TWI383511B - Electrochemical fabricating method thereof flexible dye-sensitized solar cell - Google Patents

Electrochemical fabricating method thereof flexible dye-sensitized solar cell Download PDF

Info

Publication number
TWI383511B
TWI383511B TW97133398A TW97133398A TWI383511B TW I383511 B TWI383511 B TW I383511B TW 97133398 A TW97133398 A TW 97133398A TW 97133398 A TW97133398 A TW 97133398A TW I383511 B TWI383511 B TW I383511B
Authority
TW
Taiwan
Prior art keywords
solar cell
sensitized solar
substrate
electrochemical
cell according
Prior art date
Application number
TW97133398A
Other languages
Chinese (zh)
Other versions
TW201011925A (en
Inventor
Eric Wei Guang Diau
Chien Chon Chen
Chin Shing Chen
Original Assignee
Dc Solar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dc Solar Corp filed Critical Dc Solar Corp
Priority to TW97133398A priority Critical patent/TWI383511B/en
Publication of TW201011925A publication Critical patent/TW201011925A/en
Application granted granted Critical
Publication of TWI383511B publication Critical patent/TWI383511B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

可撓式染料敏化太陽能電池之電化學製造方法Electrochemical manufacturing method of flexible dye-sensitized solar cell

本發明係關於一種染料敏化太陽能電池及其製造方法,尤其係關於一種具有輕量化及可撓曲特性的染料敏化太陽能電池及其電化學製造方法。The present invention relates to a dye-sensitized solar cell and a method of manufacturing the same, and more particularly to a dye-sensitized solar cell having light weight and flexibility characteristics and an electrochemical manufacturing method thereof.

根據美國能源部預估,目前全球石油存量約40年、天然氣存量約60年、煤炭存量約200年,而全球能源需求在2050年將達到目前的兩倍,在2100年時將達到目前的三倍,近年來由於石油價格的飆漲,第四次能源危機也即將到來。尋求新能源也成為目前各國極力開發的產業,近年來由於奈米技術與先進材料之開發,而有助於提升太陽能電池的轉換效率,因此單/複晶矽太陽能電池、非晶矽太陽能電池、薄膜太陽能電池、濕式太陽能電池等技術之改良,正受到各先進國家的重視。According to the US Department of Energy, the current global oil stock is about 40 years, the natural gas stock is about 60 years, and the coal stock is about 200 years. The global energy demand will reach twice the current level in 2050, and will reach the current three in 2100. In recent years, due to the soaring oil prices, the fourth energy crisis is about to come. The search for new energy has also become an industry that countries are currently developing. In recent years, due to the development of nanotechnology and advanced materials, it has helped to improve the conversion efficiency of solar cells. Therefore, single/polycrystalline solar cells, amorphous germanium solar cells, Improvements in technologies such as thin-film solar cells and wet solar cells are receiving attention from advanced countries.

目前主要的替代能源有:燃料電池、甲醇、生質能、生物能、太陽能、潮汐能以及風能等等,而這波綠色科技潮流,又首推太陽能最為行情看漲,由於環保意識的提升與能源危機的警訊刺激了太陽能電池產業的蓬勃發展,所以無論是學術界或產業界皆投入可觀的人力及資金,以發展太陽能電池相關的技術,而且政府更將太陽能電池產業視為下世代的重點發展項目之一。能源政策長久以來一直對各國的經濟、科技、以及政治產生重大的影響,過去數十年來能源對世界各國的影響如下:1954年:貝爾實驗室發表6%光電轉換效率的太陽能電池。At present, the main alternative energy sources are: fuel cell, methanol, biomass, bioenergy, solar energy, tidal energy and wind energy, etc., and this wave of green technology trends, and the most popular solar energy market is the most popular, due to the improvement of environmental awareness. The warning of the energy crisis has stimulated the vigorous development of the solar cell industry. Therefore, both academics and industry have invested considerable manpower and capital to develop solar cell-related technologies, and the government has regarded the solar cell industry as the next generation. One of the key development projects. Energy policy has long had a major impact on the economies, technology, and politics of nations. The impact of energy on countries around the world over the past few decades is as follows: 1954: Bell Labs publishes solar cells with 6% photoelectric conversion efficiency.

1957年:蘇聯發射第一顆的人造衛星(Sputnik 1),利用太陽能電池作為能量的來源。1957: The Soviet launches the first artificial satellite (Sputnik 1), using solar cells as a source of energy.

1973年:第一次石油危機,中東戰爭使石油價格由每桶3美元漲到超過13美元。1973: The first oil crisis, the Middle East war raised oil prices from $3 per barrel to more than $13.

1979年:第二次石油危機,兩伊戰爭使石油價格由每桶15美元漲 到39美元。1979: The second oil crisis, the Iran-Iraq war caused oil prices to rise from $15 a barrel To $39.

1983年:美國於加州建立世界上最大的太陽能電廠(16 MW)。1983: The United States establishes the world's largest solar power plant (16 MW) in California.

1990年:第三次石油危機,海灣危機使3個月內原油從每桶14美元漲到40美元。1990: The third oil crisis, the Gulf crisis caused crude oil to rise from $14 to $40 per barrel in three months.

1994年:日本實施補助獎勵辦法,推廣「市電併聯型太陽光電能系統」。1994: Japan implemented a subsidy incentive scheme to promote the "mains parallel solar photovoltaic system".

1997年:前美國總統柯林頓提出的百萬太陽電能屋頂(Million Roofs Solar Power)方案,預計在2010年之前建設完成100萬戶的太陽能發電系統。1997: Former US President Bill Clinton proposed the Million Roofs Solar Power program, which is expected to build 1 million solar power systems by 2010.

2008年:石油價格每桶140美元。2008: Oil prices are $140 per barrel.

在能源嚴重短缺、環保意識高漲的關鍵年代,節能與開發新能源,儼然已成為全球市場的新興產業,由於第一代與第二代太陽能電池製程需在無塵室與真空設備的操作下完成,所以其設備投資較大,亦因此使得第三代太陽能電池的低成本製程被廣為接受,其中染料敏化太陽能電池(DSSC,dye-sensitized solar cell)更具有低成本、可撓性、顏色多樣化、以及環保等等的特性,近來更是受到學術研究單位與產業投資者的矚目。瑞士科學家Gratzel(1991)利用二氧化鈦(TiO2 )奈米顆粒(NP,nanoparticles)作為染料敏化太陽能電池的陽極以吸附光敏染料,並與導電陰極、電解液組成三明治結構的染料敏化太陽能電池,其光電轉換效率為7%(參考文獻1)。經過十幾年的發展,目前的效率僅為11%(參考文獻2-4)。近年來由於奈米技術與先進材料之開發,將有助於提升太陽能電池之轉換效率。典型的染料敏化太陽能電池係利用N3染料(LUMO=-0.71eV,HOMO=0.99eV)為電子產生層,配合TiO2 (VB=2.74eV,CB=-0.46eV)為電子傳輸層,將電子與電洞分離,完成電子對外部電路的作功,電子再經由陰極傳回至電解液,而完成一連串完整的電化學反應。In the critical era of severe energy shortages and high environmental awareness, energy conservation and development of new energy sources have become an emerging industry in the global market, as the first and second generation solar cell processes need to be completed under the operation of clean rooms and vacuum equipment. Therefore, the equipment investment is relatively large, which makes the low-cost process of the third-generation solar cell widely accepted. Among them, the dye-sensitized solar cell (DSSC) has lower cost, flexibility and color. The characteristics of diversification, environmental protection, etc., have recently attracted the attention of academic research units and industrial investors. Swiss scientist Gratzel (1991) used titanium dioxide (TiO 2 ) nanoparticles (NPs) as the anode of dye-sensitized solar cells to adsorb photosensitizing dyes and dye-sensitized solar cells with sandwich structures of conductive cathodes and electrolytes. Its photoelectric conversion efficiency is 7% (Reference 1). After more than a decade of development, the current efficiency is only 11% (References 2-4). In recent years, due to the development of nanotechnology and advanced materials, it will help to improve the conversion efficiency of solar cells. A typical dye-sensitized solar cell uses an N3 dye (LUMO=-0.71eV, HOMO=0.99eV) as an electron generating layer, and an TiO 2 (VB=2.74eV, CB=-0.46eV) as an electron transport layer, and an electron. Separating from the hole, completing the work of the electron on the external circuit, and then passing the electron back to the electrolyte through the cathode to complete a series of complete electrochemical reactions.

