TWI387817B - 相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法 - Google Patents

相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法 Download PDF

Info

Publication number
TWI387817B
TWI387817B TW097103635A TW97103635A TWI387817B TW I387817 B TWI387817 B TW I387817B TW 097103635 A TW097103635 A TW 097103635A TW 97103635 A TW97103635 A TW 97103635A TW I387817 B TWI387817 B TW I387817B
Authority
TW
Taiwan
Prior art keywords
optical modulator
refractive index
compensation
optical
orientation
Prior art date
Application number
TW097103635A
Other languages
English (en)
Other versions
TW200844603A (en
Inventor
Norbert Leister
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200844603A publication Critical patent/TW200844603A/zh
Application granted granted Critical
Publication of TWI387817B publication Critical patent/TWI387817B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/10Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with refractive index ellipsoid inclined, or tilted, relative to the LC-layer surface O plate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的 方法
本案為一種相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法,其中相位調變光調變器包含了一個具有至少一個光學主動體積區域且具有邊界表面的光學主動層,並且在此光學主動層上可以產生其平穩定向;此時的光學主動層則包含了具有預先定向折射率橢圓體的液晶,其定向可以藉由液晶之平穩定向的產生來針對每個畫素作個別離散的控制。另外,此時的光學主動層會聯合至少一個內含了至少一個具有固定折射率橢圓體之雙折射材料的透明補償體積區域。
對於空間光調變器(SLM),例如使用於全像影像應用的相關機制來說,都是能夠在特別的可見光中反射或透射的光學元件,且其光學計量特性可以作時間性的修正。光學計量特性可以針對每一個畫素作個別離散的修正。
習用的光學計量特性可以藉由例如依附於一個電場的方法來作時間性的修正。上述的電場可以針對較小的表面區域面積作個別的控制,如此將會使得光學特性可以針對每一個畫素作個別離散地控制,這對於大部份的全像影像應用來說其實已經相當足夠了。這種做法的優點在於其真正能實現的可行性,例如為了作修正,也就是調變,即使有光調變器的存在,一個來自觀察者的距離之入射波 前在其行進的過程中仍會保持它從實際物體所發射出來的原始波前一樣的狀態。如果該光調變器藉此而受到控制,則某個物件的全像影像重組結果將會不再需要同時確實地展現於其觀察的過程中就能夠得到實現。
光調變器的功能原理主要是架構在一個光學主動層上,而此一光學主動層的光學計量特性則是依賴於至少一個額外的可控式物理參數並且可以藉由變動該參數來作空間性地影響控制。上述的這些物理參數可以是電場強度。然而,其他的物理參數,例如像是聲壓等等,也已經成功地被應用在光學主動層的光學計量特性之特殊修改上。
透射光調變器基本上會有一個入口偏振器與一個出口偏振器,而反射用的光調變器則可以配置於一個整合了入口與出口偏振器之中。
光調變器最常見的功能架構其最主要的優點在於嵌入於控制式邊界表面之間的雙折射材料層,特別是介於玻璃平面之間,以液晶(LC)的形式來表現且其定向是可受控制的,其中的層可以利用計量單元來針對每一個畫素作直接的定址,本文以下將直接參照液晶細胞單元。上述的控制會在個別的液晶細胞單元中影響液晶的折射率橢圓體。所以,與光線通過的方向相關之折射率橢圓體其形式或定向的改變,也會同時影響導致雙折射層中光線的光學路徑長度與穿透它之光線的極性效應的變更。此時折射率橢圓體也將因此而是一種人眼所能察覺的模式,以在其與光線入射角相依之光線相互作用之中,闡述說明某個由雙折射材料之確實計量所展現的有效折射率的方向相關 性。折射率橢圓體的位置與形式主要依賴於嵌入於所考慮之計量中液晶的定向和特性。然而,我們並不需要特別地針對個別的情況條件去指出特定的定向。盡管如此,折射率橢圓體將會被應用在後續的文件章節中以在雙折射計量中標示與液晶定向相依之確切條件特徵。當一個波前穿越通過一個光調變器時,它會藉由一個離散振幅調變方式與/或一個相位調變的方式來針對每一個畫素作修正。因為沒有任何一種光調變器可以在一個確定之透射角範圍內以完全獨立的形態同時支援提供這兩種調變方法,所以光調變器必須以至少能提供一種調變方法作為設計的理念與前題。
但是特別是對於相位調變光調變器有個特別的問題,那就是可能會發生側邊效應的干擾,它會以很多種與光線的透射角相依賴的方法形式而變成一個事實。其中一種最主要的側邊效應就是光調變器的透射相依性,當我們使用統的光調變器時,它到目前為止還是不能被完全地補償。如此將導致產生一個額外不需要之相位調變光調變器的角度相依振幅調變。
在目前的業界裡存在有各種型式的振幅調變光調變器,而最廣受大家所利用的為二維(2D)顯示裝置。它們已經被設計用來提供大型波長範圍與大型視角範圍的服務。一般來說透射的波長依賴會藉由在不同的光線波長中(紅光R,綠光G,藍光B)測定其波長之值來作對應的補償。為了能在R,G,或B中達到預設的透射目標,我們必需針對R,G,與B來提供相對應的不同電壓給每一 個液晶細胞單元。
如果一個觀察者在視角範圍內以某個特定的角度注視著光調變器,則由於觀察者只會察覺在某個不同角度下穿越液晶的光線而存在著一種角度相依的實際關係,並且因而影響了在折射率橢圓體的不同折射率。所以光線會在出口偏振器展現出一種不同的極性狀態,而光調變器則會展現出一種不同的角度相依之透射結果。
習用專利文件EP 0793133與US 6141075中說明了一種以液晶結構為基礎的顯示裝置,其中雙折射單軸晶體或雙軸材質的補償薄膜將會配置安排在振幅調變光調變器的邊界表面或玻璃平面上以便能補償角度相關性。雙折射材料會被定向以使得其折射率橢圓體能夠和液晶層作互補。在此一確定之角度範圍裡,光線將因此而展現出與視角相獨立而無關之有效折射率。液晶層的折射率之角度相關性與補償薄膜彼此之間大致上是互相補償的。
但是這會有一個問題,那就是這樣的作法只可能應用在液晶的某個確定角度上而已,也因此只能提供給某個確定的透射。不同的透射會與不同的液晶角度相聯合,所以補償薄膜將不會附著在一起。為了能達到光調變器的最大對比,光調變器會針對一個較佳黑色背景條件作補償,也就是具有零透射比的情況。
