二次電池為例作說明。
鋰二次電池其正極及負極係介著隔離材層積,隔離材含有電解液(電解質)。電極之構造無特殊限制,可係習知構造,例如圓盤狀正極及負極相向配設之電極構造(錢幣型)、平板狀正極及負極交替層積之電極構造(積層型)、帶狀正極及負極重疊捲繞之電極構造(捲繞型)等。
正極通常係形成為(a)集電體及(b)其表面,具有含可收放鋰離子之正極活物質之層。正極活物質有過渡金屬氧化物、鋰與過渡金屬之複合氧化物(鋰複合氧化物)、過渡金屬硫化物等無機化合物等,過渡金屬有V、Mn、Fe、Co、Ni等。鋰複合氧化物之較佳例有鎳酸鋰、鈷酸鋰、錳酸鋰、α-NaFeO2 型構造為母體之層狀鋰複合氧化物等。負極係形成為(a)集電體及(b)其表面,具有含負極活物質之層。負極活物質有天然石墨、人造石墨、焦炭類、碳黑等碳質材料。
電解液係將鋰鹽溶解於有機溶劑而得。鋰鹽有LiClO4 、LiPF6 、LiAsF6 、LiSbF6 、LiBF4 、LiCF3 SO3 、LiN(CF3 SO2 )2 、LiC(CF3 SO2 )3 、Li2 B1 0 Cl1 0 、LiN(C2 F5 SO2 )2 、LiPF4 (CF3 )2 、LiPF3 (C2 F5 )3 、低級脂肪族羧酸鋰鹽、LiAlCl4 等。這些可單獨使用或混合2種以上使用。有機溶劑有碳酸乙烯酯、碳酸丙烯酯、碳酸甲基乙基酯、γ-丁內酯等高沸點及高介電常數有機溶劑,四氫呋喃、2-甲四氫呋喃、二甲氧乙烷、二、碳酸二甲酯、碳酸二乙酯等低沸點及低黏度有機溶劑。這些可單獨使用或混合2種以上使用。因高介電常數之有機溶液黏度高,低黏度有機溶劑介電常數低,以用二者之混合物為尤佳。
組裝電池之際,以電解液浸潤隔離材。藉此可於隔離材(聚烯烴微多孔膜)賦予離子透過性。通常,浸潤處理係以常溫下將聚烯烴微多孔膜浸泡於電解液為之。組裝圓筒型電池時,可例如依序層積正極片、聚烯烴微多孔膜隔離材及負極片,得到之積層體自一端予以捲成捲繞型電極元件。得到之電極元件***電池罐後用上述電解液浸潤,並將備有安全閥,兼作正極端子之電池蓋(介著墊片)蓋緊製作電池。
實施例
以下舉實施例更詳細說明本發明,但本發明不限於這些例。
實施例1
將質量平均分子量(Mw)2.5×106 之超高分子量聚乙烯(UHMWPE)30質量%及Mw2.8×105 之高密度聚乙烯(HDPE)70質量%構成之聚乙烯(PE)組成物100質量份,及肆[亞甲-3-(3,5-二(三級丁基)-4-羥苯基)丙酸酯]甲烷0.375質量份乾式摻合。UHMWPE及HDPE構成之PE組成物之測定T(60%)為134.3℃,熔點135℃,結晶分散溫度100℃。
UHMWPE及HDPE之Mw係依以下條件由凝膠滲透層析(GPC)法求出(下同)。
.測定裝置:Waters Corporation製GPC-150C.管柱:昭和電工(股)製Shodex UT806M.管柱溫度:135℃.溶劑(移動相):鄰二氯苯.溶劑流速:1.0ml/分鐘.試樣濃度:0.1質量%(溶解條件:135℃/1h).注射量:500μl.檢測器:Waters Corporation製微差反射計.校正曲線:由使用單分散聚苯乙烯標準試樣得之校正曲線,使用特定換算常數作成。
得到之混合物30質量份投入強混煉型雙軸擠壓機(內徑58mm,L/D=42),由雙軸擠壓機側入料斗供給流動石臘70質量份(聚乙烯組成物及流動石臘之合計投入量Q:90kg/h),保持螺桿轉數Ns為300rpm,一邊於210℃熔融混煉(Q/Ns:0.3kg/h/rpm),於擠壓機中調製聚乙烯溶液。聚乙烯溶液於180℃測得之ω0 為9.8rad/sec,η (0.01)為26,000Pa.s。