太陽能電池的再生能源特性與光電轉換效率的發展,一直以來都是極為受到各工業國家的重視,另一方面,太陽能電池生產 過程中所耗費的成本與使用過程中所產出的功率,更是各國家能源政策關注的重點之一,而環保人士則更積極對太陽能電池所使用之材料以及其生產過程中對環境之污染程度進行嚴厲的評估。因此,一個可具永續發展的太陽能電池,應具備有低生產成本、低耗電率、低環境污染性材料、以及低環境污染性生產過程等等的特性。在各製程中,傳統的陽極處理製程具有上述特性,陽極處理是電解鈍化的過程,用以增加金屬表面的氧化層厚度,此種製程為成熟的工業技術,於1960-1990年間,Thompson與Wood(參考文獻5-9)曾經進行許多關於此方面的研究,發現鋁表面經由陽極電化學氧化之後可形成一層緻密的氧化膜,並發現此種氧化膜能夠提高鋁表面的耐腐蝕性以及耐磨性。自1997年,Masuda(參考文獻10-12)利用二次陽極氧化法製備出具有規則排列以及均一孔洞形狀的多孔陽極氧化鋁之後,人們開始利用多孔陽極氧化鋁(Al2 O3 )製備大面積、自組裝、以及規則排列的奈米材料陣列。The development of renewable energy characteristics and photoelectric conversion efficiency of solar cells has always been highly valued by various industrial countries. On the other hand, the cost of solar cell production and the power generated during use are even more One of the priorities of national energy policy, and environmentalists are more active in the assessment of the materials used in solar cells and the degree of environmental pollution in their production. Therefore, a solar cell that can be continuously developed should have characteristics such as low production cost, low power consumption rate, low environmental pollution materials, and low environmental pollution production process. In the various processes, the traditional anodizing process has the above characteristics, and the anodizing process is an electrolytic passivation process to increase the thickness of the oxide layer on the metal surface. This process is a mature industrial technology, between 1960 and 1990, Thompson and Wood. (References 5-9) A number of studies have been conducted on this aspect, and it has been found that an aluminum oxide surface can form a dense oxide film after electrochemical oxidation through the anode, and it is found that the oxide film can improve the corrosion resistance and wear resistance of the aluminum surface. Sex. Since 1997, Masuda (Ref. 10-12) used a secondary anodization process to prepare porous anodized aluminum with regular alignment and uniform pore shape. Later, porous alumina (Al 2 O 3 ) was used to prepare large areas. , self-assembled, and regularly arranged arrays of nanomaterials.

根據以往Al2 O3 奈米管的製作經驗,TiO2 奈米管的陽極處理與電解液成份、外加電壓、電解液攪拌、以及電解液溫度等參數之間具有密切的關係。例如,當外加電壓較大時,陽極膜可具有較大的多孔性結構;當電解液溫度較高時,薄膜的溶解速率較快,因而可獲得較薄的最終膜厚;以及當電解液中的溶質較多或較少時,可具有較低的氧化膜成長速率。According to the previous experience in the production of Al 2 O 3 nanotubes, the anodic treatment of TiO 2 nanotubes has a close relationship with the electrolyte composition, applied voltage, electrolyte stirring, and electrolyte temperature. For example, when the applied voltage is large, the anode film may have a large porous structure; when the electrolyte temperature is high, the dissolution rate of the film is faster, thereby obtaining a thinner final film thickness; and when in the electrolyte When the solute is more or less, it may have a lower growth rate of the oxide film.

奈米管染料敏化太陽能電池(NT-DSSC,nanotubes-dye-sensitized solar cell)的優點包含:(1)由於一維結構的奈米管陣列有如光子晶體,所以能夠較有效地收集光線進而增加光電轉換效率;(2)奈米管的電子與電洞分流,電荷收集效率提升後亦可增進光電轉換效率;(3)電解液封裝於奈米管中不易滲漏,可增加耐久性;(4)奈米管由陽極處理直接生成於Ti基板(Ti foil)上,可縮短製程並降低成本;以及(5)由於奈米管陽極具有可撓曲特性,故可輕易做成大面積的可撓式奈米管染料敏化太陽能電池。The advantages of the nanotube-dye-sensitized solar cell (NT-DSSC) include: (1) Since the one-dimensional structure of the nanotube array is like a photonic crystal, it can collect light more efficiently and increase Photoelectric conversion efficiency; (2) Electron and hole shunting of the nanotube tube, the photoelectric conversion efficiency can be improved after the charge collection efficiency is improved; (3) The electrolyte solution is not easy to leak in the nanotube tube, and the durability can be increased; 4) The nanotube tube is directly formed on the Ti substrate by the anode treatment, which can shorten the process and reduce the cost; and (5) because the anode of the nanotube tube has the flexible property, it can be easily made into a large area. A flexible nanotube dye-sensitized solar cell.

參考文獻1:M.Pourbaix,“Atlas of Electrochemical in Aqueous Solutions”,NACE,USA,280(1974).Reference 1: M. Pourbaix, "Atlas of Electrochemical in Aqueous Solutions", NACE, USA, 280 (1974).

參考文獻2:M.K.Nazeeruddin,F.D.Angelis,S.Fantacci,A.Selloni,G.Viscardi,P.Liska,S.Ito,B.Takeru,M.Grtzel,J.Am.Chem.Soc.127(2005)16835.Reference 2: MKNazeeruddin, FDAngelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gr Tzel, J. Am. Chem. Soc. 127 (2005) 16835.

參考文獻3:M.Wei,Y.Konishi,H.Zhou,M.Yanagida,H.Sugihara,H.Arakawa,J.Mater.Chem.16(2006)1287.Reference 3: M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H. Sugihara, H. Arakawa, J. Mater. Chem. 16 (2006) 1287.

參考文獻4:N.Koide,A.Islam,Y.Chiba,L.Han,J.Photochem.Photobio.A 182(2006)296.Reference 4: N. Koide, A. Islam, Y. Chiba, L. Han, J. Photochem. Photobio. A 182 (2006) 296.

參考文獻5:Spooner,R.C.,J.Electrochem.Soc.,102(1955)156.Reference 5: Spooner, R.C., J. Electrochem. Soc., 102 (1955) 156.

參考文獻6:J.Brock,G.C.Wood,Electrochim.Acta,12(1967)395.Reference 6: J. Brock, G. C. Wood, Electrochim. Acta, 12 (1967) 395.

參考文獻7:G.C.Wood,A.J.Brock,Nature London,209(1968)773.Reference 7: G. C. Wood, A. J. Brock, Nature London, 209 (1968) 773.

參考文獻8:G.C.Wood,J.P.O’Sullivan,Electrochim.Acta,15(1970)1865.Reference 8: G. C. Wood, J. P. O’Sullivan, Electrochim. Acta, 15 (1970) 1865.