一個振幅調變光調變器的角度相依性也將因此而可以藉由提供一個補償薄膜或多個補償薄膜來減少至少某些部份,例如在一個玻璃平面或數個玻璃平面或就配置在LC層的旁邊。前述的補償薄膜包含了一個單軸或雙軸的雙 折射材料。折射率與定向都會被聯合在一個振幅調變光調變器的確定條件之中。它們最好被設計來讓液晶與補償薄膜的折射率值的總和能夠永遠保持一致,並且無論光線的入射角是什麼。如果,舉例來說,液晶的折射率橢圓體具有一個稍長類似雪茄的形狀,且如果其半主軸在直角被定向到玻璃平面,則該補償薄膜的折射率橢圓體必需盡可能地和煎餅一樣的平整且和玻璃平面保持平行的定向,其中光調變器的表面垂直線通常會表現出補償薄膜的折射率橢圓體的對稱軸或主軸。
基本上一個振幅調變光調變器會被最佳化以使得能在一個較大的角度範圍內展現出最大的對比值。為此,補償薄膜將會被聯合到液晶的定向以對應到黑畫面的條件。我們必需注意的事實是,某個振幅調變光調變器的角度相依性之補償會被整合到一個具有液晶確定定向的光調變器之確認狀況中。
前述的方法有個很大的缺點,那就是當透射率的值的週期性改便的變動範圍很大時,前述的這個方法就不適用了,這是因為它永遠只允許去補償一個確定的透射率值。
另外還有一種常用的方法,那就是利用在多個各種波長(R,G,B)中去校正它們以補償相位調變光調變器的波長相依性。然而,此一校正並不會去運算相位調變光調變器的透射角相依性。
在德國達姆斯塔特技術大學的索馬陵干。S(Somalingam。S)於2006年3月所發表的博士論文:“Verbesserung der Schaltdynamik nematischer Fl ü ssigkristalle für adaptive optische Anwendungen”中,清楚說明了以液晶細包單元形式所架構的相位調變光調變器。藉由液晶的初始定向,所使用的液晶細胞單元會被區分為佛利德里克茲細胞單元(Freedericksz cell),歪斜排列配置相位細胞單元(DAP,distorted alignement phase cell),以及扭曲向列性細胞單元(TN,twisted nematic cell)。它們一般可藉由電場的控制來調變入射光線的相位。
在佛利德里克茲細胞單元(Freedericksz Cells)中液晶會展現出正電介子相位的電場,所以它們會平行於電極而被定向,這也是為什麼介於二個電極之間的最大相位斷差會發生在無電場的情況下。
在DAP細胞單元中,液晶則會展現出負電介子相位的電場,所以它們會垂直於電極而被定向,這也是為什麼最大相位斷差會發生在液晶作最大偏光折射的時候。
至於在TN細胞單元中,液晶會被排列以使得彼此會互相扭曲相對,甚至彼此達到呈90°的扭曲位置,所以線性偏光折射後的入射光線的偏光將會反轉細胞單元最薄弱的地方。如果我們使用電場的話,液晶的扭曲排列配置將會破裂,所以偏光折射扭曲是沒有辦法維護持續的。
如圖1所示為相位調變光調變器10的架構圖,它主要是架構在畫素相關的佛利德里克茲細胞單元上,其中它還包括了三個畫素1,2,3。而光調校模組10則包含了一個雙折射層8,它內含了液晶9而這些液晶9其光學特性能夠藉由附加於電極4,5,6,與7之間的電場而受到控制,其中的電極4,5,與6的支援調變電壓分別 為UM1,UM2,與UM3,而且電極7的支援電壓則為大地。藉由控制電場所獲得的光學特性條件可以藉由折射率橢圓體來作進一步的說明,這些折射率橢圓體其最主要特徵在於軸線的比例與主軸的定向性-一條主軸線與二條副軸線都和前者相互垂直。雙折射層8會受到平行邊界表面17,18的限制且在此二表面上存在著電極4,5,6,與7。電極4,5,6,與7至少會存在於緊鄰雙折射層8的邊界表面17,18之處,以便能夠盡可能地針對所選擇的每個畫素來對液晶9作離散地控制。
圖1中,電場可以藉由電極4,5,與6來針對每個畫素作離散地控制,其中的這些電極都會被結構化以訂定出雙折射層8之邊界表面17上的畫素,並且藉由所提供之確定畫素之調變電壓UM1到UM3來對抗連接到大地的電極7,其中接地的電極7將會配置安排在雙折射層8的其他邊界表面18上。其中的大地為圖中所示的接地大地G。調變電壓UM1到UM3都具有不同的值,它們整合的加總總和會等同於電極7所連接到的大地G,這是因為不同的電場強度所導致的關係。
不同的電場強度會導致液晶9有不同的定向,如圖中所示為雙折射層8中的液晶分子定向91,92,與93,如此也將會發生在雙折射層8的個別體積區域11,12,與13中的折射率橢圓體裡的不同位置,其種所謂的區域會展現到不同的電場強度,並且藉由在折射率橢圓體之主軸相關的不同定向來作確實的說明。
圖2a,2b,與2c所示分別為相位調變光調變器10 中畫素1,2,與3的局部特寫圖。為了能維護持續相當的清晰品質,圖中我們只標示了液晶9,91,92,93,以及較低的玻璃平面19,與較高的玻璃平面20。
畫素1,2,與3包含了沒有被扭曲的雙折射液晶9,91,92,與93,也就是這些液晶並不是螺旋狀的結構。分別位在較高與較低的玻璃平面19與20旁邊的部份邊界區域14,15,其中的液晶9會與玻璃平面19,20呈一直線而被定向,而在體積區域11,12,與13中的液晶91,92,與93大致上會彼此相互平行而被定向。此時所謂的“平行定向”指得是類似像雙折射層8的光學特性一般的排列配置,至少可以用一種方法來使得具有維度小於畫素大小之體積區域11,12,和13的光學特性會受到相對的影響,並且藉由具有相同軸線比例與平行定向的折射率橢圓體來作進一步地說明。簡單地說,只有所謂的“液晶9,91,92,93的定向”的術語將在接下來的說明中使用。
為了達到相位調變的目的,電場會改變介於液晶91,92,93,以及玻璃平面19,20之間的極角α進而影響雙折射層8的折射率。然後穿越雙折射層8的光學路徑長度也會隨著穿越雙折射層8的確定極性的光而改變。如此將會導致離開不同的受控畫素1,2,與3的光線會受到影響而展現出不同的相位狀況。
液晶9,91,92,和93的定向以及它們位在介於眾多電極(並未在圖中顯示)之間的不同電場的折射率橢圓體,都會配置在高於和低於雙折射層8的位置,如圖2a到 2c所示。液晶9,91,92,和93可以藉由圖中所示的折射率橢圓體來重現。在主軸61(即橢圓體的z軸)的方向中,我們需要特別專用的折射率ne,當位於副軸62(即橢圓體的x軸和y軸)的垂直方向中與一個單軸液晶裡的時候,我們就會使用一般的折射率ne。在一個具有兩條不同副軸之雙軸液晶裡,我們會使用分別對應於x軸與y軸62的兩個值,nx和ny,而非一般常用的折射率ne。除非某個單軸液晶其ne>n0,否則折射率橢圓體會和液晶9,91,92,93一樣具有相同的定向。
圖2a所示為不具電場(UM1=G)的畫素1。液晶9,91會在極角α 1為90°時被定向到玻璃平面19,20的表面垂直線16,也就是和上層玻璃平面19與下層玻璃平面20相平行。
圖2b所示為具有最大電場的畫素2,其中液晶92會在極角α 2為0°時被定向,並且具有邊界區域14,15的所有例外狀況,其中邊界表面在玻璃平面19,20所受到的影響會導致液晶9在不管任何電場強度的情形下被定向至與玻璃平面19,20大致平行的方向。然而,具有和玻璃平面19,20平行之定向的液晶9的邊界區域14,15是如此的薄弱,所以當我們討論光調變器10的光學特性時它們通常都可以被忽略不計。
圖2c所示為畫素3,它暴露配置在一個中等強度的電場中,其中液晶93會被定向到一個和玻璃平面19,20呈傾斜角度的方向,更特別的是被定向在約45°的極角α 3。
在圖2a到2c中所出現的箭頭說明了當觀察者看見光線以某個傾斜角度透射經過光調變器10所產生的效應。箭號S代表了在直角透射的光線,而箭號L和R則分別代表了從左側和右側以某個傾斜角度透射的光線。因為光線是以不同的角度穿越光調變器10,也因此將會具有和折射率橢圓體相關之不同定向,而光線在極性偏光狀態下會隸屬於不同的延遲和變異。
如果光線以某個傾斜角度L,R透射,如此通常會讓光線在進入光調變器並穿透入口偏振器之後產生線性偏光極性化的效應,而且在離開出口之後就不再有線性偏光極性化的現象而恢復原來的樣子。如果使用出口偏振器的話,非線性偏光極性狀態將會被展現在振幅調變之中,如此將會干擾相位調變光調變器10。
如圖2c所示為畫素3,其中所使用的為中等強度電場且液晶93會被定向到一個傾斜角度。在偏光極性狀態中的變異和因此而展開的振幅調變將會在觀察者觀察以透射角範圍或視角範圍為L-S-R之光線時於此畫素中變成最大。與液晶93相關之光線其對應之定向和如圖2a與2b中所示之液晶91,92的定向比較起來,將會被更徹底地改變。
液晶91,92,和93的定向,以及其折射率橢圓體,如圖2a到2c所示,都是相位調變光調變器10中可能的定向範例。
如果用來作照明的光源被移除了,或如果同時使用多個光源的話,則一個相位調變光調變器的振幅調變其角度 相依性必須被特別補償。在一個全像影像顯示裝置中可移除的光源是必需的,舉例來說當一個移動中的觀察者在視角範圍L-S-R中來追蹤一個觀察者視窗。在上述此例的情況下觀察者視窗在觀察者平面裡其實是一個虛擬的視窗,透過它觀察者將可以看建某個物件的全像影像重組結果。在這些情形下,以不同傾斜角度穿越相位調變光調變器的光線,以及光線的極性偏光狀態只會因視角範圍L-S-R中透射角的改變而跟著改變。如果使用一個偏光濾波器來阻絕不需要的偏光狀態,則偏光狀態的改變將會導致額外的振幅調變,如此也將會引發產生出一個較差且角度相依的重組結果品質。
針對結合了光學主動層之振幅調變光調變器的補償薄膜與補償體積區域已經在下列的文件中有了清楚的描述與說明:1)De Bougrenet de la Tocnaye et al。:藉由液晶空間光調變器來完成複數振幅調變,光學應用期刊36,第8號,1997,第1730頁(Complex amplitude modulation by use of liquid-crystal spatial light modulators,Appl。Optics 36,No。8,1997,pp。1730);2)Lueder,Ernst:液晶顯示器(Liquid crystal displays,Chichester(et al。):Wiley,2001(Repr。2005)(Wiley-SiD series in display technology),ISBN:0-471-49029-6);3)US 2004/0155997 A1;以及4)DE 689 17 914 T2。
在上述的文獻理論中存在著一個問題,那就是透射或反射的角度相依性,也因此振幅調變無法在一個較大視角範圍L-S-R中的相位調變光調變器裡藉由使用前述的補償薄膜和補償體積區域而得到絕大部份的減少。
有鑑於此,本案提出一種相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法,用以在相位調變光調變器中確保最小振幅調變,此時的相位調變光調變器主要被設計來在視角範圍裡減低透射或反射的角度相依性,其中透射或反射的角度相依性代表著藉由在給定的視角範圍內藉由改變透射角來改變穿越光調模組之光的偏光極性狀態。如果使用類似像全像影像顯示裝置之類的設備,則當重組色彩場景在一個較大的視角中時重組的影像品質必然能夠得到極大的改善。如此應該能夠確保使用較小觀察者視窗時的品質。
本案所提出的方法可藉由申請專利範圍1到12所述而得到一個有效的解決方案。
用來作為全像影像顯示裝置的相位調變光調變器包含了具有至少一個光學主動體積區域的一個光學主動層,並且具有邊界表面並在其上配置存在有用來產生光學主動層之平穩定向的機制;其中的光學主動層包含了具有預設定向折射率橢圓體的液晶,而這些折射率橢圓體其定向可藉由液晶的平穩定向之產生機制來針對每個畫素作個別離散的控制;其中光學主動層會聯合至少一個包含了至少一個 具有固定折射率橢圓體之雙折射材料的透明補償體積區域,並且還包含一個位於入口一側的偏振器,藉由本案所提出之申請專利範圍第1項所述,補償體積區域的折射率橢圓體會和光學主動層的折射率橢圓體作相關的定向,並且依賴於給定的視角範圍L-S-R中光學主動層之可控式折射率橢圓體的定向以使得在此一給定的視角範圍L-S-R中平均振幅調變會展現出最小值。
補償體積區域可以藉由一片透明雙折射補償薄膜來表示,它會被配置安排在邊界表面之一上並且緊鄰著光學主動層,或緊鄰著某個玻璃平面上。
補償體積區域可以藉由兩片透明雙折射補償薄膜來表示,它會被配置安排在光學主動層的任一側的邊界表面上。
雙折射補償薄膜可能包含了固定的液晶。這兩片補償薄膜可以具有固定液晶之相同補償角θ 1的一個定向,其中補償角θ 1會與光學主動層中液晶的極角α 3相反。
相反的,這兩片補償薄膜也可以有交叉的定向,具有一個液晶之固定負向的補償角θ 1以及一個液晶之固定正向補償角θ 2。
光學主動層也可以包含固定定向的液晶,以及一個具有個別封閉空間的透明雙折射矩陣,和嵌入於此一所謂的主動層之畫素相關區域,這些區域包含了可控式可定向液晶,而這些液晶的定向又可以在這些區域裡利用液晶的平穩狀態產生機制來加以控制。
通常指定給光學主動層之畫素的電極會被提供來作為 產生液晶平穩狀態的機制。
相位調變光調變器可以包含佛利德里克茲細胞單元(Freedericksz cell),歪斜排列配置相位細胞單元(DAP,distorted alignement phase cell),以及扭曲向列性細胞單元(TN,twisted nematic cell)。
在該透明補償體積區域中的所述固定定向液晶被排列,以致如果在一個給定的視角範圍L-S-R中,平均是通過該光學主動層和該補償體積區域的所述折射率橢圓體的所有定向而被執行,則該光調變器的該平均振幅調變展現最小值,其中所述所有定向在該光調變器的一受控相位調變的期間發生。
另外,在該透明補償體積區域中的所述固定定向液晶能夠被排列,以致如果在一個給定的視角度範圍L-S-R中,在一給定的加權因數下,平均是通過光學主動層及該補償體積區域的所述折射率橢圓體之所有定向而被執行,則該光調變器的該平均振幅調變展現最小值,其中所述所有定向在該光調變器的一受控相位調變的期間發生。
用來在相位調變光調變器中確保最小振幅調變的方法,它包含了至少一個透明光學主動體積區域且其折射率橢圓體可以針對每一個畫素作離散地控制;以及至少一個內含至少一個具有固定折射率橢圓體的雙折射材料的透明光學主動補償體積區域;其中的透明光學主動體積區域和透明光學主動補償體積區域會做某種特別的排列配置以使得觀察者所觀察的光線會穿過這兩個體積區域,並且被用來應用在前述的光調變器中;此時藉由本案所提出之申請專利 範圍第12項所敘述的特性,在該透明補償體積區域裡具有所述固定折射率橢圓體的該雙折射材料的定向被選擇,以致如果在該給定的視角範圍L-S-R中,平均是通過該光學主動體積區域包括透明補償體積區域之所述折射率橢圓體的所有定向而被執行,則該光調變器的該平均振幅調變展現最小值,其中所述所有定向在該光調變器的一受控相位調變的期間發生。
更進一步地說,用來在相位調變光調變器中確保最小振幅調變的方法其實包括以下的步驟:-定義一個視角範圍L-S-R,在此視角範圍裡平均振幅調變應該能展現出最小值;-定義一個變動區域,在此變動區域裡存在有參數UM1,UM2和UM3以提供給來自外部的光調變器,並且進而影響光學主動層之折射率橢圓體在調變過程中的變異;-在透明補償體積區域裡定義一個具有固定折射率橢圓體的雙折射材料之第一定向;-藉由數種光調變器的透射或反射模擬方法來計算平均振幅調變,並且藉由改變通過整個視角範圍L-S-R的視角和藉由改變該參數UM1,UM2,UM3而發現透射或反射變動範圍以用於在該透明補償體積區域裡具有固定折射率橢圓體的該雙折射材料之第一定向,其中參數UM1,UM2,UM3從外部提供給光調變器且通過它的整個變動範圍而被改變;-在透明補償體積區域中定義一個額外的具有固定折 射率橢圓體之雙折射材料的定向,並且不斷重複數個模擬直到發現在透明補償體積區域裡具有固定折射率橢圓體雙折射材料的定向為止,在其中透射或反射的平均振幅調變會展現出最小值;以及-在固定折射率橢圓體之定向中選擇並且定義具有雙折射材料排列配置之補償體積區域,在其中透射或反射的平均振幅調變都會展現出最小值。
當我們確認振幅調變為最小值的時候,在數種模擬中所尋找到的光調變器之透射或反射可以針對各種不同視角L,S,R來作加權比重處理。
在透明補償體積區域裡具有固定折射率橢圓體的雙折射材料可以在定向中作排列,在其中我們可以利用至少一個雙折射透明補償薄膜而讓透射或反射的平均振幅調變能夠展現出最小值,在其中具有固定折射率橢圓體的液晶會被嵌入於對應的定向中。
當我們在尋找平均振幅調變的最小值時,視角範圍L-S-R可以考慮成在透射角範圍的形式中用於透射相位調變光調變器,並且在反射角範圍的形式中用於反射相位調變光調變器。
用來作為全像影像顯示裝置的光調變器可以包含至少一個液晶的雙折射層,這些液晶的折射率橢圓體可以藉由使用一個電場來針對每個畫素作離散地控制,其中的電場包含了至少一個對稱於雙折射層的表面垂直線的補償體積區域,其中所謂的補償體積區域會相對於雙折射層之至少一個波長相依與/或角度相依的光學效應。
本案所提出之在相位調變光調變器中用來確保最小振幅調變的相位調變光調變方法,提供了一種相位調變光調變器的可行方案,其中至少一個具有固定雙折射液晶的補償薄膜會配置在雙折射層之外。至少一個具有固定雙折射液晶的補償薄膜也可以配置在雙折射層的任意一邊或外側。不論是哪一種情形,在補償體積區域裡的固定雙折射液晶都會作某種特別的排列以使得無論在光調變器的每一種控制狀態下它們的折射率橢圓體之定向,能夠和光調變器的雙折射層中可定向液晶的折射率橢圓體之定向不同。一般來說,光調變器的雙折射層之表面垂直線並不會在雙折射層裡形成液晶的折射率橢圓體的對稱軸。如果至少存在著一片雙折射補償薄膜,則相位調變光調變器的振幅調變其角度相依性也因此而能夠至少得到部份的補償,而此一補償薄膜包含了一個單軸或雙軸的雙折射材料,並且位於光調變器之上。其中補償薄膜所包含的單軸或雙軸材質會被定向且展現折射率,以使得透射穿越或折射自光調變器的光線其角度相依振幅調變會在光線的較大視角範圍L-S-R中得到最大的預防避免。
圖3所示為本案較佳實施例之架構圖,其中內含了一片補償薄膜的相位調變光調變器30的三個畫素1,2,和3之詳細說明架構圖,而此時相位調變光調變器30的光學主動層8要來得比過去所熟知的文件技術中的光學層8較大。因此光調變器30將包含了雙折射層8,而此 雙折射層8又包含了其定向可藉由使用介於電極4,5,6,和7之間的電場來作控制的液晶9,91,92,與93,其中的電極4,5,和6所使用的調變電壓為UM1,UM2,和UM3,而電極7的調變電壓則是連接到接地的大地G,而且還有一個未出現於圖中的偏振器也會位於出口一側的位置上。
藉由控制電場的強度來達到設定光學特性之狀況條件的目的,可利用如圖2c中所示的折射率橢圓體61而得到進一步的詳細說明,其中的折射率橢圓體61的主要特性在於它們的軸線比例以及它們主軸的定向-即一條主軸62與兩條副軸63。雙折射層8會受到平行的邊界表面17,18的限制而邊界表面17,18上面存在著電極4,5,6,和7。電極4,5,6,和7至少會配置在緊鄰著雙折射層8的邊界表面17,18之側邊上,以利於能夠針對每一個畫素來作離散地旋轉液晶91,92,和93,並提供越大越好的選擇。藉由本案所提出之圖3中我們可以發現,電場可以藉由電極7,8,和9而對每一個畫素作離散地控制,其中電場是被結構化了的以便能在雙折射層8的邊界表面17上形成畫素,而離散地提供調變電壓UM1到UM3給每一個個別的畫素將會抵銷對抗到提供給電極7的電壓準位,此時的電極7位於雙折射層8的另外一側之邊界表面18上。一般電壓準位在圖中所示即為一般接地大地G。調變電壓UM1到UM3的值都不一樣,但是它們的加總總和必然會等於電極7所連接的大地電壓準位G,這是因為不同的電場強度之故。 不同的電場強度會導致在雙折射層8之中液晶91,92,93的不同定向,如此會使得雙折射層8的個別體積區域11,12,和13中的光學特性受到不同的控制,其中所謂的體積區域會被暴露在不同的電場強度之下,並且藉由主軸的不同定向而有不同的展現結果,特別是折射率橢圓體的主軸61。
如圖3中所示,為了能夠達到相位調變的目的,電場會改變介於液晶91,92,93之間的極角α 1,α 2,α 3以及玻璃平面以及因此而受到影響之雙折射層8的折射率。一般來說,穿越雙折射層8的光學路徑長度會因穿越雙折射層8的光線而有所改變。如此將會導致離開不同之受控畫素1,2,3的光線也會受到影響而展現出不同的相位狀況。
從圖3中我們發現,補償薄膜24會配置在介於邊界表面18與電極7之間,並且載送了整個接地大地G。補償薄膜21的固定液晶94其定向會和液晶9,91,92,93的定向交叉,並且和邊界表面17,18的表面垂直線16之間夾著小於負向補償角θ 1。
藉由本案所提出之相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變方法,其中如圖2中所示,在透射或反射光線的給定的視角範圍L-S-R中,取決於光學主動層8之可控式折射率橢圓體9,91,92,93的定向,補償體積區域24的折射率橢圓體94相對於光學主動層8之折射率橢圓體9,91,92,93而被定向,以致在該給定的視角範圍L-S-R中,平均振幅調變展現最小 值。
藉由本案所提出之在相位調變光調變器中用來確保最小振幅調變方法,其中振幅調變會相關於液晶9,91,92,93之所有定向而盡可能地保持最低值。這也是為什麼液晶9,91,92,93,94的所有定向都會在平均程序中作考量。
相位調變光調變器30的平均振幅調變也將藉由本案所提出之方法而作最小化。在給定之視角範圍L-S-R中的平均是通過液晶9,91,92,93,94之所有定向而被執行,所述所有定向是由光調變器30所要求的以用於相位調變。振幅調變的最小值可以藉由使折射率橢圓體的定向和因此在雙折射補償薄膜24中的折射率互相適應而達成目的,如圖3所示,或如圖4a所示之在多個雙折射補償薄膜21,22之中,或如圖4b所示之221,222之中。如此可以藉由類似像包含了關於液晶9,91,92,93,94之定向的參數的軟體機制而在一控制單元(未出現於圖中)完成,其中的控制單元與電極4,5,6,與7都會用訊號與電源線來作連接。
我們也可以在處理平均的過程中針對透射或反射光線的角度L,S,R,或液晶9,91,92,93,94的定向作不同的加權處理。舉例來說,在體積區域11,12,13中的中央區域可以給予較大的權重值以使得能在此區域裡保持特別低的振幅調變。
用在振幅調變光調變器的定向控制其最主要的不同在於,在相位調變光調變器30裡的某個定向控制都會高於 所有需要的液晶定向。如此一來通常會導致雙折射補償薄膜24,21,22,221,與222的折射率橢圓體無法被定向至與光調變器30,40,50,60的玻璃平面19,20相平行或垂直,所以光調變器30,40,50,60的表面垂直線16將無法成為對稱軸。前述的雙折射補償薄膜24,21,22,221,與222都是不對稱的補償元件,也就是說,在具有確實的可控式雙折射層8的非對稱之相互作用裡會在中等控制狀態中展現出較佳的補償效應,這是因為非對稱狀態至少會在這些具有正向角之液晶93的中等控制狀態裡,藉由一個具有負向角的補償薄膜24,21,22,221,與222的一種對應設計來作部份的補償,而且反之亦然。
前述的平均與最小化振幅調變應用在畫素3上的一種結果如圖3與圖4b所示。補償薄膜24與221的折射率橢圓體對表面垂直線16來說夾著負向的補償角θ 1,而補償薄膜222與玻璃平面19,20的表面垂直線之間則夾著負向的補償角θ 2,而且在中等強度的電場裡會與液晶93的中間極角α 3相垂直。所謂的補償可以藉由如圖3中所示之位於上層玻璃平面19或下層玻璃平面20上的單一一片補償薄膜24,或如圖4b所示之位於上層玻璃平面19與下層玻璃平面20上的二片補償薄膜221,222來完成。
在圖4a中,補償薄膜21與22會分別被配置在光調變器40的電極6與7之上,其中在這些薄膜中的固定液晶94,95會與其補償角θ 1(負向)和θ 2(正向)不同,所以相對應的定向或相對應的主要軸線會在補償薄膜 21和22中互相交錯。
圖5所示為本案所提出之另一用來確保最小振幅調變的相位調變光調變器50。在此一具體實施範例裡可以針對每一個畫素作離散控制的雙折射層81包含了一個透明補償矩陣82,它最好是利用具有固定液晶99的塑膠聚合物材質所構成,其中在一個實際移動形式中包含了雙折射液晶96,97,98的有限區域231,232,233都將會位於此一矩陣裡。在這些有限區域231,232,233之外,雙折射材料99會被固定嵌入於透明層81中並且被定向到至少某個方向去。可移動的雙折射液晶96,97,98永遠都會被包含在內以使得在使用電場的情況下液晶96,97,98可以作相當角度範圍的旋轉,這對相位調變光調變器50所需要的調變效應來說是必要的。至於不可控制且不可移動之雙折射材料99則會被嵌入於透明補償矩陣82中以使得此一雙折射材料99的定向會被導引至與可移動式雙折射液晶96,97,08所以能定向的不同方向。如此一來,具有固定嵌入雙折射材料99的透明補償矩陣82將會具有一個補償效應,也就是產生至少像前述的補償薄膜24,21,22,221,222類似相近的結果。如果以整個概觀來看包含有限區域231,232,233之具有最小變異範圍的平均振幅調變之定義以及可移動雙折射液晶96,97,98的嵌入狀況,則光調變器50將可以受到控制以使得位於雙折射補償矩陣82之外的電極結構可以被使用並且讓光調變器50能夠展現最大的選擇性。
固定嵌入於雙折射層8與81的區域231,232,233 可以利用和內含於佛利德里克茲細胞單元(Freedericksz cell),歪斜排列配置相位細胞單元(DAP,distorted alignement phase cell),以及/或扭曲向列性細胞單元(TN,twisted nematic cell)相同型態的預先定向的液晶來作計量。
用作波長相依和角度相依之擴張補償的液晶其定向控制會在本案所提出之具體實施範例裡關於相位調變光調變器30,40,50,60中得到進一步地說明和介紹。本案所提出的方法也可以被運用在反射型態的類比式相位調變光調變器。
藉由本案所提出之在相位調變光調變器中用來確保最小振幅調變的方法,也可以被應用在相位調變光調變器30,40,50,60的定向控制上。藉由本案所提出之具體實施範例,光調變器30,40,50,60可以用佛利德里克茲細胞單元(Freedericksz cell)的形式來設計,也就是說液晶將不會被扭曲並且在直角被定向到玻璃平面19,20。光線將因此而只暴露在相位調變上,也就是說不會對極性狀態有任何的改變,也不會對振幅調變有任何的變異;如果光線被透射穿越了光調變器30,40,50,60,以及位在另外一側的偏振器(並未出現於圖中),並且以直角和具有線性偏光極性而與液晶91,92,93平行。
在佛利德里克茲細胞單元(Freedericksz cell)裡,極角α為20°且使用一個隨機亂數方位角來提供觀察者具有最小振幅調變之定向控制,而因此光線將會透射穿越光調變器30,40,50,或60。極角α為20°代表著光 線和玻璃平面19,20之表面垂直線16之間所夾的角度為20°。液晶91,92,93的方位角為0°且極角α會隨著所使用之電場強度而在0°與90°之間的範圍內作變異。液晶層8的厚度為4.3 μm。
在圖4b中,以光調變器60為例它可以配合位在上層玻璃平面19上的補償薄膜221,也可以配合位在下層玻璃平面20上的補償薄膜222。無論是補償薄膜221或222,每一片補償薄膜的厚度都是2.15 μm且包含一個具有液晶參數的雙折射材料,也就是ne=1.6727與n0=1.501。較佳的定向會在極角α 3為20°且方位角為180°時被發現得出。在光調變器60的交錯區段中,如圖4b所示,它將會對應到負向補償角θ 1=20°。
藉由本案所提出之相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法,其中的定向相關,可選擇,且連結附著的補償薄膜24,21,22,221,222和無法補償的光調變器,以及具有一個類比式振幅調變光調變器補償之光調變器比較起來要來得更為清晰。
在本案所提出之具體實施範例裡,當方位角為60°時,如果液晶9,91,92,93;96,97藉由所使用的電場而轉向到90°的最大極角時,以下的干擾振幅調變將會一直持續維持:-不再具有補償功能:振幅調變大約為25%;-在振幅調變光調變器中作補償:振幅調變大約為15%;-藉由本案所提出的補償方法:振幅調變大約為4%。
藉由本案所提出之在相位調變光調變器中用來確保最小振幅調變的方法,其中包含了至少一個透明光學主動體積區域11,12,13,而這些透明光學主動體積區域的折射率橢圓體可以針對每個畫素作離散地控制;以及至少一個具有固定折射率橢圓體94,95,99的雙折射材料,其中的透明光學主動體積區域11,12,13與透明光學主動補償體積區域24,21,22,221,222,82都會作某種特別的排列配置以使得透射穿越光調變器30,40,50,60的光線還會在穿越體積區域11,12,13;24,21,22,221,222,82;而此一方法主要會被應用在光調變器30,40,50,60中選擇且定義補償體積區域24,21,22,221,222,82的時候。
藉由本案所提出之相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法,其中在透明補償體積區域24,21,22,221,222,82中具有固定折射率橢圓體94,95,99的雙折射材料的定向被選擇,以致如果在一給定的視角範圍L-S-R中之平均是通過光學主動體積區域11,12,13和透明補償體積區域24,21,22,221,222,82之折射率橢圓體之所有定向而被執行,則光調變器30,40,50,60的平均振幅調變展現最小值,其中所述所有定向在光調變器30,40,50,60之可控式調變其間發生。
本案所提出之在相位調變光調變器中用來確保最小振幅調變的方法包括下列步驟:-定義一個視角範圍L-S-R,在此視角範圍裡平均振幅調變是最小化的;-定義一個變動範圍,在此變動範圍裡存在有一參數, 該參數包括包括電壓UM1,UM2和UM3,電壓UM1,UM2和UM3來自外部而提供給光調變器30,40,50,60,並且電壓UM1,UM2和UM3在該調變期間變化進而影響光學主動層8,81之折射率橢圓體;-在透明補償體積區域24,21,22,221,222,82裡定義一個具有固定折射率橢圓體94,95,99的雙折射材料之第一定向;-藉由光調變器30,40,50,60的透射或反射的數值模擬來計算一平均振幅調變,並且藉由改變通過該整個視角範圍(L-S-R)的透射角和藉由改變該參數(UM1,UM2,UM3)而發現透射或反射變動範圍以用於在該透明補償體積區域24,21,22,221,222,82裡具有固定折射率橢圓體94,95,99的該雙折射材料之第一定向,其中參數(UM1,UM2,UM3)從外部提供給光調變器30,40,50,60且通過它的整個變動範圍而被改變;-在透明補償體積區域24,21,22,221,222,82中定義一個額外的具有固定折射率橢圓體94,95,99之雙折射材料的定向,並且不斷重複數個模擬直到發現在透明補償體積區域24,21,22,221,222,82裡具有固定折射率橢圓體94,95,99的雙折射材料的定向為止,在其中透射或反射的平均振幅調變展現最小值;以及-在該透射或該反射的該平均振幅調變展現最小值之下,在固定折射率橢圓體94,95,99之定向中選擇並且定義具有雙折射材料的一排列之補償體積區域24,21,22,221,222,82。
當確認振幅調變的最小值時,在數個模擬裡所發現的光調變器30,40,50,60其透射可以針對不同的視角或視線方向L,S,R來作不同的加權處理。
在該透射的該平均振幅調變展現最小值的該定向下,藉由使用至少一雙折射透明補償薄膜,在透明補償體積區域24,21,22,221,222,82中具有固定折射率橢圓體94,95,99的雙折射材料,可以被安排,其中具有固定折射率橢圓體94,95,99的雙折射液晶在該各自的定向被嵌入該至少一雙折射透明補償薄膜。
當發現平均振幅調變的最小值時,視角範圍L-S-R可以被加以考慮用在透射的相位調變光調變器的透射角範圍的型式,以及用於反射的相位調變光調變器的反射角範圍的型式。
本案所揭露之技術,得由熟習本技術人士據以實施,而其前所未有之作法亦具備專利性,爰依法提出專利之申請。惟上述之實施例尚不足以涵蓋本案所欲保護之專利範圍,因此,提出申請專利範圍如附。
1‧‧‧第一畫素(First pixel)
2‧‧‧第二畫素(Second pixel)
3‧‧‧第三畫素(Third pixel)
4‧‧‧第一電極(First electrode)
5‧‧‧第二電極(Second electrode)
6‧‧‧第三電極(Third electrode)
7‧‧‧接地保護電極(Ground potential electrode)
8‧‧‧層(Layer)
81‧‧‧層(Layer)
82‧‧‧補償矩陣(Compensation matrix)
9‧‧‧液晶(Liquid crystal)
91‧‧‧液晶(Liquid crystal)
92‧‧‧液晶(Liquid crystal)
93‧‧‧液晶(Liquid crystal)
94‧‧‧液晶(Liquid crystal)
95‧‧‧液晶(Liquid crystal)
96‧‧‧液晶(Liquid crystal)
97‧‧‧液晶(Liquid crystal)
98‧‧‧液晶(Liquid crystal)
99‧‧‧液晶(Liquid crystal)
10‧‧‧第一光調變器(First light modulator)
11‧‧‧第一體積區域(First bulk region)
12‧‧‧第二體積區域(Second bulk region)
13‧‧‧第三體積區域(Third bulk region)
14‧‧‧第一邊界區域(First marginal region)
15‧‧‧第二邊界區域(Second marginal region)
16‧‧‧表面垂直線(Surface normal)
17‧‧‧第一邊界表面(First boundary surface)
18‧‧‧第二邊界表面(Second boundary surface)
19‧‧‧第一玻璃平面(First glass plate)
20‧‧‧第二玻璃平面(Second glass plate)
21‧‧‧第一補償薄膜(First compensation film)
22‧‧‧第二補償薄膜(Second compensation film)
221‧‧‧補償薄膜(Compensation film)
222‧‧‧補償薄膜(Compensation film)
231‧‧‧第一區域(First region)
232‧‧‧第二區域(Second region)
233‧‧‧第三區域(Third region)
24‧‧‧第三補償薄膜(Third compensation film)
30‧‧‧第三光調變器(Third light modulator)
40‧‧‧第四光調變器(Fourth light modulator)
50‧‧‧第五光調變器(Fifth light modulator)
60‧‧‧第六光調變器(Sixth light modulator)
61‧‧‧折射率橢圓體(Refractive index ellipsoid)
62‧‧‧主要軸線(Major axis)
63‧‧‧次要軸線(Minor axes)
UM1‧‧‧第一調變電壓(First modulation voltage)
UM2‧‧‧第二調變電壓(Second modulation voltage)
UM3‧‧‧第三調變電壓(Third modulation voltage)
G‧‧‧接地電壓準位(Ground potential)
S‧‧‧以直角射向光調變器的光線(Light directed at the light modulator under a right angle)
R‧‧‧從右側以傾斜角度射向光調變器的光線(Light directed at the light modulator under an oblique angle from the right)
L‧‧‧從左側以傾斜角度射向光調變器的光線(Light directed at the light modulator under an oblique angle from the left)
θ 1,θ 2‧‧‧補償角(Compensation angles)
α 1,α 2,α 3‧‧‧極角(Polar angles)
L-S-R‧‧‧視角範圍(Viewing angle range)
圖1 所示為過去所熟知的文件技術中相位調變光調變器裡具有三個畫素的詳細說明架構圖
圖2 所示為藉由過去所熟知的文件技術中圖1所示之光調變器中畫素的不同控制狀態的架構圖,其中:
圖2a所示為未使用電場的畫素,其中的液晶會預先定向而與電極平行。
圖2b所示為使用最大強度電場的畫素,其中的液晶會被定向到幾乎與電極垂直的方向。
圖2c所示為使用中等強度電場的畫素,其中的液晶會以一個傾斜角度而被定向到電極。
圖3 所示為本案所提出之相位調變光調變器,其中內含了一片補償薄膜的相位調變光調變器的三個畫素之詳細說明架構圖
圖4 所示為本案所提出之相位調變光調變器,其中在邊界表面上包含了一片補償薄膜的光調變器的相位調變畫素之詳細說明架構圖此時:圖4a所示為其中的二個補償薄膜其內含之折射率橢圓體的主軸彼此相交的情形,以及圖4b所示為其中的二個補償薄膜其內含之折射率橢圓體的主軸彼此平行的情形。
圖5 所示為本案所提出之相位調變光調變器,其中具有嵌入於光學主動層的區域之光調變器的結構圖,此時的光學主動層主要是用來作為補償層,而所謂的區域包含了可控式定向的液晶。
1‧‧‧第一畫素(First pixel)
2‧‧‧第二畫素(Second pixel)
3‧‧‧第三畫素(Third pixel)
4‧‧‧第一電極(First electrode)
5‧‧‧第二電極(Second electrode)
6‧‧‧第三電極(Third electrode)
7‧‧‧接地保護電極(Ground potential electrode)
8‧‧‧層(Layer)
9‧‧‧液晶(Liquid crystal)
91‧‧‧液晶(Liquid crystal)
92‧‧‧液晶(Liquid crystal)
93‧‧‧液晶(Liquid crystal)
94‧‧‧液晶(Liquid crystal)
11‧‧‧第一體積區域(First bulk region)
12‧‧‧第二體積區域(Second bulk region)
13‧‧‧第三體積區域(Third bulk region)
14‧‧‧第一邊界區域(First marginal region)
15‧‧‧第二邊界區域(Second marginal region)
16‧‧‧表面垂直線(Surface normal)
17‧‧‧第一邊界表面(First boundary surface)
18‧‧‧第二邊界表面(Second boundary surface)
24‧‧‧第三補償薄膜(Third compensation film)
30‧‧‧第三光調變器(Third light modulator)
UM1‧‧‧第一調變電壓(First modulation voltage)
UM2‧‧‧第二調變電壓(Second modulation voltage)
UM3‧‧‧第三調變電壓(Third modulation voltage)
α 1,α 2,α 3‧‧‧極角(Polar angles)
θ 1‧‧‧補償角(Compensation angles)
G‧‧‧接地電壓準位(Ground potential)

Claims (16)

  1. 一種相位調變光調變器,包含一光學主動層,及包含在其出口側的一偏振器,該光學主動層具有至少一光學主動體積區域及具有邊界表面,在所述光學主動層上配置有用來產生該光學主動層之平穩定向的機制;其中,該光學主動層包含具有預先定向折射率橢圓體的液晶,而該預先定向折射率橢圓體之定向對於每一畫素能夠藉由所述產生所述液晶之平穩定向的機制的協助而被離散地控制;其中,該光學主動層與至少一透明補償體積區域聯合,而該至少一透明補償體積區域包含具有固定折射率橢圓體之至少一雙折射材料;其特徵在於:該補償體積區域(24,21,22,221,222;82)的所述折射率橢圓體(94,95;99)在一給定的視角範圍(L-S-R)中,取決於該光學主動層(8;81)的所述可控式折射率橢圓體(9,91,92,93,96,97,98)的該定向,來與該光學主動層(8;81)的所述析射率橢圓體(9,91,92,93;96,97,98)相關聯而被定向(Oriented),以使得通過該給定的視角範圍(L-S-R)和該光學主動層的所述可控式折射率橢圓體的定向範圍所得的一波前的一平均振幅調變展現一最小值。
  2. 如申請專利範圍第1項所述的光調變器,其中該補償體積區域(24)由一透明雙折射補償薄膜所代表,該透明雙折射補償薄膜被配置與該光學主動層(8)之一側平行。
  3. 如申請專利範圍第1項所述的光調變器,其中該補償體積區域(21,22,221,222)由兩透明雙折射補償薄膜所代表,所述兩透明雙折射補償薄膜被配置在相對側且與該光學主動層(8)平行。
  4. 如申請專利範圍第2項或第3項所述的光調變器,其中所述 雙折射補償薄膜(21,22,221,222,24)包含液晶(94,95),所述液晶(94,95)的定向是固定的。
  5. 如申請專利範圍第4項所述的光調變器,其中所述兩補償薄膜(221,222)具有所述固定液晶(94)之均一補償角(θ 1)的定向,其中它們的補償角(θ 1)和在該光學主動層(8)中的所述液晶(93)之極角(α 3)相反。
  6. 如申請專利範圍第4項所述的光調變器,其中所述兩補償薄膜(21,22)具有交叉定向,且所述交叉定向具有所述液晶(94;95)的一固定負補償角(θ 1)和一固定正補償角(θ 2)。
  7. 如申請專利範圍第1項所述的光調變器,其中該光學主動層(81)包含具有固定定向液晶(99)的一補償體積區域(82),在該補償體積區域(82)中被嵌有包含可控式可定向液晶(96,97,98)的個別的封閉空間與畫素相關的區域(231,232,233),所述可控式可定向液晶的定向能夠藉由所述產生所述液晶(96,97,98)的平穩狀態的機制的協助而在這些區域(231,232,233)內受到控制。
  8. 如申請專利範圍第1項所述的光調變器,其中所述用來產生所述液晶(9,91,92,93,94,95,96,97,98)的平穩狀態的機制是電極(4,5,6,7),所述電極(4,5,6,7)被分配給該光學主動層(8,81)之畫素(1,2,3)。
  9. 如申請專利範圍第8項所述的光調變器,其中該光調變器(30,40,50,60)包含佛利德里克茲胞元(Freedericksz Cell)與/或DAP胞元與/或TN胞元。
  10. 如申請專利範圍第1項所述的光調變器,其中在該透明補償體積區域(24,21,22,221,222,82)中的所述固定定向液晶(94,95,99)被排列,以致如果在一給定的視角範圍(L-S-R)中,平均是通過該光學主動層(8,81)和該補償體積區域(24,21,22,221,222,82)的所述折射率橢圓體(9,91,92,93;94,95,96,97,98,99)的所有定向而被執行,則該光調變器(30,40,50,60)的該平均振幅調變展現最小值,其中所述所有定向在該光調變器(50,40,50,60)的一受控相位調變的期間發生。
  11. 如申請專利範圍第1項所述的光調變器,其中在該透明補償體積區域(24,21,22,221,222,82)中的所述固定定向液晶(94,95,99)被排列,以致如果在一給定的視角範圍(L-S-R)中,具有一給定加權的平均是通過該光學主動層(8,81)和該補償體積區域(24,21,22,221,222,82)的所述折射率橢圓體(9,91,92,93;94,95,96,97,98,99)的所有定向而被執行,則該光調變器(30,40,50,60)的該平均振幅調變展現最小值,其中所述所有定向在該光調變器(30,40,50,60)的一受控相位調變的期間發生。
  12. 一種在相位調變光調變器(30,40,50,60)中用來確保最小振幅調變的方法,該相位調變光調變器包含至少一透明光學主動體積區域(11,12,13)以及至少一透明光學主動補償體積區域(24,21,22,221,222,82),該至少一透明光學主動體積區域(11,12,13)的折射率橢圓體對於每一畫素能夠離散地被控制,該至少一透明光學主動補償體積區域(24,21,22,221,222,82)包含具有所述固定折射率橢圓體(94,95,99)的至少一雙折射材料,其中該透明光學主動體積區域(11,12,13)和該透明光學主動補償體積區域(24,21,22,221,222,82)被排列,以使得由觀察者所察覺的光線穿越這兩個體積區域(11,12,13; 24,21,22,221,222,82),該方法根據前述的申請專利範圍第1項到第11項而使用於所述相位調變光調變器中,其特徵在於:在該透明補償體積區域(24,21,22,221,222,82)中具有所述固定折射率橢圓體(94,95,99)的該雙折射材料的該定向被排列,以致如果平均是通過一給定的視角範圍(L-S-R)和通過該光學主動體積區域(11,12,13)與所述透明補償體積區域(24,21,22,221,222,82)的所述折射率橢圓體的所有定向而被執行,則經由該光調變器(30,40,50,60)的一波前的一平均振幅調變展現一最小值,其中所述所有定向在該光調變器(30,40,50,60)的一受控相位調變的期間發生。
  13. 如申請專利範圍第12項所述的方法,更包含以下的步驟:定義一視角範圍(L-S-R),一平均振幅調變在該視角範圍(L-S-R)中展現最小值;定義一變動範圍,在該變動範圍中,一參數(UM1,UM2,UM3)在該調變的期間被改變,該參數(UM1,UM2,UM3)從外部提供給該光調變器(30,40,50,60),並且影響該光學主動層(8,81)的所述折射率橢圓體;定義在所述透明補償體積區域(24,21,22,221,222,82)中具有固定折射率橢圓體(94,95,99)的該雙折射材料的第一定向;藉由該光調變器(30,40,50,60)的透射或反射之數值模擬方法計算一平均振幅調變,並且藉由改變通過該整個視角範圍(L-S-R)的視角和藉由改變該參數(UM1,UM2,UM3)而發現透射或反射變動範圍以用於在該透明補償體積區域(24,21,22,221,222,82)中具有固定折射率橢圓體(94,95,99)之該雙折射材料的第一定向,其中參數(UM1,UM2,UM3)從外部提供給該光調變器(30,40,50,60)且通過它的整個變動範圍而被改變;定義在該透明補償體積區域(24,21,22,221,222,82)中 具有固定折射率橢圓體(94,95,99)的該雙折射材料之額外定向,並且重複該數值模擬,直到在該透明補償體積區域(24,21,22,221,222,82)中具有固定折射率橢圓體(94,95,99)之該雙折射材料之定向被找到為止,以使得該透射或反射的該平均振幅調變展現最小值;以及在該透射或反射的該平均振幅調變及因此該平均振幅調變展現最小值之下,在所述固定折射率橢圓體的一定向選擇及定義具有該雙折射材料(94,95,99)之一排列的補償體積區域(24,21,22,221,222,82)。
  14. 如申請專利範圍第13項所述的方法,其中當決定該振幅調變的該最小值時,在該數值模擬中所找到的該光調變器(30,40,50,60)的該平均振幅調變用於不同的視角(L-S-R)而被差異性地加權。
  15. 如申請專利範圍第14項所述的方法,其中在該平均振幅調變展現最小值的該定向下,藉由使用至少一雙折射透明補償薄膜,在該透明補償體積區域(24,21,22,221,222,82)中具有所述固定折射率橢圓體(94,95,99)的該雙折射材料被排列,其中,具有所述固定折射率橢圓體(94,95,99)的液晶在該各自的定向被嵌入該至少一雙折射透明補償薄膜。
  16. 如申請專利範圍第12項所述的方法,其中當找到該平均振幅調變的該最小值時,該視角範圍(L-S-R)被考慮用於透射的相位調變光調變器的透射角範圍的型式,並且用於反射的相位調變光調變器的反射角範圍的型式。
TW097103635A 2007-01-31 2008-01-29 相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法 TWI387817B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007005821A DE102007005821B4 (de) 2007-01-31 2007-01-31 Lichtmodulator und Verfahren zur Gewährleistung einer minimalen Amplitudenmodulation in phasenmodulierenden Lichtmodulatoren

Publications (2)

Publication Number Publication Date
TW200844603A TW200844603A (en) 2008-11-16
TWI387817B true TWI387817B (zh) 2013-03-01

Family

ID=39315604

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097103635A TWI387817B (zh) 2007-01-31 2008-01-29 相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法

Country Status (5)

Country Link
US (1) US8928825B2 (zh)
JP (1) JP5349331B2 (zh)
DE (1) DE102007005821B4 (zh)
TW (1) TWI387817B (zh)
WO (1) WO2008092839A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188077B1 (ko) * 2013-12-11 2020-12-07 삼성전자주식회사 빔 결합/분배 변조기. 이를 이용한 디스플레이 장치, 및 공간 광 변조 방법
US10248081B2 (en) 2017-03-10 2019-04-02 Microsoft Technology Licensing, Llc Holographic phase and amplitude spatial light modulation
US10809529B2 (en) 2017-06-15 2020-10-20 Microsoft Technology Licensing, Llc Optical device having multiplexed electrodes
US10181336B1 (en) 2017-08-08 2019-01-15 Microsoft Technology Licensing, Llc Multi-beam optical system for fast writing of data on glass
US10236027B1 (en) 2018-02-12 2019-03-19 Microsoft Technology Licensing, Llc Data storage using light of spatially modulated phase and polarization
GB201803948D0 (en) * 2018-03-12 2018-04-25 Mbda Uk Ltd An imaging device
JP7227060B2 (ja) * 2018-04-13 2023-02-21 浜松ホトニクス株式会社 半導体発光素子
CN111081604A (zh) * 2019-12-02 2020-04-28 深圳市华星光电半导体显示技术有限公司 微发光二极管转移装置及微发光二极管转移方法
US11703719B2 (en) * 2020-01-10 2023-07-18 Beijing Boe Display Technology Co., Ltd. Liquid crystal display panel and method of manufacturing the same, and display device
CN113138505A (zh) * 2021-02-23 2021-07-20 西北工业大学 一种铁电液晶几何相位器件及其制备***和制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1318045C (en) * 1988-04-11 1993-05-18 J. William Doane Low loss liquid crystal modulator for coloring and shaping a light beam
US5240636A (en) * 1988-04-11 1993-08-31 Kent State University Light modulating materials comprising a liquid crystal microdroplets dispersed in a birefringent polymeric matri method of making light modulating materials
DE4339395B4 (de) * 1992-11-18 2007-11-29 Fujifilm Corp. Optisch anisotropes Element und Verfahren zur Herstellung desselben
JP3557290B2 (ja) * 1995-04-11 2004-08-25 富士写真フイルム株式会社 光学補償シート、その製造方法及び液晶表示装置並びにカラー液晶表示装置
JP3282986B2 (ja) 1996-02-28 2002-05-20 富士通株式会社 液晶表示装置
US5777706A (en) 1996-05-17 1998-07-07 Motorola, Inc. Nematic liquid crystal phase spatial light modulator for enhanced display resolution
WO2001020392A1 (en) * 1999-09-16 2001-03-22 Merck Patent Gmbh Optical compensator and liquid crystal display iii
CN1209638C (zh) 2000-05-15 2005-07-06 富士胶片株式会社 光学补偿片、偏振板和液晶显示器
US7471369B2 (en) * 2001-01-11 2008-12-30 Sipix Imaging, Inc. Transmissive or reflective liquid crystal display and process for its manufacture
KR20040061343A (ko) * 2002-12-30 2004-07-07 엘지.필립스 엘시디 주식회사 오. 씨. 비 모드 액정표시장치
US7034907B2 (en) * 2003-02-11 2006-04-25 Kent State University Stressed liquid crystals as an ultra-fast light modulating material consisting of unidirectionally oriented liquid crystal micro-domains separated by polymer chains
US7484887B2 (en) 2003-02-20 2009-02-03 Ysis Incorporated Digitally modified resistive output for a temperature sensor
JP4421271B2 (ja) 2003-11-28 2010-02-24 東芝モバイルディスプレイ株式会社 液晶表示装置
JP4686164B2 (ja) 2004-10-18 2011-05-18 東芝モバイルディスプレイ株式会社 液晶表示装置
TWI323797B (en) 2005-03-14 2010-04-21 Au Optronics Corp Liquid crystal display and fabrication method thereof

Also Published As

Publication number Publication date
JP5349331B2 (ja) 2013-11-20
DE102007005821A1 (de) 2008-08-14
US20100118219A1 (en) 2010-05-13
US8928825B2 (en) 2015-01-06
WO2008092839A1 (de) 2008-08-07
TW200844603A (en) 2008-11-16
JP2010517105A (ja) 2010-05-20
DE102007005821B4 (de) 2013-11-14

Similar Documents

Publication Publication Date Title
TWI387817B (zh) 相位調變光調變器及在相位調變光調變器中用來確保最小振幅調變的方法
TWI515495B (zh) 高速液晶偏極化調變器
US10012884B2 (en) High contrast electro-optic liquid crystal camera iris providing angle independent transmission for uniform gray shades
US8891042B1 (en) Electro-optic liquid crystal camera iris providing angle independent transmission for uniform gray shades
US8820937B2 (en) Optical polarization state modulator assembly for use in stereoscopic three-dimensional image projection system
US10401700B2 (en) High contrast electro-optic liquid crystal camera iris including liquid crystal material mixed with a dye to improve achromatic performance
CN106019720B (zh) 一种显示用基板、显示装置和曲面显示装置
US9210412B2 (en) Active shutter glasses and a stereoscopic image projection system wherein viewing angles of a shutter section for the left and right eyes are wider on right and left sides than on upper and lower sides
JP5262387B2 (ja) 液晶装置、プロジェクタ及び液晶装置の光学補償方法
US20090128719A1 (en) Liquid crystal device, projector, and optical compensation method of liquid crystal device
JP6099827B2 (ja) 高コントラスト電気光学液晶カメラアイリス
KR20180121028A (ko) 투과율 가변 장치
JPH11352492A (ja) マルチドメイン表面モ―ドデバイス
US8964136B2 (en) Active shutter glasses comprising a half-wave plate disposed at an outer side of a linear polarizing element and a stereoscopic image projection system
JP5552728B2 (ja) 液晶装置、プロジェクタ、液晶装置の光学補償方法及び位相差板
CN109964171B (zh) 相位调制器和光学器件
Scharf et al. An adaptive microlens formed by homeotropic aligned liquid crystal with positive dielectric anisotropy
US20230288731A1 (en) System and method for dynamic correction of astigmatism
De Smet et al. Simple multifocal lens based on liquid crystals
JP2002148661A (ja) 液晶表示装置
KR100789681B1 (ko) 향상된 시야각 특성을 가지는 lcd 장치
WO2013126454A1 (en) Optical polarization state modulator assembly for use in stereoscopic three-dimensional image projection system
JP2011180485A (ja) 反射型液晶装置および電子機器
JP2006091114A (ja) 液晶表示素子

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees