TWI384667B - Electrochemical apparatus with barrier layer protected substrate - Google Patents

Electrochemical apparatus with barrier layer protected substrate Download PDF

Info

Publication number
TWI384667B
TWI384667B TW095121091A TW95121091A TWI384667B TW I384667 B TWI384667 B TW I384667B TW 095121091 A TW095121091 A TW 095121091A TW 95121091 A TW95121091 A TW 95121091A TW I384667 B TWI384667 B TW I384667B
Authority
TW
Taiwan
Prior art keywords
substrate
electrochemical device
barrier
electrochemically activated
layer
Prior art date
Application number
TW095121091A
Other languages
Chinese (zh)
Other versions
TW200711204A (en
Inventor
Shawn W Snyder
Bernd J Neudecker
Original Assignee
Infinite Power Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/374,282 external-priority patent/US20080003496A1/en
Priority claimed from US11/209,536 external-priority patent/US8021778B2/en
Application filed by Infinite Power Solutions Inc filed Critical Infinite Power Solutions Inc
Publication of TW200711204A publication Critical patent/TW200711204A/en
Application granted granted Critical
Publication of TWI384667B publication Critical patent/TWI384667B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

具有阻障層保護之基材的電化學設備Electrochemical device with substrate protected by barrier layer

本發明是關於鋰系固態薄膜二次電池與一次電池的裝置、組成、及製造方法,其具有較高的電容密度、能量密度與功率密度,且較佳為具有彈性形成因子(flexible form factor)、及結晶之氧化鋰鈷、氧化鋰鎳、氧化鋰錳與衍生材料所構成的陰極。The present invention relates to a device, a composition, and a manufacturing method of a lithium-based solid-state thin film secondary battery and a primary battery, which have high capacitance density, energy density, and power density, and preferably have a flexible form factor. And a cathode composed of crystallized lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide and a derivative material.

以下敘述說明薄膜電池的演進及技術發展需求。The following description illustrates the evolution and technical development needs of thin film batteries.

薄膜電池是由相繼真空沉積於一特定基材上的多層電池元件所構成,其例如依序包括正陰極集電層、正陰極、負陽極集電層、電解質(隔離膜)、負陽極、及封裝物或包裝物。積層製程(lamination process)可替代沉積製程,例如可參考美國專利證書號6,916,679與Wang等人於143 J.Electrochem.Soc.320313(1996) 所著之文獻或美國專利證書號5,561,004。或者,薄膜電池的兩端並非直接包含正集電層與負集電層的延伸部,而是另設終端接觸點(terminal contact),以電氣接觸各集電層。正陰極材料在沉積時若不完全為結晶態,則其電化學性質可能不足(可參考前述Wang等人之文獻)。有鑑於此,在製造電池時,正陰極可利用一沉積後之高溫(退火)製程使其結晶(可參考前述Wang等人之文獻或Bates等人於New Trends in Electrochemical Technology:Energy Storage Systems for Electronics (T.Osaka & M.Datta eds.,Gordon and Breach 2000)所著之“Thin-Film Lithium Batteries”)。在沉積正陰極後立即進行退火製程會限制基材與正陰極集電層的材料種類,如此也限定了薄膜電池每單位體積與重量的電容密度、能量密度與功率密度。基材材料對此三種性質的影響將詳述於後。A thin film battery is composed of a plurality of battery elements successively vacuum deposited on a specific substrate, which includes, for example, a positive cathode collector layer, a positive cathode, a negative anode collector layer, an electrolyte (separator), a negative anode, and Encapsulation or packaging. A lamination process can be substituted for the deposition process. For example, reference is made to U.S. Patent No. 6,916,679 to Wang et al., 143 J. Electrochem. Soc . 3203-13 (1996) or U.S. Patent No. 5,561,004. Alternatively, the two ends of the thin film battery do not directly include extension portions of the positive collector layer and the negative collector layer, but a terminal contact is additionally provided to electrically contact the collector layers. If the positive cathode material is not completely crystalline during deposition, its electrochemical properties may be insufficient (refer to the aforementioned Wang et al. literature). In view of this, in the manufacture of a battery, the positive cathode can be crystallized by a post-deposition high temperature (annealing) process (refer to the aforementioned Wang et al. or Bates et al. in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics). (Thin-Film Lithium Batteries) by T.Osaka & M.Datta eds., Gordon and Breach 2000). Annealing immediately after deposition of the positive cathode limits the material type of the substrate and the positive cathode collector layer, which also limits the capacitance density, energy density, and power density per unit volume and weight of the thin film battery. The effect of the substrate material on these three properties will be detailed later.

鋰基固態薄膜二次(可充電)電池與一次(不可充電)電池本質上單位體積與重量的電容密度、能量密度與功率密度(不含基材與封裝物或包裝物)主要取決於正陰極材料之單位體積與重量的電容密度、能量密度與功率密度。就單位體積與重量的電容密度、能量密度與功率密度來說,結晶氧化鋰鈷(LiCoO2 )可做為塊狀(非薄膜)及薄膜電池的正陰極材料,至於二次電池則可使用結晶氧化鋰錳(LiMn2 O4 、LiMnO2 )與結晶氧化鋰鎳(LiNiO2 )之衍生物。摻雜過渡金屬(如鈧(Sc)、鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、釔(Y)、鋯(Zr)、鍩(No)、鉬(Mo)、銣(Ru)、銠(Rh)、鑭(La)、鉿(Hf)、鉭(Ta)、鎢(W)與錸(Re))或摻雜第1、2、13、14、15、16與17族之元素於上述正陰極材料中可些微或全面改善LiCoO2 、LiMn2 O4 、LiMnO2 、LiNiO2 的性質。Lithium-based solid-state film secondary (rechargeable) batteries and primary (non-rechargeable) batteries. Intrinsic capacitance density, energy density and power density per unit volume and weight (excluding substrates and packages or packaging) are mainly determined by the positive cathode. Capacitance density, energy density and power density per unit volume and weight of the material. In terms of capacitance density, energy density and power density per unit volume and weight, crystalline lithium cobalt oxide (LiCoO 2 ) can be used as a positive (cathode) material for bulk (non-film) and thin film batteries, and as a secondary battery, crystallization can be used. A derivative of lithium manganese oxide (LiMn 2 O 4 , LiMnO 2 ) and crystalline lithium nickel oxide (LiNiO 2 ). Doped transition metals (such as strontium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu) , zinc (Zn), yttrium (Y), zirconium (Zr), yttrium (No), molybdenum (Mo), yttrium (Ru), yttrium (Rh), yttrium (La), yttrium (Hf), yttrium (Ta) , tungsten (W) and yttrium (Re)) or doped elements of Groups 1 , 2 , 13 , 14 , 15, 16 and 17 may slightly or comprehensively improve LiCoO 2 , LiMn 2 O 4 , in the above-mentioned positive cathode material, Properties of LiMnO 2 and LiNiO 2 .

根據美國專利證書號6,280,875所述,鈦基材上原生(native)氧化鈦的惰性並不足以避免鈦基材與電池元件間的逆反應。然此法只侷限在於退火處理正陰極時能於表面產生原生氧化物的基材材料。除本發明外,金屬基材,包括無法形成表面原生氧化物的可撓性金屬箔,尚未成功地當作薄膜電池的基材。藉由直接沉積高溫陰極材料於金屬基材(例如包括除鋯以外的可撓性金屬箔)上、接著以高溫(如700℃)於空氣中退火1小時來製作固態薄膜二次電池,會造成正陰極與基材材料反應,進而導致正陰極失效。純鈦與純鋯的基材也很昂貴。According to U.S. Patent No. 6,280,875, the inertness of the native titanium oxide on the titanium substrate is insufficient to avoid a reverse reaction between the titanium substrate and the battery element. However, this method is limited only to the substrate material capable of producing a native oxide on the surface when the positive cathode is annealed. In addition to the present invention, metal substrates, including flexible metal foils which are incapable of forming surface native oxides, have not been successfully used as substrates for thin film batteries. A solid thin film secondary battery is fabricated by directly depositing a high temperature cathode material on a metal substrate (for example, a flexible metal foil including zirconium except for zirconium) and then annealing it in air at a high temperature (for example, 700 ° C) for 1 hour. The positive cathode reacts with the substrate material, which in turn causes the positive cathode to fail. Pure titanium and pure zirconium substrates are also expensive.

習知薄膜電池並未在基材與電池之間使用有效的阻障層而具潛在缺失。因此需要一種新穎的、具子層之阻障層來克服習知薄膜電池的問題。Conventional thin film batteries do not have the potential to be used with an effective barrier layer between the substrate and the battery. There is therefore a need for a novel, sub-layered barrier layer to overcome the problems of conventional thin film batteries.

本發明之各態樣與實施例將舉例詳述於下,並提出先前技術的不足與相關產業的需求。Various aspects and embodiments of the present invention will be described in detail below, and the deficiencies of the prior art and the needs of related industries are proposed.

隨著可攜式元件與電路板上的元件數目快速增加,其可利用的物理尺寸亦隨之不斷縮小。用於這些元件的電池應因應元件的需求來縮小尺寸,並例如提供相同的電量。電池越薄,其可應用的範圍越廣。供電元件之一為薄膜固態電池。由於所佔面積不斷縮小,卻仍需要高電容量,如何在現有空間(所佔面積×高度)內盡可能包裝、堆疊電池就變得很重要。As the number of components on portable components and boards increases rapidly, the physical size available to them continues to shrink. The batteries used for these components should be downsized in response to the needs of the components and, for example, provide the same amount of power. The thinner the battery, the wider the range of applications. One of the power supply elements is a thin film solid state battery. As the area is shrinking, but still need high capacity, how to pack and stack batteries as much as possible within the existing space (area × height) becomes very important.

具最高電容量、電壓、電流、功率與充電次數的電池可善用現今最有效的正陰極(positive cathode)材料,例如LiCoO2 、LiMn2 O4 、LiMnO2 、LiNiO2 與其衍生物。A battery with the highest capacitance, voltage, current, power and charge times can make good use of the most effective positive cathode materials available today, such as LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 and its derivatives.

這些材料經真空沉積為薄膜後,最好再利用沉積後之高溫退火製程來改善材料的結晶性,其結晶性與電化學性息息相關。為使採用薄膜電池的電化學設備變薄,電化學設備中主要的惰性、非電化學活性的部分應隨之變薄。達成方法之一為將電池建構在薄金屬箔基材上,而非厚塊陶瓷基材。金屬箔比具相同使用面積大小的陶瓷基材更柔韌、更薄、且更便宜。再者,其較易取得大面積,故可降低製造成本。After vacuum deposition of these materials into a thin film, it is preferable to use a high-temperature annealing process after deposition to improve the crystallinity of the material, and its crystallinity is closely related to electrochemical properties. In order to thin an electrochemical device using a thin film battery, the main inert, non-electrochemically active portion of the electrochemical device should be thinned. One way to achieve this is to build the battery on a thin metal foil substrate instead of a thick ceramic substrate. Metal foils are more flexible, thinner, and less expensive than ceramic substrates of the same footprint. Moreover, it is easier to obtain a large area, so the manufacturing cost can be reduced.

然而如同其他的正陰極材料,LiCoO2 為強氧化劑,且具有高移動性與反應性的鋰離子。在結晶化沉積LiCoO2 膜層的高溫退火狀態下,除有限的惰性陶瓷外,鋰離子會與大部分的金屬、合金及許多化合物激烈反應。有時在高溫退火狀態下,基材中的有害物質會擴散至LiCoO2 ,並污染正陰極而劣化其電化學性質。若為了避免不必要的反應與擴散而維持低溫退火,則正陰極可能無法完全結晶化,進而影響電容、能量、電流與功率性能、及充電電池的使用壽命(充電次數)。However, like other positive cathode materials, LiCoO 2 is a strong oxidant and has high mobility and reactivity of lithium ions. In the high temperature annealing state of the crystallized deposited LiCoO 2 film layer, in addition to the limited inert ceramic, lithium ions react violently with most metals, alloys and many compounds. Sometimes in a high-temperature annealed state, harmful substances in the substrate diffuse to LiCoO 2 and contaminate the positive cathode to deteriorate its electrochemical properties. If the low temperature annealing is maintained in order to avoid unnecessary reaction and diffusion, the positive cathode may not be fully crystallized, thereby affecting the capacitance, energy, current and power performance, and the service life of the rechargeable battery (the number of times of charging).

高能正陰極材料在結晶態時可充分展露其電化學性質。這些材料可以薄膜形式應用於本發明,其沉積方法一般為常見的氣相薄膜沉積法,例如濺鍍法(RF、脈衝DC或AC)、電子束蒸發、化學氣相沉積、電漿增強化學氣相沉積、噴霧熱解、輔助離子束沉積、電子束直接氣相沉積、陰極電弧沉積等。氣相沉積法所沉積之正陰極膜層的電化學性質,不若由用於塊體電池(如手機與攝錄像機用電池)之良好結晶性粉末所製得的正陰極佳。由此可推論,薄膜沉積法形成的正陰極具有較差的電化學性質乃起因於其沉積態的結晶度不夠。The high energy positive cathode material can fully exhibit its electrochemical properties in the crystalline state. These materials can be applied to the present invention in the form of a film, and the deposition method is generally a common vapor phase thin film deposition method such as sputtering (RF, pulsed DC or AC), electron beam evaporation, chemical vapor deposition, plasma enhanced chemical gas. Phase deposition, spray pyrolysis, auxiliary ion beam deposition, electron beam direct vapor deposition, cathodic arc deposition, and the like. The electrochemical properties of the positive cathode film deposited by vapor deposition are not preferred for positive cathodes made from good crystalline powders for bulk batteries such as batteries for cell phones and camcorders. It can be inferred that the positive cathode formed by the thin film deposition method has poor electrochemical properties due to insufficient crystallinity in its as-deposited state.

結晶度可利用沉積後之高溫退火製程加以改善,退火溫度一般為200℃至900℃,較佳為500℃至850℃,更佳為650℃至800℃。退火時的氛圍一般為空氣、氧氣、氮氣、氬氣、氦氣、氫氣、水、二氧化碳、真空(壓力小於1托耳(Torr))、或其混合物。為達到足夠的結晶度而使電化學性質得到改善,當退火溫度低於約650℃時,應延長退火時間。結晶化速度為隨溫度指數增加,故結晶化速度會隨溫度下降而明顯降低。若退火溫度降得太低,則退火溫度所產生的能量將不足以克服結晶化製程所需的熱活化能。例如,在空氣中以900℃退火處理磁電管濺鍍之LiCoO2 膜層15分鐘後的結晶度等同於在空氣中以700℃退火約1小時或以600℃退火約12小時的結晶度。磁電管濺鍍之LiCoO2 陰極膜層經在空氣中以400℃退火24小時後的電化學性質仍然不佳,且即使退火處理72小時也不見改善。是以,氣相沉積之LiCoO2 陰極膜層可在沉積後於空氣中以700℃退火約30分鐘至2小時。太高的退火溫度會有化學相容性的問題,以致此退火步驟不適合用來製造薄膜電池、且會增加成本與降低產率。The degree of crystallinity can be improved by a high temperature annealing process after deposition, and the annealing temperature is usually from 200 ° C to 900 ° C, preferably from 500 ° C to 850 ° C, more preferably from 650 ° C to 800 ° C. The atmosphere during annealing is typically air, oxygen, nitrogen, argon, helium, hydrogen, water, carbon dioxide, vacuum (pressure less than 1 Torr), or mixtures thereof. The electrochemical properties are improved to achieve sufficient crystallinity, and the annealing time should be extended when the annealing temperature is below about 650 °C. The crystallization rate increases as the temperature index increases, so the crystallization rate decreases significantly as the temperature decreases. If the annealing temperature is lowered too low, the energy produced by the annealing temperature will not be sufficient to overcome the thermal activation energy required for the crystallization process. For example, the crystallinity after annealing the magnetron sputtered LiCoO 2 film layer at 900 ° C for 15 minutes in air is equivalent to the crystallinity of annealing at 700 ° C for about 1 hour in air or annealing at 600 ° C for about 12 hours. The electrochemical properties of the magnetron sputtered LiCoO 2 cathode film layer after annealing at 400 ° C for 24 hours in air were still poor, and no improvement was observed even after annealing for 72 hours. Therefore, the vapor deposited LiCoO 2 cathode film layer can be annealed in air at 700 ° C for about 30 minutes to 2 hours after deposition. Too high an annealing temperature has a problem of chemical compatibility, so that this annealing step is not suitable for manufacturing a thin film battery, and it increases cost and yield.

沉積後之退火處理條件會限制基材材料的選用。基材不僅要能耐高退火溫度(大於500℃),最好還能在退火氛圍、電池操作與儲存的環境中不與接觸基材的電池元件材料層發生化學反應。另外,基材最好不具有在製造、或操作與儲存電化學設備的過程中會擴散到電池元件材料層的雜質。雜質會破壞電池元件材料層,進而降低、甚至毀壞電池性能與使用壽命。具化學惰性、耐高溫且可當作基材的陶瓷例如為氧化鋁(Al2 O3)、氧化鎂(MgO)、氯化鈉(NaCl)、碳化矽(SiC)與石英玻璃。鋯與鈦二種金屬已被論證其不適於做為金屬基材。本發明之電化學設備不需使用鋯基材或鈦基材。Annealing conditions after deposition limit the choice of substrate material. The substrate is not only resistant to high annealing temperatures (greater than 500 ° C), but preferably does not chemically react with the material layer of the battery element contacting the substrate in an annealing atmosphere, battery handling and storage environment. Additionally, the substrate preferably does not have impurities that can diffuse into the layer of material of the battery element during manufacture, or handling and storage of the electrochemical device. Impurities can damage the material layer of the battery component, thereby reducing or even destroying battery performance and service life. Ceramics which are chemically inert, resistant to high temperatures and which can be used as a substrate are, for example, alumina (Al 2 O 3 ), magnesium oxide (MgO), sodium chloride (NaCl), tantalum carbide (SiC) and quartz glass. Zirconium and titanium have been demonstrated to be unsuitable as metal substrates. The electrochemical device of the present invention does not require the use of a zirconium substrate or a titanium substrate.

雖然上述陶瓷可耐高溫且在製造薄膜電池的過程中不會產生化學反應,然在使用上卻有成本考量。至少5密爾(mil)(約125微米)厚的陶瓷易碎、剛硬且較貴。此外,其薄面積大小亦受到限制。陶瓷基材越薄,陶瓷不會碎裂的最大安全面積越小。以市售面積為12英吋×12英吋、厚度為1/4英吋的Al2 O3 基材為例。薄化與研磨Al2 O3 基材使之厚度變成10 mil(約250微米)後,可用於製造使用的面積減為約4英吋×4英吋。厚度薄(小於20 mil或小於500 mil)、面積4英吋×8英吋之已研磨陶瓷基材雖可特製取得,然其非具合理價錢的常規物品,故不適合大規模應用至薄膜電池製造。Although the above ceramics are resistant to high temperatures and do not cause a chemical reaction during the manufacture of the thin film battery, there are cost considerations in use. At least 5 mil (about 125 microns) thick ceramics are brittle, rigid and relatively expensive. In addition, its thin area is also limited. The thinner the ceramic substrate, the smaller the maximum safe area where the ceramic will not shatter. For example, an Al 2 O 3 substrate having a commercially available area of 12 inches × 12 inches and a thickness of 1/4 inch is used. After thinning and grinding the Al 2 O 3 substrate to a thickness of 10 mils (about 250 microns), the area available for manufacturing use is reduced to about 4 inches x 4 inches. A thin ceramic substrate (less than 20 mil or less than 500 mil) and an area of 4 inches x 8 inches can be specially made. However, it is not suitable for large-scale application to thin film battery manufacturing. .

由於陶瓷厚度小於約100微米即變得易碎,故使用陶瓷當作薄膜電池的基材是不可行的(儘管美國專利證書號6,632,563曾採用厚度小於100微米的雲母(Mica)基材)。Mica即使厚度大於100微米仍非常脆且易碎。使用的陶瓷基材厚度大於100微米會造成基材非電化學活性的重量與體積超過整體電池重量與體積的90%,此為不樂見的結果。The use of ceramics as a substrate for thin film batteries is not feasible because the ceramic thickness is less than about 100 microns (although U.S. Patent No. 6,632,563 has used a mica substrate having a thickness of less than 100 microns). Mica is very brittle and brittle even at thicknesses greater than 100 microns. The use of a ceramic substrate having a thickness greater than 100 microns results in a non-electrochemically active weight and volume of the substrate that exceeds 90% of the overall cell weight and volume, which is an unpleasant result.

基於上述原因,可採用非陶瓷箔(foil)做為薄膜電池的基材。非陶瓷基材例如包括金屬基材與高分子基材,矽基材與摻雜矽基材則介於陶瓷基材與非陶瓷基材之間。For the above reasons, a non-ceramic foil can be used as the substrate of the thin film battery. The non-ceramic substrate includes, for example, a metal substrate and a polymer substrate, and the tantalum substrate and the doped germanium substrate are interposed between the ceramic substrate and the non-ceramic substrate.

使用非陶瓷箔做為薄膜電池之基材的好處例如為,其可抵擋製程條件(包括溫度)且可接觸可能具反應性的電池元件層。相較於陶瓷基材,非陶瓷基材可更薄、更柔韌、更便宜、更易取得大面積,故在減少整體電池的非電化學活性部分的重量與體積來提高電池之電容密度、能量密度與功率密度時,可減少電池或電化學設備的整體厚度。非陶瓷箔的厚度例如為0.5-5 mil(約12-125微米),而長度與寬度可達數尺。長捲製的基材可採用捲式(roll-to-roll)製程,其成本較一般批次製程低。相較於將薄膜電池製作在厚且硬的基材上,將薄膜電池製作在更薄與更柔韌的基材上並且不會影響電池性能,更可開拓薄膜電池的應用範圍。The advantage of using a non-ceramic foil as a substrate for a thin film battery is, for example, that it can withstand process conditions (including temperature) and can contact a potentially reactive battery element layer. Compared with ceramic substrates, non-ceramic substrates can be thinner, more flexible, cheaper, and easier to obtain large areas, so the weight and volume of the non-electrochemically active portion of the overall battery are reduced to increase the capacitance density and energy density of the battery. When combined with power density, the overall thickness of the battery or electrochemical device can be reduced. Non-ceramic foils have a thickness of, for example, 0.5 to 5 mils (about 12 to 125 microns) and lengths and widths of up to several feet. Long-rolled substrates can be rolled-to-rolled at a lower cost than typical batch processes. Compared to the thin film battery fabricated on a thick and hard substrate, the thin film battery can be fabricated on a thinner and more flexible substrate without affecting the battery performance, and the application range of the thin film battery can be further explored.

藉由有效薄化基材來減少電池的非電化學活性部分之重量與體積,可提高電池每單位重量與體積的電容密度、能量密度與功率密度。以可用體積為2公分×2公分×0.1公分之應用為例。現今鈕扣型電池或膠捲(jelly roll)電池(螺旋型或方型)均不符合此體積大小。然薄膜固態電池即使製作於0.05公分厚的陶瓷基材上,整體電池(包括一選擇性的保護封裝物或包裝物,其可參照後述定義)厚度仍遠小於0.1公分。將薄膜電池製作在2 mil(約50微米=0.005公分)厚的基材上並具相同大小的使用面積與電池容量時,在此體積內可堆入20個電池。實際可堆疊的電池數目取決於各電池包括其基材與保護封裝物或包裝物的厚度。以薄的非陶瓷基材取代厚的陶瓷基材可大幅增加電容密度、能量密度與功率密度。By effectively thinning the substrate to reduce the weight and volume of the non-electrochemically active portion of the cell, the capacitance density, energy density, and power density per unit weight and volume of the cell can be increased. Take an example where the available volume is 2 cm x 2 cm x 0.1 cm. Today, button-type batteries or jelly rolls (spiral or square) do not meet this size. However, even if the thin-film solid-state battery is fabricated on a ceramic substrate having a thickness of 0.05 cm, the thickness of the entire battery (including a selective protective package or package, which can be defined later) is still much less than 0.1 cm. When a thin film battery is fabricated on a 2 mil (about 50 micrometers = 0.005 cm) thick substrate and has the same size and battery capacity, 20 batteries can be stacked in this volume. The actual number of cells that can be stacked depends on the thickness of each cell including its substrate and protective package or package. Replacing thick ceramic substrates with thin, non-ceramic substrates can dramatically increase capacitance density, energy density, and power density.

薄膜電池的製造例如為依序沉積電池元件層於各層之上。正陰極材料的例子包括LiCoO2 、LiMn2 O4 、LiMnO2 、LiNiO2 及其衍生物,但不以此為限。本發明之電化學設備不需使用氧化鋰釩(Lix V2 Oy ,其中0<x100且0<y5)。正陰極於沉積後的退火溫度為高於500℃,以完全結晶化正陰極而得最佳的電化學性質。由於部分已知的固態鋰電解質在高溫接觸正陰極時會破壞正陰極,故可在沉積電解質層之前,先沉積正陰極及進行退火製程。The thin film battery is fabricated, for example, by sequentially depositing a layer of battery elements over each layer. Examples of the positive cathode material include LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 and derivatives thereof, but are not limited thereto. The electrochemical device of the present invention does not need to use lithium vanadium oxide (Li x V 2 O y , where 0<x 100 and 0<y 5). The annealing temperature of the positive cathode after deposition is higher than 500 ° C to obtain the best electrochemical properties by completely crystallizing the positive cathode. Since some known solid lithium electrolytes destroy the positive cathode when it contacts the positive cathode at a high temperature, a positive cathode can be deposited and an annealing process can be performed before depositing the electrolyte layer.