參考文獻9:G.E.Thompson,R.C.Furneanx:Corrosion Sci.,10(1978)4.Reference 9: G.E. Thompson, R.C. Furneanx: Corrosion Sci., 10 (1978) 4.

參考文獻10:Jianling Zhao,Xiaohui Wang,Tieyu Sun,Longtu Li,Nanotechnology 16(2005)2450.Reference 10: Jianling Zhao, Xiaohui Wang, Tieyu Sun, Longtu Li, Nanotechnology 16 (2005) 2450.

參考文獻11:M.K.Nazeeruddin,F.D.Angelis,S.Fantacci,A.Selloni,G Viscardi,P.Liska,S.Ito,B.Takeru,M.Grtzel,J.Am.Chem.Soc.127(2005)16835.Reference 11: MKNazeeruddin, FDAngelis, S. Fantacci, A. Selloni, G Viscardi, P. Liska, S. Ito, B. Takeru, M. Gr Tzel, J. Am. Chem. Soc. 127 (2005) 16835.

參考文獻12:M.Wei,Y.Konishi,H.Zhou,M.Yanagida,H.Sugihara,H.Arakawa,J.Mater.Chem.16(2006)1287.Reference 12: M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H. Sugihara, H. Arakawa, J. Mater. Chem. 16 (2006) 1287.

可撓曲乃為染料敏化太陽能電池的主要特點之一。目前許多 研究係利用網印法,將二氧化鈦(TiO2 )奈米顆粒塗佈於可撓式導電材料上,以製成染料敏化太陽能電池的陽極,並配合軟性陰極而製成可撓式染料敏化太陽能電池。此外,根據最新的文獻報導,陽極具有奈米管(NT,nanotubes)結構的染料敏化太陽能電池元件,其光電轉換效率可高於陽極具有奈米顆粒結構的染料敏化太陽能電池。因此基於上述構想,本案發明人在針對具有大面積、輕量化、以及可撓曲特性的染料敏化太陽能電池進行一連串的詳細研究與實驗之後提出本發明。Flexibility is one of the main features of dye-sensitized solar cells. At present, many researches use screen printing to coat titanium dioxide (TiO 2 ) nano particles on a flexible conductive material to form an anode of a dye-sensitized solar cell, and to form a flexible dye with a soft cathode. Sensitized solar cells. Further, according to the latest literature, a dye-sensitized solar cell element having an anode (NT, nanotube) structure has a photoelectric conversion efficiency higher than that of a dye-sensitized solar cell having a nanoparticle structure on the anode. Therefore, based on the above concept, the inventors of the present invention have proposed the present invention after conducting a series of detailed studies and experiments on dye-sensitized solar cells having large area, light weight, and flexible properties.

針對上述問題,本發明所使用的技術乃業界成熟的陽極處理技術,其低成本與自動化的特性將有助於日後染料敏化太陽能電池產品的量產。In view of the above problems, the technology used in the present invention is a mature anode treatment technology in the industry, and its low cost and automation characteristics will contribute to the mass production of dye-sensitized solar cell products in the future.

為解決上述問題,本發明之一實施樣態為提供一種可撓式染料敏化太陽能電池,包含:鈦(Ti)基板,其表面經過粗糙化處理,以及其背面經過厚度減薄處理;二氧化鈦(TiO2 )奈米管,在Ti基板進行厚度減薄處理之前,藉由陽極處理以及熱處理而成長於Ti基板的表面上,以作為電池的陽極;光敏染料,吸附於TiO2 奈米管的表面;軟性透明導電陰極,相對於陽極而配置;以及電解液,封裝在陰極與陽極之間,其中透明導電陰極的表面附著鉑(Pt)奈米觸媒層。In order to solve the above problems, an embodiment of the present invention provides a flexible dye-sensitized solar cell comprising: a titanium (Ti) substrate whose surface is roughened, and a back surface thereof is subjected to thickness thinning; titanium dioxide ( The TiO 2 ) nanotube is grown on the surface of the Ti substrate by anodizing and heat treatment before being subjected to thickness thinning treatment to serve as an anode of the battery; the photosensitive dye is adsorbed on the surface of the TiO 2 nanotube a soft transparent conductive cathode disposed relative to the anode; and an electrolyte encapsulated between the cathode and the anode, wherein a surface of the transparent conductive cathode is attached with a platinum (Pt) nanocatalyst layer.

本發明之另一實施樣態為提供一種可撓式染料敏化太陽能電池的電化學製造方法,包含以下步驟:對鈦(Ti)基板的表面進行粗糙化處理;對Ti基板進行陽極處理,然後進行熱處理,俾能在此表面上成長二氧化鈦(TiO2 )奈米管,以作為電池的陽極;使光敏染料吸附於TiO2 奈米管的表面上;對Ti基板的背面進行厚度減薄處理;在軟性透明材料上形成透明導電氧化物薄膜以及鉑奈米觸媒層,以作為電池的陰極;以及將電解液封裝在陽極與陰極之間。Another embodiment of the present invention provides a method for electrochemically manufacturing a flexible dye-sensitized solar cell, comprising the steps of: roughening a surface of a titanium (Ti) substrate; performing anodization on the Ti substrate, and then The heat treatment is performed, and a titanium oxide (TiO 2 ) nanotube can be grown on the surface to serve as an anode of the battery; the photosensitive dye is adsorbed on the surface of the TiO 2 nanotube; and the back surface of the Ti substrate is thinned; A transparent conductive oxide film and a platinum nanocatalyst layer are formed on the soft transparent material to serve as a cathode of the battery; and an electrolyte is encapsulated between the anode and the cathode.

本發明之其他目的與優點可藉由隨後之詳細說明及隨附之申請專利範圍而更顯明白。Other objects and advantages of the present invention will become apparent from the following detailed description and appended claims.

為解決上述問題,依照本發明之一實施例,提供一種可撓式染料敏化太陽能電池的電化學製造方法,其藉由對Ti基板的表面進行粗糙化處理以及陽極處理,以增加光敏染料在陽極表面的吸附面積,並藉由對Ti基板的背面進行厚度減薄處理,以提升電池元件的可撓曲性。圖1顯示依照本發明之一實施例之可撓性染料敏化太陽能電池的製造流程圖。如圖1所示,在步驟101中,對Ti基板進行600℃×1hr的熱處理,以消除Ti基板的應力。In order to solve the above problems, according to an embodiment of the present invention, an electrochemical manufacturing method of a flexible dye-sensitized solar cell is provided, which is characterized in that the surface of the Ti substrate is roughened and anodized to increase the photosensitizing dye. The adsorption area of the anode surface is increased by the thickness reduction of the back surface of the Ti substrate to improve the flexibility of the battery element. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing the manufacture of a flexible dye-sensitized solar cell in accordance with an embodiment of the present invention. As shown in FIG. 1, in step 101, a Ti substrate is subjected to heat treatment at 600 ° C for 1 hr to eliminate stress on the Ti substrate.

在步驟102中,利用3 vol.% H3 PO4 +2 vol.% HF、3min等條件,對Ti基板的表面進行酸洗,以去除因熱處理所產生的TiO2 薄膜。In step 102, the surface of the Ti substrate is pickled with conditions of 3 vol.% H 3 PO 4 + 2 vol.% HF, 3 min, etc., to remove the TiO 2 film produced by the heat treatment.