得到之聚乙烯溶液自雙軸擠壓機供給於T模,擠壓成厚度1.0mm之片狀成形體。擠壓得之成形體由調溫於50℃之冷卻輥拉取一邊冷卻,形成凝膠片。得到之凝膠片以批次式拉伸機於116℃以MD方向及TD方向皆5倍,兩方向皆20%/秒之速度作同時雙軸拉伸。將拉伸凝膠片固定於框板[大小:30cm×30cm,鋁製],浸泡於調溫為25℃之二氯甲烷洗淨槽中,以100rpm擺動3分鐘一邊洗淨,去除流動石臘。洗淨之膜於室溫風乾,固定於拉幅機以125℃熱固定處理10分鐘製作聚乙烯微多孔膜。
實施例2
除聚乙烯組成物及流動石臘之合計投入量Q對於螺桿轉數Ns之比為0.15,調製ω0 為12rad/sec,η (0.01)為18,000Pa.s之聚乙烯溶液以外,如同實施例1製作聚乙烯微多孔膜。
實施例3
除聚乙烯組成物及流動石臘之合計投入量Q對於螺桿轉數Ns之比為0.45,調製ω0 為8.5rad/sec,η (0.01)為32,000Pa.s之聚乙烯溶液以外,如同實施例1製作聚乙烯微多孔膜。
實施例4
除使用UHMWPE20質量%及HDPE80質量%構成,使用T(60%)為133.9℃之聚乙烯組成物以外,如同實施例1調製ω0 為13rad/sec,η (0.01)為17,000Pa.s之聚乙烯溶液。使用得到之聚乙烯溶液如同實施例1製作聚乙烯微多孔膜。
實施例5
除使用UHMWPE20質量%及Mw3.0×105 之HDPE80質量%構成,T(60%)132.9℃之聚乙烯組成物以外,如同實施例1調製ω0 為2.1rad/sec,η (0.01)為35,000Pa.s之聚乙烯溶液。使用得到之聚乙烯溶液如同實施例1製作聚乙烯微多孔膜。
比較例1
除使用Mw為2.2×106 之UHMWPE30質量%及Mw為3.0×105 之HDPE70質量%構成,T(60%)135.9℃之聚乙烯組成物以外,如同實施例1調製ω0 為21rad/sec,η (0.01)為15,000Pa.s之聚乙烯溶液。使用得到之聚乙烯溶液如同實施例1製作聚乙烯微多孔膜。
比較例2
除MD方向及TD方向之雙軸拉伸速度皆為100%/秒,且熱固定處理溫度為122℃以外,如同實施例5製作聚乙烯微多孔膜。
比較例3
除聚乙烯組成物及流動石臘之合計投入量Q對於螺桿轉數Ns之比為0.05以外,如同實施例5調製ω0 為55rad/sec,η (0.01)為8,000Pa.s之聚乙烯溶液。使用得到之聚乙烯溶液,且熱固定處理溫度為122℃以外,如同實施例5製作聚乙烯微多孔膜。
比較例4
除聚乙烯組成物及流動石臘之合計投入量Q對於螺桿轉數Ns之比為0.6以外,如同實施例5調製聚乙烯溶液,但不得均勻混煉物。
實施例1~5及比較例1~4得之聚乙烯微多孔膜之物性係依以下方法測定。結果如表1。
(1)平均厚度(μm)於微多孔膜之30cm寬度以5mm之長邊方向間隔用接觸厚度計測定膜厚,取膜厚測定值之平均。
(2)透氣度(sec/100cm3 /20μm)對於膜厚T1 之微多孔膜以王研式透氣度計(旭精工(股)製,EGO-1T)測定之透氣度P1 ,由式:P2 =(P1 ×20)/T1 ,換算成膜厚20μm時之透氣度P2
(3)空孔率(%)以質量法測定。
(4)刺穿強度(mN/20μm)先端為球面(曲率半徑R:0.5mm)直徑1mm之針,以2mm/秒之速度刺穿膜厚T1 之微多孔膜時測定最大荷重。最大荷重之測定值La 以式:Lb =(La ×20)/T1 換算成膜厚20μm時之最大荷重Lb ,為刺穿強度。
(5)拉伸斷裂強度及拉伸斷裂伸度使用寬10mm之小矩形試片依ASTM D882測定。
(6)阻絕溫度阻絕溫度(TS D )係以5℃/min之升溫速度加熱聚乙烯微多孔膜,一邊用王研式透氣度計(旭精工(股)製,EGO-1T)測定透氣度,求出達到透氣度之檢測極限1×105 sec/100cm3 之溫度,為阻絕溫度。
(7)阻絕開始溫度(TS )由上述阻絕溫度之測定中得之透氣度p對於溫度T之數據,製作如第4圖之透氣度p之倒數與溫度之關係曲線,求出升溫開始溫度(室溫)至阻絕開始前之直線部之延長線L2 ,與阻絕開始後至阻絕溫度(TS D )之直線部之延長線L3 之交點溫度,為阻絕開始溫度(TS )。
(8)阻絕開始後之透氣度變化率由上述阻絕溫度之測定中得之透氣度p對於溫度T之數據,製作如第5圖之溫度-透氣度曲線,求出透氣度為1×104 sec/100cm3 之溫度處之曲線斜率(△p/△T。第5圖中於透氣度1×104 sec/100cm3 之點的切線L4 之斜率),為透氣度變化率。
(9)最大熔融收縮率用熱機械分析裝置(SEIKO INSTRUMENTS(股)製,TMA/SS6000),將10mm(TD)×3mm(MD)之試片於荷重2g下沿長度方向拉伸,一邊以5℃/min之速度自室溫升溫,以23℃之尺寸為基準測定尺寸變化率,製作如第6圖之溫度-尺寸變化率曲線,以135~145℃溫度範圍中收縮率之最大值P為最大熔融收縮率。
(10)熔潰溫度達到上述阻絕溫度後,更以5℃/min之升溫速度繼續加熱,求出透氣度再次達1×105 sec/100cm3 之溫度,為熔潰溫度(TM D )(參考第5圖)。
註:(1)Mw表質量平均分子量。(2)DSC分析測得之結晶熔化熱量△Hm 達其60%時之溫度。升溫速度:10℃/min。(3)Q表聚乙烯組成物及流動石臘往雙軸擠壓機之合計投入量。(4)Ns表螺桿轉數。(5)ω0 係熔融黏彈性測定得之儲存彈性模量(G’)與損失彈性模量(G”)一致之角頻率。測定溫度:180℃。(6)η (0.01)表熔融黏彈性測定中角頻率為0.01rad/sec時之複黏滯係數。
由表1知,實施例1~5之聚乙烯微多孔膜阻絕溫度在135℃以下,最大熔融收縮率40%以下,熔潰溫度150℃以上,呈低阻絕溫度,優良耐熔融收縮性及高熔潰溫度,又透過性及機械強度亦優。相對於此,比較例1之膜因T(60%)超過135℃,阻絕溫度比實施例1~5高,阻絕開始後之透氣度變化率未達9,000sec/100cm3 /℃而差。比較例2之膜因拉伸速度超出80%/秒,耐熔融收縮性比實施例1~5差。比較例3之膜因聚乙烯組成物及流動石臘之合計投入量Q對於螺桿轉數Ns之比未達0.1kg/h/rpm,聚乙烯溶液之η (0.01)達不到10,000Pa.s而熔潰溫度比實施例1~5低。
第1圖 典型熔化吸熱曲線之例示圖。
第2圖 同第1圖之熔化吸熱曲線之結晶熔化熱量達其60%時之溫度T(60%)之呈示圖。
第3圖 用以求出ω0 之logω-logG’曲線及logω-logG”曲線之典型例圖。
第4圖 用以求出阻絕開始溫度之溫度T-(透氣度p) 1 曲線之典型例圖。
第5圖 用以求出阻絕溫度、透氣度變化率及熔潰溫度之溫度T-透氣度p曲線之典型例圖。
第6圖 用以求出最大熔融收縮率之溫度-尺寸變化率曲線之典型例圖。

Claims (8)

  1. 一種聚烯烴微多孔膜,其特徵為含聚乙烯系樹脂,其中上述聚乙烯系樹脂以10℃/分鐘之升溫速度作微差掃描熱量分析測得之結晶熔化熱量中吸熱量到達該結晶熔化熱量之60%時之溫度為135℃以下,該聚烯烴微多孔膜係:(a)阻絕(shut-down)溫度(升溫速度5℃/分鐘之加熱下測定之透氣度達1×105 sec/100cm3 之溫度)為135℃以下,(b)於135~145℃溫度範圍之橫向最大熔融收縮率(2gf之荷重及升溫速度5℃/分鐘下以熱機械分析測定)為40%以下,且(c)熔潰溫度(達上述阻絕溫度後一邊繼續升溫一邊測定之上述透氣度再次達1×105 sec/100cm3 之溫度)為152.4℃以上。
  2. 如申請專利範圍第1項之聚烯烴微多孔膜,其中該聚乙烯系樹脂含有乙烯與其他α-烯烴之共聚物。
  3. 如申請專利範圍第1項之聚烯烴微多孔膜,其中該聚乙烯系樹脂含有乙烯與其他α-烯烴之共聚物,該共聚物經由單一位置(single site)觸媒而被製造,且具有1×104 以上~低於7×105 之質量平均分子量。
  4. 一種聚烯烴微多孔膜之製造方法,係為如申請專利範圍第1至3項中任一項之聚烯烴微多孔膜之製造方法,其特徵為(1)含以10℃/分鐘之升溫速度作微差掃描熱量分析測得之結晶熔化熱量中吸熱量到達該結晶熔化熱量之 60%時之溫度為135℃以下之聚乙烯系樹脂之聚烯烴樹脂與成膜用溶劑予以熔融混鍊,調製於160~220℃範圍內之一定溫度以熔融黏彈性測定得之儲存彈性模量與損失彈性模量一致之角頻率在0.1rad/sec以上,該熔融黏彈性測定之角頻率0.01rad/sec時之複黏滯係數在1×104 Pa‧s以上之聚烯烴樹脂溶液,(2)將該聚烯烴樹脂溶液經模頭擠壓,冷卻成凝膠片,(3)自該凝膠片去除成膜用溶劑。
  5. 如申請專利範圍第4項之聚烯烴微多孔膜之製造方法,其中於該聚烯烴樹脂及成膜用溶劑之熔融混鍊使用雙軸擠壓機,該聚烯烴樹脂及成膜用溶劑之合計投入量Q(kg/h)對於該雙軸擠壓機之螺桿轉數Ns(rpm)之比Q/Ns為0.1~0.55kg/h/rpm。
  6. 如申請專利範圍第4項之聚烯烴微多孔膜之製造方法,其中拉伸前之長度作為100%時,將該凝膠片以1~80%/秒之速度拉伸。
  7. 一種電池用隔離材,其特徵為係由如申請專利範圍第1至3項中任一項之聚烯烴微多孔膜構成。
  8. 一種電池,其特徵為具備由如申請專利範圍第1至3項中任一項之聚烯烴微多孔膜構成之隔離材。
TW095143467A 2005-11-24 2006-11-24 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池 TWI393285B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339450 2005-11-24

Publications (2)

Publication Number Publication Date
TW200803015A TW200803015A (en) 2008-01-01
TWI393285B true TWI393285B (zh) 2013-04-11

Family

ID=38067215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095143467A TWI393285B (zh) 2005-11-24 2006-11-24 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池

Country Status (9)

Country Link
US (1) US20100069596A1 (zh)
EP (1) EP1956041B1 (zh)
JP (1) JP5250262B2 (zh)
KR (1) KR101340393B1 (zh)
CN (1) CN101313018A (zh)
CA (1) CA2630251C (zh)
RU (1) RU2430772C2 (zh)
TW (1) TWI393285B (zh)
WO (1) WO2007060990A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8799620B2 (en) 2007-06-01 2014-08-05 Intel Corporation Linear to physical address translation with support for page attributes
JP5497635B2 (ja) * 2007-08-31 2014-05-21 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
US20090246487A1 (en) * 2007-12-14 2009-10-01 Ppg Industries Ohio, Inc. Microporous materials suitable as substrates for printed electronics
KR101716292B1 (ko) * 2009-03-30 2017-03-14 도레이 배터리 세퍼레이터 필름 주식회사 미세다공막, 이러한 막의 제조 방법, 및 전지 세퍼레이터 필름으로서의 이러한 막의 사용
JP5685056B2 (ja) * 2009-11-06 2015-03-18 旭化成ケミカルズ株式会社 ポリオレフィン延伸成形体の製造方法
WO2012023348A1 (ja) * 2010-08-18 2012-02-23 積水化学工業株式会社 プロピレン系樹脂微孔フィルム、電池用セパレータ、電池及びプロピレン系樹脂微孔フィルムの製造方法
EP2805637B1 (en) * 2012-01-18 2019-09-18 ASICS Corporation Foam sole, and shoes
JP2013222582A (ja) 2012-04-16 2013-10-28 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US10256450B2 (en) * 2013-04-22 2019-04-09 Toray Industries, Inc. Laminated porous membrane, process for manufacturing same and separator for battery
JP5495457B1 (ja) * 2013-08-30 2014-05-21 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその電池用セパレータの製造方法
JP6627753B2 (ja) 2014-04-30 2020-01-08 東レ株式会社 ポリオレフィン微多孔膜
PL3181622T3 (pl) * 2014-08-12 2021-06-14 Toray Industries, Inc. Mikroporowata membrana poliolefinowa i sposób jej wytwarzania, separator do baterii wtórnej z niewodnym elektrolitem i bateria wtórna z niewodnym elektrolitem
EP3305838B1 (en) * 2015-06-05 2020-11-04 Toray Industries, Inc. Method for preparing microporous membrane, microporous membrane, battery separator, and secondary battery
KR102157492B1 (ko) * 2015-10-09 2020-09-18 도레이 카부시키가이샤 적층 폴리올레핀 미세 다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
KR20180132630A (ko) * 2016-03-31 2018-12-12 도레이 카부시키가이샤 폴리올레핀 미다공막 및 그 제조 방법, 전지용 세퍼레이터, 및 전지
CN110785461B (zh) 2017-08-31 2021-12-24 旭化成株式会社 聚烯烃微多孔膜
EP4235940A3 (en) * 2018-10-11 2023-10-25 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
WO2020179101A1 (ja) * 2019-03-04 2020-09-10 旭化成株式会社 ポリオレフィン微多孔膜
CN110745902B (zh) * 2019-11-04 2022-03-29 西安建筑科技大学 一种分步提取水体中重金属铬(vi)和镉(ii)的方法
CN111081949B (zh) * 2019-12-31 2022-07-26 溧阳月泉电能源有限公司 一种交联聚烯烃隔膜及其制备方法
US20240158589A1 (en) * 2021-03-05 2024-05-16 Celgard, Llc Heat stabilized membrane
CN113295297B (zh) * 2021-04-30 2022-11-22 中材锂膜有限公司 一种锂电池隔膜闭孔温度的测试方法
CN114069157B (zh) * 2021-11-24 2022-12-30 南京雷文斯顿企业管理咨询有限公司 一种高孔率电池隔膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054350A1 (ja) * 2003-12-03 2005-06-16 Tonen Chemical Corporation 複合微多孔膜及びその製造方法並びに用途

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132327A (ja) 1988-11-14 1990-05-21 Toshiba Corp 高温用超音波センサー
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
TW412542B (en) 1995-12-25 2000-11-21 Asahi Chemical Ind Short-resistant micro-porous polyethylene membrane
WO2000020493A1 (en) 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001200082A (ja) * 2000-01-14 2001-07-24 Tonen Chem Corp ポリエチレン微多孔膜及びその製造方法
JP4734520B2 (ja) 2001-03-02 2011-07-27 東レ東燃機能膜合同会社 熱可塑性樹脂微多孔膜の製造方法
JP5031150B2 (ja) * 2001-06-08 2012-09-19 旭化成イーマテリアルズ株式会社 ポリオレフィンセパレーター
JP3953840B2 (ja) * 2002-02-28 2007-08-08 東燃化学株式会社 ポリオレフィン微多孔膜の製造方法及びその製造方法によるポリオレフィン微多孔膜
WO2004024809A1 (ja) * 2002-09-13 2004-03-25 Asahi Kasei Kabushiki Kaisha 微多孔膜及びその製造方法
JP4121846B2 (ja) 2002-12-16 2008-07-23 東燃化学株式会社 ポリオレフィン微多孔膜及びその製造方法並びに用途
JP4195810B2 (ja) 2002-12-16 2008-12-17 東燃化学株式会社 ポリオレフィン微多孔膜及びその製造方法並びに用途
JP5057414B2 (ja) * 2004-01-21 2012-10-24 東レバッテリーセパレータフィルム株式会社 微多孔膜の製造方法及びその製造方法により得られる微多孔膜の用途
JP3932486B2 (ja) 2004-03-25 2007-06-20 核燃料サイクル開発機構 圧粉体成型機
JP2005343958A (ja) * 2004-06-01 2005-12-15 Tonen Chem Corp ポリエチレン微多孔膜の製造方法並びにその微多孔膜及び用途
JP4808935B2 (ja) * 2004-06-01 2011-11-02 東レ東燃機能膜合同会社 ポリエチレン微多孔膜の製造方法並びにその微多孔膜及び用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054350A1 (ja) * 2003-12-03 2005-06-16 Tonen Chemical Corporation 複合微多孔膜及びその製造方法並びに用途

Also Published As

Publication number Publication date
TW200803015A (en) 2008-01-01
JPWO2007060990A1 (ja) 2009-05-07
KR20080078651A (ko) 2008-08-27
CA2630251A1 (en) 2007-05-31
EP1956041A4 (en) 2010-05-05
CN101313018A (zh) 2008-11-26
EP1956041A1 (en) 2008-08-13
CA2630251C (en) 2014-01-14
RU2008125325A (ru) 2009-12-27
WO2007060990A1 (ja) 2007-05-31
US20100069596A1 (en) 2010-03-18
KR101340393B1 (ko) 2013-12-11
EP1956041B1 (en) 2012-01-11
JP5250262B2 (ja) 2013-07-31
RU2430772C2 (ru) 2011-10-10

Similar Documents

Publication Publication Date Title
TWI393285B (zh) 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池
TWI444296B (zh) 聚烯烴微多孔膜及其製法、以及電池用隔離材與電池
JP5250261B2 (ja) ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP5576609B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP5497635B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
TWI402172B (zh) 微多孔聚烯烴薄膜、其製法、電池隔離材及電池
JP5512976B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
TWI451969B (zh) 聚烯烴多層微多孔膜及電池用隔離材
JP5202826B2 (ja) ポリエチレン微多孔膜及びその製造方法並びに電池用セパレータ
JP5596768B2 (ja) ポリエチレン微多孔膜及び電池用セパレータ
JP6895570B2 (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
WO2011152201A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び電池
JP5450944B2 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び電池
KR20220069831A (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 이차 전지