在電池操作過程中,至少在正陰極材料的某些充電狀態範圍中,正陰極材料一般屬於不良的半導體。故為獲得電池的最大功率並供應給外部電路,正陰極層可沉積於背接觸點(back contact)上,即陰極集電(CCC)層上。CCC層亦須能耐高溫退火處理且同時不與正陰極反應。CCC材料可為貴金屬,例如金或其合金、或其均等物。The positive cathode material generally belongs to a poor semiconductor during battery operation, at least in certain states of charge of the positive cathode material. Therefore, in order to obtain the maximum power of the battery and supply it to an external circuit, the positive cathode layer can be deposited on a back contact, that is, a cathode current collecting (CCC) layer. The CCC layer must also be resistant to high temperature annealing while not reacting with the positive cathode. The CCC material can be a precious metal such as gold or an alloy thereof, or an equivalent thereof.

為改善電池性能,可在沉積CCC層之後,再沉積正陰極材料做為一第二電池元件層。在進行下一步驟(沉積電解質)之前,可先退火處理正陰極層以充分結晶化。因只用很薄的CCC層(0.1微米至1微米)隔開高溫陰極材料與基材,故二者非常接近,若不使用陶瓷基材而是使用高溫穩定之金屬箔(如不鏽鋼),則正陰極與基材彼此會不當地交互擴散及反應。金屬CCC層本身無法阻擋交互擴散的原因有三。第一,CCC層很薄(0.1微米至1微米),其只能充當一薄的擬(pseudo)擴散阻障層。第二,CCC層具結晶晶粒結構。晶粒邊界(grain boundary)通常是離子與電子擴散及傳導處,故CCC層可視為相鄰之正陰極層與金屬箔基材的離子與電子本來就可穿透其中。因此在陰極退火步驟中,箔基材材料與陰極層材料會交互擴散。第三,金屬CCC層會直接與金屬箔基材形成合金而影響其集電性質(current collecting properties)。To improve battery performance, a positive cathode material can be deposited as a second battery element layer after deposition of the CCC layer. The positive cathode layer may be annealed to be sufficiently crystallized before proceeding to the next step (deposition of the electrolyte). Since the high temperature cathode material and the substrate are separated by only a very thin CCC layer (0.1 micron to 1 micron), the two are very close. If a ceramic substrate is not used but a high temperature stable metal foil (such as stainless steel) is used, The positive cathode and the substrate may be improperly diffused and reacted with each other. There are three reasons why the metal CCC layer itself cannot block the mutual diffusion. First, the CCC layer is very thin (0.1 microns to 1 micron) and can only act as a thin pseudo diffusion barrier layer. Second, the CCC layer has a crystalline grain structure. The grain boundary is usually the diffusion and conduction of ions and electrons, so the CCC layer can be regarded as the ions and electrons of the adjacent positive cathode layer and the metal foil substrate can penetrate therethrough. Therefore, in the cathode annealing step, the foil substrate material and the cathode layer material are mutually diffused. Third, the metal CCC layer will form an alloy directly with the metal foil substrate to affect its current collecting properties.

CCC層的厚度取決於成本、用量、體積與黏著性等,考量這些因素後可能無法製作出厚度大於約2微米的CCC層,尤其是使用昂貴的貴金屬(如金)時。依退火之溫度與時間而定,CCC層的厚度超過約5微米時即可能避免交互擴散作用。然而使用如此厚的CCC層會增加材料成本且黏著性不佳。The thickness of the CCC layer depends on cost, amount, volume and adhesion, etc., considering these factors, it may not be possible to produce a CCC layer having a thickness greater than about 2 microns, especially when expensive precious metals such as gold are used. Depending on the temperature and time of annealing, cross-diffusion may be avoided when the thickness of the CCC layer exceeds about 5 microns. However, the use of such a thick CCC layer increases material costs and poor adhesion.

除減少製造成本外,用金屬箔基材取代陶瓷基材更大幅拓展了薄膜電池的技術與應用機會。不同於陶瓷基材,市面上很容易取得厚度小於75微米之金屬箔,有些材料厚度甚至只有4微米。金屬箔比其陶瓷對應物更柔韌,並提供電池在結構上較少之非活性部分的量,且最重要的是可降低薄膜電池元件的整體厚度。對大部分薄膜電池的應用而言,降低整體厚度與提高電池柔韌性是相當重要的。較薄的薄膜電池元件可應用到新的、小體積的裝置中。鈕扣型電池無法應用的部分現已可由薄膜電池實現,例如應用到智慧卡等。箔基材具有的柔韌性更可使其改變成新的、非平面狀的造型。In addition to reducing manufacturing costs, the replacement of ceramic substrates with metal foil substrates has greatly expanded the technology and application opportunities of thin film batteries. Unlike ceramic substrates, metal foils less than 75 microns thick are readily available on the market, and some are even 4 microns thick. Metal foils are more flexible than their ceramic counterparts and provide an amount of structurally less reactive portion of the cell and, most importantly, reduce the overall thickness of the thin film battery component. For most thin film battery applications, it is important to reduce overall thickness and increase battery flexibility. Thinner thin film battery components can be applied to new, small-volume devices. The unusable parts of the button-type battery can now be implemented by thin-film batteries, such as smart cards. The flexibility of the foil substrate allows it to be altered into a new, non-planar shape.

再者,薄金屬箔每單位使用面積比陶瓷還便宜,且可以捲繞形式而得到較大的尺寸。因具柔韌性,大面積的基材可用捲式製程製造,故可進一步降低生產成本。Furthermore, the thin metal foil is also cheaper than the ceramic per unit use area, and can be wound into a larger size. Due to the flexibility, large-area substrates can be manufactured in a roll-to-roll process, which further reduces production costs.

相較於習知製作在陶瓷基材上的薄膜電池,改良之薄膜電池更能實施在新的應用領域。有鑑於此,本發明還包括沉積一交互擴散阻障層於金屬箔基材上,其中在高、低溫退火溫度(如100℃至基材熔點)及電化學裝置的所有操作與儲存的條件下,阻障層化學性隔開電化學裝置的電池(如電化學活化胞)部分及基材部分,且不會成為雜質的來源。本發明之一實施例繪示於第1圖。Compared with conventional thin film batteries fabricated on ceramic substrates, the improved thin film battery can be implemented in new fields of application. In view of this, the present invention also includes depositing an interdiffusion barrier layer on a metal foil substrate, wherein the high and low temperature annealing temperatures (e.g., 100 ° C to the melting point of the substrate) and all operating and storage conditions of the electrochemical device The barrier layer chemically separates the battery (eg, electrochemically activated cell) portion of the electrochemical device from the substrate portion and does not become a source of impurities. An embodiment of the invention is illustrated in Figure 1.

在電池製造、操作與儲存的過程中,阻障層可防止污染物從基材擴散到電池,且可阻擋離子流出電池而擴散到基材。阻障層在任何時候都不具晶粒結構。即阻障層在沉積後為無定形態(amourphous)或玻璃態(glassy),且在整個退火與電池製程、及電池操作與儲存條件下均維持不變。電池元件層不含晶粒結構可避免離子與電子於晶粒邊界中擴散或傳導。如前述,晶粒邊界是雜質與污染物行經路徑。若符合部分條件,則製作於金屬基材(柔韌且薄、或較不柔韌且較厚)上的薄膜電池性質即可擬製作於陶瓷基材(具化學惰性,然較厚重、剛硬且昂貴)上的薄膜電池性質。During battery manufacturing, handling, and storage, the barrier layer prevents contaminants from diffusing from the substrate to the cell and prevents ions from flowing out of the cell and diffusing to the substrate. The barrier layer does not have a grain structure at any time. That is, the barrier layer is amourphous or glassy after deposition and remains constant throughout the annealing and battery process, as well as battery handling and storage conditions. The cell element layer does not contain a grain structure to prevent ions and electrons from diffusing or conducting in grain boundaries. As mentioned above, the grain boundaries are the path of impurities and contaminants. If some conditions are met, the properties of the thin film cell fabricated on a metal substrate (flexible and thin, or less flexible and thicker) can be fabricated on a ceramic substrate (chemically inert, but thicker, stiffer and more expensive) The properties of the thin film battery.

可做為擴散阻障層的材料為不良的離子傳導材料,例如硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、碘化物、與其多元化合物。在這些化合物中,電氣絕緣材料更可避免基材與電池元件層間可能發生的反應,此乃因化學反應包括離子與電子的擴散,故阻斷電子為防止化學反應的手段之一。然亦可使用導電材料,如氮化鋯(ZrN),只要其不會傳導基材或電池元件層中的離子即可。在一些實施例中,視電池製程之退火溫度及基材材料而定,可選擇金屬、合金、及/或半金屬做為阻障層。擴散阻障層可為單相或多相、結晶態、玻璃態、無定形態、或其混合物,但通常使用玻璃態與無定形態結構,因其不具晶粒邊界,故不會作為不欲之離子與電子傳導的位置。Materials that can act as diffusion barrier layers are poor ion-conducting materials such as borides, carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, Iodide, its multi-component compound. Among these compounds, the electrically insulating material can avoid the possible reaction between the substrate and the battery element layer, because the chemical reaction includes the diffusion of ions and electrons, so blocking electrons is one of the means for preventing chemical reactions. It is also possible to use a conductive material such as zirconium nitride (ZrN) as long as it does not conduct ions in the substrate or the cell element layer. In some embodiments, depending on the annealing temperature of the battery process and the substrate material, a metal, an alloy, and/or a semi-metal may be selected as the barrier layer. The diffusion barrier layer may be single-phase or multi-phase, crystalline, glassy, amorphous, or a mixture thereof, but generally uses a glassy state and an amorphous structure, since it does not have grain boundaries, it does not act as an undesired The position of the ion and electron conduction.

由於有些材料可阻斷多種離子傳導,所以其也可用於其他不含鋰之薄膜電池,如電活化(electro-active)離子為鈹、鈉、鎂、鉀、鈣、硼或鋁的電池。擴散阻障層的厚度例如為介於0.01微米至1毫米之間。Since some materials block a variety of ion conduction, they can also be used in other lithium-free thin film batteries, such as batteries with electro-active ions of barium, sodium, magnesium, potassium, calcium, boron or aluminum. The thickness of the diffusion barrier layer is, for example, between 0.01 micrometers and 1 millimeter.

雖然本發明之阻障層與阻障子層原先是應用於金屬基材,然此阻障層材料亦可沉積到其他具商業價值之基材上,例如高分子基材、及摻雜與未摻雜之矽基材。沉積後之退火溫度例如為無視於所用之阻障層而採用低於矽或高分子基材熔點的溫度。Although the barrier layer and the barrier sublayer of the present invention are originally applied to a metal substrate, the barrier layer material can also be deposited on other commercially valuable substrates, such as a polymer substrate, and doped and undoped. Miscellaneous substrate. The annealing temperature after deposition is, for example, a temperature lower than the melting point of the ruthenium or polymer substrate, regardless of the barrier layer used.

本發明之一實施例是關於一種將柔韌、高容量、固態之薄膜電池製作於薄箔基材(如金屬基材)上的方法。基於此目的,一電化學設備包含至少一電化學活化胞(active cell)(如薄膜電池)、一適當基材(如金屬基材)、及一位於電化學活化胞與基材間的適當擴散阻障層(如可由多層阻障子層所組成)(參照第1圖)。另外,電化學設備可包括一保護封裝物或包裝物,其將進一步描述於後。One embodiment of the present invention is directed to a method of making a flexible, high capacity, solid state thin film battery on a thin foil substrate, such as a metal substrate. For this purpose, an electrochemical device comprises at least one electrochemical cell (such as a thin film cell), a suitable substrate (such as a metal substrate), and a suitable diffusion between the electrochemically activated cell and the substrate. The barrier layer (for example, may be composed of a plurality of barrier sublayers) (refer to Fig. 1). Additionally, the electrochemical device can include a protective encapsulant or package, which will be further described below.

本發明之實施例將一適當、具化學惰性之擴散阻障層與子層置於基材與薄膜電池之間,以有效隔開電化學設備的基材部分與電池部分。擴散阻障層較佳為可忍受施行於基材上之薄膜電池的高溫退火製程、不與基材及薄膜電池產生化學反應、至少對薄膜電池而言不是雜質的來源、且於製造完成後進行電化學設備之操作與儲存時,薄膜電池部分與基材部分仍保持化學性分隔。此外,阻障層較佳為可防止污染物從基材擴散到薄膜電池部分、以及在電池製造、操作與儲存的條件下,可阻擋鋰離子流出薄膜電池而擴散到基材。阻障層還可保護處理中的基材,以免基材遭到退火製程之氛圍及各電化學設備製程階段之薄膜電池元件材料的破壞。Embodiments of the present invention place a suitable, chemically inert diffusion barrier layer and sublayer between the substrate and the thin film battery to effectively separate the substrate portion and the battery portion of the electrochemical device. The diffusion barrier layer is preferably a high-temperature annealing process that can withstand the thin film battery applied to the substrate, does not chemically react with the substrate and the thin film battery, is at least a source of impurities for the thin film battery, and is manufactured after the completion of the manufacturing. The membrane cell portion remains chemically separated from the substrate portion during operation and storage of the electrochemical device. In addition, the barrier layer preferably prevents diffusion of contaminants from the substrate to the thin film battery portion, and prevents lithium ions from flowing out of the thin film battery and diffusing to the substrate under conditions of battery fabrication, handling, and storage. The barrier layer also protects the substrate during processing from the atmosphere of the annealing process and the destruction of the thin film cell component material during the processing stages of each electrochemical device.

相較於只具單一材料層之擴散阻障層,例如為氮化矽(Si3 N4 )或硼化鈦(Ti8 4 B1 6 ),其熱力學上屬於兩相系統(複合物),並含幾乎等量之TiB2-B(可參見Binary Alloy Phase Diagrams ,2nd Ed.(T.B.Massalski,H.Okamoto,P.R.Subramanian,and L.Kacprzak eds.,ASM International 1990),一併附上供作參考)、或為TiO2 -Ba0 . 5 Sr0 . 5 TiO3 複合材料(可參見美國專利證書號6,444,336,一併附上供作參考),製作具多層阻障子層之擴散阻障層可微調擴散阻障層的物性(特別是不含小孔、柔韌性與黏著性等機械性質、電性、磁性、聲紋、熱與光學性質等)與化性,因此可改善電化學設備的性能與可靠度。本發明之擴散阻障層最簡單的形式例如包括一薄阻障子層(約1000埃())以增進黏著性(例如使用鈦)、及一厚阻障子層(約1微米)(例如使用Si3 N4 )。Compared to a diffusion barrier layer having only a single material layer, such as tantalum nitride (Si 3 N 4 ) or titanium boride (Ti 8 4 B 1 6 ), it is thermodynamically a two-phase system (composite). And contains almost equal amounts of TiB 2 and -B (see Binary Alloy Phase Diagrams , 2nd Ed. (TBMassalski, H. Okamoto, PR Subramanian, and L. Kacprzak eds., ASM International 1990), attached for reference), or TiO 2 -Ba 0 (see U.S. Letters Patent No. 6,444,336, incorporated by reference attached together), produced with physical properties. 5 Sr 0. 5 TiO 3 composite multilayer barrier sub-layer of the diffusion barrier layer can be adjusted diffusion barrier layer (especially It does not contain mechanical properties such as pinholes, flexibility and adhesion, electrical properties, magnetic properties, thermal prints, thermal and optical properties, etc., thus improving the performance and reliability of electrochemical devices. The simplest form of the diffusion barrier layer of the present invention includes, for example, a thin barrier sublayer (about 1000 angstroms (about 1000 angstroms ( )) to improve adhesion (for example using titanium), and a thick barrier sublayer (about 1 micron) (for example using Si 3 N 4 ).

本發明之擴散阻障層的阻障子層材料包括無定形Si3 N4 、SiC、ZrN、碳化鈦(TiC)等,但不以此為限。適合當作阻障層之化合物具有阻斷離子之特性、無定形結構、且對基材與電化學設備之電池部分具化學惰性。這些阻障層化合物的特點在於其沉積後能維持無定形形態、且在高溫(如700℃)下能長時間阻擋擴散,例如可在結晶化LiCoO2 的退火製程中維持2小時。因此,製作於金屬箔上且具阻障層之薄膜電池和同樣結構卻製作於陶瓷基材上之薄膜電池一樣具有良好的電化學性質,但多了更柔韌、更薄及更便宜的好處。The barrier sublayer material of the diffusion barrier layer of the present invention includes amorphous Si 3 N 4 , SiC, ZrN, titanium carbide (TiC), etc., but is not limited thereto. Compounds suitable as barrier layers have ion blocking properties, an amorphous structure, and are chemically inert to the substrate and the battery portion of the electrochemical device. These barrier layer compounds are characterized by their ability to maintain an amorphous morphology after deposition and to block diffusion for extended periods of time at elevated temperatures (e.g., 700 ° C), for example, for 2 hours in the annealing process of crystallized LiCoO 2 . Therefore, a thin film battery fabricated on a metal foil and having a barrier layer has good electrochemical properties as a thin film battery having the same structure but fabricated on a ceramic substrate, but has many advantages of being more flexible, thinner, and cheaper.

本發明之另一實施例是關於一種將阻障層製作於基材上並配合後續製造薄膜電池的方法,其中在製造、操作與儲存電池的過程中,阻障層可化學性隔開基材及電池部分。除金屬基材外,也可使用高分子基材、及摻雜與未摻雜之矽基材。Another embodiment of the present invention is directed to a method of fabricating a barrier layer on a substrate in conjunction with subsequent fabrication of a thin film battery, wherein the barrier layer chemically separates the substrate during fabrication, handling, and storage of the battery And the battery part. In addition to the metal substrate, a polymer substrate, and a doped and undoped tantalum substrate can also be used.

根據本發明實施例之一目的,提供一種電化學設備,其包括一金屬基材、高分子基材、或摻雜或未摻雜之矽基材、以及一位於基材單一側邊上之電池(電化學活化胞)。According to an aspect of an embodiment of the present invention, there is provided an electrochemical device comprising a metal substrate, a polymer substrate, or a doped or undoped germanium substrate, and a battery on a single side of the substrate (electrochemically activated cells).

根據本發明實施例之另一目的,提供一種電化學設備,其包括一金屬基材、高分子基材、或摻雜或未摻雜之矽基材、以及二個各自位於基材一側邊上之電池(二個電化學活化胞)。According to another object of an embodiment of the present invention, there is provided an electrochemical device comprising a metal substrate, a polymer substrate, or a doped or undoped germanium substrate, and two of which are each located on one side of the substrate The upper battery (two electrochemically activated cells).

根據本發明實施例之又一目的,提供一種製造電化學設備的方法,其中電化學設備包括一金屬基材、高分子基材、或摻雜或未摻雜之矽基材、以及一位於基材單一側邊之電池(電化學活化胞)。According to still another object of embodiments of the present invention, there is provided a method of fabricating an electrochemical device, wherein the electrochemical device comprises a metal substrate, a polymer substrate, or a doped or undoped germanium substrate, and a substrate A single side battery (electrochemically activated cell).

根據本發明實施例之再一目的,提供一種製造電化學設備的方法,其中電化學設備包括一金屬基材、高分子基材、或摻雜或未摻雜之矽基材、以及二個各自位於基材一側邊之電池(二個電化學活化胞)。According to still another object of embodiments of the present invention, there is provided a method of fabricating an electrochemical device, wherein the electrochemical device comprises a metal substrate, a polymer substrate, or a doped or undoped germanium substrate, and two respective A battery (two electrochemically activated cells) located on one side of the substrate.

本發明所述之方法與模型等並不是用來限定本發明,其當可作各種之更動與潤飾。在此所用之術語僅為描述本發明之特定實施例,而非用以限定本發明之精神和範圍,本發明之保護範圍當視後附之申請專利範圍所界定者為準。The methods, models and the like described in the present invention are not intended to limit the invention, and may be used in various modifications and refinements. The terminology used herein is for the purpose of describing the particular embodiments of the invention, and the scope of the invention is defined by the scope of the appended claims.

說明書及申請專利範圍所述之「一」或「該」亦指多個,除非內容中有明確限定數目。The word "a" or "the" as used in the specification and the scope of the application is intended to mean a plurality.

所有一併附上參考的專利與文獻僅是用來說明這些公開文獻中可能與本發明相關的方法、設備與組成等。這些公開文獻只提供本發明申請日之前的揭露內容。本發明不應基於先前發明所述之內容或其他因素而喪失授與專利之權利。All patents and literature, which are incorporated by reference, are for purposes of describing the methods, devices, compositions, and the like that may be associated with the present invention. These publications only provide disclosure prior to the filing date of the present invention. The present invention should not be used to lose the patent right based on the content of the prior invention or other factors.

除非有特別定義,否則在此使用之技術用語具有一般熟知此技藝者所理解的意義。雖然有多種已知方法、裝置與材料均可用來實踐或測試本發明,然本發明將舉出較佳方法、裝置與材料並描述於下。Unless otherwise defined, the technical terms used herein have the meaning commonly understood by those skilled in the art. While a variety of known methods, devices, and materials may be used to practice or test the invention, the invention will be described in the preferred embodiments.

薄膜電池可利用批次製程依序沉積各電池元件層所製造而得。選定基材後,宜先進行清洗或預處理。由多層阻障子層組成之阻障層(整體厚度可為0.5微米至5微米)是成功地將薄膜電池製作於金屬、高分子或矽基材上的關鍵。阻障層應能忍受退火處理正陰極層與陰極集電層的溫度、保持化學惰性、且不為一雜質源。The thin film battery can be manufactured by sequentially depositing each battery element layer by a batch process. After the substrate is selected, it should be cleaned or pretreated first. A barrier layer composed of a multilayer barrier layer (having an overall thickness of 0.5 micrometers to 5 micrometers) is the key to successfully fabricating thin film cells on metal, polymer or tantalum substrates. The barrier layer should withstand the temperature of the annealed positive cathode layer and the cathode collector layer, remain chemically inert, and are not a source of impurities.

另外,阻障層應可在電池製造、操作與儲存的過程中防止污染物從基材擴散到正陰極,且可阻擋所有離子與原子從正陰極與陰極集電層擴散到基材。阻障層可沉積至乾淨的基材上,且一般是無缺陷、均勻地覆蓋基材各處。後續之電池元件層可以批次方式依序沉積,並利用罩幕定義出各薄膜電池元件層的邊界。阻障層可設計與製造來隔離晶粒邊界的擴散作用,進而消除後續沉積之正陰極(如LiCoO2 )及其下陰極集電層(如金陰極集電層)與基材(如柔韌的不鏽鋼箔基材)反應。以下實施例說明沉積阻障層(包括其阻障子層)於基材上的方法,其上還形成有薄膜電池。In addition, the barrier layer should prevent contaminants from diffusing from the substrate to the positive cathode during cell fabrication, handling, and storage, and can block all ions and atoms from diffusing from the positive cathode and cathode collector layers to the substrate. The barrier layer can be deposited onto a clean substrate and is generally defect free and uniformly covers the substrate. Subsequent battery element layers can be deposited sequentially in batch mode and the boundaries of each thin film cell component layer are defined using a mask. The barrier layer can be designed and fabricated to isolate the diffusion of grain boundaries, thereby eliminating subsequent deposition of the positive cathode (such as LiCoO 2 ) and its lower cathode collector layer (such as the gold cathode collector layer) and the substrate (such as flexible Stainless steel foil substrate) reaction. The following examples illustrate a method of depositing a barrier layer (including its barrier sublayer) on a substrate on which a thin film battery is also formed.

1.基材的選用與製備1. Selection and preparation of substrate

首先,選擇基材材料。薄膜電池可製作在各種具有不同表面潤飾的金屬箔與基材上。一薄的不鏽鋼箔可當作基材使用。然其他較貴、較厚或熔點較低的材料亦可採用,例如鈦與鈦合金、鋁與鋁合金、銅與銅合金、及鎳與鎳合金等,但並不以此為限。此外,箔的物理性質,如合金形式、表面粗糙度、均勻度與純度等,都可由使用者依元件需求決定出最佳的製造參數。本發明之電化學設備不需使用覆蓋金屬或半金屬(包括釩、錳、鎂、鐵、鍺、鉻、鎳、鋅、鈷)之鋁基材。再者,本發明之電化學設備不需使用純高分子基材(polymide)。First, the substrate material is selected. Thin film batteries can be fabricated on a variety of metal foils and substrates with different surface finishes. A thin stainless steel foil can be used as a substrate. Other expensive, thicker or lower melting materials may also be used, such as titanium and titanium alloys, aluminum and aluminum alloys, copper and copper alloys, and nickel and nickel alloys, but are not limited thereto. In addition, the physical properties of the foil, such as alloy form, surface roughness, uniformity and purity, can be determined by the user according to the component requirements. The electrochemical device of the present invention does not require the use of an aluminum substrate covering a metal or semi-metal (including vanadium, manganese, magnesium, iron, bismuth, chromium, nickel, zinc, cobalt). Furthermore, the electrochemical device of the present invention does not require the use of a pure polymer substrate.

若基材選用不鏽鋼箔,則一般會先進行清洗以移除油脂、微粒、及其他可能影響阻障層黏著於基材上的表面污染物。能充分清洗表面的任一清洗製程都可使用,例如濕式化學清洗製程或電漿清洗製程。或者若有需要,已清洗之箔基材可進一步進行預處理。例如,在沉積電池元件層之前,先以高溫退火步驟(如500℃)來釋放金屬箔的內應力,其中退火溫度仍低於金屬箔的熔點。If the substrate is made of stainless steel foil, it is generally cleaned first to remove grease, particles, and other surface contaminants that may affect the adhesion of the barrier layer to the substrate. Any cleaning process that adequately cleans the surface can be used, such as a wet chemical cleaning process or a plasma cleaning process. Or the cleaned foil substrate can be further pretreated if desired. For example, prior to depositing the battery element layer, the internal stress of the metal foil is released by a high temperature annealing step (e.g., 500 ° C), wherein the annealing temperature is still lower than the melting point of the metal foil.

雖然部分退火步驟實質上與箔材料與其厚度無關,但退火步驟可進一步降低或調整各層之熱應力與機械應力。例如,可利用上述預退火處理一已清洗之箔基材,以調理一未覆蓋之金屬箔。其他退火處理例如包括一沉積後之阻障層退火步驟、一沉積後之陰極集電層退火步驟、或於陰極結晶化退火處理前的沉積層之聯合退火步驟。這些步驟可為電漿處理製程或再另行電漿處理製程(可參見D.M.Mattox,Handbook of Physical Vapor Deposition(PVD)Processing,Society of Vacuum Coaters ,Albuquerque ,New Mexico 660ff and 692ff(Noyes Publications 1998))。矽基材與高分子基材也可用類似方法製備。Although the partial annealing step is substantially independent of the thickness of the foil material, the annealing step can further reduce or adjust the thermal and mechanical stresses of the layers. For example, a cleaned foil substrate can be treated by the pre-annealing described above to condition an uncovered metal foil. Other annealing treatments include, for example, a barrier annealing step after deposition, a cathode collector layer annealing step after deposition, or a combined annealing step of a deposition layer before cathode crystallization annealing treatment. These steps can be a plasma treatment process or a separate plasma treatment process (see DM Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Society of Vacuum Coaters , Albuquerque , New Mexico 660ff and 692ff (Noyes Publications 1998)). The ruthenium substrate and the polymer substrate can also be prepared in a similar manner.

2.沉積阻障層2. Deposit barrier layer

在製造薄膜電池時,可配合沉積一阻障層於基材上,阻障層在電池製作、操作與儲存的過程中可化學性隔開基材及電池部分。In the manufacture of the thin film battery, a barrier layer may be deposited on the substrate, and the barrier layer chemically separates the substrate and the battery portion during battery fabrication, operation and storage.

一般而言,反應物的離子或電子若是限制在各反應物內或阻斷於反應物界面,則反應物彼此不會交互擴散,因而可避免反應物間的化學反應。除了具備阻擋擴散的特性外,阻障層材料與其阻障子層材料的特性還包括:(a)能忍受退火處理正陰極層或陰極集電層時的溫度、(b)保持化學惰性、以及(c)不為雜質的來源。In general, if the ions or electrons of the reactant are confined within each reactant or blocked at the reactant interface, the reactants do not mutually diffuse, thereby avoiding chemical reactions between the reactants. In addition to the properties of barrier diffusion, the properties of the barrier layer material and its barrier sublayer material include: (a) the temperature at which the positive or negative collector layer can be tolerated, (b) remain chemically inert, and c) is not a source of impurities.

此外,可沉積一導電材料,例如ZrN,其能阻擋離子擴散而化學性隔開基材及電化學設備之電池部分。在此實施例中,導電阻障子層亦可當作一集電層(current collector)。由於ZrN可穩定接觸負陽極材料(特別是金屬鋰),故其可做為陰極集電層及/或陽極集電層。Additionally, a conductive material, such as ZrN, can be deposited that blocks ion diffusion and chemically separates the substrate and the battery portion of the electrochemical device. In this embodiment, the conductive barrier layer can also be used as a current collector. Since ZrN can stably contact a negative anode material (especially metallic lithium), it can be used as a cathode collector layer and/or an anode collector layer.

儘管原則上形成僅具有單一特定材料層之阻障層(如電氣絕緣與金屬離子阻斷材料Si3 N4 )是可行的,但在一定的薄膜電池使用壽命下,由二層以上子層組成之阻障層可得較高的產率且電池性能的可靠度較佳,其中各子層具有不同的特性,用以微調阻障層的性質。因此,本發明著重在製造與提供一具二層以上子層之阻障層,其較佳為化學性隔開基材及電化學設備之電池部分,而可確實製造電化學設備。Although in principle it is feasible to form a barrier layer with only a single specific material layer (such as electrical insulation and metal ion blocking material Si 3 N 4 ), it is composed of two or more sub-layers under a certain thin film battery life. The barrier layer can achieve higher yield and better battery performance reliability, wherein each sub-layer has different characteristics for fine-tuning the properties of the barrier layer. Accordingly, the present invention is directed to the fabrication and provision of a barrier layer having two or more sub-layers, which are preferably chemically separated from the substrate portion of the substrate and the electrochemical device to provide an electrochemical device.

2.1製造包括多層隔離阻障子層之阻障層2.1 Manufacturing a barrier layer comprising a multilayer isolation barrier layer

一阻障層可直接沉積於基材上。阻障層是由多層阻障子層所構成,且至少一阻障子層為無定形態或玻璃態,以避免或減少離子與電子在晶粒邊界擴散,進而減少不必要的物質在電池製作、操作與儲存的過程中擴散進出電池元件層。其較佳為避免或減少電池元件與基材間的反應。A barrier layer can be deposited directly onto the substrate. The barrier layer is composed of a plurality of barrier sub-layers, and at least one of the barrier sub-layers is in an amorphous state or a glass state to avoid or reduce diffusion of ions and electrons at grain boundaries, thereby reducing unnecessary substances in battery fabrication and operation. Diffusion into and out of the battery element layer during storage. It is preferred to avoid or reduce the reaction between the battery element and the substrate.

各阻障子層的材料例如可阻擋LiCoO2 陰極層中的離子(如鋰離子、鈷離子與氧離子)、集電層中的原子與離子(如金、鉑、鎳、銅等)、以及不鏽鋼基材中的原子與離子(如鐵、鉻、鎳、其他重金屬、與不鏽鋼之主元素)擴散。或者可簡單採用不與基材、集電層、及/或正陰極反應的電氣絕緣材料。使用能阻斷離子與電子之具多層子層的阻障層,可在製造、操作與儲存電化學設備的過程中,有效地化學性隔開基材及電化學設備之電池部分。The material of each barrier sublayer can block ions (such as lithium ions, cobalt ions and oxygen ions) in the LiCoO 2 cathode layer, atoms and ions in the collector layer (such as gold, platinum, nickel, copper, etc.), and stainless steel. The atoms and ions in the substrate (such as iron, chromium, nickel, other heavy metals, and the main element of stainless steel) diffuse. Alternatively, an electrically insulating material that does not react with the substrate, the collector layer, and/or the positive cathode can be used simply. The use of a barrier layer with multiple layers of ions that block ions and electrons effectively separates the substrate and the battery portion of the electrochemical device during manufacture, handling, and storage of the electrochemical device.

硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、碘化物等二元化合物、以及鑽石、鑽石狀碳、高溫穩定有機高分子與高溫穩定矽氧樹脂(silicones)除了具有電氣絕緣性外,還具離子阻斷性質。是以這些材料可做為阻障子層材料。除了使用這些材料的二元化合物外,阻障子層還可由這些材料的多元化合物構成,例如氮氧化物、硼碳化物、氮氧碳化物、氮矽碳化物、與氟氧化物,但不以此為限。本發明之電化學設備中的阻障層不要求為純氧化物。Binary compounds such as borides, carbides, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, iodides, and diamonds, diamond-like carbons, high-temperature stable organic polymers, and high-temperature stable enthalpy In addition to electrical insulation, silicones also have ion blocking properties. These materials can be used as barrier sublayer materials. In addition to the binary compounds using these materials, the barrier sublayers may also be composed of a plurality of compounds of these materials, such as nitrogen oxides, boron carbides, nitrogen oxides, nitrogen oxycarbides, and oxyfluorides, but not Limited. The barrier layer in the electrochemical device of the present invention is not required to be a pure oxide.

上列二元及多元阻障子層材料的沉積方法可為一或多種適當之薄膜沉積法,例如濺鍍法(RF磁電管、AC磁電管、DC與脈衝磁電管、二極體RF、DC或AC)、電子束蒸發、熱(阻)蒸發、電漿增強化學氣相沉積、輔助離子束沉積、陰極電弧沉積、電化學沉積、噴霧熱解等。Si3 N4 阻障子層是例如利用RF磁電管濺鍍系統於反應性氬氣-氮氣電漿環境中濺鍍純矽靶材而得。SiC及TiC阻障子層通常是利用RF磁電管於惰性氬氣電漿環境中濺鍍對應之相同組成的靶材而得,而其摻雜氮之衍生物(SiC:N及TiC:N)則是利用RF磁電管濺鍍裝置於反應性氬氣-氮氣電漿環境中分別濺鍍SiC及TiC靶材而得。The deposition method of the binary and multi-barrier barrier layer materials may be one or more suitable thin film deposition methods, such as sputtering (RF magnetron, AC magnetron, DC and pulse magnetron, diode RF, DC or AC), electron beam evaporation, thermal (resistance) evaporation, plasma enhanced chemical vapor deposition, auxiliary ion beam deposition, cathodic arc deposition, electrochemical deposition, spray pyrolysis, and the like. The Si 3 N 4 barrier sublayer is obtained, for example, by sputtering a pure germanium target in a reactive argon-nitrogen plasma environment using an RF magnetron sputtering system. The SiC and TiC barrier sublayers are usually obtained by sputtering a target of the same composition in an inert argon plasma environment using an RF magnetron, and the nitrogen-doped derivatives (SiC: N and TiC: N) are It is obtained by sputtering SiC and TiC targets in a reactive argon-nitrogen plasma environment by using an RF magnetron sputtering device.

氮氧化物、硼碳化物、氮氧碳化物、氮矽碳化物、氟氧化物等之形成方法為提供包含氮氣、氧氣、氧化亞氮、氟化硼、六氟化乙烷、乙硼烷、甲烷、矽烷等的濺鍍混合氣體、或於其中再加入惰性載氣(如氬氣)、及/或提供濺鍍靶材之元素。例如,氮矽碳化鈦(Ti3 SiC2 :N)薄膜沉積可利用RF磁電管於反應性氬氣-氮氣電漿環境中濺鍍單一濺鍍靶材(其具TiC與SiC交替之區域,且TiC與SiC之面積比為3:1)或兩個各別的濺鍍靶材(一為TiC靶材,另一為SiC靶材),如此在任一時間內可沉積TiC/SiC為3:1的混合材料層於基材同一區域上(雙靶材濺鍍沉積)。具阻障層之基材在繼續製作電池之前,可先經過沉積後處理,此步驟也可省略不做。The method for forming nitrogen oxides, boron carbides, nitrogen oxides, nitrogen niobium carbides, oxyfluorides, and the like is to provide nitrogen, oxygen, nitrous oxide, boron fluoride, hexafluoroethane, diborane, A sputtering mixed gas of methane, decane, or the like, or an inert carrier gas (such as argon), and/or an element providing a sputtering target. For example, a nitrogen-niobium-titanium carbide (Ti 3 SiC 2 :N) thin film deposition can use a RF magnetron to sputter a single sputter target in a reactive argon-nitrogen plasma environment (where TiC and SiC alternate, and The area ratio of TiC to SiC is 3:1) or two separate sputtering targets (one is a TiC target and the other is a SiC target), so that TiC/SiC can be deposited at any time for 3:1. The layer of mixed material is on the same area of the substrate (double target sputter deposition). The substrate with the barrier layer can be post-deposited before proceeding to make the battery. This step can also be omitted.

阻障子層材料的例子包括Si3 N4 、SiNx Oy ,其中3x+2y=4、或氧為梯度變化之Si3 N4 ,其可於表面達到化學計量或於表面幾乎為SiO2 。此外,摻雜或無摻雜氮的SiC或TiC也可做為阻障子層材料。Examples of barrier sublayer materials include Si 3 N 4 , SiN x O y , where 3x + 2y = 4, or oxygen is a gradient of Si 3 N 4 , which can be stoichiometric on the surface or almost SiO 2 on the surface. In addition, SiC or TiC doped or undoped with nitrogen can also be used as a barrier sublayer material.

這些材料的部分衍生物可能不適合當作阻斷離子的阻障子層,乃因其隔絕性質不佳而於電池製造、操作與儲存的過程中允許某些離子擴散,例如非化學計量性之ZrO2 、非化學計量性之穩定氧化鋯釔(yttrium stabilized zirconia;YSZ)、及非化學計量性之碘化鋰(LiI)。相較於其對應之化學計量性化合物,非化學計量平衡是造成這些化合物具導電性,並允許氧離子與鋰離子擴散的主要原因。Some of the derivatives of these materials may not be suitable as barrier sublayers for blocking ions, because of their poor barrier properties, allowing certain ions to diffuse during cell manufacturing, handling and storage, such as non-stoichiometric ZrO 2 Non-stoichiometric stable yttrium stabilized zirconia (YSZ) and non-stoichiometric lithium iodide (LiI). Non-stoichiometric equilibrium is the main reason for the conductivity of these compounds and allows the diffusion of oxygen ions and lithium ions compared to their corresponding stoichiometric compounds.

可提供具多層阻障子層之阻障層以微調阻障層的某些性質,如改善基材及/或電池部分的黏著性、機械柔韌性、相鄰層之穩定性、不含小孔(pinhole-freeness)、電阻、及化學惰性等。例如,一不鏽鋼基材上方之阻障層可由多層阻障子層堆疊而成,其依序為:500埃之SiO2 (用以結合氧而改善不鏽鋼基材的黏著性)/2000埃之Si3 N4 (用以電氣絕緣與阻擋鋰離子、鈷離子、氧離子、鐵離子、鉻離子與金原子等的擴散)/1000埃之SiC:N(用以有效阻擋鋰離子、鈷離子、氧離子、鐵離子、鉻離子與金原子等的擴散)/2000埃之Si3 N4 (用以電氣絕緣與阻擋鋰離子、鈷離子、氧離子、鐵離子、鉻離子與金原子等的擴散)/500埃之SiO2 (用以改善集電層的黏著性),其上還可沉積300埃的鈷集電黏著層及3000埃的金集電層。A barrier layer having a plurality of barrier sub-layers may be provided to fine tune certain properties of the barrier layer, such as improving adhesion of the substrate and/or battery portion, mechanical flexibility, stability of adjacent layers, and no pores ( Pinhole-freeness, resistance, and chemical inertness. For example, a barrier layer over a stainless steel substrate may be formed by stacking a plurality of barrier sublayers in the order of: 500 angstroms of SiO 2 (to improve the adhesion of the stainless steel substrate in combination with oxygen) / 2000 angstroms of Si 3 N 4 (for electrical insulation and blocking the diffusion of lithium ions, cobalt ions, oxygen ions, iron ions, chromium ions and gold atoms) / 1000 angstroms of SiC: N (to effectively block lithium ions, cobalt ions, oxygen ions , diffusion of iron ions, chromium ions and gold atoms) / 2000 Å Si 3 N 4 (for electrical insulation and blocking the diffusion of lithium ions, cobalt ions, oxygen ions, iron ions, chromium ions and gold atoms) / 500 Å of SiO 2 (to improve the adhesion of the collector layer), which can also deposit a 300 angstrom cobalt current collector layer and a 3000 angstrom gold collector layer.

在一些實施例中,隔絕阻障子層不僅接觸正陰極(positive cathode)及/或陰極集電層(cathode current collector),還接觸負陽極(negtive anode)及/或陽極集電層(anode current collector)。在任一實施例中,阻障子層較佳為不與其所接觸之材料產生化學反應。此會限制純氧化鋁或氧化矽的使用,因當純氧化鋁或氧化矽接觸金屬鋰負陽極時,可能會反應生成Li2 O、LiAlO2 與鋰鋁合金、或Li2 O、Li2 SiO3 與鋰矽合金。In some embodiments, the insulating barrier sublayer contacts not only the positive cathode and/or the cathode current collector but also the negative anode and/or the anode current collector. ). In either embodiment, the barrier sublayer preferably does not chemically react with the material it contacts. This will limit the use of pure alumina or yttrium oxide, because when pure alumina or yttrium oxide is contacted with a metallic lithium negative anode, it may react to form Li 2 O, LiAlO 2 and lithium aluminum alloy, or Li 2 O, Li 2 SiO. 3 with lithium niobium alloy.

2.2製造具有至少一導電阻障子層之阻障層2.2 Fabricating a barrier layer having at least one conductive barrier layer

導電阻障子層具有同樣的功效,只要其(1)可避免離子擴散進出電池元件層、及(2)在電池製造、操作與儲存的過程中不與基材或電池元件層反應。此阻障層還可包括電氣絕緣阻障子層。電氣絕緣阻障子層及導電阻障子層可具不同形狀與不同面積大小。因此,由這些阻障子層混合堆疊而成之阻障層在接觸基材部分或電池部分的某些區域為具導電性,而在接觸基材部分或電池部分的其他區域為具電氣絕緣性。The conductive barrier layer has the same effect as long as it (1) prevents ions from diffusing into and out of the battery element layer, and (2) does not react with the substrate or the battery element layer during battery manufacturing, handling, and storage. The barrier layer can also include an electrically insulating barrier sublayer. The electrical insulation barrier sub-layer and the conductive resistance barrier layer may have different shapes and different area sizes. Therefore, the barrier layer formed by mixing and stacking these barrier sublayers is electrically conductive in some areas contacting the substrate portion or the battery portion, and is electrically insulating in contact with the substrate portion or other regions of the battery portion.

導電阻障子層的材料例如為硼化物、碳化物、矽化物、氮化物、磷化物與氧化物等之導電二元化合物、以及其導電多元化合物,例如氮氧化物、硼碳化物、氮氧碳化物、氮矽碳化物、與氟氧化物,但不以此為限。此外,特別設計而具導電性之高溫穩定高分子與高溫穩定矽氧樹脂亦可使用。電氣絕緣阻障子層的材料已舉例說明於前述第2.1節,其一併附於此。阻障子層可由完全不同的組成所形成,例如一阻障層可由5000埃之ZrN/4000埃之Si3 N4 /3000埃之WC/1000埃之MoSi2 堆疊之阻障子層所構成,其中各阻障子層的面積可具不同尺寸。The material of the conductive barrier layer is, for example, a conductive binary compound of a boride, a carbide, a telluride, a nitride, a phosphide, an oxide, or the like, and a conductive multi-component thereof, such as an oxynitride, a boron carbide, and a nitrogen-oxygenation. Matter, nitrogen, niobium carbide, and oxyfluoride, but not limited to this. In addition, specially designed and electrically conductive high temperature stable polymers and high temperature stable silicone resins can also be used. The material of the electrically insulating barrier sublayer has been exemplified in the aforementioned section 2.1, which is hereby incorporated by reference. The barrier sublayer may be formed of a completely different composition. For example, a barrier layer may be composed of 5000 Å ZrN/4000 Å Si 3 N 4 / 3000 Å WC/1000 Å MoSi 2 stacked barrier sublayer, each of which The area of the barrier sub-layers can be of different sizes.

如此,Si3 N4 阻障子層可例如延伸於金屬基材的整個使用面積之上,而ZrN阻障子層只覆蓋陰極集電層下的基材部分,WC與MoSi2 阻障子層為至少覆蓋陽極集電層下的整個區域且延伸至ZrN的部分。因其面積尺寸之故,中間的Si3 N4 阻障子層可電氣隔開導電ZrN阻障子層及導電WC/MoSi2 阻障子層,進而電氣隔開電池正極與負極部分(參見第2圖)。As such, the Si 3 N 4 barrier sub-layer may extend over the entire use area of the metal substrate, for example, while the ZrN barrier sub-layer covers only the substrate portion under the cathode collector layer, and the WC and MoSi 2 barrier sub-layers are at least covered. The entire area under the anode collector layer and extends to the portion of ZrN. Due to its size, the intermediate Si 3 N 4 barrier sub-layer can electrically separate the conductive ZrN barrier sublayer and the conductive WC/MoSi 2 barrier sublayer, thereby electrically separating the positive and negative portions of the battery (see Figure 2). .

在此實施例中,一導電阻障子層(如ZrN、TiN、WC、MoSi2 、TiB2 或NiP)可利用一般的沉積法沉積於基材上,例如,濺鍍法(RF磁電管、DC與脈衝磁電管、AC磁電管、二極體RF、DC或AC)、電子束蒸發、熱(阻)蒸發、電漿增強化學氣相沉積、輔助離子束沉積、陰極電弧沉積、電化學沉積、噴霧熱解等。ZrN阻障子層可藉由DC磁電管濺鍍沉積於惰性氬氣環境中濺鍍ZrN靶材而得、或可藉由DC磁電管濺鍍沉積於反應性氬氣-氮氣環境中濺鍍金屬鋯靶材而得。In this embodiment, a conductive barrier layer (such as ZrN, TiN, WC, MoSi 2 , TiB 2 or NiP) can be deposited on the substrate by a general deposition method, for example, sputtering (RF magnetron, DC). And pulsed magnetron, AC magnetron, diode RF, DC or AC), electron beam evaporation, thermal (resistance) evaporation, plasma enhanced chemical vapor deposition, auxiliary ion beam deposition, cathodic arc deposition, electrochemical deposition, Spray pyrolysis, etc. The ZrN barrier layer can be deposited by sputtering a ZrN target in an inert argon atmosphere by DC magnetron sputtering, or can be sputtered in a reactive argon-nitrogen atmosphere by DC magnetron sputtering. Target material.

此外,當用以結晶化正陰極的沉積後退火溫度較佳為中溫時,如200℃至500℃,則可選用某些金屬(如金、鉑、銥、鋨、銀、鈀)、半金屬(如石墨碳、矽)與合金(如主要成份為金、鉑、銥、鋨、銀、鈀、碳及矽之合金)做為導電阻障子層,但不以此為限。在繼續製作電池之前,可先加熱處理導電阻障子層,然此步驟也可省略不做。In addition, when the post-deposition annealing temperature for crystallizing the positive cathode is preferably medium temperature, such as 200 ° C to 500 ° C, some metals (such as gold, platinum, rhodium, ruthenium, silver, palladium) and half may be selected. Metals (such as graphite carbon, niobium) and alloys (such as the main components of gold, platinum, rhodium, ruthenium, silver, palladium, carbon and niobium alloy) as a conductive barrier layer, but not limited to this. Before continuing to make the battery, the conductive barrier layer can be heated first, but this step can also be omitted.

若導電阻障子層是適當地由電池正終端製作,則可減少使用一隔離陰極集電層,除非導電阻障子層另覆蓋一較佳的導電與惰性薄層(例如金)來最佳化其電性。無論是否為此較佳的導電層所覆蓋,導電阻障子層同時與陽極集電層和負陽極隔開,並電氣接觸正陰極和陰極集電層。隔開方式例如為:(1)藉由擴大電解質面積,使負陽極和其陽極集電層完全位在電氣絕緣電解質上方,如此可有效做為負陽極和其陽極集電層的一局部阻障子層(參見第3a與3b圖)。若正陰極於製造時不會與電解質層反應,則正陰極和其陰極集電層同樣也可完全製作在電解質上方,且負陽極為位於電解質下方(參見第3c圖)。If the conductive barrier layer is suitably fabricated from the positive terminal of the battery, the use of an isolated cathode collector layer can be reduced unless the conductive barrier layer is additionally covered with a preferred conductive and inert thin layer (eg, gold) to optimize it. Electrical. Whether or not covered by the preferred conductive layer, the conductive barrier layer is simultaneously spaced from the anode collector layer and the negative anode and electrically contacts the positive cathode and cathode collector layers. The spacing is as follows: (1) by expanding the electrolyte area, the negative anode and its anode collector layer are completely above the electrically insulating electrolyte, so that it can effectively be used as a partial barrier for the negative anode and its anode collector layer. Layer (see Figures 3a and 3b). If the positive cathode does not react with the electrolyte layer during manufacture, the positive cathode and its cathode collector layer can also be completely fabricated over the electrolyte, and the negative anode is located below the electrolyte (see Figure 3c).

(2)當負陽極及/或陽極集電層不完全位在電解質上方時,其可接觸阻障層、至少一阻障子層、及/或金屬基材。在此實施例中,一或多層阻障子層具導電性,而至少一阻障子層具絕緣性(參見第4a與4b圖)。在任一實施例中,所有阻障子層對其所接觸之材料皆具化學惰性。此會限制矽化鉑(Pt2 Si)阻障子層的使用,乃因當矽化鉑接觸金屬鋰負陽極時可能會反應生成Lix Si,0<x4.4、與Liy Pt,0<y2(參見第4c圖)。(2) When the negative anode and/or the anode collector layer are not completely positioned above the electrolyte, it may contact the barrier layer, the at least one barrier sublayer, and/or the metal substrate. In this embodiment, one or more of the barrier sub-layers are electrically conductive, and at least one of the barrier sub-layers is insulative (see Figures 4a and 4b). In either embodiment, all of the barrier sublayers are chemically inert to the material they are in contact with. This limits the use of the pb 2 Si barrier sublayer because it may react to form Li x Si when deuterated platinum contacts the metallic lithium negative anode, 0<x 4.4, with Li y Pt, 0<y 2 (see Figure 4c).

2.3阻障層與基材2.3 barrier layer and substrate

提供阻障層的目的之一為在製程溫度可能達到基材熔點的電池製造過程中、及在電化學裝置的所有操作與儲存的條件下,其可化學性隔開本發明一實施例之電化學裝置的基材部分與電池部分。符合上述條件之基材種類至少有三種:金屬基材、高分子基材、及摻雜與未摻雜之矽基材。One of the purposes of providing a barrier layer is to chemically separate the electrification of an embodiment of the present invention during battery manufacturing processes where process temperatures may reach the melting point of the substrate, and under all operating and storage conditions of the electrochemical device. The substrate portion and the battery portion of the device. There are at least three types of substrates that meet the above conditions: metal substrates, polymer substrates, and doped and undoped tantalum substrates.

電氣絕緣或導電之阻障子層可直接沉積於上述三種基材之上。當然,各阻障子層的沉積參數應依基材本身的物性與化性進行調整。例如,一濺鍍沉積的沉積速度可能太快,以致基材表面的沉積溫度高於高分子基材的熔點。沉積參數較佳為控制在基材熔點的範圍內。在使用一只有10微米厚之薄矽基材的實施例中,於沉積阻障子層時,可略過退火處理而先調整其應力以適應易碎的矽基材,藉以避免在後續沉積任一阻障子層及/或電池元件層之前,已造成基材破裂。其他使用此三種基材與秉持阻障層(包括阻障子層)之製造原則的具體實施例亦不脫離本發明之精神和範圍。An electrically insulating or electrically conductive barrier sublayer can be deposited directly onto the three substrates described above. Of course, the deposition parameters of each barrier sub-layer should be adjusted according to the physical properties and chemical properties of the substrate itself. For example, the deposition rate of a sputter deposition may be too fast, so that the deposition temperature of the surface of the substrate is higher than the melting point of the polymer substrate. The deposition parameters are preferably controlled within the range of the melting point of the substrate. In an embodiment using a thin crucible substrate having a thickness of only 10 micrometers, when depositing the barrier sublayer, the annealing treatment may be skipped to adjust the stress to accommodate the fragile tantalum substrate to avoid any subsequent deposition. The substrate has been broken before the barrier layer and/or the battery element layer. Other embodiments in which the three substrates are used and the manufacturing principles of the barrier layer (including the barrier sub-layer) are used do not depart from the spirit and scope of the invention.

3.製作電池3. Make a battery

一旦本發明之基材已形成阻障層於其上,後續製造電化學裝置的步驟取決於是否要製作一第二電化學活化胞於基材之另一側上,以構成一「雙面」電化學裝置,其將進一步描述於後。本發明電化學裝置的第一電化學活化胞不需為一太陽能電池。Once the substrate of the present invention has formed a barrier layer thereon, the subsequent steps of fabricating the electrochemical device depend on whether a second electrochemically activated cell is formed on the other side of the substrate to form a "double sided". An electrochemical device, which will be further described below. The first electrochemically activated cell of the electrochemical device of the present invention need not be a solar cell.

以「單面」電化學裝置為例,其只具一第一電化學活化胞於基材之第一側邊,一第二層可於製造第一電化學活化胞的元件層之前先選擇性沉積到基材之第二側邊上。第二層可用來保護基材在製造、操作與儲存電化學裝置的過程中,不受周遭環境影響其化學與機械性質。此外,第二層可用來避免第一電化學活化胞被環境中的物質污染,此化學污染物可從基材第二側邊(或未保護之側邊)擴散至基材,進而在製造、操作與儲存電化學裝置的過程中與第一電化學活化胞產生不良反應。保護第一電化學活化胞亦同時保護到基材本身和基材與第一電化學活化胞間的阻障層,尤其是阻障層未完全覆蓋第一電化學活化胞下的區域時。保護基材與第一電化學活化胞可延長電化學裝置的使用壽命。Taking a "single-sided" electrochemical device as an example, it has only a first electrochemically activated cell on the first side of the substrate, and a second layer can be selected before the component layer of the first electrochemically activated cell is fabricated. Deposited onto the second side of the substrate. The second layer can be used to protect the substrate from the chemical and mechanical properties of the substrate during manufacture, handling, and storage of the electrochemical device. In addition, the second layer can be used to prevent the first electrochemically activated cell from being contaminated by substances in the environment, which can diffuse from the second side (or the unprotected side) of the substrate to the substrate, thereby being manufactured, An adverse reaction occurs with the first electrochemically activated cell during operation and storage of the electrochemical device. Protecting the first electrochemically activated cell also protects the substrate itself and the barrier layer between the substrate and the first electrochemically activated cell, particularly when the barrier layer does not completely cover the region under the first electrochemically activated cell. Protecting the substrate from the first electrochemically activated cell extends the useful life of the electrochemical device.

第二層的材料例如包括金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、碘化物等化合物、或由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物與碘化物組成之多元化合物、或高溫穩定有機高分子與高溫穩定矽氧樹脂。特別是,厚度為500埃至5微米之薄金屬層可在製造、操作及/或儲存電化學裝置的過程中阻斷第二側邊之污染物而保護基材。再者,一金屬層(如鎳或鈦)相較於其陶瓷對應物(如碳化鈦)可沉積得更快,且更便宜。The second layer of materials include, for example, metals, semi-metals, alloys, borides, carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, iodides, and the like. a compound, or a multi-component compound composed of a boride, a carbide, a telluride, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide, or a high-temperature stable organic polymer and a high-temperature stable epoxy resin. . In particular, a thin metal layer having a thickness of 500 angstroms to 5 microns can protect the substrate by blocking contaminants on the second side during fabrication, handling, and/or storage of the electrochemical device. Furthermore, a metal layer (such as nickel or titanium) can deposit faster and be less expensive than its ceramic counterpart (such as titanium carbide).

第二層的阻擋作用包括其與污染物間的化學反應,例如文獻所提之化學吸收、腐蝕抑制、或犧牲層供應等。另外,第二層不限於金屬層,其亦可為次氧化物或次氮化物(可輕易由濺鍍沉積而得之未完全氧化或氮化的材料層)、或在製造、操作與儲存電化學裝置的過程中,與周遭環境中的氧、水氣或二氧化碳污染物反應後即可轉化為氧化物或碳酸鹽類的氮化物或碳化物。The barrier effect of the second layer includes its chemical reaction with contaminants, such as chemical absorption, corrosion inhibition, or sacrificial layer supply as mentioned in the literature. In addition, the second layer is not limited to the metal layer, and may also be a sub-oxide or a sub-nitride (a layer of material that can be easily deposited by sputtering, which is not completely oxidized or nitrided), or is fabricated, operated, and stored. In the process of learning the device, it can be converted into oxide or carbonate nitride or carbide after reacting with oxygen, water gas or carbon dioxide pollutants in the surrounding environment.

藉由選擇無化學反應或主要經由化學反應保護之材料可微調基材第二側邊上的第二層。藉由選擇在某些環境條件下具有較高或較低反應性之材料更能進一步進行微調。例如,碳化鋁(Al4 C3 )轉化為氧化鋁(Al2 O3 )的溫度與氧分壓遠低於碳化矽(SiC)轉化為氧化矽(SiO2 )的溫度與氧分壓。同樣地,形成焓值非常低的氮化物(如Co2 N)轉化為氧化物的溫度與氧分壓亦遠低於具高負形成焓值之對應物(如Si3 N4 與ZrN)轉化為氧化物的溫度與氧分壓。The second layer on the second side of the substrate can be fine tuned by selecting a material that is chemically free or primarily protected by a chemical reaction. Fine tuning can be further achieved by selecting materials that have higher or lower reactivity under certain environmental conditions. For example, the temperature at which aluminum carbide (Al 4 C 3 ) is converted to aluminum oxide (Al 2 O 3 ) and the partial pressure of oxygen are much lower than the temperature at which lanthanum carbide (SiC) is converted to cerium oxide (SiO 2 ) and the partial pressure of oxygen. Similarly, the temperature and oxygen partial pressure of a nitride having a very low enthalpy (such as Co 2 N) converted to an oxide is much lower than that of a counterpart with a high negative enthalpy (such as Si 3 N 4 and ZrN). It is the temperature of the oxide and the partial pressure of oxygen.

最後,由電化學設備製造者權衡製作第二層於基材第二側邊上的額外費用(其主要與選用材料及第二層的厚度有關)、和基材與第一電化學活化胞於特定環境條件下的保護效果(其主要亦與選用材料及第二層的厚度有關),以決定出最佳參數。Finally, the electrochemical device manufacturer weighs the additional cost of making the second layer on the second side of the substrate (which is primarily related to the thickness of the material selected and the second layer), and the substrate and the first electrochemically activated cell. The protective effect under specific environmental conditions (which is also mainly related to the material selected and the thickness of the second layer) to determine the optimum parameters.

薄膜電池可以批次方式製造,並依序使用物理及/或化學氣相沉積步驟且利用罩幕建構出各電池元件層。電化學活化胞可具任一結構。其特徵包括:(i)正陰極結構。a.正陰極位於阻障層與負陽極之間(陰極沉積在陽極沉積前;「正常結構」),且負陽極位於阻障層與正陰極之間(陽極沉積在陰極沉積前;「正常結構」)。b.於正陰極沉積後施加退火處理。The thin film battery can be fabricated in batch mode, and the physical and/or chemical vapor deposition steps are sequentially used and the respective battery element layers are constructed using the mask. The electrochemically activated cell can have any structure. Features include: (i) a positive cathode structure. a. The positive cathode is located between the barrier layer and the negative anode (cathode deposition before anode deposition; "normal structure"), and the negative anode is located between the barrier layer and the positive cathode (anode deposition before cathode deposition; "normal structure "). b. Apply an annealing treatment after the positive cathode deposition.

(ii)陽極結構。a.負陽極可接觸或不接觸阻障層。b.陽極集電層可接觸或不接觸阻障層。(ii) Anode structure. a. The negative anode may or may not contact the barrier layer. b. The anode collector layer may or may not contact the barrier layer.

(iii)阻障層類型。a.電氣絕緣阻障子層vs.導電阻障子層。b.阻障層之一特定阻障子層相對於其他阻障子層的面積大小。c.阻障層中電氣絕緣阻障子層與導電阻障子層的結合順序。(iii) Type of barrier layer. a. Electrically insulating barrier sublayer vs. conductive barrier layer. b. The size of the specific barrier sublayer of one of the barrier layers relative to the other barrier sublayers. c. The order of bonding of the electrically insulating barrier sublayer and the conductive resistance barrier layer in the barrier layer.

(iv)基材可電氣接觸或不電氣接觸電化學活化胞的正極部分或負極部分。(iv) The substrate may be in electrical contact or not in electrical contact with the positive or negative portion of the electrochemically activated cell.

(v)電化學活化胞為製作於基材之一側邊(單面電化學裝置)或二側邊(雙面電化學裝置)。(v) The electrochemically activated cell is fabricated on one side of the substrate (single-sided electrochemical device) or two sides (double-sided electrochemical device).

(vi)保護封裝物或保護包裝物的設計。a.封裝物vs.包裝物。b.封裝物或包裝物具開口vs.封裝物或包裝物不具用以接觸終端的開口。c.開口區域可使用或不使用防潮層。(vi) Design to protect the package or protect the package. a. Encapsulation vs. wrapper. b. The package or package has an opening vs. the package or package does not have an opening for contacting the terminal. c. The open area may or may not use a moisture barrier.

(vii)集電層及終端。(vii) Collector layer and terminal.

3.1陰極結構3.1 Cathode structure 3.1.1正陰極位於阻障層與負陽極之間,此等同於在負陽極之沉積前進行正陰極之沉積與沉積後退火處理:「正常結構」3.1.1 The positive cathode is located between the barrier layer and the negative anode, which is equivalent to the deposition of the positive cathode and the post-deposition annealing treatment before the deposition of the negative anode: "normal structure"

視阻障層的電性而定,在沉積正陰極之前可先形成一陰極集電層。即,若具阻障子層之阻障層在待形成正陰極的區域為絕緣的,則可沉積一陰極集電層使正終端電氣接近正陰極。但若具阻障子層之阻障層在待形成正陰極的區域為導電的,則可選擇性沉積一附加惰性金屬層(導電加強層)於阻障層及正陰極之間,以加強阻障層的集電性。Depending on the electrical properties of the barrier layer, a cathode collector layer can be formed prior to deposition of the positive cathode. That is, if the barrier layer with the barrier sub-layer is insulated in the region where the positive cathode is to be formed, a cathode collector layer may be deposited to electrically connect the positive terminal to the positive cathode. However, if the barrier layer with the barrier sublayer is electrically conductive in the region where the positive cathode is to be formed, an additional inert metal layer (conductive enhancement layer) may be selectively deposited between the barrier layer and the positive cathode to enhance the barrier. The current collection of the layer.

正陰極、陰極集電層、及阻障層的導電加強層可採任一沉積法,例如濺鍍法(RF磁電管、DC與DC脈衝磁電管、AC磁電管、二極體RF、DC或AC)、電子束蒸發、熱(阻)蒸發、電漿增強化學氣相沉積、輔助離子束沉積、陰極電弧沉積、電化學沉積、噴霧熱解等。The positive cathode, the cathode collector layer, and the conductive reinforcing layer of the barrier layer can be deposited by any deposition method such as sputtering (RF magnetron, DC and DC pulse magnetron, AC magnetron, diode RF, DC or AC), electron beam evaporation, thermal (resistance) evaporation, plasma enhanced chemical vapor deposition, auxiliary ion beam deposition, cathodic arc deposition, electrochemical deposition, spray pyrolysis, and the like.

在沉積正陰極後,可進行一沉積後之退火製程來改善正陰極的物理、化學與電化學性質。最常見的退火製程為於空氣中以700℃退火約30分鐘至2小時,以完全結晶化正陰極材料、LiCoO2 、LiMn2 O4 、LiMnO2 、LiNiO2 及其衍生物。After depositing the positive cathode, a post-deposition annealing process can be performed to improve the physical, chemical, and electrochemical properties of the positive cathode. The most common annealing process is annealing at 700 ° C for about 30 minutes to 2 hours in air to completely crystallize the positive cathode material, LiCoO 2 , LiMn 2 O 4 , LiMnO 2 , LiNiO 2 and derivatives thereof.

衍生物的組成與退火製程的參數可做為選擇阻障層材料時的參考。以純LiCoO2 與在空氣中以700℃退火2小時為例,可選用一3000埃的金陰極集電層,其可藉由一300埃之鈷黏著層附著到一含兩阻障子層的電氣絕緣阻障層上,阻障子層分別為位在50微米厚之不鏽鋼箔上的5000埃之Al2 O3 與6000埃之Co3 o4 。此結構經700℃退火處理後的X光繞射(XRD)圖案顯示於第5圖。LiCoO2正陰極的(101)晶粒結晶大小為560埃,且晶格參數(ah e x =2.8146(4)埃;ch e x =14.0732(8)埃)與理論值(如ICDD 77-1370:ah e x =2.815(1)埃;ch e x =14.05(1)埃)相符。此表示結晶之LiCoO2 正陰極不會和其周圍材料(包括基材)反應,而達到足以表現出電化學活化胞良好的電化學性質的結晶程度。The composition of the derivative and the parameters of the annealing process can be used as a reference for selecting the material of the barrier layer. For example, pure LiCoO 2 is annealed at 700 ° C for 2 hours in air. A 3000 angstrom gold cathode collector layer can be used, which can be attached to a two-barrier sub-layer by a 300 Å cobalt adhesion layer. On the barrier layer, the barrier sublayers are 5000 Å Al 2 O 3 and 6000 Å Co 3 o 4 on a 50 μm thick stainless steel foil, respectively. The X-ray diffraction (XRD) pattern of this structure after annealing at 700 ° C is shown in Fig. 5. The (101) grain size of LiCoO2 positive cathode is 560 angstroms, and the lattice parameters (a h e x =2.8146 (4) angstroms; c h e x =14.0732 (8) angstroms) and theoretical values (such as ICDD 77- 1370: a h e x =2.815 (1) angstrom; c h e x = 14.05 (1) angstrom). This means that the crystallized LiCoO 2 positive cathode does not react with its surrounding materials (including the substrate) to a degree of crystallization sufficient to exhibit good electrochemical properties of the electrochemically activated cells.

在位於300微米厚之未摻雜矽基材上之具有兩阻障子層(5000埃的Si3 N4 與5000埃的SiO2 )之阻障層上的3000埃之金/300埃之鈷陰極集電層上,製造一純LiCoO2正陰極,且隨後於空氣中以700℃退火2小時後,可得一良好結晶度之LiCoO2正陰極(ah e x =2.8151(4)埃;ch e x =14.066(7)埃;(101)面之晶粒大小為1100埃),其亦具近似理論值之晶格參數(如ICDD 77-1370:ah e x =2.815(1)埃;ch e x =14.05(1)埃)。由得到具層狀結構與接近理論值之結晶晶格參數的良好結晶與達化學計量之LiCoO2正陰極可知,結晶之LiCoO2 正陰極不會和其周圍材料(包括矽基材)反應,如第6圖所示。由於前述製作於不鏽鋼箔上的LiCOO2 正陰極具有近似理論值之結晶晶格參數(ah e x =2.8151(4)埃;ch e x =14.066(7)埃),故可推測矽基材上的LiCoO2 正陰極具有較佳的電化學性質。3,000 angstroms of gold/300 angstroms of cobalt cathode on a barrier layer of a two-barrier sublayer (5000 angstroms of Si 3 N 4 and 5000 angstroms of SiO 2 ) on a 300 micron thick undoped germanium substrate On the collector layer, a pure LiCoO2 positive cathode was fabricated, and then annealed at 700 ° C for 2 hours in air to obtain a LiCoO 2 positive cathode with good crystallinity (a h e x =2.8151 (4) angstroms; c h e x = 14.066 (7) angstrom; (101) grain size is 1100 angstroms), which also has a theoretical value of the lattice parameter (such as ICDD 77-1370: a h e x =2.815 (1) angstrom; c h e x = 14.05 (1) angstrom). It is known from the well-crystallized and stoichiometric LiCoO2 positive cathode with a layered structure and a crystal lattice parameter close to the theoretical value that the crystallized LiCoO 2 positive cathode does not react with its surrounding materials (including the ruthenium substrate), as described in Figure 6 shows. Since the LiCOO 2 positive cathode fabricated on the stainless steel foil has a crystal lattice parameter of approximately theoretical value (a h e x =2.8151 (4) angstrom; c h e x = 14.066 (7) angstrom), it can be inferred that the ruthenium group The LiCoO 2 positive cathode on the material has better electrochemical properties.

3.1.2負陽極位於阻障層與正陰極之間,此近似於在之沉積正陰極前進行負陽極之沉積與沉積後退火處理:「反轉結構」3.1.2 The negative anode is located between the barrier layer and the positive cathode, which is similar to the deposition of the negative anode and the post-deposition annealing treatment before the deposition of the positive cathode: "reverse structure"

本發明「反轉結構」之一實施例繪示於第3c圖,其中基材可為一金屬基材。視阻障層的電性而定,在沉積負陽極之前可先形成一陽極集電層。即,若具阻障子層之阻障層在待形成負陽極的區域為絕緣的,則可沉積一陽極集電層使負終端電氣接近負陽極。但若具阻障子層之阻障層在待形成負陽極的區域為導電的,則可選擇性沉積一附加惰性金屬層(導電加強層)於阻障層及負陽極之間,以加強阻障層的集電性。An embodiment of the "reverse structure" of the present invention is illustrated in Figure 3c, wherein the substrate can be a metal substrate. Depending on the electrical properties of the barrier layer, an anode collector layer can be formed prior to deposition of the negative anode. That is, if the barrier layer with the barrier sub-layer is insulated in the region where the negative anode is to be formed, an anode collector layer may be deposited to electrically contact the negative terminal to the negative anode. However, if the barrier layer with the barrier sublayer is electrically conductive in the region where the negative anode is to be formed, an additional inert metal layer (conductive enhancement layer) may be selectively deposited between the barrier layer and the negative anode to enhance the barrier. The current collection of the layer.

負陽極、陽極集電層、及阻障層的導電加強層可採任一沉積法,例如濺鍍法(RF磁電管、DC與DC脈衝磁電管、AC磁電管、二極體RF、DC或AC)、電子束蒸發、熱(阻)蒸發、電漿增強化學氣相沉積、輔助離子束沉積、陰極電弧沉積、電化學沉積、噴霧熱解等。The negative anode, the anode collector layer, and the conductive reinforcement layer of the barrier layer can be deposited by any deposition method such as sputtering (RF magnetron, DC and DC pulse magnetron, AC magnetron, diode RF, DC or AC), electron beam evaporation, thermal (resistance) evaporation, plasma enhanced chemical vapor deposition, auxiliary ion beam deposition, cathodic arc deposition, electrochemical deposition, spray pyrolysis, and the like.

負陽極例如為金屬鋰、鋰離子陽極、及所謂的不含鋰之陽極(可參見美國專利證書號6,168,884,其一併附上供作參考)。在沉積負陽極後,可進行一沉積後之退火製程來改善負陽極的物理、化學與電化學性質。此退火製程較佳為應用到鋰離子陽極(如Li4 Ti5 O1 2 ),但不宜應用到金屬鋰或不含鋰之陽極。Negative anodes are, for example, metallic lithium, lithium ion anodes, and so-called lithium-free anodes (see U.S. Patent No. 6,168,884, incorporated herein by reference). After depositing the negative anode, a post-deposition annealing process can be performed to improve the physical, chemical, and electrochemical properties of the negative anode. This annealing process is preferably applied to a lithium ion anode (such as Li 4 Ti 5 O 1 2 ), but it is not suitable for use in metallic lithium or lithium-free anodes.

負陽極的實際組成與退火製程的參數可做為選擇阻障層材料時的參考。以金屬鋰負陽極為例,用以隔開矽基材及金屬鋰負陽極、且位於矽基材上的5000埃之Si3 N4 阻障子層可提供必要的阻障層性質,其中阻障層與金屬鋰間的化學惰性可藉由反應路徑為12Li+Si3 N4 =4Li3 N+3Si的反應正焓來達成。The actual composition of the negative anode and the parameters of the annealing process can be used as a reference for selecting the material of the barrier layer. Taking a metal lithium negative anode as an example, a 5000 angstrom Si 3 N 4 barrier sublayer separating the tantalum substrate and the metallic lithium negative anode and located on the tantalum substrate can provide the necessary barrier properties, wherein the barrier layer The chemical inertness between the layer and the metallic lithium can be achieved by the reaction enthalpy of the reaction path of 12Li + Si 3 N 4 = 4Li 3 N + 3Si.

根據反轉結構之一實施例,正陰極可沉積於電解質上。如此將會限制沉積後退火處理正陰極的溫度,因為電解質和正陰極間的反應、以及負陽極和電解質間的反應最好都能避免。According to one embodiment of the inversion structure, the positive cathode can be deposited on the electrolyte. This will limit the temperature at which the positive cathode is annealed after deposition because the reaction between the electrolyte and the positive cathode, and the reaction between the negative anode and the electrolyte are preferably avoided.

3.2陽極結構3.2 anode structure

「反轉結構」之實施例已說明於上。The embodiment of the "reverse structure" has been described above.

當一實施例中的負陽極為完全位於電解質上,則負陽極與阻障層間並無直接的化學擴散行為。When the negative anode in one embodiment is completely on the electrolyte, there is no direct chemical diffusion behavior between the negative anode and the barrier layer.

當一實施例中的負陽極為部分位於電解質上,則最好採用「正常結構」(參見第3.1.1節)。參照第7a圖,若使用一陽極集電層,則電解質層上方的負陽極的突出部分不會接觸阻障層。參照第7b圖,若無使用一適當結構之陽極集電層,則負陽極的突出部分會接觸阻障層。在任一實施例中,由於陽極集電層有限的厚度及晶粒邊界的形態,陽極集電層可能無法適當地化學性隔開負陽極與阻障層,所以負陽極對其直接接觸之阻障層與阻障子層最好具化學惰性。因此,負陽極的材料會決定阻障子層選用的材料。有鑑於此,若負陽極為一金屬鋰陽極且此陽極接觸阻障子層,則阻障子層就不能選擇使用一Co3 O4 阻障子層。否則金屬鋰會反應降解Co3 O4 阻障子層為Li2 O和CoO、以及Li(Co)和Co(Li)固態溶液。When the negative anode in one embodiment is partially on the electrolyte, it is preferred to use a "normal structure" (see Section 3.1.1). Referring to Fig. 7a, if an anode collector layer is used, the protruding portion of the negative anode above the electrolyte layer does not contact the barrier layer. Referring to Figure 7b, if an anode collector layer of a suitable structure is not used, the protruding portion of the negative anode contacts the barrier layer. In either embodiment, due to the limited thickness of the anode collector layer and the morphology of the grain boundaries, the anode collector layer may not properly chemically separate the negative anode from the barrier layer, so the negative anode is directly in contact with it. The layer and barrier layer are preferably chemically inert. Therefore, the material of the negative anode determines the material selected for the barrier sublayer. In view of this, if the negative anode is a metal lithium anode and the anode contacts the barrier sublayer, the barrier sublayer cannot choose to use a Co 3 O 4 barrier sublayer. Otherwise, the lithium metal reacts to degrade the Co 3 O 4 barrier sublayer into Li 2 O and CoO, and Li(Co) and Co(Li) solid solutions.

當負陽極及/或其陽極集電層接觸阻障層時,上述二實施例均需評估:負陽極及/或其陽極集電層是否接觸(1)一絕緣阻障子層、或(2)一導電阻障子層。在第一實施例中,此阻障子層(如Si3 N4 )於使用金屬鋰陽極時,對負陽極及/或其陽極集電層已具足夠的化學惰性。在第二實施例中,除接觸之導電阻障子層對負陽極及/或其陽極集電層具化學惰性外,一更複雜之阻障子層還可用於導電基材,例如金屬基材、及摻雜與未摻雜之矽基材(參見第4a至4c圖的實施例)。至於絕緣高分子基材與第二實施例,則可採用一非連續之導電阻障子層,如此電池的正極部分與負極部分不會因導電阻障子層而短路。When the negative anode and/or its anode collector layer contacts the barrier layer, both of the above embodiments need to evaluate whether the negative anode and/or its anode collector layer is in contact with (1) an insulating barrier sublayer, or (2) A conductive barrier layer. In a first embodiment, the barrier sub-layer (e.g., Si 3 N 4 ) is sufficiently chemically inert to the negative anode and/or its anode collector layer when a metallic lithium anode is used. In a second embodiment, a more complex barrier sublayer can be used for a conductive substrate, such as a metal substrate, in addition to being in contact with the negative barrier anode and/or its anode collector layer. Doped and undoped germanium substrates (see the examples of Figures 4a to 4c). As for the insulating polymer substrate and the second embodiment, a discontinuous conductive barrier layer can be used, so that the positive and negative portions of the battery are not short-circuited by the conductive barrier layer.

當一金屬鋰負陽極接觸一阻障子層,且電池正極部分不公用此阻障子層而是位於一絕緣阻障子層(如Si3 N4 )上時,使用一1微米厚之ZrN阻障子層是較簡單、也較有效的方法。在此實施例中,ZrN阻障子層還可做為金屬鋰負陽極的陽極集電層(參見第8圖)。When a metal lithium negative anode contacts a barrier sublayer and the positive electrode portion of the battery does not share the barrier sublayer but is located on an insulating barrier sublayer (such as Si 3 N 4 ), a 1 μm thick ZrN barrier sublayer is used. It is a simpler and more effective method. In this embodiment, the ZrN barrier sublayer can also serve as an anode collector layer for the metallic lithium negative anode (see Figure 8).

一陽極集電層可包括一惰性金屬、一惰性合金、或一惰性氮化物,因而不易與阻障層或負陽極反應。因正陰極及/或陰極集電層亦電氣接觸一導電阻障子層,故陽極集電層較佳為不電氣接觸導電阻障子層,以免電池短路。An anode collector layer may comprise an inert metal, an inert alloy, or an inert nitride and thus is less susceptible to reaction with the barrier layer or the negative anode. Since the positive cathode and/or the cathode collector layer also electrically contacts a conductive barrier layer, the anode collector layer preferably does not electrically contact the conductive barrier layer to prevent short circuit of the battery.

3.3電氣接觸電化學活化胞之基材3.3 Electrical contact electrochemically activated cell substrate

根據一實施例,基材不與正陰極或負陽極反應,而這些電極與基材彼此為直接電氣接觸或經由集電層為非直接電氣接觸。然若應用於導電基材,如金屬基材、摻雜或未摻雜之矽晶圓、或金屬化高分子基材,只有其中一個電極可電氣接觸基材,否則會導致電化學活化胞短路、或產生很大的漏電流。再者,可將導電基材當作電化學設備兩終端的其中一個終端。According to an embodiment, the substrate does not react with the positive or negative anode, and the electrodes and the substrate are in direct electrical contact with each other or are indirect electrical contact via the collector layer. However, if applied to conductive substrates, such as metal substrates, doped or undoped germanium wafers, or metallized polymer substrates, only one of the electrodes can electrically contact the substrate, otherwise it will cause electrochemically activated short circuits. Or generate a large leakage current. Furthermore, the conductive substrate can be considered as one of the terminals of the two terminals of the electrochemical device.

3.4雙面電化學設備3.4 double-sided electrochemical equipment

根據本發明之實施例,一電化學設備包括至少一電化學活化胞於基材的各側邊。製造方法例如包括利用可同時沉積材料於基材二側邊的裝置,於下一層亦同時沉積於基材二側邊的電池元件層形成之前,沉積一特定電化學活化胞元件層(如正陰極)於基材二側邊,以形成各電化學活化胞。In accordance with an embodiment of the invention, an electrochemical device includes at least one electrochemically activated cell on each side of the substrate. The manufacturing method includes, for example, using a device capable of simultaneously depositing materials on both sides of the substrate, and depositing a specific electrochemically activated cell element layer (such as a positive cathode) before the next layer of the cell element layer simultaneously deposited on both sides of the substrate is formed. ) on the two sides of the substrate to form each electrochemically activated cell.

電池元件層的製作順序可同於單面電化學設備的製作順序。根據一實施例,在完成沉積元件層於基材二側邊後、並於沉積下一元件層於基材二側邊前,一沉積後之退火製程可不施加於基材另一側邊上不宜退火處理的元件層。The order in which the battery element layers are formed can be the same as the order in which the single-sided electrochemical devices are fabricated. According to an embodiment, after the deposition of the deposition element layer on the two sides of the substrate and before depositing the next component layer on the two sides of the substrate, a deposition annealing process may not be applied to the other side of the substrate. Annealed component layer.

根據另一實施例,可先製作第一電化學活化胞於基材第一側邊後,再製作第二電化學活化胞於基材第二側邊、或製作任一電化學活化胞於基材之第一或第二側邊。此方法適用於無法同時雙面沉積的沉積裝置。例如,可先沉積一陰極集電層與一正陰極層於基材之第一側邊上,再沉積一陰極集電層與一正陰極層於基材之第二側邊上。接著,一沉積後之退火製程可同時處理基材上部分完成之電化學活化胞,然後再以電解質-陽極集電層-陽極的順序來繼續製作基材第一側邊上的電化學活化胞。其次,可以相同順序來完成基材之第二側邊,然後利用感熱式高分子薄片同時封裝基材之二側邊,或利用薄膜封裝物同時或依序封裝基材之二側邊。According to another embodiment, after the first electrochemically activated cell is first formed on the first side of the substrate, the second electrochemically activated cell is fabricated on the second side of the substrate, or any electrochemically activated cell is fabricated. The first or second side of the material. This method is suitable for deposition devices that cannot be deposited on both sides at the same time. For example, a cathode collector layer and a positive cathode layer are deposited on the first side of the substrate, and a cathode collector layer and a cathode layer are deposited on the second side of the substrate. Then, a post-deposition annealing process can simultaneously process the partially completed electrochemically activated cells on the substrate, and then continue to fabricate the electrochemically activated cells on the first side of the substrate in the order of the electrolyte-anode collector layer-anode. . Secondly, the second side of the substrate can be completed in the same order, and then the two sides of the substrate can be simultaneously encapsulated by the heat sensitive polymer sheet, or the two sides of the substrate can be simultaneously or sequentially encapsulated by the film package.

視退火處理正陰極及/或負陽極的實際條件而定,可於開始製作第二電化學活化胞於基材第二側邊前,先完成製作基材第一側邊上的第一電化學活化胞。Depending on the actual conditions of the annealing of the positive cathode and/or the negative anode, the first electrochemical treatment on the first side of the substrate can be completed before the second electrochemically activated cell is fabricated on the second side of the substrate. Activate the cell.

3.5保護封裝物或保護包裝物3.5 Protecting the package or protecting the package

根據本發明之目的,「保護包裝物」定義為保護圍場,例如一袋狀物或一密封的金屬罐,其可容納電化學設備,且在一些實施例中,其可完全圍住及/或容納此設備。「保護封裝物」定義為可“蓋住”電化學設備、或電化學設備中一或多個特定電化學活化胞的防護物。此覆蓋物為例如附著到緊鄰電化學活化胞的基材區域、或電化學設備中任一適當的基材區域。For the purposes of the present invention, a "protective wrapper" is defined as a protective enclosure, such as a pouch or a sealed metal can that can house an electrochemical device and, in some embodiments, can be completely enclosed and/or Accommodate this device. A "protective encapsulant" is defined as a shield that "caps" an electrochemical device, or one or more specific electrochemically activated cells in an electrochemical device. The cover is, for example, attached to a region of the substrate in close proximity to the electrochemically activated cell, or any suitable substrate region in the electrochemical device.

在將本發明電化學設備置於周遭環境中操作之前,電化學設備最好已經保護而可抵擋任一存於周遭環境內可能會產生有害反應或降解電化學設備的反應性化學品。例如,若周遭環境為空氣,則本發明電化學設備較佳為可抵擋水氣或其他反應性化學品,例如氧氣或二氧化碳(可參見美國專利證書號6,916,679,一併附於此供作參考)。本發明電化學設備還可置於一具電氣入口的密封金屬罐內,例如雷射焊接不鏽鋼罐、或真空密封金屬或玻璃管,以抵擋外部化學因子。然此類保護包裝物通常佔據太多電化學設備的惰性體積與重量,故除了運送能量的正陰極外,需減少電化學設備的元件厚度。特別是減少電化學設備的惰性元件厚度,如基材、以及保護包裝物或保護封裝物等,這些元件的存在會降低電化學活化胞的功率密度、能量密度與電容密度,從而降低電化學設備的功率密度、能量密度與電容密度。Prior to operating the electrochemical device of the present invention in a surrounding environment, the electrochemical device is preferably protected against any reactive chemicals present in the surrounding environment that may cause deleterious reactions or degradation of the electrochemical device. For example, if the ambient environment is air, the electrochemical device of the present invention is preferably resistant to moisture or other reactive chemicals, such as oxygen or carbon dioxide (see U.S. Patent No. 6,916,679, incorporated herein by reference) . The electrochemical device of the present invention can also be placed in a sealed metal can with an electrical inlet, such as a laser welded stainless steel can, or a vacuum sealed metal or glass tube to withstand external chemical factors. However, such protective packaging typically occupies too much inert volume and weight of the electrochemical device, so in addition to the positive cathode carrying the energy, the component thickness of the electrochemical device needs to be reduced. In particular, reducing the thickness of inert components of electrochemical devices, such as substrates, and protecting packages or protecting packages, the presence of these components reduces the power density, energy density, and capacitance density of electrochemically activated cells, thereby reducing electrochemical devices. Power density, energy density and capacitance density.

基於上述原因,保護封裝物或保護包裝物宜盡可能的薄,且仍可保護電化學設備以免遭到其操作環境中各種化學品的傷害。保護的程度包括電化學設備的使用期間內所有可能接觸的溫度及化學品。然電化學設備製造者可考量成本與性能後,再決定電化學設備的最佳化參數。因此,只使用數天的電化學設備相較於使用數年的電化學設備可採用較便宜且較簡單的保護封裝物或保護包裝物。For the above reasons, the protective wrap or protective wrapper should be as thin as possible and still protect the electrochemical device from the various chemicals in its operating environment. The degree of protection includes all temperatures and chemicals that may be in contact during the life of the electrochemical device. However, electrochemical device manufacturers can consider the cost and performance before deciding the optimal parameters of the electrochemical device. Thus, electrochemical devices that use only a few days can use less expensive and simpler protective encapsulants or protective wrappers than electrochemical devices that have been used for years.

保護封裝物及保護包裝物均應具有從外部觸及電化學設備終端的部分。從外部觸及電化學設備終端的方式有下列三種。第一,基材及/或保護封裝物可直接做為接觸終端(參照第3b圖,基材300當作正終端)。第二,一終端可設於保護封裝物之密封邊緣下方、且延伸至保護封裝物外部以當作接觸點(如第4a圖中的終端430、480)。同樣地,一終端可穿過保護包裝物之密封出口或開口、且延伸於保護包裝物外部以當作接觸點(參見方型鋰離子塊體電池技術)。第三,保護封裝物或保護包裝物可具有一開口,以直接從外部觸及電化學設備內的一終端,其中可僅利用終端厚度或其相鄰之集電層來隔開敏感部分(如易潮的電解質)與周圍環境(如含水氣的空氣)。Both the protective package and the protective package should have portions that touch the terminals of the electrochemical device from the outside. There are three ways to access the electrochemical device terminal from the outside. First, the substrate and/or the protective package can be directly used as a contact terminal (see Figure 3b, substrate 300 as a positive terminal). Second, a terminal can be disposed under the sealing edge of the protective package and extending beyond the protective package to serve as a contact point (such as terminals 430, 480 in Figure 4a). Similarly, a terminal can pass through a sealed outlet or opening of the protective wrapper and extend outside the protective wrapper as a point of contact (see square lithium ion bulk cell technology). Third, the protective package or protective package may have an opening to directly access a terminal in the electrochemical device from the outside, wherein the sensitive portion may be separated by only the thickness of the terminal or its adjacent collector layer (eg, The electrolyte of the tide) and the surrounding environment (such as air containing air).

為延長使用壽命(此為本發明電化學設備的性能指標之一),上述第三種設計的開口可設於電解質區域附近,而電解質上可增設一防潮層,如第10圖所示。In order to prolong the service life (which is one of the performance indexes of the electrochemical device of the present invention), the opening of the third design described above may be disposed near the electrolyte region, and a moisture barrier layer may be added to the electrolyte, as shown in FIG.

3.6集電層及終端3.6 collector layer and terminal

導電度較差的電極材料,如LiCoO2 正陰極或Li4 Ti5 O1 2 負陽極,需要一導電度較好的惰性背接觸點(集電層),如金或鎳,以維持電極的低電阻、及縮短電極內的離子擴散路徑。此可藉由保持電子與離子擴散路徑之z-參數(厚度)的最小值來達成,且較佳為適用於平或薄(z-參數)的電池,其長度(x-參數)與寬度(y-參數)相對於厚度(z-參數)可增加到最大值。某些電極對電子與離子均具有良好的傳導性,因此不需使用集電層。但其也可能具化學反應性,故最好採用一惰性「橋樑」將其與其他電池部分分開,例如電極為金屬鋰負陽極時,可使用鎳做為橋樑。不同於在導電度差的電極上製作整面的背接觸點,「橋樑」只需製作在具良好導電度之電極的一角或一邊。橋樑是當作反應性電極與其終端間的惰性媒介,並提供集電性質,是以也可稱為「集電層」。Electrode materials with poor conductivity, such as LiCoO 2 positive cathode or Li 4 Ti 5 O 1 2 negative anode, require a good conductivity of the back contact point (collector layer), such as gold or nickel, to maintain the low electrode. Resistance, and shortening the ion diffusion path in the electrode. This can be achieved by maintaining the minimum of the z-parameter (thickness) of the electron and ion diffusion path, and preferably for a flat or thin (z-parameter) battery, the length (x-parameter) and width ( The y-parameter) can be increased to a maximum with respect to thickness (z-parameter). Some electrodes have good conductivity for both electrons and ions, so there is no need to use a collector layer. However, it may also be chemically reactive, so it is best to use an inert "bridge" to separate it from other battery parts. For example, when the electrode is a metal lithium negative anode, nickel can be used as a bridge. Unlike the back contact point on the electrode with poor conductivity, the "bridge" only needs to be made at one corner or one side of the electrode with good conductivity. The bridge acts as an inert medium between the reactive electrode and its terminal, and provides a current collecting property, which is also called a "collector layer."

在一實施例中,本發明電化學設備之一終端為一延伸的集電層,且組成材料與接觸電極的材料相同。然而,薄膜電池的集電層可能非常薄且密實,因此採用機械修剪、焊接、點熔接等方式可能無法形成很好的永久電氣接觸點。改善集電層接觸性質的方法之一例如為添加厚及/或多孔性的良好導電材料至集電層之一端(終端區域),以完成一機械、焊接或點熔接之外部電氣接觸點。有鑑於此,約5至15微米厚且相當多孔的網版印刷之銀與銀合金已成功地以印刷方式製成一終端,而有效電氣接觸陰極集電層或陽極集電層,並且網版印刷之材料於製造、操作及儲存電化學設備的過程中,不會污染電化學活化胞。In one embodiment, one of the terminals of the electrochemical device of the present invention is an extended collector layer and the constituent materials are the same as the material of the contact electrode. However, the collector layer of a thin film battery may be very thin and dense, so mechanical permanent trimming, soldering, spot welding, etc. may not form a good permanent electrical contact point. One of the methods for improving the contact properties of the collector layer is, for example, adding a good conductive material of thick and/or porous to one end (terminal region) of the collector layer to complete an external electrical contact point of mechanical, soldering or spot welding. In view of this, approximately 5 to 15 microns thick and relatively porous screen-printed silver and silver alloys have been successfully fabricated into a terminal by printing, and effectively electrically contact the cathode collector layer or the anode collector layer, and the screen The printed material does not contaminate the electrochemically activated cells during the manufacture, handling, and storage of the electrochemical device.

本發明之實施例將配合圖式說明於下。Embodiments of the invention will be described below in conjunction with the drawings.

第1圖繪示一電化學設備之一實施例。基材部分100是利用一包括阻障子層111-114之阻障層110來與電池部分120化學性隔開。其還包括電池元件層121-125、一正電池終端126與一負電池終端127。Figure 1 illustrates an embodiment of an electrochemical device. Substrate portion 100 is chemically separated from battery portion 120 by a barrier layer 110 comprising barrier sub-layers 111-114. It also includes battery element layers 121-125, a positive battery terminal 126 and a negative battery terminal 127.

第2圖繪示一阻障層210之一實施例,其包括厚度1000埃的MoSi2 阻障子層211、厚度3000埃的WC阻障子層212、厚度4000埃的Si3 N4 阻障子層213、及厚度5000埃的ZrN阻障子層214。如圖所示,這些阻障子層的面積大小均不同,且電氣隔開電化學活化胞的正極部分(214、220、230、240)與負極部分(260、270、280)。陰極集電層、正終端、及正陰極的標號分別為220、230、及240。電化學活化胞的正極部分包括至少一正陰極、一陰極集電層、及一正終端。陰極集電層可單獨當作一正終端。負陽極、陽極集電層、及負終端的標號分別為260、270、及280。電化學活化胞的負極部分包括至少一負陽極、一陽極集電層、及一負終端。一延伸的陽極集電層亦可當作一(1)負終端、(2)陽極、以及(3)陽極集電層、陽極和負終端。電解質250可電子性分隔電化學活化胞的正極部分與負極部分。在此實施例中,電化學活化胞是受到一封裝物290的保護,其中封裝物290具一開口291,以接近負終端280。封裝之電化學活化胞可製作到一基材200上,進而構成電化學設備。FIG. 2 illustrates an embodiment of a barrier layer 210 including a MoSi 2 barrier sublayer 211 having a thickness of 1000 angstroms, a WC barrier sublayer 212 having a thickness of 3000 angstroms, and a Si 3 N 4 barrier sublayer 213 having a thickness of 4000 angstroms. And a ZrN barrier sub-layer 214 having a thickness of 5000 angstroms. As shown, these barrier sub-layers vary in size and electrically separate the positive portion (214, 220, 230, 240) and the negative portion (260, 270, 280) of the electrochemically activated cell. The cathode collector layer, the positive terminal, and the positive cathode are designated 220, 230, and 240, respectively. The positive electrode portion of the electrochemically activated cell includes at least one positive cathode, one cathode collector layer, and a positive terminal. The cathode collector layer can be treated as a positive terminal alone. The negative anode, anode collector layer, and negative terminal are labeled 260, 270, and 280, respectively. The negative electrode portion of the electrochemically activated cell includes at least one negative anode, one anode collector layer, and a negative terminal. An extended anode collector layer can also be considered as a (1) negative terminal, (2) an anode, and (3) an anode collector layer, an anode, and a negative terminal. The electrolyte 250 can electronically separate the positive and negative portions of the electrochemically activated cell. In this embodiment, the electrochemically activated cell is protected by an encapsulant 290 having an opening 291 to access the negative terminal 280. The encapsulated electrochemically activated cells can be fabricated onto a substrate 200 to form an electrochemical device.

第3a圖繪示一具第一阻障子層311與第二阻障子層312之阻障層310的實施例,其中阻障子層例如為導電材料,且藉由將負極部分完全製作於電解質350上來電氣隔開電化學活化胞的正極部分與負極部分。正極部分包括第二阻障子層312、陰極集電層320、正終端330、及正陰極340。若第一阻障子層311具導電性,則正極部分可另含第一阻障子層311。當導電基材300(如金屬基材)搭配使用導電第一阻障子層311時,則此基材亦可當作正極部分的一部分。負極部分包括負陽極360、陽極集電層370、及負終端380。在此實施例中,電化學活化胞是受到一封裝物390的保護,其中封裝物390具一開口391,以接近負終端380。FIG. 3a illustrates an embodiment of a barrier layer 310 having a first barrier sub-layer 311 and a second barrier sub-layer 312, wherein the barrier sub-layer is, for example, a conductive material, and the anode portion is completely fabricated on the electrolyte 350. Electrically separating the positive and negative portions of the electrochemically activated cell. The positive electrode portion includes a second barrier sub-layer 312, a cathode collector layer 320, a positive terminal 330, and a positive cathode 340. If the first barrier sub-layer 311 is electrically conductive, the positive electrode portion may further include a first barrier sub-layer 311. When the conductive substrate 300 (such as a metal substrate) is used in combination with the conductive first barrier sub-layer 311, the substrate can also be used as a part of the positive portion. The negative electrode portion includes a negative anode 360, an anode collector layer 370, and a negative terminal 380. In this embodiment, the electrochemically activated cell is protected by an encapsulant 390 having an opening 391 to approximate the negative terminal 380.

第3b圖繪示一具第一阻障子層311與第二阻障子層312之阻障層310的實施例,其中阻障子層例如為導電材料,且藉由將負極部分完全製作於電解質350上來電氣隔開電化學活化胞的正極部分與負極部分,而陰極集電層320、正終端330及正陰極340可經由第二阻障子層312電氣接觸金屬基材300。在此結構中,金屬基材300可做為正終端。正極部分包括金屬基材300、第二阻障子層312、陰極集電層320、正終端330、及正陰極340。若第一阻障子層311具導電性,則正極部分可另含第一阻障子層311。負極部分包括負陽極360、陽極集電層370、及負終端380。在此實施例中,電化學活化胞是受到一封裝物390的保護,其中封裝物390具一開口391,以接近負終端380。FIG. 3b illustrates an embodiment of the barrier layer 310 of the first barrier sub-layer 311 and the second barrier sub-layer 312, wherein the barrier sub-layer is, for example, a conductive material, and the anode portion is completely fabricated on the electrolyte 350. The positive and negative portions of the electrochemically activated cell are electrically separated, and the cathode collector layer 320, the positive terminal 330, and the positive cathode 340 are electrically contactable to the metal substrate 300 via the second barrier sub-layer 312. In this configuration, the metal substrate 300 can be used as a positive terminal. The positive electrode portion includes a metal substrate 300, a second barrier sub-layer 312, a cathode collector layer 320, a positive terminal 330, and a positive cathode 340. If the first barrier sub-layer 311 is electrically conductive, the positive electrode portion may further include a first barrier sub-layer 311. The negative electrode portion includes a negative anode 360, an anode collector layer 370, and a negative terminal 380. In this embodiment, the electrochemically activated cell is protected by an encapsulant 390 having an opening 391 to approximate the negative terminal 380.

第3c圖繪示一具第一阻障子層311與第二阻障子層312之阻障層310的實施例,其中阻障子層例如為導電材料,且藉由將正極部分完全製作於電解質350上來電氣隔開電化學活化胞的正極部分與負極部分,而陽極集電層370、負終端380及負陽極360可經由第二阻障子層312電氣接觸金屬基材300。在此結構中,基材300也可做為正終端。正極部分包括陰極集電層320、正終端330、及正陰極340。負極部分包括金屬基材300、第二阻障子層312、負陽極360、陽極集電層370、及負終端380。若第一阻障子層311亦具導電性,則負極部分可另含第一阻障子層311。在此實施例中,電化學活化胞是受到一封裝物390的保護,其中封裝物390具一開口391,用以接觸負終端380。FIG. 3c illustrates an embodiment of the barrier layer 310 of the first barrier sub-layer 311 and the second barrier sub-layer 312, wherein the barrier sub-layer is, for example, a conductive material, and the anode portion is completely fabricated on the electrolyte 350. The positive and negative portions of the electrochemically activated cell are electrically separated, and the anode, third, and negative anodes 370, 380, 360, and the negative electrode 360 are electrically contacted to the metal substrate 300 via the second barrier sub-layer 312. In this configuration, the substrate 300 can also be used as a positive terminal. The positive electrode portion includes a cathode collector layer 320, a positive terminal 330, and a positive cathode 340. The negative electrode portion includes a metal substrate 300, a second barrier sub-layer 312, a negative anode 360, an anode collector layer 370, and a negative terminal 380. If the first barrier sub-layer 311 is also electrically conductive, the negative electrode portion may further include a first barrier sub-layer 311. In this embodiment, the electrochemically activated cell is protected by an encapsulant 390 having an opening 391 for contacting the negative terminal 380.

第4a圖繪示一阻障層410之一實施例,其包括導電阻障子層,且並無將負極部分完全製作於電解質450上來電氣隔開電化學活化胞的正極部分與負極部分。電解質450和絕緣的第二阻障子層412可隔開電化學活化胞的正極部分與負極部分。正極部分包括陰極集電層420、正終端430、及正陰極440。若第三阻障子層413具導電性,則其可當作正極部分的一員。第一阻障子層411可為電氣絕緣或導電。若第一阻障子層411具導電性,則其可當作負極部分的一員,而基材400也可當作負極部分的一部分。此外,負極部分包括負陽極460、陽極集電層470、及負終端480。在此實施例中,金屬基材可做為負終端。電化學活化胞是受到一封裝物490的保護。4a illustrates an embodiment of a barrier layer 410 that includes a conductive barrier layer and does not completely fabricate the negative portion on the electrolyte 450 to electrically separate the positive and negative portions of the electrochemically activated cell. The electrolyte 450 and the insulated second barrier sub-layer 412 can separate the positive and negative portions of the electrochemically activated cell. The positive electrode portion includes a cathode collector layer 420, a positive terminal 430, and a positive cathode 440. If the third barrier sub-layer 413 is electrically conductive, it can be regarded as a member of the positive electrode portion. The first barrier sub-layer 411 can be electrically insulating or electrically conductive. If the first barrier sub-layer 411 is electrically conductive, it can serve as a member of the negative electrode portion, and the substrate 400 can also serve as a part of the negative electrode portion. Further, the negative electrode portion includes a negative anode 460, an anode collector layer 470, and a negative terminal 480. In this embodiment, the metal substrate can be used as a negative terminal. The electrochemically activated cells are protected by an encapsulant 490.

第4b圖繪示一阻障層410之一實施例,其包括導電阻障子層,且並無將負極部分完全製作於電解質450上來電氣隔開電化學活化胞的正極部分與負極部分。電解質450和絕緣的第二阻障子層412可隔開電化學活化胞的正極部分與負極部分。正極部分包括陰極集電層420、正終端430、及正陰極440。若第三阻障子層413具導電性,則其可當作正極部分的一員。第一阻障子層411可為電氣絕緣或導電。若第一阻障子層411具導電性,則其可當作負極部分的一員,而基材400也可當作負極部分的一部分。此外,負極部分包括負陽極460、陽極集電層470、及負終端480。在此實施例中,金屬基材可做為負終端。電化學活化胞是受到一封裝物490的保護。4b illustrates an embodiment of a barrier layer 410 that includes a conductive barrier layer and does not completely fabricate the negative portion on the electrolyte 450 to electrically separate the positive and negative portions of the electrochemically activated cell. The electrolyte 450 and the insulated second barrier sub-layer 412 can separate the positive and negative portions of the electrochemically activated cell. The positive electrode portion includes a cathode collector layer 420, a positive terminal 430, and a positive cathode 440. If the third barrier sub-layer 413 is electrically conductive, it can be regarded as a member of the positive electrode portion. The first barrier sub-layer 411 can be electrically insulating or electrically conductive. If the first barrier sub-layer 411 is electrically conductive, it can serve as a member of the negative electrode portion, and the substrate 400 can also serve as a part of the negative electrode portion. Further, the negative electrode portion includes a negative anode 460, an anode collector layer 470, and a negative terminal 480. In this embodiment, the metal substrate can be used as a negative terminal. The electrochemically activated cells are protected by an encapsulant 490.

第4c圖繪示一阻障層410之一實施例,其包括導電阻障子層,且並無將負極部分完全製作於電解質450上來電氣隔開電化學活化胞的正極部分與負極部分。負陽極460可直接接觸第三阻障子層413,因此第三阻障子層413最好對負陽極460具化學惰性。在此實施例中,第三阻障子層413可為電氣絕緣,而與電解質450一同電氣隔開電化學活化胞的正極部分與負極部分。正極部分包括陰極集電層420、正終端430、及正陰極440。若第二阻障子層412具導電性,則其可當作正極部分的一員,而金屬基材400也可當作正極部分的一部分。第一阻障子層411可為電氣絕緣或導電。若第一阻障子層411具導電性,且第二阻障子層412亦具導電性,則第一阻障子層411可當作正極部分的一員。負極部分包括負陽極460、陽極集電層470、及負終端480。在此實施例中,金屬基材可做為負終端。電化學活化胞是受到一封裝物490的保護。FIG. 4c illustrates an embodiment of a barrier layer 410 that includes a conductive barrier layer and does not completely fabricate the negative portion on the electrolyte 450 to electrically separate the positive and negative portions of the electrochemically activated cell. The negative anode 460 can directly contact the third barrier sub-layer 413, so the third barrier sub-layer 413 is preferably chemically inert to the negative anode 460. In this embodiment, the third barrier sub-layer 413 can be electrically insulated and electrically separated from the electrolyte 450 by the positive and negative portions of the electrochemically activated cell. The positive electrode portion includes a cathode collector layer 420, a positive terminal 430, and a positive cathode 440. If the second barrier sub-layer 412 is electrically conductive, it can be considered as a member of the positive electrode portion, and the metal substrate 400 can also be considered as a part of the positive electrode portion. The first barrier sub-layer 411 can be electrically insulating or electrically conductive. If the first barrier sub-layer 411 is electrically conductive and the second barrier sub-layer 412 is also electrically conductive, the first barrier sub-layer 411 can serve as a member of the positive portion. The negative electrode portion includes a negative anode 460, an anode collector layer 470, and a negative terminal 480. In this embodiment, the metal substrate can be used as a negative terminal. The electrochemically activated cells are protected by an encapsulant 490.

第5圖為一1.6微米厚之LiCoO2 正陰極層的X光繞射(XRD)圖案,其製作在300埃鈷黏著層上方的3000埃金陰極集電層之上,黏著層附加在一阻障層上,阻障層包含二層位於50微米厚之不鏽鋼箔基材上的阻障子層(5000埃的Al2 O3 與6000埃的Co3 O4 )。LiCoO2 正陰極於空氣中以700℃退火處理2小時,其下的基材、阻障層與阻障子層、陰極集電黏著層、及陰極集電層亦受到類似的熱影響。結晶之LiCoO2正陰極的晶格參數(ah e x =2.8146(4)埃;ch e x =14.0732(8)埃)近似於理論值(如ICDD 77-1370:ah e x =2.815(1)埃;ch e x =14.05(1)埃),此表示結晶之LiCoO2 正陰極(由Scherrer公式所估算的(101)面結晶度為560埃)不會和其周圍材料(包括基材)反應。圖中,”Au”代表一金陰極集電層;”Au+S”代表金陰極集電層與不鏽鋼箔基材的重疊反應峰。Figure 5 is a X-ray diffraction (XRD) pattern of a 1.6 μm thick LiCoO 2 positive cathode layer fabricated over a 3000 Å gold cathode collector layer over a 300 Å cobalt adhesion layer. The adhesion layer is attached to a resist. On the barrier layer, the barrier layer comprises two barrier sublayers (5000 angstroms of Al 2 O 3 and 6000 angstroms of Co 3 O 4 ) on a 50 micron thick stainless steel foil substrate. The LiCoO 2 positive electrode was annealed in air at 700 ° C for 2 hours, and the underlying substrate, barrier layer and barrier sublayer, cathode current collector layer, and cathode collector layer were also subjected to similar heat effects. The lattice parameter of the crystallized LiCoO2 positive cathode (a h e x =2.8146(4) angstrom; c h e x =14.0732(8) angstrom) approximates the theoretical value (eg ICDD 77-1370: a h e x =2.815 ( 1) angstrom; c h e x = 14.05 (1) angstrom), which means that the crystallized LiCoO 2 positive cathode (the (101) plane crystallinity estimated by the Scherrer formula is 560 angstroms) does not surround the surrounding material (including the base) Material) reaction. In the figure, "Au" represents a gold cathode collector layer; "Au+S" represents an overlapping reaction peak of a gold cathode collector layer and a stainless steel foil substrate.

第6圖為一1.6微米厚之LiCoO2 正陰極層的X光繞射(XRD)圖案,其製作在300埃鈷黏著層上方的3000埃金陰極集電層之上,黏著層位於一阻障層上,阻障層包含二層位於300微米厚之未摻雜矽基材上的阻障子層(5000埃的Si3 N4 與5000埃的SiO2 )。LiCoO2 正陰極於空氣中以700℃退火處理2小時,其下的基材、阻障層與阻障子層、陰極集電黏著層、及陰極集電層亦受到類似的熱影響。結晶之LiCoO2 正陰極的晶格參數(ah e x =2.8151(4)埃;ch e x =14.066(6)埃)近似於理論值(如ICDD 77-1370:ah e x =2.815(1)埃;ch e x =14.05(1)埃),此表示結晶之LiCoO2 正陰極(由Scherrer公式所估算的(101)面結晶度為1100埃)不會和其周圍材料(包括矽基材)反應。圖中,”Au”代表一金陰極集電層。單晶矽基材的反應峰(peak)可由繞射儀之0-2θ幾何函數推估。Figure 6 is a X-ray diffraction (XRD) pattern of a 1.6 μm thick LiCoO 2 positive cathode layer fabricated over a 3000 Å gold cathode collector layer over a 300 Å cobalt adhesion layer with an adhesive layer at a barrier On the layer, the barrier layer comprises two barrier sublayers (5000 angstroms of Si 3 N 4 and 5000 angstroms of SiO 2 ) on a 300 micron thick undoped germanium substrate. The LiCoO 2 positive electrode was annealed in air at 700 ° C for 2 hours, and the underlying substrate, barrier layer and barrier sublayer, cathode current collector layer, and cathode collector layer were also subjected to similar heat effects. The lattice parameter of the crystallized LiCoO 2 positive cathode (a h e x =2.8151(4) angstrom; c h e x =14.066(6) angstrom) approximates the theoretical value (eg ICDD 77-1370: a h e x =2.815) (1) angstrom; c h e x = 14.05 (1) angstrom), which means that the crystallized LiCoO 2 positive cathode (the (101) plane crystallinity estimated by the Scherrer formula is 1100 angstrom) does not surround the surrounding material (including矽 substrate) reaction. In the figure, "Au" represents a gold cathode collector layer. The reaction peak of the single crystal germanium substrate can be estimated from the 0-2θ geometric function of the diffractometer.

第7a圖繪示一陽極結構之一實施例,其中負陽極760不直接接觸阻障層710與其任一阻障子層711、712。第一阻障子層711可為電氣絕緣或導電,而第二阻障子層712應為電氣絕緣,以避免電化學活化胞與電化學設備短路。在此結構中,負陽極760不接觸阻障層,故其非決定阻障子層711、712之化學組成的因素。電化學活化胞的正極部分包括陰極集電層720、正終端730及正陰極740,負極部分包括負陽極760、陽極集電層770及負終端780,而電解質750隔開正極部分與負極部分。電化學活化胞是受到一封裝物790的保護。Figure 7a illustrates an embodiment of an anode structure in which the negative anode 760 does not directly contact the barrier layer 710 and any of its barrier sub-layers 711, 712. The first barrier sub-layer 711 can be electrically insulating or electrically conductive, while the second barrier sub-layer 712 should be electrically insulated to avoid short circuiting of the electrochemically activated cells with the electrochemical device. In this configuration, the negative anode 760 does not contact the barrier layer, so it does not determine the chemical composition of the barrier sub-layers 711, 712. The positive electrode portion of the electrochemically activated cell includes a cathode collector layer 720, a positive terminal 730, and a positive cathode 740. The negative electrode portion includes a negative anode 760, an anode collector layer 770, and a negative terminal 780, and the electrolyte 750 separates the positive electrode portion from the negative electrode portion. The electrochemically activated cells are protected by an encapsulant 790.

第7b圖繪示一陽極結構之一實施例,其中負陽極760直接接觸阻障層710與其阻障子層712。第一阻障子層711可為電氣絕緣或導電,而第二阻障子層712較佳為電氣絕緣,以避免電化學活化胞與電化學設備短路。在此結構中,因負陽極760接觸阻障層,故其至少會限制與其接觸之阻障子層712的化學組成。電化學活化胞的正極部分包括陰極集電層720、正終端730及正陰極740,負極部分包括負陽極760、陽極集電層770及負終端780,而電解質750隔開正極部分與負極部分。電化學活化胞是受到一封裝物790的保護。FIG. 7b illustrates an embodiment of an anode structure in which the negative anode 760 directly contacts the barrier layer 710 and its barrier sub-layer 712. The first barrier sub-layer 711 can be electrically insulating or electrically conductive, while the second barrier sub-layer 712 is preferably electrically insulated to avoid short circuiting of the electrochemically activated cells with the electrochemical device. In this configuration, since the negative anode 760 contacts the barrier layer, it at least limits the chemical composition of the barrier sub-layer 712 in contact therewith. The positive electrode portion of the electrochemically activated cell includes a cathode collector layer 720, a positive terminal 730, and a positive cathode 740. The negative electrode portion includes a negative anode 760, an anode collector layer 770, and a negative terminal 780, and the electrolyte 750 separates the positive electrode portion from the negative electrode portion. The electrochemically activated cells are protected by an encapsulant 790.

第8圖繪示一陽極結構之一實施例,其中負陽極860直接接觸一導電ZrN阻障子層811,其為電化學設備的第一阻障子層,亦可當作陽極集電層。此陽極集電層與阻障子層811甚至對一反應性負陽極860(如金屬鋰)亦具化學惰性。由於本實施例之阻障子層811具特殊形狀,因此第二阻障子層812較佳為電氣絕緣,如Si3 N4 。電化學活化胞的正極部分包括陰極集電層820、正終端830及正陰極840,負極部分包括金屬基材800、陽極集電層與ZrN阻障子層811、負陽極860及負終端870,而電解質850隔開正極部分與負極部分。電化學活化胞是受到一封裝物880的保護。Figure 8 illustrates an embodiment of an anode structure in which the negative anode 860 is in direct contact with a conductive ZrN barrier sub-layer 811, which is the first barrier sub-layer of the electrochemical device and can also serve as an anode collector layer. The anode collector layer and the barrier sub-layer 811 are also chemically inert even to a reactive negative anode 860 such as metallic lithium. Since the barrier sub-layer 811 of the present embodiment has a special shape, the second barrier sub-layer 812 is preferably electrically insulated, such as Si 3 N 4 . The positive electrode portion of the electrochemically activated cell includes a cathode collector layer 820, a positive terminal 830, and a positive cathode 840, and the negative electrode portion includes a metal substrate 800, an anode collector layer and a ZrN barrier sublayer 811, a negative anode 860, and a negative terminal 870, and The electrolyte 850 separates the positive electrode portion from the negative electrode portion. The electrochemically activated cells are protected by an encapsulant 880.

第9圖繪示一電池結構之一實施例,其中負陽極960直接接觸基材900,且基材900不與負陽極960反應。在此實施例中,若基材具有足夠的導電度(例如基材為不鏽鋼時),則基材可做為負陽極集電層及負終端。電化學活化胞的正極部分包括陰極集電層920、正終端930、正陰極940、及第二阻障子層912(若其具導電性)。第一阻障子層911較佳為電氣絕緣,以避免電化學設備短路。負極部分例如包括金屬基材900及負陽極960。Figure 9 illustrates an embodiment of a battery structure in which the negative anode 960 is in direct contact with the substrate 900 and the substrate 900 does not react with the negative anode 960. In this embodiment, if the substrate has sufficient conductivity (for example, when the substrate is stainless steel), the substrate can serve as a negative anode collector layer and a negative terminal. The positive electrode portion of the electrochemically activated cell includes a cathode collector layer 920, a positive terminal 930, a positive cathode 940, and a second barrier sub-layer 912 (if it is electrically conductive). The first barrier sub-layer 911 is preferably electrically isolated to avoid short circuiting of the electrochemical device. The negative electrode portion includes, for example, a metal substrate 900 and a negative anode 960.

第10圖繪示一電池結構之一實施例,其中一防潮層1092用來避免易潮的電解質層1050接觸周遭環境的水氣,而保護封裝物1090具有一開口1091以供觸及負終端1080。負終端1080和陽極集電層1070的厚度可能不足及/或阻擋水氣的能力可能不夠,以致無法長時間保護其下的電解質層1050。此圖式是由第3a圖之電化學設備修改而得。基材1000可為電氣絕緣或導電,構成阻障層1010的阻障子層1011、1012也可為電氣絕緣或導電。第10圖之電化學設備更包括陰極集電層1020、正終端1030、正陰極1040及負陽極1060。FIG. 10 illustrates an embodiment of a battery structure in which a moisture barrier 1092 is used to prevent the moisture-laden electrolyte layer 1050 from contacting moisture in the surrounding environment, and the protective package 1090 has an opening 1091 for accessing the negative terminal 1080. The thickness of the negative terminal 1080 and the anode collector layer 1070 may be insufficient and/or the ability to block moisture may not be sufficient to protect the underlying electrolyte layer 1050 for a long time. This figure is modified from the electrochemical device of Figure 3a. The substrate 1000 can be electrically insulating or electrically conductive, and the barrier sub-layers 1011, 1012 constituting the barrier layer 1010 can also be electrically insulated or electrically conductive. The electrochemical device of FIG. 10 further includes a cathode collector layer 1020, a positive terminal 1030, a positive cathode 1040, and a negative anode 1060.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

100...基材部分100. . . Substrate part

110...阻障層110. . . Barrier layer

111-114...阻障子層111-114. . . Barrier sublayer

120...電池部分120. . . Battery section

121-125...元件層121-125. . . Component layer

126、127...終端126, 127. . . terminal

200...基材200. . . Substrate

210...阻障層210. . . Barrier layer

211-214...阻障子層211-214. . . Barrier sublayer

220...陰極集電層220. . . Cathode collector layer

230...正終端230. . . Positive terminal

240...陰極240. . . cathode

250...電解質250. . . Electrolyte

260...陽極260. . . anode

270...陽極集電層270. . . Anode collector layer

280...負終端280. . . Negative terminal

290...封裝物290. . . Encapsulation

291...開口291. . . Opening

300...基材300. . . Substrate

310...阻障層310. . . Barrier layer

311、312...阻障子層311, 312. . . Barrier sublayer

320...陰極集電層320. . . Cathode collector layer

330...正終端330. . . Positive terminal

340...陰極340. . . cathode

350...電解質350. . . Electrolyte

360...陽極360. . . anode

370...陽極集電層370. . . Anode collector layer

380...負終端380. . . Negative terminal

390...封裝物390. . . Encapsulation

391...開口391. . . Opening

400...基材400. . . Substrate

410...阻障層410. . . Barrier layer

411、412、413...阻障子層411, 412, 413. . . Barrier sublayer

420...陰極集電層420. . . Cathode collector layer

430...正終端430. . . Positive terminal

440...陰極440. . . cathode

450...電解質450. . . Electrolyte

460...陽極460. . . anode

470...陽極集電層470. . . Anode collector layer

480...負終端480. . . Negative terminal

490...封裝物490. . . Encapsulation

700...基材700. . . Substrate

710...阻障層710. . . Barrier layer

711、712...阻障子層711, 712. . . Barrier sublayer

720...陰極集電層720. . . Cathode collector layer

730...正終端730. . . Positive terminal

740...陰極740. . . cathode

750...電解質750. . . Electrolyte

760...陽極760. . . anode

770...陽極集電層770. . . Anode collector layer

780...負終端780. . . Negative terminal

790...封裝物790. . . Encapsulation

800...基材800. . . Substrate

810...阻障層810. . . Barrier layer

811、812...阻障子層811, 812. . . Barrier sublayer

820...陰極集電層820. . . Cathode collector layer

830...正終端830. . . Positive terminal

840...陰極840. . . cathode

850...電解質850. . . Electrolyte

860...陽極860. . . anode

870...負終端870. . . Negative terminal

880...封裝物880. . . Encapsulation

900...基材900. . . Substrate

911、912...阻障子層911, 912. . . Barrier sublayer

920...陰極集電層920. . . Cathode collector layer

930...正終端930. . . Positive terminal

940...陰極940. . . cathode

960...陽極960. . . anode

1000...基材1000. . . Substrate

1010...阻障層1010. . . Barrier layer

1011、1012...阻障子層1011, 1012. . . Barrier sublayer

1020...陰極集電層1020. . . Cathode collector layer

1030...正終端1030. . . Positive terminal

1040...陰極1040. . . cathode

1050...電解質1050. . . Electrolyte

1060...陽極1060. . . anode

1070...陽極集電層1070. . . Anode collector layer

1080...負終端1080. . . Negative terminal

1090...封裝物1090. . . Encapsulation

1091...開口1091. . . Opening

1092...防潮層1092. . . Moisture barrier

第1圖繪示一實施例,其利用一包括多層阻障子層之阻障層來化學性隔開電化學裝置的基材部分及電化學活化胞部分。1 illustrates an embodiment of chemically separating a substrate portion of an electrochemical device and an electrochemically activated cell portion using a barrier layer comprising a plurality of barrier sublayers.

第2圖繪示使用阻障層之一實施例,其中阻障層包括多層不同面積大小的阻障子層,且電氣隔開電化學活化胞的正極與負極。2 illustrates an embodiment using a barrier layer, wherein the barrier layer includes a plurality of barrier sublayers of different area sizes and electrically separates the positive and negative electrodes of the electrochemically activated cell.

第3a圖繪示使用阻障層之一實施例,其中阻障層包括一導電阻障子層,且藉由將負極部分完全製作於電解質上,來電氣隔開電化學活化胞的正極與負極。Figure 3a illustrates an embodiment using a barrier layer, wherein the barrier layer includes a conductive barrier layer and electrically separates the positive and negative electrodes of the electrochemically activated cell by completely fabricating the negative electrode portion onto the electrolyte.

第3b圖繪示使用阻障層之另一實施例,其中阻障層包括一位於金屬基材上的導電阻障子層,且藉由將負極部分完全製作於電解質上來電氣隔開電池的正極與負極。FIG. 3b illustrates another embodiment in which a barrier layer is used, wherein the barrier layer includes a conductive resistor barrier layer on the metal substrate, and electrically separates the positive electrode of the battery by completely fabricating the negative electrode portion on the electrolyte. negative electrode.

第3c圖繪示使用阻障層之一實施例,其中阻障層包括一位於金屬基材上的導電阻障子層,且藉由將正極部分完全製作於電解質上來電氣隔開電池的正極與負極部分。Figure 3c illustrates an embodiment using a barrier layer, wherein the barrier layer includes a conductive resistor barrier layer on the metal substrate, and electrically separates the positive and negative electrodes of the battery by completely fabricating the positive electrode portion on the electrolyte. section.

第4a圖繪示使用阻障層之一實施例,其中阻障層包括導電阻障子層,且其尚未將負極部分完全製作於電解質上來電氣隔開電化學活化胞的正極與負極部分。Figure 4a illustrates an embodiment using a barrier layer wherein the barrier layer comprises a conductive barrier layer and it has not been completely fabricated on the electrolyte to electrically separate the positive and negative portions of the electrochemically activated cell.

第4b圖繪示使用阻障層之另一實施例,其中阻障層包括導電阻障子層,且其尚未將負極部分完全製作於電解質上來電氣隔開電化學活化胞的正極與負極。Figure 4b illustrates another embodiment in which a barrier layer is used, wherein the barrier layer comprises a conductive barrier layer and the negative portion has not been completely fabricated on the electrolyte to electrically separate the positive and negative electrodes of the electrochemically activated cell.

第4c圖繪示使用阻障層之另一實施例,其中阻障層包括導電阻障子層,而其尚未將負極部分完全製作於電解質上來電氣隔開電化學活化胞的正極與負極,且負陽極為直接接觸一阻障子層。Figure 4c illustrates another embodiment in which a barrier layer is used, wherein the barrier layer includes a conductive barrier layer, and the negative portion has not been completely fabricated on the electrolyte to electrically separate the positive and negative electrodes of the electrochemically activated cell, and The anode is in direct contact with a barrier sublayer.

第5圖為一1.6微米厚之LiCoO2 正陰極層的X光繞射圖,其製作在位於300埃之鈷黏著層上的3000埃金陰極集電層上,該鈷黏著層附著在一電氣絕緣阻障層上,該阻障層係由位於50微米厚且型號為430之不鏽鋼箔基材上的二阻障子層所構成,該兩阻障子層分別為5000埃的Al2 O3 與6000埃的Co3 O4Figure 5 is an X-ray diffraction pattern of a 1.6 μm thick LiCoO 2 positive cathode layer fabricated on a 3000 Å gold cathode collector layer on a 300 Å cobalt adhesion layer attached to an electrical On the insulating barrier layer, the barrier layer is composed of a two-barrier barrier layer on a 50 micrometer thick and 430 type stainless steel foil substrate, the two barrier sublayers being 5000 angstroms of Al 2 O 3 and 6000, respectively. Ai's Co 3 O 4 .

第6圖為一1.6微米厚之LiCoO2 正陰極層的X光繞射圖,其製作在位於300埃之鈷黏著層上的3000埃金陰極集電層上,該鈷黏著層位於一阻障層上,阻障層係由位於300微米厚之矽基材上的兩阻障子層所構成,該兩阻障子層分別為5000埃的Si3 N4 與5000埃的SiO2Figure 6 is an X-ray diffraction pattern of a 1.6 μm thick LiCoO 2 positive cathode layer fabricated on a 3000 Å gold cathode collector layer on a 300 Å cobalt adhesion layer. The cobalt adhesion layer is located in a barrier. On the layer, the barrier layer is composed of two barrier sublayers on a 300 micron thick germanium substrate, which are 5000 angstroms of Si 3 N 4 and 5000 angstroms of SiO 2 , respectively .

第7a圖繪示「正常結構」中陽極結構之一實施例,其中負陽極不直接接觸阻障層。Figure 7a illustrates an embodiment of an anode structure in a "normal structure" in which the negative anode does not directly contact the barrier layer.

第7b圖繪示「正常結構」中陽極結構之一實施例,其中負陽極直接接觸至少一阻障子層。Figure 7b illustrates an embodiment of an anode structure in a "normal structure" in which a negative anode is in direct contact with at least one barrier sub-layer.

第8圖繪示「正常結構」中陽極結構之一實施例,其中負陽極直接接觸一導電ZrN阻障子層,導電ZrN阻障子層亦做為陽極集電層。Figure 8 illustrates an embodiment of an anode structure in a "normal structure" in which a negative anode is in direct contact with a conductive ZrN barrier sublayer and a conductive ZrN barrier sublayer is also used as an anode collector layer.

第9圖繪示電池結構之一實施例,其中負陽極直接接觸基材,且基材不與負陽極反應。在此實施例中,若基材具有足夠的導電度(例如基材為不鏽鋼時),則基材可做為陽極集電層及負終端。Figure 9 illustrates an embodiment of a cell structure in which the negative anode is in direct contact with the substrate and the substrate does not react with the negative anode. In this embodiment, if the substrate has sufficient conductivity (for example, when the substrate is stainless steel), the substrate can serve as an anode collector layer and a negative terminal.

第10圖繪示一使用防潮層來避免易潮的電解質層接觸周遭環境的水氣之實施例,其中保護封裝物或包裝物具有一開口以供接觸負終端。Figure 10 illustrates an embodiment in which a moisture barrier is used to prevent moisture from contacting the surrounding environment of the electrolyte layer, wherein the protective package or package has an opening for contacting the negative terminal.

100...基材部分100. . . Substrate part

111-114...阻障子層111-114. . . Barrier sublayer

121-125...元件層121-125. . . Component layer

126、127...終端126, 127. . . terminal

120...電池部分120. . . Battery section

Claims (117)

一種電化學設備,包含:a)一基材,選自於由一金屬基材、一高分子基材、和一摻雜或未摻雜之矽基材所構成之群組中,該基材具有一第一側邊;b)一第一電化學活化胞,位於該第一側邊上,且具有一負極部分與一正極部分,該負極部分與該正極部分更包括一或多個終端;c)一第一阻障層,位於該第一側邊上,用以化學性隔開該第一電化學活化胞與該基材;以及d)其中該第一阻障層更包括多個阻障子層。 An electrochemical device comprising: a) a substrate selected from the group consisting of a metal substrate, a polymeric substrate, and a doped or undoped germanium substrate, the substrate Having a first side; b) a first electrochemically activated cell on the first side, and having a negative portion and a positive portion, the negative portion and the positive portion further comprising one or more terminals; c) a first barrier layer on the first side for chemically separating the first electrochemically activated cell from the substrate; and d) wherein the first barrier layer further comprises a plurality of resistors Barrier layer. 如申請專利範圍第1項所述之電化學設備,更包含多個電化學活化胞,位於該基材的該第一側邊上。 The electrochemical device of claim 1, further comprising a plurality of electrochemically activated cells on the first side of the substrate. 如申請專利範圍第1項所述之電化學設備,其中該第一阻障層包含一對該第一電化學活化胞與該基材具化學惰性的材料,並且在將該第一電化學活化胞製作於該基材上的過程中、和在該電化學設備之操作與儲存的過程中,該第一阻障層係用以阻擋該第一電化學活化胞的擴散。 The electrochemical device of claim 1, wherein the first barrier layer comprises a pair of materials that are chemically inert to the first electrochemically activated cell and the first electrochemically activated The first barrier layer serves to block diffusion of the first electrochemically activated cell during processing of the cell on the substrate and during operation and storage of the electrochemical device. 如申請專利範圍第1項所述之電化學設備,其中該等阻障子層選自於由導電材料、電氣絕緣材料及半導電材料所 構成之群組中,其中:a)該第一電化學活化胞的該正極部分不電氣接觸該第一電化學活化胞的該負極部分;b)該第一電化學活化胞的該正極部分包含至少一正陰極(positive cathode)、一陰極集電層(cathode current collector)、與一正終端(positive terminal);以及c)該第一電化學活化胞的該負極部分包含至少一負陽極(negtive anode)、一陽極集電層(anode current collector)、與一負終端(negtive terminal)。 The electrochemical device of claim 1, wherein the barrier sublayers are selected from the group consisting of conductive materials, electrical insulating materials, and semiconductive materials. In the group consisting of: a) the positive electrode portion of the first electrochemically activated cell is not in electrical contact with the negative electrode portion of the first electrochemically activated cell; b) the positive electrode portion of the first electrochemically activated cell comprises At least one positive cathode, a cathode current collector, and a positive terminal; and c) the negative electrode portion of the first electrochemically activated cell comprises at least one negative anode (negtive Anode), an anode current collector, and a negative terminal. 如申請專利範圍第4項所述之電化學設備,其中該陰極集電層可當作該正終端。 The electrochemical device of claim 4, wherein the cathode collector layer can be regarded as the positive terminal. 如申請專利範圍第4項所述之電化學設備,其中該陽極集電層可當作該負終端。 The electrochemical device of claim 4, wherein the anode collector layer can be regarded as the negative terminal. 如申請專利範圍第4項所述之電化學設備,其中該陽極集電層可當作該負陽極。 The electrochemical device of claim 4, wherein the anode collector layer can be regarded as the negative anode. 如申請專利範圍第4項所述之電化學設備,其中該陽極集電層可當作該陽極集電層、該負陽極、與該負終端。 The electrochemical device of claim 4, wherein the anode collector layer can serve as the anode collector layer, the negative anode, and the negative terminal. 如申請專利範圍第1項所述之電化學設備,其中該等阻 障子層各包含相同的形狀與面積大小。 An electrochemical device as claimed in claim 1, wherein the resistance is The barrier layers each contain the same shape and area. 如申請專利範圍第1項所述之電化學設備,其中該等阻障子層中的至少一個包含不同於其他該等阻障子層的形狀與面積大小。 The electrochemical device of claim 1, wherein at least one of the barrier sub-layers comprises a shape and an area different from the other of the barrier sub-layers. 如申請專利範圍第1項所述之電化學設備,其中該第一阻障層只部分覆蓋該基材,而使該第一電化學活化胞的至少該正極部分與該基材為化學性分開。 The electrochemical device of claim 1, wherein the first barrier layer only partially covers the substrate, and at least the positive electrode portion of the first electrochemically activated cell is chemically separated from the substrate . 如申請專利範圍第1項所述之電化學設備,其中該第一阻障層只部分覆蓋該基材,而使該第一電化學活化胞的至少該負極部分與該基材為化學性分開。 The electrochemical device of claim 1, wherein the first barrier layer only partially covers the substrate, and at least the negative electrode portion of the first electrochemically activated cell is chemically separated from the substrate. . 如申請專利範圍第1項所述之電化學設備,其中該第一阻障層的厚度為0.01微米至1毫米。 The electrochemical device of claim 1, wherein the first barrier layer has a thickness of from 0.01 micrometers to 1 millimeter. 如申請專利範圍第1項所述之電化學設備,其中該第一阻障層的厚度為0.1微米至100微米。 The electrochemical device of claim 1, wherein the first barrier layer has a thickness of from 0.1 micrometer to 100 micrometers. 如申請專利範圍第1項所述之電化學設備,其中該第一阻障層的厚度為0.5微米至5微米。 The electrochemical device of claim 1, wherein the first barrier layer has a thickness of from 0.5 micrometers to 5 micrometers. 如申請專利範圍第1項所述之電化學設備,其中該基材的厚度為0.1微米至1公分。 The electrochemical device according to claim 1, wherein the substrate has a thickness of from 0.1 μm to 1 cm. 如申請專利範圍第1項所述之電化學設備,其中該基材的厚度為1微米至1毫米。 The electrochemical device of claim 1, wherein the substrate has a thickness of from 1 micron to 1 mm. 如申請專利範圍第1項所述之電化學設備,其中該基材的厚度為10微米至100微米。 The electrochemical device of claim 1, wherein the substrate has a thickness of from 10 micrometers to 100 micrometers. 如申請專利範圍第1項所述之電化學設備,其中該等阻障子層包含一化合物,該化合物為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂(high-temperature stable silicones)所構成之群組中。 The electrochemical device of claim 1, wherein the barrier layer comprises a compound selected from the group consisting of: a) selected from the group consisting of metals, semi-metals, alloys, borides, carbides, diamonds, diamonds a group of carbon, a halide, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; b) selected from the group consisting of a boride, a carbide, a telluride, and a nitrogen Any of a plurality of compounds consisting of a compound, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) selected from a high temperature stable organic polymer and a high temperature stable oxygen resin (high-temperature) Stable silicones) in the group. 如申請專利範圍第1項所述之電化學設備,其中該等阻障子層中的至少一個包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料 的複合物。 The electrochemical device of claim 1, wherein at least one of the barrier sublayers comprises a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials or The aforementioned materials Complex. 如申請專利範圍第1項所述之電化學設備,其中該等阻障子層中的至少一個包含一單相無定形態或玻璃態材料。 The electrochemical device of claim 1, wherein at least one of the barrier sublayers comprises a single phase amorphous or glassy material. 如申請專利範圍第1項所述之電化學設備,其中該第一電化學活化胞包含一電池,該電池選自於由金屬鋰陽極電池、鋰離子陽極電池、和不含鋰之陽極電池所構成之群組中。 The electrochemical device of claim 1, wherein the first electrochemically activated cell comprises a battery selected from the group consisting of a lithium metal anode battery, a lithium ion anode battery, and a lithium-free anode battery. In the group that constitutes. 如申請專利範圍第22項所述之電化學設備,其中該第一電化學活化胞包含一由氣相沉積法所沉積之正陰極薄膜,且其中該正陰極薄膜的厚度小於200微米。 The electrochemical device of claim 22, wherein the first electrochemically activated cell comprises a positive cathode film deposited by vapor deposition, and wherein the positive cathode film has a thickness of less than 200 microns. 如申請專利範圍第22項所述之電化學設備,其中該第一電化學活化胞包含一由非真空沉積法所沉積之正陰極薄膜,且其中該正陰極薄膜的厚度小於200微米。 The electrochemical device of claim 22, wherein the first electrochemically activated cell comprises a positive cathode film deposited by a non-vacuum deposition method, and wherein the positive cathode film has a thickness of less than 200 microns. 如申請專利範圍第23項所述之電化學設備,其中該正陰極薄膜包含尺寸至少為100埃的單晶。 The electrochemical device of claim 23, wherein the positive cathode film comprises a single crystal having a size of at least 100 angstroms. 如申請專利範圍第24項所述之電化學設備,其中該正 陰極薄膜包含尺寸至少為100埃的單晶。 An electrochemical device according to claim 24, wherein the positive The cathode film comprises a single crystal having a size of at least 100 angstroms. 如申請專利範圍第1項所述之電化學設備,其中該第一電化學活化胞包含一薄膜固態電解質,該薄膜固態電解質的厚度小於100微米。 The electrochemical device of claim 1, wherein the first electrochemically activated cell comprises a thin film solid electrolyte having a thickness of less than 100 microns. 如申請專利範圍第1項所述之電化學設備,其中該第一電化學活化胞包含一負陽極薄膜,該負陽極薄膜是選自於由金屬鋰、鋰離子陽極、和不與鋰形成內金屬化合物之金屬所構成的群組中,且其中該負陽極薄膜的厚度小於200微米。 The electrochemical device of claim 1, wherein the first electrochemically activated cell comprises a negative anode film selected from the group consisting of metallic lithium, lithium ion anode, and lithium. The group of metals of the metal compound, and wherein the negative anode film has a thickness of less than 200 microns. 如申請專利範圍第1項所述之電化學設備,其中該第一電化學活化胞更包含一保護封裝物(protective encapsulation),且其中該保護封裝物係用以保護該第一電化學活化胞至少不受周遭環境中的機械與化學因素影響。 The electrochemical device of claim 1, wherein the first electrochemically activated cell further comprises a protective encapsulation, and wherein the protective encapsulant is used to protect the first electrochemically activated cell. At least not affected by mechanical and chemical factors in the surrounding environment. 如申請專利範圍第1項所述之電化學設備,更包含一保護包裝物(protective encasing),且其中該保護封裝物係用以保護該電化學設備至少不受周遭環境中的機械與化學因素影響。 The electrochemical device of claim 1, further comprising a protective encasing, and wherein the protective encapsulant is used to protect the electrochemical device from at least mechanical and chemical factors in the surrounding environment. influences. 如申請專利範圍第29項所述之電化學設備,其中該保 護包裝物包括至少一開口,以允許直接電氣接觸該第一電化學活化胞的至少一終端。 An electrochemical device as claimed in claim 29, wherein the protection The protective wrapper includes at least one opening to allow direct electrical contact with at least one terminal of the first electrochemically activated cell. 如申請專利範圍第30項所述之電化學設備,其中該保護包裝物包括至少一開口,以允許直接電氣接觸該電化學設備的至少一終端。 The electrochemical device of claim 30, wherein the protective package comprises at least one opening to allow direct electrical contact with at least one terminal of the electrochemical device. 如申請專利範圍第31項所述之電化學設備,其中該第一電化學活化胞更包含一電解質,且其中藉由一防潮層隔開該一或多個終端與該電解質。 The electrochemical device of claim 31, wherein the first electrochemically activated cell further comprises an electrolyte, and wherein the one or more terminals and the electrolyte are separated by a moisture barrier. 如申請專利範圍第32所述之電化學設備,其中該第一電化學活化胞更包含一電解質,且其中藉由一防潮層隔開該一或多個終端與該電解質。 The electrochemical device of claim 32, wherein the first electrochemically activated cell further comprises an electrolyte, and wherein the one or more terminals are separated from the electrolyte by a moisture barrier. 如申請專利範圍第33項所述之電化學設備,其中該防潮層包含一具阻擋水氣性質之材料,且該防潮層為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者 c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The electrochemical device of claim 33, wherein the moisture barrier layer comprises a material that blocks moisture properties, and the moisture barrier layer is: a) selected from the group consisting of metals, semi-metals, alloys, borides, a group consisting of carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, and iodides; b) selected from borides, carbonized In any multi-component compound consisting of a substance, a halide, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) is selected from the group consisting of a high temperature stable organic polymer and a high temperature stable silicone resin. 如申請專利範圍第33項所述之電化學設備,其中該防潮層包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物。 The electrochemical device of claim 33, wherein the moisture barrier layer comprises a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials or a composite of the foregoing. 如申請專利範圍第34項所述之電化學設備,其中該防潮層包含一具阻擋水氣性質之材料,且該防潮層為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The electrochemical device of claim 34, wherein the moisture barrier layer comprises a material that blocks moisture properties, and the moisture barrier layer is: a) selected from the group consisting of metals, semi-metals, alloys, borides, a group consisting of carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, and iodides; b) selected from borides, carbonized Any of a plurality of compounds consisting of a substance, a halide, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) selected from a high temperature stable organic polymer and a high temperature stable enthalpy In the group consisting of oxygen resins. 如申請專利範圍第34項所述之電化學設備,其中該防潮層包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物。 The electrochemical device of claim 34, wherein the moisture barrier layer comprises a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials or a composite of the foregoing. 如申請專利範圍第1項所述之電化學設備,更包含一 第二層,位於該基材的一第二側邊上。 The electrochemical device according to claim 1, further comprising a The second layer is on a second side of the substrate. 如申請專利範圍第39項所述之電化學設備,其中該第二層包含一化合物,該化合物為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於從由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The electrochemical device according to claim 39, wherein the second layer comprises a compound which is: a) selected from the group consisting of metals, semimetals, alloys, borides, carbides, diamonds, diamonds. a group consisting of carbon, a halide, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; b) selected from the group consisting of a boride, a carbide, a telluride, and a nitride Or any polyvalent compound composed of a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) selected from the group consisting of a high temperature stable organic polymer and a high temperature stable silicone resin In the group. 一種電化學設備,包含:a)一基材,該基材為一金屬基材、一高分子基材、或一摻雜或未摻雜之矽基材,且具有一第一側邊與一第二側邊;b)一第一電化學活化胞,位於該第一側邊上,且更包括一正極部分與一負極部分,該負極部分與該正極部分更包括一或多個終端;c)一第一阻障層,位於該第一側邊上,該第一阻障層化學性隔開該第一電化學活化胞與該金屬基材、該高分子基材、或該摻雜或未摻雜之矽基材; d)一第二電化學活化胞,位於該第二側邊上,且更包括一正極部分與一負極部分,該負極部分與該正極部分更包括一或多個終端;e)一第二阻障層,位於該第二側邊上,該第二阻障層化學性隔開該第二電化學活化胞與該基材;f)其中該第一阻障層包含多個阻障子層;以及g)其中該第二阻障層包含多個阻障子層。 An electrochemical device comprising: a) a substrate, the substrate is a metal substrate, a polymer substrate, or a doped or undoped germanium substrate, and has a first side and a a second side; b) a first electrochemically activated cell on the first side, and further comprising a positive portion and a negative portion, the negative portion and the positive portion further comprising one or more terminals; a first barrier layer on the first side, the first barrier layer chemically separating the first electrochemically activated cell from the metal substrate, the polymer substrate, or the doping or Undoped tantalum substrate; d) a second electrochemically activated cell on the second side, and further comprising a positive electrode portion and a negative electrode portion, the negative electrode portion and the positive electrode portion further comprising one or more terminals; e) a second resistance a barrier layer on the second side, the second barrier layer chemically separating the second electrochemically activated cell from the substrate; f) wherein the first barrier layer comprises a plurality of barrier sublayers; g) wherein the second barrier layer comprises a plurality of barrier sublayers. 如申請專利範圍第41項所述之電化學設備,更包含多個電化學活化胞,位於該基材的該第一側邊上。 The electrochemical device of claim 41, further comprising a plurality of electrochemically activated cells on the first side of the substrate. 如申請專利範圍第41項所述之電化學設備,更包含多個電化學活化胞,位於該基材的該第二側邊上。 The electrochemical device of claim 41, further comprising a plurality of electrochemically activated cells on the second side of the substrate. 如申請專利範圍第41項所述之電化學設備,其中該基材之該第一與第二側邊上的該等阻障層是用來化學性隔開該等電化學活化胞與該基材,且更包含:a)該第一阻障層包含一對該基材的該第一側邊上之該第一電化學活化胞與該基材具化學惰性的材料;b)該第二阻障層包含一對該基材的該第二側邊上之該第二電化學活化胞與該基材具化學惰性的材料;c)該第一阻障層更包含阻擋該基材的該第一側邊上之該第一電化學活化胞內的化學元素擴散的性質;以及 d)該第二阻障層更包含阻擋該基材的該第二側邊上之該第二電化學活化胞內的化學元素擴散的性質。 The electrochemical device of claim 41, wherein the barrier layers on the first and second sides of the substrate are used to chemically separate the electrochemically activated cells from the substrate And further comprising: a) the first barrier layer comprises a pair of materials on the first side of the substrate on which the first electrochemically activated cell is chemically inert to the substrate; b) the second The barrier layer comprises a pair of materials of the second electrochemically activated cell on the second side of the substrate that are chemically inert to the substrate; c) the first barrier layer further comprises the substrate blocking the substrate a property of diffusion of a chemical element in the first electrochemically activated cell on the first side; d) the second barrier layer further comprises a property of blocking diffusion of chemical elements in the second electrochemically activated cell on the second side of the substrate. 如申請專利範圍第41項所述之電化學設備,其中:a)該等阻障子層選自於由導電材料、電氣絕緣材料及半導電材料所構成之群組中;b)該基材的該第一與第二側邊上的該等電化學活化胞的該等正極部分不電氣接觸該等電化學活化胞的該等負極部分;c)該等電化學活化胞的該正極部分包含至少一正陰極、一陰極集電層、與一正終端;以及d)該等電化學活化胞的該負極部分包含至少一負陽極、一陽極集電層、與一負終端。 The electrochemical device of claim 41, wherein: a) the barrier sublayers are selected from the group consisting of conductive materials, electrically insulating materials, and semiconductive materials; b) the substrate The positive electrode portions of the electrochemically activated cells on the first and second sides are not in electrical contact with the negative electrode portions of the electrochemically activated cells; c) the positive electrode portion of the electrochemically activated cells comprises at least a positive cathode, a cathode collector layer, and a positive terminal; and d) the negative electrode portion of the electrochemically activated cells comprises at least one negative anode, one anode collector layer, and a negative terminal. 如申請專利範圍第45項所述之電化學設備,其中該陰極集電層可當作該正終端。 The electrochemical device of claim 45, wherein the cathode collector layer can be regarded as the positive terminal. 如申請專利範圍第45項所述之電化學設備,其中該陽極集電層可當作該負終端。 The electrochemical device of claim 45, wherein the anode collector layer can be regarded as the negative terminal. 如申請專利範圍第45項所述之電化學設備,其中該陽極集電層可當作該陽極。 The electrochemical device of claim 45, wherein the anode collector layer can be used as the anode. 如申請專利範圍第45項所述之電化學設備,其中該陽極集電層可當作該陽極集電層、該陽極、與該負終端。 The electrochemical device of claim 45, wherein the anode collector layer can serve as the anode collector layer, the anode, and the negative terminal. 如申請專利範圍第41項所述之電化學設備,其中該等阻障子層各包含相同的形狀與面積大小。 The electrochemical device of claim 41, wherein the barrier sub-layers each comprise the same shape and area. 如申請專利範圍第41項所述之電化學設備,其中該等阻障子層中至少一個的形狀與面積大小不同於其他該等阻障子層的形狀與面積大小。 The electrochemical device of claim 41, wherein the shape and area of at least one of the barrier sub-layers are different from the shape and area of the other barrier sub-layers. 如申請專利範圍第41項所述之電化學設備,其中該等阻障子層中的至少一個只部分覆蓋該基材,其中該等電化學活化胞的至少該正極部分與該基材為化學性分開。 The electrochemical device of claim 41, wherein at least one of the barrier sublayers only partially covers the substrate, wherein at least the positive portion of the electrochemically activated cells is chemically compatible with the substrate separate. 如申請專利範圍第41項所述之電化學設備,其中該等阻障子層中的至少一個只部分覆蓋該基材,其中該等電化學活化胞的至少該負極部分與該基材為化學性分開。 The electrochemical device of claim 41, wherein at least one of the barrier sublayers only partially covers the substrate, wherein at least the negative electrode portion of the electrochemically activated cells is chemically compatible with the substrate separate. 如申請專利範圍第41項所述之電化學設備,其中該基材之兩側邊上的該等阻障層厚度為0.01微米至1毫米。 The electrochemical device of claim 41, wherein the barrier layers on both sides of the substrate have a thickness of from 0.01 micron to 1 mm. 如申請專利範圍第41項所述之電化學設備,其中該基材之兩側邊上的該等阻障層厚度為0.1微米至100微米。 The electrochemical device of claim 41, wherein the barrier layers on both sides of the substrate have a thickness of from 0.1 micron to 100 microns. 如申請專利範圍第41項所述之電化學設備,其中該基材之兩側邊上的該等阻障層厚度為0.5微米至5微米。 The electrochemical device of claim 41, wherein the barrier layers on both sides of the substrate have a thickness of from 0.5 micrometers to 5 micrometers. 如申請專利範圍第41項所述之電化學設備,其中該基材的厚度為0.1微米至1公分。 The electrochemical device of claim 41, wherein the substrate has a thickness of from 0.1 micron to 1 cm. 如申請專利範圍第41項所述之電化學設備,其中該基材的厚度為1微米至1毫米。 The electrochemical device of claim 41, wherein the substrate has a thickness of from 1 micron to 1 mm. 如申請專利範圍第41項所述之電化學設備,其中該基材的厚度為10微米至100微米。 The electrochemical device of claim 41, wherein the substrate has a thickness of from 10 micrometers to 100 micrometers. 如申請專利範圍第41項所述之電化學設備,其中該等阻障子層中的至少一個包含一化合物,該化合物為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The electrochemical device of claim 41, wherein at least one of the barrier sublayers comprises a compound: a) selected from the group consisting of metals, semimetals, alloys, borides, carbides , a group of diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, and iodides; b) selected from borides, carbides, Any of a plurality of compounds consisting of a halide, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) selected from a high temperature stable organic polymer and a high temperature stable epoxy resin Among the groups formed. 如申請專利範圍第41項所述之電化學設備,其中該等子層中的至少一個包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物。 The electrochemical device of claim 41, wherein at least one of the sub-layers comprises a single-phase crystal, a nanocrystal, an amorphous or glassy material, or a multi-phase mixture of the foregoing or the foregoing A composite of materials. 如申請專利範圍第41項所述之電化學設備,其中該等子層中的至少一個包含一單相無定形態或玻璃態材料。 The electrochemical device of claim 41, wherein at least one of the sub-layers comprises a single phase amorphous or glassy material. 如申請專利範圍第41項所述之電化學設備,其中該基材之兩側邊上的該等電化學活化胞包含多個電池,該等電池選自於由金屬鋰陽極電池、鋰離子陽極電池、和不含鋰之陽極電池所構成之群組中。 The electrochemical device of claim 41, wherein the electrochemically activated cells on both sides of the substrate comprise a plurality of cells selected from the group consisting of lithium metal anode batteries and lithium ion anodes. A group of batteries and lithium-free anode batteries. 如申請專利範圍第41項所述之電化學設備,其中該等電化學活化胞包含由氣相沉積法或非真空沉積法所形成之正陰極薄膜,且其中該等正陰極薄膜的厚度小於200微米。 The electrochemical device according to claim 41, wherein the electrochemically activated cells comprise a positive cathode film formed by a vapor deposition method or a non-vacuum deposition method, and wherein the thickness of the positive cathode film is less than 200 Micron. 如申請專利範圍第64項所述之電化學設備,其中該等正陰極薄膜包含尺寸至少為100埃的單晶。 The electrochemical device of claim 64, wherein the positive cathode film comprises a single crystal having a size of at least 100 angstroms. 如申請專利範圍第41項所述之電化學設備,其中該等電化學活化胞更包含一薄膜固態電解質,該薄膜固態電解 質的厚度小於100微米。 The electrochemical device of claim 41, wherein the electrochemically activated cells further comprise a thin film solid electrolyte, the solid state electrolytic of the film The thickness is less than 100 microns. 如申請專利範圍第41項所述之電化學設備,其中該等電化學活化胞包含一負陽極薄膜,該負陽極薄膜選自於由金屬鋰、鋰離子陽極、及不與鋰形成內金屬化合物之金屬所構成之群組中,且該負陽極薄膜的厚度小於200微米。 The electrochemical device of claim 41, wherein the electrochemically activated cells comprise a negative anode film selected from the group consisting of metallic lithium, lithium ion anodes, and non-lithium forming internal metal compounds. The group of metals is formed, and the thickness of the negative anode film is less than 200 microns. 如申請專利範圍第41項所述之電化學設備,其中該電化學設備的各個該等電化學活化胞包含一保護封裝物或一保護包裝物,其中該封裝物或包裝物係用以保護該等電化學活化胞或該電化學設備至少不受周遭環境中的機械與化學因素影響。 The electrochemical device of claim 41, wherein each of the electrochemically activated cells of the electrochemical device comprises a protective package or a protective package, wherein the package or package is for protecting the The electrochemically activated cell or the electrochemical device is at least unaffected by mechanical and chemical factors in the surrounding environment. 如申請專利範圍第68項所述之電化學設備,其中該保護封裝物或該保護包裝物包括至少一開口,以允許直接電氣接觸每一個該等電化學活化胞的至少一終端。 The electrochemical device of claim 68, wherein the protective package or the protective package comprises at least one opening to allow direct electrical contact with at least one terminal of each of the electrochemically activated cells. 如申請專利範圍第69項所述之電化學設備,其中該等電化學活化胞更包含一電解質,且其中藉由該保護封裝物之一開口由外部觸及該等終端,而該等終端與該電解質是藉由一防潮層所隔開。 The electrochemical device of claim 69, wherein the electrochemically activated cells further comprise an electrolyte, and wherein the terminals are externally accessed by an opening of the protective package, and the terminals The electrolyte is separated by a moisture barrier. 如申請專利範圍第70項所述之電化學設備,其中該防 潮層包含一具阻擋水氣性質之材料,該材料為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 An electrochemical device as claimed in claim 70, wherein the prevention The tidal layer comprises a material that blocks moisture properties, the material being: a) selected from the group consisting of metals, semi-metals, alloys, borides, carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, a group consisting of oxides, fluorides, chlorides, bromides, and iodides; b) selected from the group consisting of borides, carbides, tellurides, nitrides, phosphides, oxides, fluorides, chlorine Any of a plurality of compounds consisting of a compound, a bromide, and an iodide; or c) selected from the group consisting of a high temperature stable organic polymer and a high temperature stable silicone resin. 如申請專利範圍第70項所述之電化學設備,其中該防潮層包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物。 The electrochemical device according to claim 70, wherein the moisture barrier layer comprises a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials or a composite of the foregoing materials. 一種製造一電化學設備的方法,該方法包含:a)提供一基材,該基材為一金屬基材、一高分子基材、或一摻雜或未摻雜之矽基材,且該基材具有一第一側邊;b)沉積一第一阻障層於該第一側邊上;c)製作一第一電化學活化胞,該第一電化學活化胞包含一負極部分與一正極部分,且該負極部分與該正極部分更包括一或多個終端,該第一電化學活化胞位於該第一阻障層頂部的該第一側邊上,該第一阻障層化學性隔開該第一電化學活化胞與該基材;以及 d)由多個不同化學性之阻障子層製成該阻障層。 A method of manufacturing an electrochemical device, the method comprising: a) providing a substrate, the substrate being a metal substrate, a polymer substrate, or a doped or undoped germanium substrate, and The substrate has a first side; b) depositing a first barrier layer on the first side; c) fabricating a first electrochemically activated cell, the first electrochemically activated cell comprising a negative electrode portion and a a positive electrode portion, and the negative electrode portion and the positive electrode portion further include one or more terminals, the first electrochemically activated cell is located on the first side of the top of the first barrier layer, the first barrier layer is chemically Separating the first electrochemically activated cell from the substrate; d) The barrier layer is made of a plurality of different chemical barrier layers. 如申請專利範圍第73項所述之方法,更包含提供多個電化學活化胞於該基材的該第一側邊上。 The method of claim 73, further comprising providing a plurality of electrochemically activated cells on the first side of the substrate. 如申請專利範圍第73項所述之方法,更包含:a)由一導電材料、一電氣絕緣材料及一半導電材料所構成之群組中選擇該等阻障子層;b)防止該第一電化學活化胞的該正極部分電氣接觸該第一電化學活化胞的該負極部分;c)提供一正陰極、一陰極集電層、與一正終端於該第一電化學活化胞的該正極部分上;以及d)提供一負陽極、一陽極集電層、與一負終端於該第一電化學活化胞的該負極部分上。 The method of claim 73, further comprising: a) selecting the barrier sub-layer from a group consisting of a conductive material, an electrical insulating material and a semi-conductive material; b) preventing the first electrification The positive electrode portion of the activated cell is in electrical contact with the negative electrode portion of the first electrochemically activated cell; c) providing a positive cathode, a cathode current collecting layer, and a positive terminal portion of the first electrochemically activated cell And d) providing a negative anode, an anode collector layer, and a negative terminal on the anode portion of the first electrochemically activated cell. 如申請專利範圍第75項所述之方法,更包含提供該陰極集電層以當作該正終端。 The method of claim 75, further comprising providing the cathode collector layer as the positive terminal. 如申請專利範圍第75項所述之方法,更包含提供該陽極集電層以當作該負終端。 The method of claim 75, further comprising providing the anode collector layer as the negative terminal. 如申請專利範圍第75項所述之方法,更包含提供該陽極集電層以當作該負陽極。 The method of claim 75, further comprising providing the anode collector layer to serve as the negative anode. 如申請專利範圍第75項所述之方法,更包含提供該陽極集電層以當作該陽極集電層、該負陽極、和該負終端。 The method of claim 75, further comprising providing the anode collector layer as the anode collector layer, the negative anode, and the negative terminal. 如申請專利範圍第73項所述之方法,更包含提供該等阻障子層,且該等阻障子層各包含相同的形狀與面積大小。 The method of claim 73, further comprising providing the barrier sublayers, and each of the barrier sublayers comprises the same shape and area. 如申請專利範圍第73項所述之方法,更包含提供該等阻障子層,且該等阻障子層中至少一者的形狀與面積大小不同於其他該等阻障子層的形狀與面積大小。 The method of claim 73, further comprising providing the barrier sublayers, and at least one of the barrier sublayers has a shape and an area size different from those of the other barrier sublayers. 如申請專利範圍第73項所述之方法,更包含利用該第一阻障層只部分覆蓋該基材,而使該第一電化學活化胞的至少該正極部分與該基材為化學性分開。 The method of claim 73, further comprising partially covering the substrate with the first barrier layer, wherein at least the positive electrode portion of the first electrochemically activated cell is chemically separated from the substrate . 如申請專利範圍第73項所述之方法,更包含利用該第一阻障層只部分覆蓋該基材,而使該第一電化學活化胞的至少該負極部分與該基材為化學性分開。 The method of claim 73, further comprising partially covering the substrate with the first barrier layer, wherein at least the negative electrode portion of the first electrochemically activated cell is chemically separated from the substrate . 如申請專利範圍第73項所述之方法,更包含使用一化合物來製作該等阻障子層,該化合物為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟 化物、氯化物、溴化物、和碘化物所構成之群組中;或者b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物、或選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The method of claim 73, further comprising using a compound to form the barrier sublayer, the compound being: a) selected from the group consisting of metals, semi-metals, alloys, borides, carbides, diamonds, Diamond-like carbon, telluride, nitride, phosphide, oxide, fluorine a group consisting of a compound, a chloride, a bromide, and an iodide; or b) selected from the group consisting of a boride, a carbide, a telluride, a nitride, a phosphide, an oxide, a fluoride, a chloride, and a bromine Any of a plurality of compounds consisting of a compound and an iodide, or selected from the group consisting of a high temperature stable organic polymer and a high temperature stable silicone resin. 如申請專利範圍第73項所述之方法,更包含使用一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物來製作該等阻障子層。 The method of claim 73, further comprising using a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials or a composite of the foregoing materials to produce the resistance Barrier layer. 如申請專利範圍第73項所述之方法,更包含使用一單相無定形態或玻璃態材料來製作該等阻障子層。 The method of claim 73, further comprising using a single phase amorphous or glassy material to form the barrier sublayers. 如申請專利範圍第73項所述之方法,更包含採用一溫度介於100℃至該基材熔點之間的原位或非原位製程製作一正陰極於該第一電化學活化胞上,使得該正陰極包含尺寸至少為100埃的單晶。 The method of claim 73, further comprising: forming a positive cathode on the first electrochemically activated cell by using an in situ or ex situ process at a temperature between 100 ° C and the melting point of the substrate, The positive cathode is comprised of a single crystal having a size of at least 100 angstroms. 如申請專利範圍第73項所述之方法,更包含提供一保護封裝物或一保護包裝物,用以分別保護該第一電化學活化胞或該電化學設備至少不受周遭環境中的機械與化學因素影響。 The method of claim 73, further comprising providing a protective encapsulant or a protective wrapper for respectively protecting the first electrochemically activated cell or the electrochemical device from at least mechanical and mechanical conditions in the surrounding environment. Chemical factors. 如申請專利範圍第88項所述之方法,更包含製作具有至少一開口之該保護封裝物或該保護包裝物,以允許直接電氣接觸該第一電化學活化胞的該一或多個終端。 The method of claim 88, further comprising fabricating the protective package or the protective package having at least one opening to allow direct electrical contact with the one or more terminals of the first electrochemically activated cell. 如申請專利範圍第89項所述之方法,更包含提供一電解質給該第一電化學活化胞,且利用一防潮層隔開該電解質與該一或多個終端。 The method of claim 89, further comprising providing an electrolyte to the first electrochemically activated cell and separating the electrolyte from the one or more terminals with a moisture barrier. 如申請專利範圍第90項所述之方法,更包含由具阻擋水氣性質之材料來製作該防潮層,並選擇下列一化合物作為該防潮層:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The method of claim 90, further comprising: forming the moisture barrier layer from a material having a moisture barrier property, and selecting the following compound as the moisture barrier layer: a) selected from the group consisting of metals, semimetals, and alloys. a group consisting of boride, carbide, diamond, diamond-like carbon, telluride, nitride, phosphide, oxide, fluoride, chloride, bromide, and iodide; b) selected from Any of a plurality of compounds consisting of a boride, a carbide, a telluride, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) selected from a high temperature stable organic polymer And a group of high temperature stable epoxy resins. 如申請專利範圍第90項所述之方法,更包含使用一材料來製作該防潮層,該材料包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述 材料的複合物。 The method of claim 90, further comprising using a material to form the moisture barrier layer comprising a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials. Or the foregoing A composite of materials. 如申請專利範圍第73項所述之方法,更包含:沉積一第二層於該基材的一第二側邊上,用以於製作該第一電化學活化胞之前,化學性保護該基材與該基板的該第一側邊上之該第一電化學活化胞不受周遭環境影響;以及藉由阻擋該周遭環境中之污染物的擴散,而化學性保護該第一電化學活化胞。 The method of claim 73, further comprising: depositing a second layer on a second side of the substrate for chemically protecting the first electrochemically activated cell And the first electrochemically activated cell on the first side of the substrate are unaffected by the surrounding environment; and chemically protecting the first electrochemically activated cell by blocking diffusion of contaminants in the surrounding environment . 如申請專利範圍第93項所述之方法,更包含由一化合物來製作該第二層,該化合物為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中;b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The method of claim 93, further comprising preparing the second layer from a compound selected from the group consisting of: a) selected from the group consisting of metals, semi-metals, alloys, borides, carbides, diamonds, diamonds. a group of carbon, a halide, a nitride, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; b) selected from the group consisting of a boride, a carbide, a telluride, and a nitrogen Any of a plurality of compounds consisting of a compound, a phosphide, an oxide, a fluoride, a chloride, a bromide, and an iodide; or c) selected from the group consisting of a high temperature stable organic polymer and a high temperature stable epoxy resin. In the group. 如申請專利範圍第93項所述之方法,更包含採用一溫度介於100℃至該基材熔點之間的原位或非原位溫度製程 熱釋放處理該第一阻障層與該第二層,其中該非原位溫度製程更包含在沉積該第一阻障層與該第二層之後,施加該溫度製程。 The method of claim 93, further comprising using an in situ or ex situ temperature process having a temperature between 100 ° C and the melting point of the substrate. The first barrier layer and the second layer are processed by heat release, wherein the ex-situ temperature process further comprises applying the temperature process after depositing the first barrier layer and the second layer. 一種製造一電化學設備的方法,該方法包含下列步驟:a)提供一基材,該基材為一金屬基材、一高分子基材、或一摻雜或未摻雜之矽基材,且該基材具有一第一側邊與一第二側邊;b)沉積一第一阻障層於該第一側邊上;c)沉積一第二阻障層於該第二側邊上;d)製作一第一電化學活化胞於該第一阻障層頂部的該第一側邊上,該第一阻障層化學性隔開該第一電化學活化胞與該基材;e)製作一第二電化學活化胞於該第二阻障層頂部的該第二側邊上,該第二阻障層化學性隔開該第二電化學活化胞與該基材;f)由多個不同化學性之阻障子層構成該第一阻障層;以及g)由多個不同化學性之阻障子層構成該第二阻障層。 A method of fabricating an electrochemical device, the method comprising the steps of: a) providing a substrate, the substrate being a metal substrate, a polymeric substrate, or a doped or undoped germanium substrate, And the substrate has a first side and a second side; b) depositing a first barrier layer on the first side; c) depositing a second barrier layer on the second side d) forming a first electrochemically activated cell on the first side of the top of the first barrier layer, the first barrier layer chemically separating the first electrochemically activated cell from the substrate; Forming a second electrochemically activated cell on the second side of the top of the second barrier layer, the second barrier layer chemically separating the second electrochemically activated cell from the substrate; a plurality of different chemical barrier layers constitute the first barrier layer; and g) the second barrier layer is composed of a plurality of different chemical barrier layers. 如申請專利範圍第96項所述之方法,更包含提供多個電化學活化胞於該基材的該第一側邊上。 The method of claim 96, further comprising providing a plurality of electrochemically activated cells on the first side of the substrate. 如申請專利範圍第96項所述之方法,更包含提供多個電化學活化胞於該基材的該第二側邊上。 The method of claim 96, further comprising providing a plurality of electrochemically activated cells on the second side of the substrate. 如申請專利範圍第96項所述之方法,更包含:a)由一導電材料、一電氣絕緣材料及一半導電材料所構成之群組中選擇該等子層;b)防止該等電化學活化胞的一正極部分電氣接觸該等電化學活化胞的一負極部分;c)提供一正陰極、一陰極集電層、與一正終端於該等電化學活化胞的該正極部分上;以及d)提供一負陽極、一陽極集電層、與一負終端於該等電化學活化胞的該負極部分上。 The method of claim 96, further comprising: a) selecting the sub-layers from the group consisting of a conductive material, an electrical insulating material and a semi-conductive material; b) preventing the electrochemical activation a positive electrode portion of the cell is in electrical contact with a negative electrode portion of the electrochemically activated cell; c) providing a positive cathode, a cathode current collector layer, and a positive terminal portion of the electrochemically activated cell; and Providing a negative anode, an anode collector layer, and a negative terminal on the negative electrode portion of the electrochemically activated cells. 如申請專利範圍第99項所述之方法,更包含提供該陰極集電層以當作該正終端。 The method of claim 99, further comprising providing the cathode collector layer as the positive terminal. 如申請專利範圍第99項所述之方法,更包含提供該陽極集電層以當作該負終端。 The method of claim 99, further comprising providing the anode collector layer as the negative terminal. 如申請專利範圍第99項所述之方法,更包含提供該陽極集電層以當作該負陽極。 The method of claim 99, further comprising providing the anode collector layer to serve as the negative anode. 如申請專利範圍第99項所述之方法,更包含提供該 陽極集電層以當作該陽極集電層、該負陽極、和該負終端。 The method of claim 99, further comprising providing the method The anode collector layer serves as the anode collector layer, the negative anode, and the negative terminal. 如申請專利範圍第96項所述之方法,更包含提供該等阻障子層,且該等阻障子層各包含相同的形狀與面積大小。 The method of claim 96, further comprising providing the barrier sublayers, and each of the barrier sublayers comprises the same shape and area. 如申請專利範圍第96項所述之方法,更包含提供該等阻障子層,且該等阻障子層中至少一個的形狀與面積大小不同於其他該等阻障子層的形狀與面積大小。 The method of claim 96, further comprising providing the barrier sublayers, and at least one of the barrier sublayers has a shape and an area size different from those of the other barrier sublayers. 如申請專利範圍第96項所述之方法,更包含利用該等阻障層中之至少一者只部分覆蓋該基材,其中該等電化學活化胞的至少該正極部分與該基材為化學性分開。 The method of claim 96, further comprising partially covering the substrate with at least one of the barrier layers, wherein at least the positive portion of the electrochemically activated cells is chemically associated with the substrate Separate sex. 如申請專利範圍第96項所述之方法,更包含利用該等阻障層中之至少一者只部分覆蓋該基材,其中該等電化學活化胞的至少該負極部分與該基材為化學性分開。 The method of claim 96, further comprising partially covering the substrate with at least one of the barrier layers, wherein at least the negative portion of the electrochemically activated cells is chemically associated with the substrate Separate sex. 如申請專利範圍第96項所述之方法,更包含由一化合物來製作該基材之該第一與第二側邊上的該等阻障子層,該化合物為:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟 化物、氯化物、溴化物、和碘化物所構成之群組中;或者b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The method of claim 96, further comprising: forming, by a compound, the barrier sublayers on the first and second sides of the substrate, the compound being: a) selected from the group consisting of , semi-metals, alloys, borides, carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorine a group consisting of a compound, a chloride, a bromide, and an iodide; or b) selected from the group consisting of a boride, a carbide, a telluride, a nitride, a phosphide, an oxide, a fluoride, a chloride, and a bromine And a compound selected from the group consisting of a high temperature stable organic polymer and a high temperature stable silicone resin; or c) selected from the group consisting of high temperature stable organic polymers and high temperature stable silicone resins. 如申請專利範圍第96項所述之方法,更包含使用一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物來製作該等阻障子層。 The method of claim 96, further comprising using a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials or a composite of the foregoing materials to produce the resistance Barrier layer. 如申請專利範圍第96項所述之方法,更包含使用一單相無定形態或玻璃態材料來製作該等阻障子層。 The method of claim 96, further comprising using a single phase amorphous or glassy material to form the barrier sublayers. 如申請專利範圍第96項所述之方法,更包含採用一溫度介於100℃至該基材熔點之間的原位或非原位溫度製程來熱釋放處理該第一阻障層與該第二阻障層,其中該非原位溫度製程是在沉積該第一阻障層與該第二阻障層之後進行。 The method of claim 96, further comprising: thermally releasing the first barrier layer and the first portion by using an in-situ or ex-situ temperature process between 100 ° C and the melting point of the substrate. The second barrier layer, wherein the ex-situ temperature process is performed after depositing the first barrier layer and the second barrier layer. 如申請專利範圍第96項所述之方法,更包含採用一溫度介於100℃至該基材熔點之間的原位或非原位溫度製 程來製作該等電化學活化胞的該等正陰極,而使該等正陰極包含尺寸至少為100埃的單晶。 The method of claim 96, further comprising using an in situ or ex situ temperature system having a temperature between 100 ° C and the melting point of the substrate. The positive cathodes of the electrochemically activated cells are made such that the positive cathodes comprise a single crystal having a size of at least 100 angstroms. 如申請專利範圍第96項所述之方法,更包含為各個該等電化學活化胞或該電化學設備製作一保護封裝物或一保護包裝物,用以保護各個該等電化學活化胞或該電化學設備至少不受周遭環境中的機械與化學因素影響。 The method of claim 96, further comprising: preparing a protective encapsulant or a protective package for each of the electrochemically activated cells or the electrochemical device to protect each of the electrochemically activated cells or the Electrochemical devices are at least unaffected by mechanical and chemical factors in the surrounding environment. 如申請專利範圍第113項所述之方法,更包含製作該保護封裝物或該保護包裝物,使得每一保護封裝物或保護包裝物具有至少一開口,以允許直接電氣接觸各個該等電化學活化胞的至少一終端。 The method of claim 113, further comprising making the protective package or the protective package such that each protective package or protective package has at least one opening to allow direct electrical contact with each of the electrochemical devices. At least one terminal of the activated cell. 如申請專利範圍第114項所述之方法,更包含提供一電解質於該等電化學活化胞中,以及利用一防潮層隔開該電解質與該等終端。 The method of claim 114, further comprising providing an electrolyte in the electrochemically activated cells, and separating the electrolyte and the terminals with a moisture barrier. 如申請專利範圍第115項所述之方法,更包含由具阻擋水氣性質之材料來製作該防潮層,且該材料包含下列一化合物:a)選自於由金屬、半金屬、合金、硼化物、碳化物、鑽石、鑽石狀碳、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所構成之群組中; b)選自於由硼化物、碳化物、矽化物、氮化物、磷化物、氧化物、氟化物、氯化物、溴化物、和碘化物所組成之任意多元化合物中;或者c)選自於由高溫穩定有機高分子和高溫穩定矽氧樹脂所構成之群組中。 The method of claim 115, further comprising: forming the moisture barrier layer from a material having a moisture barrier property, and the material comprises the following compound: a) selected from the group consisting of metals, semimetals, alloys, boron a group of compounds, carbides, diamonds, diamond-like carbons, tellurides, nitrides, phosphides, oxides, fluorides, chlorides, bromides, and iodides; b) selected from any of a plurality of compounds consisting of boride, carbide, telluride, nitride, phosphide, oxide, fluoride, chloride, bromide, and iodide; or c) selected from It is composed of a group of high temperature stable organic polymer and high temperature stable epoxy resin. 如申請專利範圍第115項所述之方法,更包含使用一材料來製作該防潮層,該材料包含一單相結晶、奈米結晶、無定形態或玻璃態材料、或前述材料的多相混合物或前述材料的複合物。 The method of claim 115, further comprising using a material to form the moisture barrier layer comprising a single phase crystal, a nanocrystal, an amorphous or glassy material, or a multiphase mixture of the foregoing materials. Or a composite of the foregoing materials.
TW095121091A 2005-06-15 2006-06-13 Electrochemical apparatus with barrier layer protected substrate TWI384667B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69069705P 2005-06-15 2005-06-15
US11/374,282 US20080003496A1 (en) 2002-08-09 2005-06-15 Electrochemical apparatus with barrier layer protected substrate
US11/209,536 US8021778B2 (en) 2002-08-09 2005-08-23 Electrochemical apparatus with barrier layer protected substrate

Publications (2)

Publication Number Publication Date
TW200711204A TW200711204A (en) 2007-03-16
TWI384667B true TWI384667B (en) 2013-02-01

Family

ID=37573751

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095121091A TWI384667B (en) 2005-06-15 2006-06-13 Electrochemical apparatus with barrier layer protected substrate

Country Status (3)

Country Link
KR (1) KR101497992B1 (en)
CN (1) CN101243563B (en)
TW (1) TWI384667B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948510B2 (en) * 2008-12-02 2012-06-06 トヨタ自動車株式会社 All solid battery
US20140007418A1 (en) * 2011-06-17 2014-01-09 Applied Materials, Inc. Mask-Less Fabrication of Thin Film Batteries
US9812706B2 (en) 2012-12-28 2017-11-07 Industrial Technology Research Institute Protected active metal electrode and device with the electrode
US9318774B2 (en) 2013-06-28 2016-04-19 Google Inc. Substrate for solid-state battery
US9748582B2 (en) * 2014-03-31 2017-08-29 X Development Llc Forming an interconnection for solid-state batteries
KR102496474B1 (en) * 2015-06-03 2023-02-06 삼성전자주식회사 Secondary battery structure/system and methods of manufacturing and operating the same
CN105449168B (en) * 2015-11-19 2018-01-19 中国航空工业集团公司北京航空材料研究院 The preparation method of Metal Substrate solid film lithium battery anode with interface-modifying layer
EP3759752A1 (en) * 2018-02-26 2021-01-06 Graphenix Development, Inc. Anodes for lithium-based energy storage devices
CN112292775A (en) * 2018-06-21 2021-01-29 应用材料公司 Diffusion barrier film for achieving lithium stability
CN109560286A (en) * 2018-09-28 2019-04-02 桑顿新能源科技有限公司 A kind of lithium ion battery improving high temperature short-circuit capability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232248A1 (en) * 2002-06-13 2003-12-18 Matsushita Electric Industrial Co., Ltd. All solid state battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338624A (en) * 1993-02-08 1994-08-16 Globe-Union Inc. Thermal management of rechargeable batteries
US6413285B1 (en) * 1999-11-01 2002-07-02 Polyplus Battery Company Layered arrangements of lithium electrodes
JP3708474B2 (en) * 2001-10-22 2005-10-19 松下電器産業株式会社 Semiconductor device
US6906436B2 (en) * 2003-01-02 2005-06-14 Cymbet Corporation Solid state activity-activated battery device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232248A1 (en) * 2002-06-13 2003-12-18 Matsushita Electric Industrial Co., Ltd. All solid state battery

Also Published As

Publication number Publication date
TW200711204A (en) 2007-03-16
KR20080033161A (en) 2008-04-16
CN101243563A (en) 2008-08-13
KR101497992B1 (en) 2015-03-03
CN101243563B (en) 2011-07-20

Similar Documents

Publication Publication Date Title
TWI384667B (en) Electrochemical apparatus with barrier layer protected substrate
JP5620060B2 (en) Electrochemical device having a barrier layer protective substrate
US7993773B2 (en) Electrochemical apparatus with barrier layer protected substrate
US11011795B2 (en) Barrier for thin film lithium batteries made on flexible substrates and related methods
JP5705549B2 (en) Thin film encapsulation for thin film batteries and other devices
JP4043296B2 (en) All solid battery
US10547040B2 (en) Energy storage device having an interlayer between electrode and electrolyte layer
JP5316809B2 (en) Lithium battery and manufacturing method thereof
US20080003496A1 (en) Electrochemical apparatus with barrier layer protected substrate
US20170149093A1 (en) Configurations of solid state thin film batteries
US20160181615A1 (en) Solid-State Batteries with Improved Performance and Reduced Manufacturing Costs and Methods for Forming the Same
WO2018095845A1 (en) Li-ion based electrochemical energy storage cell
KR100790844B1 (en) Thin film battery and fabrication method thereof