在步驟103中,使用3 vol.% HF+5 wt.% NaCl、以及30V×1min等條件,對Ti基板的表面進行粗糙化處理,例如電解蝕刻,以獲得粗糙化的表面。在本發明之實施例中,用以進行表面粗糙化之電化學電解蝕刻的電解液可含有下列其中一種鹵素元素:氟(F)、氯(Cl)、溴(Br)、碘(I)、或砈(At);而其中含氯離子的電解液可例如為鹽酸(HCl)、氯化鈉(NaCl)、或過氯酸(HClO4 )等,以及含氟離子的電解液可例如為氫氟酸(HF)、氟化鉀(KF)、或氟化銨(NH4 F)等。然而,表面粗糙化處理並不限於電解蝕刻,在本發明之其他實施例中,表面粗糙化處理可包含電漿乾式蝕刻處理、機械式研磨、或噴砂處理等等。In step 103, the surface of the Ti substrate is subjected to a roughening treatment such as electrolytic etching using conditions of 3 vol.% HF + 5 wt.% NaCl, and 30 V × 1 min to obtain a roughened surface. In an embodiment of the present invention, the electrolytic solution for electrochemically etching the surface roughening may contain one of the following halogen elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), Or 砈 (At); and the electrolyte containing chlorine ions may be, for example, hydrochloric acid (HCl), sodium chloride (NaCl), or perchloric acid (HClO 4 ), etc., and the electrolyte containing fluorine ions may be, for example, hydrogen. Fluoric acid (HF), potassium fluoride (KF), or ammonium fluoride (NH 4 F). However, the surface roughening treatment is not limited to electrolytic etching, and in other embodiments of the present invention, the surface roughening treatment may include a plasma dry etching treatment, a mechanical grinding, or a sandblasting treatment, or the like.

在步驟104中,使用具有0.2%~5%氟離子(F )濃度的電解液、以及20~100V×1~24hr等條件,對經過粗糙化的Ti基板表面進行陽極處理,以成長TiO2 奈米管。TiO2 奈米管的厚度範圍能夠介於約0.1μm與約100μm之間。In step 104, the surface of the roughened Ti substrate is anodized using an electrolyte having a concentration of 0.2% to 5% fluoride ion (F ) and a condition of 20 to 100 V×1 to 24 hr to grow TiO 2 . Nano tube. The thickness of the TiO 2 nanotubes can range between about 0.1 μm and about 100 μm.

在步驟105中,對TiO2 奈米管進行450℃×3hr的熱處理,以獲得具有銳鈦相(anatase)結構的TiO2 奈米管。In step 105, the TiO 2 nanotube is subjected to a heat treatment at 450 ° C × 3 hr to obtain a TiO 2 nanotube having an anatase structure.

在步驟106中,使光敏染料吸附於TiO2 奈米管的表面上。In step 106, the photosensitizing dye is adsorbed onto the surface of the TiO 2 nanotube.

在步驟107中,以10 vol.% HF×6min等條件,對Ti基板的 背面進行厚度減薄處理,以獲得可撓曲的陽極。在本發明之實施例中,厚度減薄處理可使用化學蝕刻液或電化學電解法,對Ti基板背面的厚度進行減薄;而化學蝕刻液以及電化學電解法所使用的電解液可包含:氫氟酸溶液、硝酸溶液、鹽酸溶液或其混合液。在厚度減薄處理之後,Ti基板的厚度範圍能夠介於約30μm與約200μm之間。當於其上形成TiO2 奈米管的Ti基板具有上述厚度時,可被製成卷對卷(roll-to-roll)型式的太陽能電池材料。以此種構造,吾人能夠製造出卷對卷型式的可撓式染料敏化太陽能電池。此外,在另一實施例中,步驟107中的厚度減薄處理可在步驟106之前執行。In step 107, the back surface of the Ti substrate is subjected to thickness thinning treatment under conditions of 10 vol.% HF × 6 min or the like to obtain a flexible anode. In the embodiment of the present invention, the thickness thinning treatment may use a chemical etching liquid or an electrochemical electrolysis method to thin the thickness of the back surface of the Ti substrate; and the electrolyte used in the chemical etching liquid and the electrochemical electrolysis method may include: A hydrofluoric acid solution, a nitric acid solution, a hydrochloric acid solution or a mixture thereof. The thickness of the Ti substrate can range between about 30 μm and about 200 μm after the thickness reduction process. When the Ti substrate on which the TiO 2 nanotubes are formed has the above thickness, it can be made into a roll-to-roll type solar cell material. With this configuration, it is possible to manufacture a roll-to-roll type flexible dye-sensitized solar cell. Moreover, in another embodiment, the thickness thinning process in step 107 can be performed prior to step 106.

在步驟108中,於軟性透明材料上形成透明導電氧化物(TCO,Transparent Conducting Oxide)薄膜以及鉑奈米觸媒層,以獲得可撓曲的陰極。在本發明之實施例中,軟性透明材料可為聚二甲酸乙二醇酯(PEN,polyethylene naphthalate)或聚對苯二甲酸乙二酯(PET,polyethylene terephthalate)高分子聚合材料;而透明導電氧化物薄膜可為銦錫氧化物(ITO,indium tin oxide)、銻錫氧化物(ATO,antimony tin oxide)、氟錫氧化物(FTO,fluorine tin oxide)、鋁鋅氧化物(AZO,aluminum zinc oxide)、或銦鋅氧化物(IZO,indium zinc oxide)。此外,為了增加入射光對軟性透明材料的穿透率並且提升軟性透明材料的阻水與阻氣率,吾人可在軟性透明材料的表面上形成抗反射(AR,Anti-reflection)層。In step 108, a transparent conductive oxide (TCO) film and a platinum nanocatalyst layer are formed on the soft transparent material to obtain a flexible cathode. In an embodiment of the present invention, the soft transparent material may be polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) polymer transparent material; and transparent conductive oxidation The film may be indium tin oxide (ITO), antimony tin oxide (ATO), fluorine tin oxide (FTO), aluminum zinc oxide (AZO, aluminum zinc oxide). ), or indium zinc oxide (IZO). In addition, in order to increase the transmittance of incident light to a soft transparent material and to increase the water blocking and gas blocking rate of the soft transparent material, an anti-reflection (AR) layer may be formed on the surface of the soft transparent material.

在步驟109中,利用軟性封裝膠,將含有碘(I2 )以及碘化鋰(LiI)的乙腈(CH3 CN)電解液封裝在陰極與陽極之間,以獲得可撓式染料敏化太陽能電池。軟性封裝膠可為紫外光(UV,ultra-violet)膠或熱固/縮膠。In step 109, an acetonitrile (CH 3 CN) electrolyte containing iodine (I 2 ) and lithium iodide (LiI) is encapsulated between the cathode and the anode to obtain a flexible dye-sensitized solar energy using a soft encapsulant. battery. The soft encapsulant can be an ultraviolet (UV) ultra-violet or a thermoset/shrink.

在本發明之另一實施例中,Ti基板能夠以軟性透明基板加以取代,並且事先在軟性透明基板的表面上形成Ti薄膜,然後藉由陽極處理以及熱處理,在Ti薄膜的表面上成長TiO2 奈米管,並且利用軟性封裝膠將電解液封裝在皆為透明軟性的陰極與陽極之 間,而製造出能夠正面/背面照光的透明可撓式染料敏化太陽能電池,其中正面照光係指光線從陽極側入射至太陽能電池的內部,而背面照光係指光線從陰極側入射至太陽能電池的內部。因此,由圖1之方法所製成的太陽能電池為背面照光的可撓式染料敏化太陽能電池。在對此種於其上具有TiO2 奈米管的軟性透明基板進行熱處理時,吾人可使用微波加熱、雷射加熱、或紅外光加熱方式進行熱處理,以保護較低熔點的軟性透明基板。In another embodiment of the present invention, the Ti substrate can be replaced by a soft transparent substrate, and a Ti film is formed on the surface of the flexible transparent substrate in advance, and then TiO 2 is grown on the surface of the Ti film by anodizing and heat treatment. Nano tube, and the soft encapsulant is used to encapsulate the electrolyte between the cathode and the anode which are both transparent and soft, to produce a transparent flexible dye-sensitized solar cell capable of front/back illumination, wherein the front illumination refers to light. The light is incident from the anode side to the inside of the solar cell, and the back side illumination means that light is incident from the cathode side to the inside of the solar cell. Therefore, the solar cell produced by the method of Fig. 1 is a back-illuminated flexible dye-sensitized solar cell. When heat treating a soft transparent substrate having a TiO 2 nanotube thereon, heat treatment may be performed by microwave heating, laser heating, or infrared light heating to protect a soft transparent substrate having a lower melting point.

在本發明之另一實施例中,鈦基板可為鈦合金,例如Ti-6Al-4V合金等等。在本發明之其他實施例中,吾人可將鈦基板替代成下列其中一種基板:矽(Si)、銦(In)、鎢(W)、鋯(Zr)、鋅(Zn)、或錫(Sn);而替代基板上的氧化物奈米管對應於該替代基板之材料可分別為二氧化矽(SiO2 )、三氧化二銦(In2 O3 )、三氧化鎢(WO3 )、二氧化鋯(ZrO2 )、氧化鋅(ZnO)、或二氧化錫(SnO2 )。此外,TiO2 奈米管的表面可具有TiO2 奈米顆粒以增加TiO2 奈米管的表面積,而這些TiO2 奈米顆粒係利用TiF4 或TiCl4 溶液而形成。In another embodiment of the invention, the titanium substrate can be a titanium alloy, such as a Ti-6Al-4V alloy or the like. In other embodiments of the present invention, the titanium substrate may be replaced by one of the following substrates: germanium (Si), indium (In), tungsten (W), zirconium (Zr), zinc (Zn), or tin (Sn). And the material of the oxide nanotube on the substitute substrate corresponding to the substitute substrate may be ceria (SiO 2 ), indium trioxide (In 2 O 3 ), tungsten trioxide (WO 3 ), Zirconia (ZrO 2 ), zinc oxide (ZnO), or tin dioxide (SnO 2 ). Further, the surface of the TiO 2 nanotube may have TiO 2 nanoparticles to increase the surface area of the TiO 2 nanotubes, and these TiO 2 nanoparticles are formed using a TiF 4 or TiCl 4 solution.

為了使圖1的製造流程具體化,圖2A至2E概略地顯示依照圖1之實施例的製造示意圖。在圖2A至2E中,首先,於Ti基板1的表面上成長TiO2 奈米管3(如圖2B所示),接著使光敏染料(無圖示)吸附於TiO2 奈米管3的表面上(如圖2C所示,其中斜線部分為其表面已吸附光敏染料的TiO2 奈米管3),然後對Ti基板1的背面進行厚度減薄處理(如圖2D所示),最後,以軟性封裝膠11,將電解液13封裝在包含軟性透明材料5、透明導電氧化物薄膜7、以及鉑奈米觸媒層9的陰極區域與包含Ti基板1以及其表面已吸附光敏染料之TiO2 奈米管3的陽極區域之間(如圖2E所示)。厚度減薄處理較佳係在形成TiO2 奈米管3之後進行,若在形成TiO2 奈米管3之前進行厚度減薄處理時,TiO2 奈米管3會因為應力的作用而從Ti基板1的表面剝落,因此,厚度減薄處理較佳係在形成TiO2 奈米管3之後進行。此種太陽能電池的工作原理為:當電池照光時,由光敏染料(無圖示)所產生的電子經由TiO2 奈米管3 傳遞(同時,電解液13進行氧化反應並將電子傳遞至光敏染料)至外部電路(無圖示)後,再由透明導電氧化物薄膜7進入至電解液13進行還原反應,以完成電化學反應的循環。In order to clarify the manufacturing flow of FIG. 1, FIGS. 2A to 2E schematically show manufacturing diagrams in accordance with the embodiment of FIG. 1. In FIGS. 2A to 2E, first, a TiO 2 nanotube 3 (as shown in FIG. 2B) is grown on the surface of the Ti substrate 1, and then a photosensitive dye (not shown) is adsorbed on the surface of the TiO 2 nanotube 3. Upper (as shown in Fig. 2C, wherein the oblique line portion is the TiO 2 nanotube 3 whose surface has adsorbed the photosensitizing dye), and then the thickness of the back surface of the Ti substrate 1 is thinned (as shown in Fig. 2D), and finally, The soft encapsulant 11 encapsulates the electrolyte 13 in a cathode region including the soft transparent material 5, the transparent conductive oxide film 7, and the platinum nanocatalyst layer 9, and the TiO 2 including the Ti substrate 1 and the surface-adsorbed photosensitive dye thereon. Between the anode regions of the nanotubes 3 (as shown in Figure 2E). The thickness thinning treatment is preferably performed after the formation of the TiO 2 nanotubes 3. If the thickness thinning treatment is performed before the formation of the TiO 2 nanotubes 3, the TiO 2 nanotubes 3 may be from the Ti substrate due to the action of stress. The surface of 1 is peeled off, and therefore, the thickness thinning treatment is preferably performed after the formation of the TiO 2 nanotubes 3. The working principle of such a solar cell is that when the battery is illuminated, electrons generated by a photosensitive dye (not shown) are transferred via the TiO 2 nanotube 3 (at the same time, the electrolyte 13 undergoes an oxidation reaction and transmits the electron to the photosensitive dye). After the external circuit (not shown), the transparent conductive oxide film 7 enters the electrolyte 13 to carry out a reduction reaction to complete the cycle of the electrochemical reaction.

(實施範例)(Example of implementation)

在對商業用Ti基板(99.7%,0.127mm)進行600℃×1hr的熱處理之後,吾人可獲得均勻的α相鈦金相顯微組織,然後對Ti基板的表面進行酸洗(3 vol.% H3 PO4 +2 vol.% HF,3min),以去除因熱處理所產生的TiO2 膜,接著對Ti基板的表面進行電解蝕刻(3 vol.% HF+5 wt.% NaCl,30V,1 min),以獲得較粗糙的表面,最後分別以下列三種條件對Ti基板進行陽極處理:(1)0.5 vol.% HF,18V;(2)0.58 wt.% KF+13.8 wt.% NaHSO4 .2H2 O+5.9 wt.% C6 H5 Na3 O7 .2H2 O,25V;以及(3)0.25 wt.% NH4 F+乙二醇溶劑,60V。藉由上述三種條件進行陽極處理,吾人可在Ti基板的表面上成長具有奈米管結構的TiO2 陣列。圖3A至3C分別顯示以上述條件(1)、(2)、以及(3)進行陽極處理所獲得的TiO2 奈米管陣列顯微影像。After heat treatment of a commercial Ti substrate (99.7%, 0.127 mm) at 600 ° C × 1 hr, we can obtain a uniform α phase titanium metallographic microstructure, and then pickle the surface of the Ti substrate (3 vol.% H 3 PO 4 +2 vol.% HF, 3 min) to remove the TiO 2 film produced by the heat treatment, followed by electrolytic etching (3 vol.% HF + 5 wt.% NaCl, 30 V, 1 min) on the surface of the Ti substrate. For the rougher surface, the Ti substrate was anodized in the following three conditions: (1) 0.5 vol.% HF, 18V; (2) 0.58 wt.% KF+13.8 wt.% NaHSO 4 . 2H 2 O+5.9 wt.% C 6 H 5 Na 3 O 7 . 2H 2 O, 25V; and (3) 0.25 wt.% NH 4 F+ ethylene glycol solvent, 60V. By performing the anodizing treatment under the above three conditions, a TiO 2 array having a nanotube structure can be grown on the surface of the Ti substrate. 3A to 3C respectively show microscopic images of TiO 2 nanotube arrays obtained by anodizing with the above conditions (1), (2), and (3).

為了提升染料敏化太陽能電池的可撓性,並且降低其重量,因此染料敏化太陽能電池的材料必須具有輕量化的特性,例如本發明之實施例所使用之Ti基板的密度約為4.5 g.cm-3 ,而聚二甲酸乙二醇酯(PEN)以及聚對苯二甲酸乙二酯(PET)之軟性透明高分子聚合物材料的密度約為1.4 g.cm-3 。雖然Ti基板的密度比習知染料敏化太陽能電池陽-陰兩極常用之玻璃材料的密度(2.5 g.cm-3 )稍大,但單片玻璃所需的厚度約為2000μm,而Ti基板以及聚二甲酸乙二醇酯(PEN)或聚對苯二甲酸乙二酯(PET)材料的厚度僅需約80μm,因此,利用Ti基板以及高分子聚合物材料所製成之染料敏化太陽能電池的重量僅為使用玻璃材料之染料敏化太陽能電池的4.7%。In order to improve the flexibility and reduce the weight of the dye-sensitized solar cell, the material of the dye-sensitized solar cell must have lightweight characteristics, for example, the density of the Ti substrate used in the embodiment of the present invention is about 4.5 g. Cm -3 , and polyethylene terephthalate (PEN) and polyethylene terephthalate (PET) soft transparent polymer material density of about 1.4 g. Cm -3 . Although the density of the Ti substrate is slightly larger than the density (2.5 g.cm -3 ) of the commonly used glass material of the conventional dye-sensitized solar cell, the thickness of the monolithic glass is about 2000 μm, and the Ti substrate and The polyethylene terephthalate (PEN) or polyethylene terephthalate (PET) material requires only about 80 μm in thickness, and therefore, a dye-sensitized solar cell made of a Ti substrate and a polymer material is used. The weight is only 4.7% of the dye-sensitized solar cells using glass materials.

將根據本發明之方法所製得的染料敏化太陽能電池陽極配合軟性透明導電陰極,即可製得可撓式染料敏化太陽能電池。圖4A 與圖4B分別為依照本發明之一實施例之可撓式染料敏化太陽能電池之陽極以及陰極的照片,而圖4C為由圖4A及圖4B中之陽極以及陰極所製成之可撓式染料敏化太陽能電池的照片。A flexible dye-sensitized solar cell can be obtained by blending a dye-sensitized solar cell anode prepared according to the method of the present invention with a soft transparent conductive cathode. Figure 4A 4B is a photograph of an anode and a cathode of a flexible dye-sensitized solar cell according to an embodiment of the present invention, and FIG. 4C is a flexible type made of the anode and the cathode of FIGS. 4A and 4B, respectively. Photograph of dye-sensitized solar cells.

圖5為依照本發明之一實施例之在氣團(AM,air mass)1.5之標準太陽光模擬光源測試條件下之可撓式染料敏化太陽能電池的電流密度-電壓特性曲線圖。如圖5所示,可撓曲的主動面積(active area)為20.25cm2 、短路電流密度(Jsc)為6.6 mA.cm-2 、開路電壓(Voc)為0.72V、填充率(FF)為0.32、光電轉換效率(η)為1.51%。5 is a graph showing current density-voltage characteristics of a flexible dye-sensitized solar cell under the test conditions of a standard solar light source of an air mass of 1.5 in accordance with an embodiment of the present invention. As shown in Fig. 5, the flexible active area is 20.25 cm 2 and the short circuit current density (Jsc) is 6.6 mA. Cm -2 , open circuit voltage (Voc) was 0.72 V, filling ratio (FF) was 0.32, and photoelectric conversion efficiency (η) was 1.51%.

因此,依照本發明之方法,吾人可製造出具有大面積、輕量化、以及可撓曲特性的染料敏化太陽能電池。Therefore, according to the method of the present invention, it is possible to manufacture a dye-sensitized solar cell having a large area, a lightweight, and a flexible property.

雖然本發明已參考其示範實施例進行特定顯示以及說明,但本發明並不限於這些實施例。具有此技術領域之通常知識者可瞭解在不離開如本發明之請求項所界定之精神與範圍的情形下,可進行各種不同形式與細節的變化。Although the present invention has been particularly shown and described with reference to the exemplary embodiments thereof, the invention is not limited to the embodiments. Variations in the various forms and details may be made without departing from the spirit and scope of the invention as defined by the appended claims.

1‧‧‧Ti基板1‧‧‧Ti substrate

3‧‧‧TiO2 奈米管3‧‧‧TiO 2 nanotubes

5‧‧‧軟性透明材料5‧‧‧Soft transparent materials

7‧‧‧透明導電氧化物薄膜7‧‧‧Transparent conductive oxide film

9‧‧‧鉑奈米觸媒層9‧‧‧Platinum catalyst layer

11‧‧‧軟性封裝膠11‧‧‧Soft package adhesive

13‧‧‧電解液13‧‧‧ electrolyte

101‧‧‧對Ti基板進行熱處理,以消除Ti基板的應力101‧‧‧ Heat treatment of Ti substrate to eliminate stress on Ti substrate

102‧‧‧對Ti基板的表面進行酸洗,以去除熱處理所產生的TiO2102‧‧‧Pickling the surface of the Ti substrate to remove the TiO 2 film produced by the heat treatment

103‧‧‧對Ti基板的表面進行粗糙化處理,以獲得較粗糙的表面103‧‧‧Roughening the surface of the Ti substrate to obtain a rougher surface

104‧‧‧對經過粗糙化的Ti基板表面進行陽極處理,以成長TiO2 奈米管104‧‧‧Anode treatment of the surface of the roughened Ti substrate to grow TiO 2 nanotubes

105‧‧‧對TiO2 奈米管進行熱處理,以獲得具銳鈦相(anatase)結構的TiO2 奈米管105‧‧‧ of TiO 2 nanotubes subjected to heat treatment to obtain a phase having anatase (Anatase) TiO 2 nanotube structure

106‧‧‧使光敏染料吸附於TiO2 奈米管的表面上106‧‧‧Adsorbing photosensitizing dye on the surface of TiO 2 nanotubes

107‧‧‧對Ti基板的背面進行厚度減薄處理,以獲得可撓曲的陽極107‧‧‧Thickening the back side of the Ti substrate to obtain a flexible anode

108‧‧‧在軟性透明材料上形成透明導電氧化物薄膜以及鉑奈米觸媒層,以獲得可撓曲的陰極108‧‧‧ Forming a transparent conductive oxide film and a platinum nanocomb layer on a soft transparent material to obtain a flexible cathode

109‧‧‧利用軟性封裝膠將電解液封裝在陰極與陽極之間,以獲得可撓曲式染料敏化太陽能電池109‧‧‧Encapsulate the electrolyte between the cathode and the anode with a soft encapsulant to obtain a flexible dye-sensitized solar cell

圖1顯示依照本發明之一實施例之可撓性染料敏化太陽能電池的製造流程圖;圖2A至2E概略地顯示依照圖1之實施例的製造示意圖;圖3A至3C分別顯示以不同條件進行陽極處理所獲得的TiO2 奈米管陣列顯微影像;圖4A與圖4B分別為依照本發明之一實施例之可撓式染料敏化太陽能電池之陽極以及陰極的照片;圖4C為由圖4A及圖4B中之陽極以及陰極所製成之可撓式染料敏化太陽能電池的照片;及圖5為依照本發明之一實施例之可撓式染料敏化太陽能電池的電流密度-電壓特性曲線圖。1 shows a manufacturing flow chart of a flexible dye-sensitized solar cell according to an embodiment of the present invention; FIGS. 2A to 2E schematically show a manufacturing schematic according to the embodiment of FIG. 1; FIGS. 3A to 3C respectively show different conditions. Photomicrograph of TiO 2 nanotube array obtained by anodizing; FIGS. 4A and 4B are photographs of an anode and a cathode of a flexible dye-sensitized solar cell according to an embodiment of the present invention; FIG. 4C is 4A and 4B are photographs of a flexible dye-sensitized solar cell made of an anode and a cathode; and FIG. 5 is a current density-voltage of a flexible dye-sensitized solar cell according to an embodiment of the present invention. Characteristic curve.

101‧‧‧對Ti基板進行熱處理,以消除Ti基板的應力101‧‧‧ Heat treatment of Ti substrate to eliminate stress on Ti substrate

102‧‧‧對Ti基板的表面進行酸洗,以去除熱處理所產生的TiO2102‧‧‧Pickling the surface of the Ti substrate to remove the TiO 2 film produced by the heat treatment

103‧‧‧對Ti基板的表面進行粗糙化處理,以獲得較粗糙的表面103‧‧‧Roughening the surface of the Ti substrate to obtain a rougher surface

104‧‧‧對經過粗糙化的Ti基板表面進行陽極處理,以成長TiO2 奈米管104‧‧‧Anode treatment of the surface of the roughened Ti substrate to grow TiO 2 nanotubes

105‧‧‧對TiO2 奈米管進行熱處理,以獲得具銳鈦相(anatase)結構的TiO2 奈米管105‧‧‧ of TiO 2 nanotubes subjected to heat treatment to obtain a phase having anatase (Anatase) TiO 2 nanotube structure

106‧‧‧使光敏染料吸附於TiO2 奈米管的表面上106‧‧‧Adsorbing photosensitizing dye on the surface of TiO 2 nanotubes

107‧‧‧對Ti基板的背面進行厚度減薄處理,以獲得可撓曲的陽極107‧‧‧Thickening the back side of the Ti substrate to obtain a flexible anode

108‧‧‧在軟性透明材料上形成透明導電氣化物薄膜以及鉑奈米觸媒層,以獲得可撓曲的陰極108‧‧‧ Forming a transparent conductive vapor film and a platinum nanocomb layer on a soft transparent material to obtain a flexible cathode

109‧‧‧利用軟性封裝膠將電解液封裝在陰極與陽極之間,以獲得可撓式染料敏化太陽能電池109‧‧‧Encapsulate the electrolyte between the cathode and the anode with a soft encapsulant to obtain a flexible dye-sensitized solar cell

Claims (18)

一種可撓式染料敏化太陽能電池的電化學製造方法,包含:對一鈦(Ti)基板的表面進行粗糙化處理;再對該Ti基板進行陽極處理,然後進行熱處理,俾能在該表面上成長二氧化鈦(TiO2 )奈米管,以作為該電池的一陽極;使一光敏染料吸附於該TiO2 奈米管的表面上;對該Ti基板的背面進行厚度減薄處理;在一軟性透明材料上形成一透明導電氧化物薄膜以及一鉑(Pt)奈米觸媒層,以作為該電池的一陰極;及將一電解液封裝在該陽極與該陰極之間。An electrochemical manufacturing method of a flexible dye-sensitized solar cell, comprising: roughening a surface of a titanium (Ti) substrate; then anodizing the Ti substrate, and then performing heat treatment, wherein the surface can be on the surface Growing a titanium dioxide (TiO 2 ) nanotube as an anode of the battery; adsorbing a photosensitive dye on the surface of the TiO 2 nanotube; performing thickness thinning on the back surface of the Ti substrate; A transparent conductive oxide film and a platinum (Pt) nanocatalyst layer are formed on the material to serve as a cathode of the battery; and an electrolyte is encapsulated between the anode and the cathode. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該基板的表面粗糙化處理為電化學濕式蝕刻處理、電漿乾式蝕刻處理、機械式研磨、或噴砂處理其中之一。 The method for electrochemically manufacturing a flexible dye-sensitized solar cell according to claim 1, wherein the surface roughening treatment of the substrate is electrochemical wet etching, plasma dry etching, mechanical grinding, or sand blasting. Handle one of them. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中以一軟性封裝膠將該電解液封裝在該陰極與該陽極之間。 The method of electrochemically manufacturing a flexible dye-sensitized solar cell according to claim 1, wherein the electrolyte is encapsulated between the cathode and the anode with a soft encapsulant. 如申請專利範圍第3項之可撓式染料敏化太陽能電池的電化學製造方法,其中該軟性封裝膠為紫外光膠或熱固/縮膠。 An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 3, wherein the soft encapsulant is an ultraviolet glue or a thermosetting/shrinking glue. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中以TiF4 或TiCl4 溶液在該TiO2 奈米管的表面形成TiO2 奈米顆粒。The scope of the patent electrochemical method of manufacturing a flexible dye-sensitized solar cell of item 1, wherein TiCl 4 or TiF 4 to form TiO 2 nano particles solution on the surface of the TiO 2 nanotube. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該陽極處理的電解液為含有氟離子(F- )的電解液。An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein the anodized electrolyte is an electrolyte containing fluoride ion (F - ). 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該厚度減薄處理係使用化學蝕刻液或電化學電解法,對該Ti基板背面的厚度進行減薄。 The method for electrochemically producing a flexible dye-sensitized solar cell according to claim 1, wherein the thickness thinning treatment is performed by using a chemical etching solution or an electrochemical electrolytic method to reduce the thickness of the back surface of the Ti substrate. 如申請專利範圍第7項之可撓式染料敏化太陽能電池的電化學製造方法,其中該化學蝕刻液以及該電化學電解法所使用的電解液包含:氫氟酸溶液、硝酸溶液、鹽酸溶液、或其混合液。 The method for electrochemically manufacturing a flexible dye-sensitized solar cell according to claim 7, wherein the chemical etching solution and the electrolyte used in the electrochemical electrolysis method comprise: a hydrofluoric acid solution, a nitric acid solution, and a hydrochloric acid solution. , or a mixture thereof. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中在該軟性透明材料的表面上形成一抗反射層。 An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein an antireflection layer is formed on the surface of the soft transparent material. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該Ti基板能夠以一軟性透明材料加以取代,並且事先在該軟性透明材料的表面上形成一Ti薄膜,然後進行陽極處理以及熱處理,以成長TiO2 奈米管。An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein the Ti substrate can be replaced by a soft transparent material, and a Ti film is formed on the surface of the soft transparent material in advance. Anodizing and heat treatment are then performed to grow the TiO 2 nanotubes. 如申請專利範圍第10項之可撓式染料敏化太陽能電池的電化學製造方法,其中該熱處理能夠利用微波加熱、雷射加熱、或紅外光加熱方式加以進行。 An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 10, wherein the heat treatment can be performed by microwave heating, laser heating, or infrared light heating. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該Ti基板能夠以一Ti合金基板加以取代。 An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein the Ti substrate can be substituted with a Ti alloy substrate. 如申請專利範圍第12項之可撓式染料敏化太陽能電池的電化學製造方法,其中該Ti合金基板為Ti-6Al-4V合金。 An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 12, wherein the Ti alloy substrate is a Ti-6Al-4V alloy. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該Ti基板能夠由下列其中一種基板加以替代:矽 (Si)、銦(In)、鎢(W)、鋯(Zr)、鋅(Zn)、或錫(Sn);而該替代基板上的氧化物奈米管對應於該替代基板之材料分別為二氧化矽(SiO2 )、三氧化二銦(In2 O3 )、三氧化鎢(WO3 )、二氧化鋯(ZrO2 )、氧化鋅(ZnO)、或二氧化錫(SnO2 )。An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein the Ti substrate can be replaced by one of the following substrates: germanium (Si), indium (In), tungsten (W), Zirconium (Zr), zinc (Zn), or tin (Sn); and the material of the oxide nanotube on the substitute substrate corresponding to the substitute substrate is ceria (SiO 2 ), indium trioxide (In 2 O 3 ), tungsten trioxide (WO 3 ), zirconium dioxide (ZrO 2 ), zinc oxide (ZnO), or tin dioxide (SnO 2 ). 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中在對該基板進行該粗糙化處理之前,事先對該基板進行熱處理,然後進行酸洗。 An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein the substrate is subjected to heat treatment in advance and then pickled before the roughening treatment. 如申請專利範圍第1項之可撓式染料敏化太陽能電池的電化學製造方法,其中該TiO2 奈米管的厚度範圍能夠介於約0.1μm與約100μm之間;而經該厚度減薄處理後之該Ti基板的厚度範圍能夠介於約30μm與約200μm之間。An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 1, wherein the TiO 2 nanotube has a thickness ranging between about 0.1 μm and about 100 μm; and the thickness is thinned The thickness of the Ti substrate after the treatment can range between about 30 μm and about 200 μm. 如申請專利範圍第16項之可撓式染料敏化太陽能電池的電化學製造方法,其中於其上具有該TiO2 奈米管的該Ti基板能夠製成卷對卷(roll-to-roll)型式的太陽能電池材料。An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 16, wherein the Ti substrate having the TiO 2 nanotube thereon can be rolled-to-rolled Type of solar cell material. 如申請專利範圍第2項之可撓式染料敏化太陽能電池的電化學製造方法,其中該電化學濕式蝕刻處理的電解液含有下列其中一種鹵素元素:氟(F)、氯(Cl)、溴(Br)、碘(I)、或砈(At);而該含氯之電解液為鹽酸(HCl)、氯化鈉(NaCl)、或過氯酸(HClO4 )其中一種,以及該含氟之電解液為氫氟酸(HF)、氟化鉀(KF)、或氟化銨(NH4 F)其中一種。An electrochemical manufacturing method of a flexible dye-sensitized solar cell according to claim 2, wherein the electrochemical wet etching electrolytic solution contains one of the following halogen elements: fluorine (F), chlorine (Cl), Bromine (Br), iodine (I), or hydrazine (At); and the chlorine-containing electrolyte is one of hydrochloric acid (HCl), sodium chloride (NaCl), or perchloric acid (HClO 4 ), and the The electrolyte of fluorine is one of hydrofluoric acid (HF), potassium fluoride (KF), or ammonium fluoride (NH 4 F).
TW97133398A 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell TWI383511B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133398A TWI383511B (en) 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133398A TWI383511B (en) 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
TW201011925A TW201011925A (en) 2010-03-16
TWI383511B true TWI383511B (en) 2013-01-21

Family

ID=44828799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133398A TWI383511B (en) 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell

Country Status (1)

Country Link
TW (1) TWI383511B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455339B (en) * 2011-12-22 2014-10-01 Atomic Energy Council A novel structure and new set-up method of flexible solar cells
TWI536584B (en) 2015-05-15 2016-06-01 義守大學 Photoelectric conversion device
TWI641010B (en) * 2017-11-29 2018-11-11 住華科技股份有限公司 Pressure sensitive adhesive composition, electrode composite film and manufacturing method for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624472A (en) * 1926-10-13 1927-04-12 Hancock Bros Baggage-check holder
EP1087446A2 (en) * 1999-09-22 2001-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and its production method
US20050218381A1 (en) * 2003-10-08 2005-10-06 The Yokohama Rubber Co., Ltd. Method for producing conductive polyaniline and organic polymer composition
EP1689018A1 (en) * 2003-11-28 2006-08-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
US20070151601A1 (en) * 2005-12-29 2007-07-05 Won Cheol Jung Semiconductor electrode using carbon nanotube, preparation method thereof, and solar cell comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624472A (en) * 1926-10-13 1927-04-12 Hancock Bros Baggage-check holder
EP1087446A2 (en) * 1999-09-22 2001-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and its production method
US20050218381A1 (en) * 2003-10-08 2005-10-06 The Yokohama Rubber Co., Ltd. Method for producing conductive polyaniline and organic polymer composition
EP1689018A1 (en) * 2003-11-28 2006-08-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
US20070151601A1 (en) * 2005-12-29 2007-07-05 Won Cheol Jung Semiconductor electrode using carbon nanotube, preparation method thereof, and solar cell comprising the same

Also Published As

Publication number Publication date
TW201011925A (en) 2010-03-16

Similar Documents

Publication Publication Date Title
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
Jacobsson et al. CIGS based devices for solar hydrogen production spanning from PEC-cells to PV-electrolyzers: a comparison of efficiency, stability and device topology
Wu et al. Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {0 0 1} facets and their application in quantum-dot sensitized solar cells
Peng et al. Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells
Ren et al. A three-dimensional hierarchical TiO 2 urchin as a photoelectrochemical anode with omnidirectional anti-reflectance properties
Peng et al. Influence of ZnO nano-array interlayer on the charge transfer performance of quantum dot sensitized solar cells
Wu et al. Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications
CN105308701B (en) Dye-sensitized solar cell equipped with beam condensing unit
Gao et al. A ZnO nanorod/nanoparticle hierarchical structure synthesized through a facile in situ method for dye-sensitized solar cells
CN103952708A (en) Preparation method for Ag/SnO2/TiO2 composite membrane photoanode used for photogenerated cathodic protection
CN106894024A (en) The preparation method of accumulation energy type tungstic acid/strontium titanates/nano titania composite film photo-anode
Wu et al. Anodic TiO2 nanotube arrays for dye-sensitized solar cells characterized by electrochemical impedance spectroscopy
Zhu et al. Facile fabrication of open-ended TiO2 nanotube arrays with large area for efficient dye-sensitized solar cells
Hossain et al. Investigation of TiO2 nanotubes/nanoparticles stacking sequences to improve power conversion efficiency of dye-sensitized solar cells
Lei et al. Fabrication of partially crystalline TiO2 nanotube arrays using 1, 2-propanediol electrolytes and application in dye-sensitized solar cells
TWI383511B (en) Electrochemical fabricating method thereof flexible dye-sensitized solar cell
Javed et al. Anatase TiO2 nanotubes as photoanode for dye-sensitized solar cells
Ferrari et al. Photoactive multilayer WO3 electrode synthesized via dip-coating
TWI473312B (en) A large area flexible dye-sensitized solar cell and the electrochemical fabricating method thereof
Qu et al. Upconverting TiO2 spheres with light scattering effect for enhanced quantum dot-sensitized solar cells
CN102723204B (en) The titanium foil sheet preparation method of dye-sensitized solar cells light anode
Effendi et al. Studies on graphene zinc-oxide nanocomposites photoanodes for high-efficient dye-sensitized solar cells
Dobrzański et al. Technology of dye-sensitized solar cells with carbon nanotubes
Zhang et al. Bifacial dye-sensitized solar cells from transparent RuSe counter electrodes
Yang et al. Alumina template assistance in titania nanotubes dye-sensitized solar cell (TiO2 NT-DSSC) device fabrication

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees