TW201011925A - Flexible dye-sensitized solar cell and the electrochemical fabricating method thereof - Google Patents

Flexible dye-sensitized solar cell and the electrochemical fabricating method thereof Download PDF

Info

Publication number
TW201011925A
TW201011925A TW97133398A TW97133398A TW201011925A TW 201011925 A TW201011925 A TW 201011925A TW 97133398 A TW97133398 A TW 97133398A TW 97133398 A TW97133398 A TW 97133398A TW 201011925 A TW201011925 A TW 201011925A
Authority
TW
Taiwan
Prior art keywords
solar cell
sensitized solar
substrate
dye
flexible
Prior art date
Application number
TW97133398A
Other languages
Chinese (zh)
Other versions
TWI383511B (en
Inventor
Eric Wei-Guang Diau
Chien-Chon Chen
Chin-Shing Chen
Original Assignee
Dc Solar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dc Solar Corp filed Critical Dc Solar Corp
Priority to TW97133398A priority Critical patent/TWI383511B/en
Publication of TW201011925A publication Critical patent/TW201011925A/en
Application granted granted Critical
Publication of TWI383511B publication Critical patent/TWI383511B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This invention provides a flexible dye-sensitized solar cell, which comprises a titanium(Ti) foil whose surface is roughened and whose back side is subject to a thickness reducing process, titanium dioxide(TiO2) nanotubes grew on the surface of the Ti foil by an anodizing process and a thermal process before the Ti foil is subject to the thickness reducing process as an anode of the cell, a photosensitive dye adsorbing on the surfaces of the TiO2 nanotubes, a soft transparent conductive cathode disposed to be opposite to the anode, and an electrolyte sealed between the cathode and the anode, wherein a platinum(Pt) nano-catalytic layer is adhered to the surface of the soft transparent conductive cathode. The invention also provides electrochemical fabrication methods for this flexible dye-sensitized solar cell.

Description

201011925 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種染料敏化太陽能電池及其製造方法,尤其 係關於一種具有輕量化及可撓曲特性的染料敏化太陽能電 電化學製造方法。 及其 【先前技術】 . 曰根據美國能源部預估,目前全球石油存量約40年、天然氣 量約60年、煤炭存量約2〇〇年,而全球能源需求在2〇5〇年將= m 到目前的兩倍,在2100年時將達到目前的三倍,近年來由於石ί ^格的飆深’第四次能源危機也即將絲。尋求新能源也目 二各國極力暖的產業,近年來由於奈米技術與先進材料^ =而ΐΐ於提升太陽能電池的轉換效率,因此單/複晶碎太陽能 能電Γ、薄膜太陽能電池、濕式太陽能電池等 技術之改良,正受到各先進國家的重視。 目前主要的替代能源有:燃料電池、甲醇、 意識的提升與能源危機心 ®人可觀ϊΓίίt i展’所以無論是學術界或產業界皆投 幻玄双丁平來此源對世界各國的影響如下· 1954 ^ :貝爾實驗室發表6 ^效 1957年:蘇聯發射第 Z效羊的太—電池。 作為能量的來源。 (P咖kl),·太陽能電池 年:’巾東峨石娜由每詞元漲 19年第—夂石油危機,兩伊戰爭使石油價格由每桶μ美元滿 201011925 到39美元。 1983年.美國於加州建立世界上最大的太陽能電廠(i6mw)。 1990年:第三次石油危機,海灣危機使3個月内原油從每桶14 美元漲到40美元。 1994年:日本實施補助獎勵辦法,推廣「市電併聯型太陽光電能 系統」。 1997年.則美國總統柯林頓提出的百萬太陽電能屋頂^^丨出⑽ Roofs Solar Power)方案,預計在2〇1〇年之前建設穿忐 - 1⑻萬戶的太陽能發電系統。 2008年:石油價格每桶14〇美元。 © 在$源嚴重短缺、環保意識高漲的關鍵年代,節能與開發新 能源,儼然已成為全球市場的新興產業,由於第一代與第二代太 陽,電池製程需在無塵室與真空設備的操作下完成,所以其設備 ,資較大,亦因此使得第三代太陽能電池的低成本製程被廣為接 文’其中染料敏化太陽能電池(DSSC,dye-sensitized solar cell)更具 有低成本、可撓性、顏色多樣化、以及環保等等的特性,近來更 是受到學術研究單位與產業投資者的矚目。瑞士科學家 Gratzel(1991)利用二氧化鈦(Ti〇2)奈米顆粒⑼卩,nan叩artides)作為 染料敏化^陽能電池的陽極以吸附光敏染料,並與導電陰極、電 ❿=液組成二明治結構的染料敏化太陽能電池,其光電轉換效率為 7%(參考文獻1)。經過十幾年的發展,目前的效率僅為丨1%(參考 文獻^^4)。近年來由於奈米技術與先進材料之開發’將有助於提 升太陽能電池之轉換效率。典型的染料敏化太陽能電池係利用N3 染料(LUMO = _〇.71eV,H〇M〇 = 〇 為電子產生層,配合 TWVB = 2.74eV ’ CB = -GiV)為電子傳輸層,將電子與電洞分 離’完成電子對外部電路的作功,電子再經由陰極傳回至電解液, 而完成一連串完整的電化學反應。 太陽能電池的再生能源特性與光電轉換效率的發展,一直以 來都是極為受到各1業國家的重視,另—方面,太陽能電池生產 6 201011925 用之材料以及=過程==則=對太陽能電嫩 低耗電率ii的太陽能電池’應具備有低生產成本、 紫程用以增加金屬表面的氧化層厚度,此種 • Ϊΐίί 紐術,於196〇_1990年間,几卿咖與Wood(參 極2學氧i曰之H許/關f此方面的研究,發難表面經由陽 能夠提mm層緻密的氧化膜’並發現此種氧化膜 考文ί Ίο = 性以及财磨性。自1997年,Masuda(參 -孔洞开 1⑽二:欠陽極氧化法製備出具有規則排列以及均 雖ί2〇^備ί面ί極f化1呂之後’人們開始利用多孔陽極氧化 根裝、以及規則排列的奈米材料陣列。 . 、彳八2〇3奈米管的製作經驗,Ti02奈米管的陽極声理 “ϊίί:的=電f、電解液攪拌、以及電解液溫度等:數 =㈡r;當:二 參 時,綱謝辦或較少 ^吕&料敏化太陽能電池(NT-DSSC , 光電轉換效率;3太3二較有效地收集光線進而增加 後亦可增進光嫌的以㈡ 上,可縮短製程並以接生成於ή基板⑺域) 特性,故可輕易做^()由於奈米管陽極具有可撓曲 面積的可撓式奈米管染料敏化太陽能電池。 7 201011925 參考文獻 1 : M. Pourbaix, “Atlas of Electrochemical in Aqueous Solutions”, NACE, USA, 280 (1974). 參考文獻 2 : M.K. Nazeeruddin, F.D. Angelis, S. Fantacci, A.201011925 IX. Description of the Invention: The present invention relates to a dye-sensitized solar cell and a method of manufacturing the same, and more particularly to a dye-sensitized solar electro-electrochemical manufacturing method having light weight and flexibility characteristics. And its [prior art] . According to the US Department of Energy, the current global oil stock is about 40 years, natural gas is about 60 years, coal stock is about 2 years, and global energy demand will be 2 in 5 years. Up to now, twice in the year of 2100, it will reach the current three times. In recent years, due to the depth of the stone, the fourth energy crisis is about to come. Seeking new energy sources is also the industry that countries are extremely warm. In recent years, due to nanotechnology and advanced materials, the conversion efficiency of solar cells has been improved. Therefore, single/polycrystalline solar energy can be used, thin film solar cells, wet type. Improvements in technologies such as solar cells are being valued by advanced countries. At present, the main alternative energy sources are: fuel cell, methanol, awareness raising and energy crisis. People are eager to see ίίt i exhibition. So both academics and industry are investing in the theme of Xuan Shuangping. · 1954 ^ : Bell Labs published 6^1957: The Soviet Union launched the Z-effect sheep's battery. As a source of energy. (P coffee kl), · Solar battery Year: 'Women's East Shih Nah rose by 19 cents per word - the oil crisis, the Iran-Iraq war made oil prices from $19 per barrel to $11919 to $39. In 1983, the United States established the world's largest solar power plant (i6mw) in California. 1990: The third oil crisis, the Gulf crisis raised crude oil from $14 to $40 per barrel in three months. 1994: Japan implemented a subsidy incentive scheme to promote the “mains parallel solar photovoltaic system”. In 1997, US President Bill Clinton proposed a million solar power roof (10) Roofs Solar Power project, which is expected to build a solar power system that will pass through -1 (8 million) households by 21,000 years ago. 2008: The price of oil is $14 per barrel. © In the critical era of serious shortage of sources and high environmental awareness, energy conservation and development of new energy sources have become an emerging industry in the global market. Due to the first and second generation sun, the battery process needs to be in clean rooms and vacuum equipment. The operation is completed, so the equipment is relatively large, and therefore the low-cost process of the third-generation solar cell is widely accepted. Among them, the dye-sensitized solar cell (DSSC) is more low-cost, The characteristics of flexibility, color diversification, and environmental protection have recently attracted the attention of academic research institutions and industrial investors. Swiss scientist Gratzel (1991) used titanium dioxide (Ti〇2) nanoparticle (9) 卩, nan叩artides) as the anode of dye-sensitized cation battery to adsorb photosensitive dye, and combined with conductive cathode and electric ❿=liquid The structure of the dye-sensitized solar cell has a photoelectric conversion efficiency of 7% (Reference 1). After more than a decade of development, the current efficiency is only 丨1% (Reference ^^4). In recent years, due to the development of nanotechnology and advanced materials, it will help to improve the conversion efficiency of solar cells. A typical dye-sensitized solar cell uses an N3 dye (LUMO = _〇.71eV, H〇M〇 = 〇 is an electron-generating layer, with TWVB = 2.74eV 'CB = -GiV) as an electron transport layer, and electrons and electricity. The hole separation 'completes the work of the electron on the external circuit, and the electrons are returned to the electrolyte through the cathode to complete a series of complete electrochemical reactions. The development of solar cell's renewable energy characteristics and photoelectric conversion efficiency has always been highly valued by the countries of each industry. On the other hand, solar cell production 6 201011925 uses materials and = process == then = low on solar power The solar cell with a power consumption rate of ii should have a low production cost, and the purple process is used to increase the thickness of the oxide layer on the metal surface. This kind of Ϊΐ ίί 纽 纽 纽 〇 〇 〇 〇 1990 1990 1990 〇 〇 〇 〇 〇 〇 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 I have studied the research of oxygen in this aspect, and the surface of the surface of the dynamite can be raised through the yang to form a dense oxide film of the mm layer, and found that the oxide film is wenwen = sex and rich. Since 1997, Masuda (Ref. - Hole opening 1 (10) 2: Under-anodizing method is prepared with regular arrangement and both are ί2〇^备 面 ί ί ί 极 化 吕 ' ' ' 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们 人们Array. . 彳 〇 〇 〇 奈 奈 奈 , , , Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti Ti When, the outline thank you or less ^ Lu &amp Material-sensitized solar cell (NT-DSSC, photoelectric conversion efficiency; 3 too 3 2 more efficient collection of light and then increase the light suspicion (2), can shorten the process and connect to the ή substrate (7) domain) Characteristics, so it can be easily done ^() because the nanotube anode has a flexible area of the flexible nanotube dye-sensitized solar cell. 7 201011925 Reference 1: M. Pourbaix, "Atlas of Electrochemical in Aqueous Solutions" , NACE, USA, 280 (1974). Reference 2: MK Nazeeruddin, FD Angelis, S. Fantacci, A.

Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127 (2005) 16835. 參考文獻 3 : M. Wei, Y. Konishi,H. Zhou, M. Yanagida, H.Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127 (2005) 16835. Reference 3: M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H.

Sugihara, H. Arakawa, J. Mater. Chem. 16 (2006) 1287. - 參考文獻 4 : N. Koide,A. Islam, Y. Chiba, L. Han, J. Photochem.Sugihara, H. Arakawa, J. Mater. Chem. 16 (2006) 1287. - Reference 4: N. Koide, A. Islam, Y. Chiba, L. Han, J. Photochem.

Photobio. A 182 (2006) 296. ❹ 參考文獻 5 : Spooner, R.C·,J. Electrochem. Soc.,102 (1955) 156. 參考文獻 6 : J. Brock, G. C. Wood,Electrochim. Acta,12 (1967) 395· 參考文獻 7 : G. C. Wood,A. J. Brock, Nature London, 209 (1968) 773. 參考文獻 8 : G. C. Wood, J. P· O’Sullivan,Electrochim. Acta, 15 (1970) 1865. 參考文獻 9 : G. E. Thompson, R. C. Fumeaux: Corrosion Sci·,10 (1978) 4. 參考文獻 10 : Jianling Zhao, Xiaohui Wang,Tieyu Sun, Longtu Li, Nanotechnology 16(2005) 2450. 參 參考文獻 11 : M.K. Nazeeruddin,F.D. Angelis,S. Fantacci,A.Photobio. A 182 (2006) 296. ❹ Reference 5: Spooner, RC·, J. Electrochem. Soc., 102 (1955) 156. Reference 6: J. Brock, GC Wood, Electrochim. Acta, 12 (1967) 395· Reference 7: GC Wood, AJ Brock, Nature London, 209 (1968) 773. Reference 8: GC Wood, J. P. O'Sullivan, Electrochim. Acta, 15 (1970) 1865. Reference 9 : GE Thompson, RC Fumeaux: Corrosion Sci·, 10 (1978) 4. Reference 10: Jianling Zhao, Xiaohui Wang, Tieyu Sun, Longtu Li, Nanotechnology 16 (2005) 2450. Reference 11: MK Nazeeruddin, FD Angelis , S. Fantacci, A.

Selloni, G. Yiscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127 (2005) 16835. 參考文獻 12 : M. Wei, Y_ Konishi,H. Zhou,M. Yanagida,H_ Sugihara, H. Arakawa, J. Mater. Chem. 16 (2006) 1287. 【發明内容】 可撓曲乃為染料敏化太陽能電池的主要特點之一。目前許多 8 201011925 研究係利用網印法,將二氧化鈦(Ti〇2)奈米顆粒塗佈於可撓式導電 材料上,以製成染料敏化太陽能電池的陽極,並配合軟性陰極而 製成可撓式染料敏化太陽能電池。此外,根據最新的文獻報導, 陽極具有奈米管(NT ’ nan〇tubes)結構的染料敏化太陽能電池元 件,其光電轉換效率可高於陽極具有奈米顆粒結構的染料敏化太 陽,電池。因此基於上述構想,本案發明人在針對具有大面積、 輕量化、以及可撓曲特性的染料敏化太陽能電池進行一連串的詳 細研究與實驗之後提出本發明。 〜針對上述問題,本發明所使用的技術乃#界成襲陽極處理 ❹ 技術’其低成本與自動化的特性將有助於日後染料敏化太陽能電 池產品的量產。 ⑽問題,本發日月之—實施樣態為提供—種可撓式染 能電池,包含:鈦㈤基板,其表面經過粗糖化處理, 乂 ,、面、、'呈過厚度減薄處理;二氧化鈦(Ti〇2)奈米管,在丁丨基 減薄處理之前’藉由陽極處理以及熱處理而成長於Ti i沾本品.以作為電池的陽極;光敏染料,吸附於丁1〇2奈米 性透明導電陰極,相對於陽極而配置;以及電解液, 職糊,其中透明導電陰極的表面附著4:米 參 池的施為提供—種可撓式染料敏化太陽能電 糙化處理.^ Τ.就^匕3以下步驟:對鈦(Ti)基板的表面進行粗 表面上成長-氧極處理’織蹄熱歧,俾能在此 理;在軟性透明材料上來成透明m板的背面進行厚度減薄處 本發明之其他目極與陰極之間。 請專利範_更_白。優點τ精由隨後之詳細說明及隨附之申 201011925 【實施方式】 為解決上述問題,依照本發明之一實施例,提供一種可撓式 =牛敏化太陽能電_電化學製造方法,由對Ti基板的表面 進订粗糙化處理以及陽極處理,以增加光敏染料在陽極表面的吸 附面積’並藉由對Ti基板的背面進行厚度減薄處理,以提升電池 元件的可撓曲性。圖1顯示依照本發明之—實施例之可撓性染料 敏化太陽能電池的製造流程圖。如圖丨所示,在步驟101中,對 Τι基板進行60(TC X lhr的熱處理,以消除Ti基板的應力。 在步驟 102 中,利用 3 ν〇1·〇/0 h3P〇4 + 2 vol.0/0 HF、3min 等條 蠢 t ’對Ti基板的表面進行酸洗,以去除因熱處理所產生的 ❿ 溥膜。Selloni, G. Yiscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 127 (2005) 16835. Reference 12: M. Wei, Y_ Konishi, H. Zhou M. Yanagida, H_Sugihara, H. Arakawa, J. Mater. Chem. 16 (2006) 1287. [Disclosure] Flexibility is one of the main features of dye-sensitized solar cells. At present, many 8 201011925 research institutes use the screen printing method to coat titanium dioxide (Ti〇2) nano particles on a flexible conductive material to form an anode of a dye-sensitized solar cell, and can be made with a soft cathode. Flexible dye-sensitized solar cells. In addition, according to the latest literature, a dye-sensitized solar cell having an anode structure of NT's nanotubes has a photoelectric conversion efficiency higher than that of a dye-sensitized solar cell having a nanoparticle structure. Therefore, based on the above concept, the inventors of the present invention have proposed the present invention after conducting a series of detailed studies and experiments on dye-sensitized solar cells having large area, light weight, and flexibility characteristics. To address the above problems, the technology used in the present invention is a low-cost and automated feature of the industry, which will contribute to the mass production of dye-sensitized solar cell products in the future. (10) The problem, the date of this issue - the implementation of the state is to provide a kind of flexible dyeing battery, including: titanium (five) substrate, the surface of which has been subjected to coarse saccharification treatment, 乂, surface, and 'thickness reduction treatment; Titanium dioxide (Ti〇2) nanotubes, which are grown on Ti i by anode treatment and heat treatment before the butyl ruthenium thinning treatment. As the anode of the battery; photosensitizing dye, adsorbed to D. The transparent conductive cathode is disposed relative to the anode; and the electrolyte, the paste, wherein the surface of the transparent conductive cathode is attached 4: the application of the rice ginseng cell provides a flexible dye sensitized solar electric roughening treatment. ^ Τ. The following steps: the surface of the titanium (Ti) substrate is grown on a rough surface - the oxygen treatment is treated as the woven hoof heat, which can be treated here; the thickness of the back surface of the transparent m plate is reduced on the soft transparent material. Thinner between the other ends of the invention and the cathode. Please patent _ more _ white. Advantages τ 精 are described in detail below and accompanying the application 201011925 [Embodiment] In order to solve the above problems, according to an embodiment of the present invention, a flexible = cow sensitized solar electric _electrochemical manufacturing method is provided. The surface of the Ti substrate is subjected to a roughening treatment and an anodizing treatment to increase the adsorption area of the photosensitive dye on the surface of the anode and to improve the flexibility of the battery element by performing a thickness thinning treatment on the back surface of the Ti substrate. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow chart showing the manufacture of a flexible dye-sensitized solar cell according to an embodiment of the present invention. As shown in FIG. ,, in step 101, a 60 (heat treatment of TC X lhr is performed on the Τι substrate to eliminate the stress of the Ti substrate. In step 102, 3 ν〇1·〇/0 h3P〇4 + 2 vol is utilized. .0/0 HF, 3min, etc. The surface of the Ti substrate is pickled to remove the ruthenium film produced by the heat treatment.

^步驟 103 中,使用 3 vol.o/o HF + 5 wt.% NaQ、以及 30V X 1mm等條件,對氾基板的表面進行粗糙化處理,例如電解蝕刻, 以獲得粗糙化的表面。在本發明之實施例中,用以進行表面粗 化之電化學電解颠刻❸電解液可含有下列其中一種齒素元 (ΐ/u氯、細ή、攝(1)、或顿邱;而其中含氣離子的電解液 可例如為鹽酸(HC1)、氣化納(NaCl)、或過氣酸(Hcl〇4)等,以及含 電如為氫級(HF)、氟蝴KF)、或敗化錢 (N=F)專。然而’表面粗糖化處理並不限於電解蝕刻,在 _ ^他實_中’表面祕化處理可包含電漿乾式爛處理 械式研磨、或喷砂處理等等。 戌 在步驟104中’使用具有0.2%〜5%_子(In step 103, the surface of the pan-substrate is roughened, for example, electrolytically etched using conditions of 3 vol.o/o HF + 5 wt.% NaQ, and 30 V X 1 mm to obtain a roughened surface. In an embodiment of the present invention, the electrochemical electrolysis electrolyte for surface roughening may contain one of the following dentate elements (ΐ/u chlorine, fine ή, 摄(1), or 顿邱; The electrolyte containing gas ions may be, for example, hydrochloric acid (HC1), gasified sodium (NaCl), or peroxyacid (Hcl〇4), and the like, and the hydrogen-containing (HF), fluorine butterfly KF, or Lost money (N=F) special. However, the surface rough saccharification treatment is not limited to electrolytic etching, and the surface sensitization treatment may include plasma dry blast processing, sand blasting, or the like.戌 In step 104 'use has 0.2% ~ 5% _ sub

以及20〜100V X卜池等條件,對經過粗糖化的Ή基板HAnd a condition of 20 to 100 V X Buchi, for the coarsely mashed substrate H

理夕成長Ti〇2奈米f。Ti()2奈米管的厚度 J 約Ο.ίμιη與約1〇〇μιη之間。 此幻;丨於 在步驟105巾,對Ti〇2奈米管進行450〇c x 3hr的熱 獲得具有銳鈦相(anatase)結構的Ti〇2奈米管。 、 在步驟106中,使光敏染料吸附於Ti〇2奈米管的表面上。 在步驟107中,以1〇 vol.% hf x 6min等條件,對丁丨基板的 201011925 背面進行厚度減薄處理,以獲得可撓曲的陽極。在本發明之實施 例中,厚度減薄處理可使用化學蝕刻液或電化學電解法,對乃基 板背面的厚度進行減薄;而化學蝕刻液以及電化學電解法所使^ 的電解液可包含:氫氟酸溶液、硝酸溶液、鹽酸溶液或其混合液。 在厚度減薄處理之後,Ti基板的厚度範圍能夠介於約3〇μιησ盥 200μηι之間。當於其上形成Ti〇2奈米管的Ή基板具有上述^ 時,可被製成卷對卷(mll-to-roll)型式的太陽能電池材料。以此^ 構造,吾人能夠製造出卷對卷型式的可撓式染料 -^ ^ 107 驟106之前執行。 rrm在ί驟⑽巾,於軟性透明材料上形成透明導電氧化物 嶋1 conducting 0xide)薄膜以及銘奈米觸媒層,以 ^付可撓曲的陰極。在本發明之實施例中,軟性透明材料可 了甲酸乙二_旨(PEN,pGlyethylene naphthalate)或聚對苯二甲酉曼乙 ’ polyethylene terephthalate)高分子聚合材料;而透明導 WATO alf J indiUm ^ 〇Xlde) ' 鋁〇Xlde)、氣錫氧化物(FT〇,flU0rine 讀ide)、 鋅氧化物(AZO,aluminum zinc 〇xide)、或銦鋅氧化物_, 此外’為了增加入射光對軟性透明材料的穿透 ^並且&升軟性透明材料的阻水與阻氣率,吾人可在 料的表面上形成抗反射(AR ’層。 的乙ί 利用軟性封裝膠,將含有鄉2)以及蛾化雖江) 敏化乂陽处3雷;i電if封裝在陰極與陽極之間,以獲得可撓式染料 祕封轉可為料雜V —)勝或熱 利用軟性封裝膠將電解液封裝在皆為透明軟性的陰:4陽g 201011925 間,而製造出能夠正面/背面照光的透明可撓式染料敏化太陽能電 池’其中正面照光係指光線從陽極侧入射至太陽能電池的内部’ 而背面照光係指光線從陰極侧入射至太陽能電池的内部。因此, 由,1之方法所製成的太陽能電池為背面照光的可撓式染料敏化 太陽能電池。在對此種於其上具有Ti02奈米管的軟性透明基板進 打熱處理時,吾人可使用微波加熱、雷射加熱、或紅外光加熱方 式進行熱處理,以保護較低炼點的軟性透明基板。 .在本發明之另一實施例中,鈦基板可為鈦合金 ,例如 —Tl_6A1-4v合金等等。在本發明之其他實施例中,吾人可將鈦基板 替代成下列其中一種基板:矽(Si)、銦(In)、鎢(w)、锆(Zr)、辞(Zn)、 或錫(Sn);而替代基板上的氧化物奈米管對應於該替代基板之材料 可$別為二氧化石夕(Si〇2)、三氧化工銦办㈣、三氧化嫣(w〇。、 it結(Zr〇2)、氧化鋅(Zn0)、或三氧化錫(Sn〇2)。此外,Ti02 =g的表面可具有Ti〇2奈米顆粒以增加Ti〇2奈米管的表面積, 沒二Τι〇2奈米顆粒係利用TiF4或溶液而形成。 圖! 造Ϊ程具體化,圖2A至2E概略地顯示依照 圖」^實施例的製造示意圖。在圖2A至2E中,首先,於 圖示圖2B解),接著使絲染料(無 面斗的™2奈米管3)’然後對Ή基板1的背 附光敏與包含Ti基板1以及其表面已吸 ^處理^示)。厚度 作用而從Ti 處理t,奈米管3會因為應力的 成Ti〇2奈米管3之播’因此’厚度減薄處理較佳係在形 池照光時,由絲。此種太陽能電池的卫作原理為:每電 由先敏染枓(無圖示)所產生的電子經由刀心米;1 12 201011925 傳遞(同時,電解液13進行氧化反應並將電子傳遞至 外部電路(無圖示)後,再由透明導電氧化物⑽7 13進行還原反應,以完成電化學反應的循環。 /之 (實施範例) 在對商業用Ti基板(99.7%,0.127mm)進行600。〇 x lhr 理之後,吾人可獲得均勻的α相射^_微組織,然 i j 的表面進行酸洗(3 ν〇1·% H3P〇4 + 2 voL% HF,3_、、,以 j 處理所產生的Ti〇2膜,接著對Ti基板的表面進 3v f HF + 5wt.%NaC1,30V,lmin),以獲得較粗糖的表面 別以下列二種條件對Ti基板進行陽極處理:(1;)0.5 v〇1%hf, ❹ 18V ; (2)0.58 wt·% KF + 13.8 wt.% NaHS04.2H2〇 + 5 9 wt % C6H5Na307 · 2H20 ’ 25V ;以及(3)0.25 wt.〇/〇 NH4F + 乙二醇、、^, 6〇V。藉由上述三種條件進行陽極處理,吾人可在Ή基板的表月面 ΐίϋί奈米管結構的™2陣列。圖3A至冗分別顯示以上述 =(1)、(2)、以及(3)進行陽極處理所獲得的Ti〇2奈米管陣列顯微 豕0 為了提升染料敏化太陽能電池的可撓性,並且降低其重 因此染料敏化太陽能電池的材料必須具有輕量化的特性,、例如本 發明之實施例所使用之Ti基板的密度約為4 5 g . cm·3,而聚二 酸乙二醇酯(PEN)以及聚對苯二曱酸乙二酯(PET)之軟性透明高分 =合物材料的密度約為L4g · em_3。雖然Ή基板的密度比習知 染料敏化太陽能電池陽-陰兩極常用之玻璃材料的密度(2 5 g · cm_3) 稍大,但單片玻璃所需的厚度約為2〇〇〇μβι,而Ή基板以及聚二 曱酸乙二醇酯(PEN)或聚對苯二曱酸乙二酯(pET)材料的厚度僅需 約80μπι,因此,利用Ti基板以及高分子聚合物材料所製成之染 料敏化太陽能電池的重量僅為使用玻璃材料之染料敏化太陽能 池的4.7%。 將根據本發明之方法所製得的染料敏化太陽能電池 陽極配合Li Xi growth Ti〇2 nano f. The thickness of the Ti()2 nanotube is between J Ο.ίμιη and about 1〇〇μιη. In the step 105, the Ti〇2 nanotube was subjected to heat of 450 〇 c x 3 hr to obtain a Ti〇2 nanotube having an anatase structure. In step 106, the photosensitizing dye is adsorbed on the surface of the Ti〇2 nanotube. In step 107, the back surface of the 201011925 substrate of the butadiene substrate is subjected to thickness thinning treatment under conditions of 1 〇 vol.% hf x 6min to obtain a flexible anode. In the embodiment of the present invention, the thickness thinning treatment may use a chemical etching liquid or an electrochemical electrolysis method to thin the thickness of the back surface of the substrate; and the electrolyte solution and the electrolytic solution of the electrochemical electrolytic method may include : hydrofluoric acid solution, nitric acid solution, hydrochloric acid solution or a mixture thereof. After the thickness thinning treatment, the thickness of the Ti substrate can be between about 3 〇 μηησ 盥 200 μηι. When the tantalum substrate on which the Ti〇2 nanotube is formed has the above-described time, it can be made into a mll-to-roll type solar cell material. With this configuration, we were able to manufacture a roll-to-roll type of flexible dye - ^ ^ 107 before step 106. Rrm in the 骤10 (10) towel, on the soft transparent material to form a transparent conductive oxide 嶋1 conducting 0xide) film and Mingnai catalyst layer, to pay flexible cathode. In an embodiment of the present invention, the soft transparent material may be a polyethylene terephthalate (PEN, pGlyethylene naphthalate) or a polyethylene terephthalate (polyethylene terephthalate) polymer polymeric material; and a transparent conductive WATO alf J indiUm ^ 〇Xlde) 'Aluminum 〇Xlde), gas tin oxide (FT〇, flU0rine read ide), zinc oxide (AZO, aluminum zinc 〇xide), or indium zinc oxide _, in addition to 'increasing the incident light to soft transparent The penetration of the material ^ and & soft and transparent material's water blocking and gas barrier rate, we can form anti-reflection on the surface of the material (AR 'layer. B. using soft encapsulant, will contain township 2) and moth Although Jiang) sensitizes the sun at 3 points; i electricity if packaged between the cathode and the anode to obtain a flexible dye seal can be turned into a material V-) win or heat using a soft encapsulant to encapsulate the electrolyte A transparent flexible dye-sensitized solar cell capable of front/back illumination, in which a transparent/soft yin is used: 4 Yang g 201011925, in which front light refers to light incident from the anode side to the inside of the solar cell. Back illumination refers to light Entering from the cathode side to the inside of the solar cell. Therefore, the solar cell produced by the method of 1, is a back-illuminated flexible dye-sensitized solar cell. When heat-treating a soft transparent substrate having a TiO2 nanotube thereon, heat treatment by microwave heating, laser heating, or infrared light heating can be used to protect the soft transparent substrate of the lower refining point. In another embodiment of the present invention, the titanium substrate may be a titanium alloy such as - Tl_6A1-4v alloy or the like. In other embodiments of the present invention, the titanium substrate may be replaced by one of the following substrates: germanium (Si), indium (In), tungsten (w), zirconium (Zr), bis (Zn), or tin (Sn). And the material of the oxide nanotube on the substitute substrate may correspond to the material of the substitute substrate (Si〇2), the indium trioxide (4), the antimony trioxide (w〇., it knot) (Zr〇2), zinc oxide (Zn0), or tin trioxide (Sn〇2). In addition, the surface of TiO 2 = g may have Ti 〇 2 nano particles to increase the surface area of the Ti 〇 2 nanotubes, no two Τι〇2 nanoparticle is formed by using TiF4 or a solution. Fig. 2A to 2E schematically show a manufacturing diagram according to the embodiment of the figure. In Figs. 2A to 2E, first, in the figure 2B), then the silk dye (TM2 nanotube tube 3 without face bucket) is then 'photosensitive to the backside of the substrate 1 and the surface comprising the Ti substrate 1 and its surface has been sucked. The thickness of the nanotubes is treated by Ti, and the nanotubes 3 are woven by the stress of the Ti 2 nanotubes. Therefore, the thickness reduction treatment is preferably performed by the filaments when the cells are illuminated. The principle of the solar cell is that the electrons generated by the sensitization dyeing (not shown) are transmitted via the knife core meter; 1 12 201011925 (at the same time, the electrolyte 13 undergoes an oxidation reaction and transmits the electrons to the outside. After the circuit (not shown), the reduction reaction is carried out by the transparent conductive oxide (10) 7 13 to complete the cycle of the electrochemical reaction. (Examples) 600 was applied to a commercial Ti substrate (99.7%, 0.127 mm). After 〇x lhr, we can obtain a uniform α phase emission ^_microstructure, and then the surface of ij is pickled (3 ν〇1·% H3P〇4 + 2 voL% HF, 3_, ,, j treatment The resulting Ti〇2 film is then subjected to 3v f HF + 5wt.% NaC1, 30V, 1min) on the surface of the Ti substrate to obtain a surface of the coarser sugar. The Ti substrate is anodized under the following two conditions: (1; 0.5 v〇1%hf, ❹ 18V; (2) 0.58 wt·% KF + 13.8 wt.% NaHS04.2H2〇+ 5 9 wt % C6H5Na307 · 2H20 ' 25V ; and (3) 0.25 wt.〇/〇NH4F + ethylene glycol, ^, 6 〇 V. By anodizing the above three conditions, we can use TM2 on the surface of the ruthenium substrate Fig. 3A to Fig. 3 show the Ti〇2 nanotube array microscopic 豕0 obtained by anodizing with the above = (1), (2), and (3), respectively, in order to improve the flexibility of the dye-sensitized solar cell. And the material of the dye-sensitized solar cell must have a lightweight property, for example, the density of the Ti substrate used in the embodiment of the present invention is about 45 g·cm·3, and the polyacid B The density of the soft transparent high-grade compound of the diol ester (PEN) and polyethylene terephthalate (PET) is about L4g · em_3. Although the density of the ruthenium substrate is higher than that of the conventional dye-sensitized solar cell - The density of the commonly used glass material (25 g · cm_3) is slightly larger, but the thickness required for a single piece of glass is about 2 〇〇〇μβι, while the ruthenium substrate and polyethylene diphthalate (PEN) Or the thickness of the polyethylene terephthalate (pET) material is only about 80 μm, so the weight of the dye-sensitized solar cell made of the Ti substrate and the polymer material is only the dye using the glass material. 4.7% of the sensitized solar cell. Dyes prepared according to the method of the present invention Solar cell with an anode

軟性透明導電陰極,即可製得可撓式染料敏化太陽能電池。圖4A 13 201011925 照本發明之一實施例之可挽式染料敏化太陽能 極以及险極所制ΐ極的照片,而圖4c為由圖4a及圖4b中之陽 ° ,盔製成之可撓式染料敏化太陽能電池的照片。 授準:陽^握發明之—實施例之在氣團(am ’也麵5)1.5之 ΐ流密度姻特性撓式染^敏化太陽能電池的 臟)為20.25c 圖:上所,’可撓曲的产動面積(― 為0.72V、填充率度=為6.6mA.Cm、開路電座(Voc) 因此,依照本(發== 轉 = 為有=、輕量 ❹ 化、以及可撓曲特性的染料敏化太陽能電池。 、 本發範行特定顯示以及說明,但 進行各種不界较精神與範關情形下,可 【圖式簡單說明】 池的照本發明之一實施例之可撓性染料敏化太陽能電A flexible transparent conductive cathode can produce a flexible dye-sensitized solar cell. 4A 13 201011925 Photograph of a drawable dye-sensitized solar pole and a pole made by a dangerous pole according to an embodiment of the present invention, and FIG. 4c is made of a helmet of FIG. 4a and FIG. 4b. Photo of a flexographic dye-sensitized solar cell. Authorization: Yang ^ grip invention - the embodiment of the air mass (am 'also 5) 1.5 turbulent density of the characteristics of the flexible dyeing of the sensitized solar cell is 20.25c Figure: above, 'flexible The area of production of the song (-0.72V, fill rate = 6.6mA.Cm, open circuit seat (Voc), therefore, according to this (fat == turn = yes =, lightweight, and flexible) The characteristic dye-sensitized solar cell, the specific display and description of the present invention, but in the case of various unconstrained spirits and conditions, the flexible description of one embodiment of the present invention Dye sensitized solar power

Hi 顯示依照圖1之實施例的製造示意圖; ❹奈米管陣列顯微景二象:、不以不同條件進行陽極處理所獲得的Ti〇2 圖4A與圖4B分別為依照本發明 •化太陽能電池之陽極以及陰極的照片;實&例之可撓式M斗敏 染』Γ太的ϋ4Β及中之陽極以及陰極所製成之可撓式 的電圖實施例之可撓式染料敏化太陽能電池 【主要元件符號說明】 14 201011925 7 9 11 13Hi shows a manufacturing schematic according to the embodiment of FIG. 1; a microscopic view of the nanotube array: a Ti〇2 obtained by anodizing without different conditions, FIGS. 4A and 4B are respectively solar energy according to the present invention. Photographs of the anode and cathode of the battery; the flexible dye sensitization of the flexible electrogram embodiment made by the flexible and fused anodes and cathodes Solar cell [Key component symbol description] 14 201011925 7 9 11 13

Ti基板 T i 〇2奈米管 軟性透明材料 透明導電氧化物薄膜 鉑奈米觸媒層 軟性封裝膠 電解液 1〇1對Ti基板進行熱處理,以消除打基板的應力 ❿ ==ί!反的ί面進行酸洗,以去除熱處理;斤產生的刪 j對h基板的表面進行粗链化處理,以獲 舰=過粗糙化的Ti基板表面進行陽極處理,以成 木f 1〇5 ^〇22:ί進行熱處王里’以獲得具銳欽相(獨tase)結構 1⑽使光敏染料吸附於Ti〇2奈米管的表面上 1:7 ❹ 109Ti substrate T i 〇 2 nano tube soft transparent material transparent conductive oxide film platinum nano-catalyst layer soft encapsulant electrolyte 1 〇 1 heat treatment of the Ti substrate to eliminate the stress of the substrate ❿ == ί! The surface is pickled to remove the heat treatment; the surface of the h substrate is subjected to a thick chain treatment, and the surface of the Ti substrate which has been roughened is subjected to anodization to form a wood f 1〇5 ^〇 22:ί proceed to the hot section of the king's to obtain the sharp phase (single tase) structure 1 (10) so that the photosensitizing dye is adsorbed on the surface of the Ti〇2 nanotubes 1:7 ❹ 109

Claims (1)

201011925 十、申請專利範圍: 1·一種可撓式染料敏化太陽能電池,包含: 減薄處Ϊ(Γ)基板’其表面經過粗輪化處理,以及其背面經過厚度 ii=(i〇2)奈米管,在該Ti基板進行該厚度減薄處理之 :,糟嫉極處理以及熱處理而成長於該Ti基板 处= 為該電池的一陽極; 以作 一光敏染料,吸附於該耵〇2奈米管的表面; ❹ 一軟性透明導電陰極,相對於該陽極而配置;及 一電解液,封裝在該陰極與該陽極之間, 其中該透明導電陰極的表面附著一鉑(Pt)奈米觸媒層。 請專利範圍第1項之可撓式染料敏化太陽能電池,1中該雷 解液為一含有峨⑹以及视鐘(L_乙腈(CH3CN)溶液。、4 如申請專利範m第1項之可撓式祕敏化太陽能電池, 5的處理為電化學濕式罐理、電浆乾式心i 理機械式研磨、或喷砂處理其中之一。201011925 X. Patent application scope: 1. A flexible dye-sensitized solar cell, comprising: a thinned substrate (Γ) substrate whose surface has been subjected to coarse round treatment, and its back surface has a thickness of ii=(i〇2) The nanotube tube is subjected to the thickness thinning treatment on the Ti substrate: the ruthenium treatment and the heat treatment are grown on the Ti substrate = an anode of the battery; as a photosensitive dye, adsorbed on the 耵〇2 a surface of the nanotube; ❹ a soft transparent conductive cathode disposed relative to the anode; and an electrolyte interposed between the cathode and the anode, wherein a surface of the transparent conductive cathode is attached with a platinum (Pt) nanometer Catalyst layer. Please refer to the flexible dye-sensitized solar cell of the first aspect of the patent, in which the solution is a solution containing ruthenium (6) and a clock (L_acetonitrile (CH3CN). 4) The flexible sensitized solar cell, 5 is one of electrochemical wet canning, plasma dry mechanical mechanical grinding, or sand blasting. =申凊專利範圍第3項之可撓式染料敏化太陽能電池’其中 ί二?式_處理的電解液含有下列其中-種·素元素:、敦⑺、 , 溴(Br)、填(I)、或;5厄(At);而該含氯之電解液為鹽酸c =鈉(^aCl)、或過氯酸(HC1〇4)其中一種,以及該含氣之(電‘ 為虱认(HF)、氟化鉀(KF)、或氟化錢师4F)其中一種。 5·如H專利範圍第1項之可撓式祕敏化太陽能電池,更包含: 一軟性封裝膠,用以將該電解液封裝在該陰極與該陽極之間。 6.々申明專利範圍第5項之可撓式染料敏化太陽能電池,其中該軟 16 201011925 f生封裝膠為》、外光(UV,膠或熱固/縮膠。 7:如利範圍第1項之可撓式染料敏化太陽能電池,其中該 n〇2不米管的表面具有Ti〇2奈米顆粒,而該Ti02奈米顆粒係利用 T1F4或T1CI4溶液而形成。 凊專利範圍第1項之可撓式染料敏化太陽能電池,其中該 Tl基板能夠以—Ti合金基板加以取代。 _ 專鄕圍* 8項之可撓式染料敏化太陽能電池,其中該 ❹ Tl合金基板為Ti-6A1-4V合金。 申=專蝴請第3項之可撓式染料敏化太陽能電池,其中該 ,能夠由下列其中一種基板加以替代:矽(Si)、銦(In)、鎢(W)、 二H、,辞(Zn)、或錫(Sn);而該替代基板上的氧化物奈米管對應 j 2 #代基板之材料分別為二氧化石夕(si〇2)、三氧化二銦(ln2〇3)、 ς二匕鎮(WO3)、二氧化錯(Zr〇2)、氧化鋅(Zn〇)、或二氧化錫 ^nU2) 0 ❹ 4專利範圍第1項之可撓式染料敏化太陽能電池,其中該 知極處理的轉液為含魏離子(m電解液。 利範圍第1項之可撓式染料敏化太陽能電池,其中該 面ΐ厚度Ϊϊίί用化學爛液或電化學電解法,對該Ti基板背 f專利範圍第12項之可撓式染料敏化太陽能電池,其中該 予=液以及該電化學電解法所使用 液、石肖酸溶液、鹽酸溶液、或其混合液。 飞_洛 17 201011925 14.如申利範圍第丨項之可撓式染料敏化太陽能電池,其中該 ,奈米,的厚度||圍能夠介於約叫瓜與約⑽陣之間;而經 ,厚度減薄處理後之該Ti基板的厚度範圍能夠介於約3〇盥^ 200um 之問。 π 如申,專利範圍第14項之可繞式染料敏化太陽能電池,其中於 /、上具有該Ti〇2奈米管的該Ti基板能夠被製成卷對卷(roll_to_roll) 型式的太陽能電池材料。 ) ⑩ ^如申請專利範圍第1項之可撓式染料敏化太陽能電池,其中該 軟性透明導f陰極係藉由在—軟性透明材料上形成—透明導電氧 勿(JCO ’ Jransparent c〇nducting 〇xide)薄膜而製成,而該透明 電氧化物薄膜為銦錫氧化物(ITo,indium tin oxide)、録錫氧化 物(A^O ’ antimony tin oxide)、氟錫氧化物(FTO,fluorine tin oxide)、 鋁锌氧化物(AZO ’ aiuminum zinc 〇xide)、或銦鋅氧化物(IZ〇, indium zinc oxide)的透明導電氧化物薄膜。 如申請專利範圍第〗6項之可撓式染料敏化太陽能電池,其中該 ❹ f性透W料為聚二甲酸乙二醇酯(PEN,polyethylene naphthalate) 〆聚對本一甲酸乙二g旨(pet,polyethylene terephthalate)高分子聚 合物材料。 18.如申請專利範圍第17項之可撓式染料敏化太陽能電池,其中該 軟性透明材料的表面具有-抗反射(AR,Anti-refleetion)層。 如申1專利範圍第1項之可撓式染料敏化太陽能電池,其中該 1基板能夠以一軟性透明材料加以取代,並且事先在該軟性透明 材料的表面上形成一 Ti薄膜。 18 201011925 2〇. —種可撓式染料敏化太陽能電池的電化學製造方法,包含: 對一鈦(Ti)基板的表面進行粗繞化處理; ,對該Τι級進行陽極處理,紐進行減理,俾能在該表 成長二氧化鈦(Ti02)奈米管,以作為該電池的一陽極; 使一光敏染料吸附於該Ti〇2奈米管的表面上; 對該Ti基板的背面進行厚度減薄處理; 太半性透明材料上形成—透明導電氧化物薄膜以及一翻(Pt) 不未觸媒層,以作為該電池的一陰極;及 ❹ 將一電解液封裝在該陽極與該陰極之間。 學利,圍第20項之可撓式染料敏化太陽能電池的電化 理:二“其中該基板的表面粗糖化處理為電化學濕式银刻處 電毁乾式_處理、機械式研磨、或喷砂處理其中之一。 二ί利,15第2。項之可撓式純敏化太陽能電池的電化 陽極ί間/。,’、中以一軟性封裝膠將該電解液封裝在該陰極與該 •學利,圍第22項之可撓式染料敏化太陽能電池的電化 其中該軟性封裝膠為紫外光膠或熱固/縮膠。 學製第2G項之可撓式染料敏化太陽能電池的電化 成Ti〇2奈米顆,粒中。以TiF4或Ticl4溶液在該Ti〇2奈米管的表面形 學製】利^圍第20項之可撓式染料敏化太陽能電池的電化 液。 ,,其中該陽極處理的電解液為含有氟離子(F_)的電解 19 201011925 請專利範11第2G ’之可撓式染料敏化太陽能電池的電化 子策造方法,其中該厚度減薄處理係使用化學蝕刻液或電化學雷 解法,對該Ti基板背面的厚度進行減薄。 請專利範11第26 ’之可撓式染料敏化太陽能電池的電化 子裏造I法二ί中該化學蝕刻液以及該電化學電解法所使用的電 解液包含:氫氟酸溶液、猶溶液、贼溶液、或其混合液。 28.t、f請利範圍第20項之可撓式染料敏化太陽能電池的電化 ❹學製造方法’其巾在該軟性透明材料的表面上形成—抗反射層。 請專利範圍第20項之可挽式染料敏化太陽能電池的電化 學製造方法,其中該Ti基板能夠以一軟性透明材料加以取代,並 且事先在該軟性透明材料的表面上形成一 Ti薄膜,然後進行陽極 處理以及熱處理,以成長丁幻〗奈米管。 如申請專利範圍帛29項之可撓式染料敏化太陽能電池的電化 學製造方法,其中該熱處理能夠利用微波加熱、雷射加熱、或紅 Φ 外光加熱方式加以進行。 31. 如申請專利範圍第20項之可撓式染料敏化太陽能電池的電化 學製造方法’其中該Ti基板能夠以一 Ti合金基板加以取代。 32. 如申請專利範圍第31項之可撓式純敏化太陽能電池的電化 學製造方法,其中該Ti合金基板為Ti-6A1_4V合金。 33. 如申凊專利範圍第2〇 I員之可撓式染料敏化太陽能電池的電化 學製造方法,其中該Τι基板能夠由下列其中一種基板加以替代: 20 201011925 矽(Si):銦(In)、鎢(W)、_、鋅(Ζη)、或錫㈣;而 上的氧巧物奈米管對應於該替代基板之材料分別為二 (Si〇2)、三氧化二銦(In2〇3)、三氧化鎢(w〇3) 二 化鋅(ZnO)、或二氧化錫(Sn〇2)。 乳 =σΓ請專利範圍第20項之可撓式染料敏化太陽能電池的電化 子製le方法,其中在對該基板進行該粗糙化處理之前,事先 基板進行熱處理,然後進行酸洗。 μ ❹ 申請專利範圍帛2G狀可撓式染料敏化太陽能電池的電化 子製造方法,其中該Ti〇2奈米管的厚度範圍能夠介於約〇.^m與 =ΙΟΟμηι之間;而經該厚度減薄處理後之該Ή基板的厚度範圍^ 夠介於約30μιη與約200μιη之間。 U 奈#: 妓02池 Γ^τι電 ^¾能 35上的 ^其式;/g懷針I ΐ,to 專法11-請烈(ro °tt4( J製對 36擎4 料 米料 化成 電製 的夠 池能 電板 能&-陽Τ1 太t b7t h的 _管 與請專利範圍第21項之可撓式染料敏化太陽能電池的電化 參二氣造方法’其中該電化學濕式蝕刻處理的電解液含有下列其中 二種鹵素元素:氟(F)、氣(C1)、溴(Br)、碘(I)、或砸(At);而該含 氣之電解液為鹽酸(HC1)、氯化納(Naci)、或過氯酸(HC104)其中一 種,以及該含氟之電解液為氫氟酸(HF)、氟化鉀(KF)、或氟化録 (NH4F)其中一種。 Η^一、圖式: 21= 可 凊 凊 凊 凊 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可, or; 5 Å (At); and the chlorine-containing electrolyte is one of hydrochloric acid c = sodium (^aCl), or perchloric acid (HC1 〇 4), and the gas-containing (electric' is recognized One of (HF), potassium fluoride (KF), or fluorinated money division 4F). 5. The flexible sensitized solar cell of claim 1, further comprising: a flexible encapsulant for encapsulating the electrolyte between the cathode and the anode. 6. The flexible dye-sensitized solar cell of claim 5, wherein the soft 16 201011925 f raw encapsulant is ", external light (UV, glue or thermosetting / shrinking. 7: profit range) A flexible dye-sensitized solar cell according to item 1, wherein the surface of the n〇2 non-tubular tube has Ti〇2 nanoparticle, and the Ti02 nanoparticle is formed by using a T1F4 or T1CI4 solution. The flexible dye-sensitized solar cell, wherein the Tl substrate can be replaced by a -Ti alloy substrate. _ A flexible dye-sensitized solar cell of 8 items, wherein the Tl alloy substrate is Ti- 6A1-4V alloy. The flexible dye-sensitized solar cell of item 3, which can be replaced by one of the following substrates: germanium (Si), indium (In), tungsten (W), Two H,, (Zn), or tin (Sn); and the material of the oxide nanotube on the substitute substrate corresponds to the material of the j 2 # generation substrate is respectively SiO 2 (si〇2), indium trioxide (ln2〇3), ς二匕镇(WO3), ZnO (Zr〇2), zinc oxide (Zn〇), or tin dioxide^nU2) 0 ❹ 4 The flexible dye-sensitized solar cell of the first aspect, wherein the diverted liquid is a ferrite-containing (m electrolyte), the flexible dye-sensitized solar cell of the first item, wherein the surface defect Thickness Ϊϊίί A flexible dye-sensitized solar cell of the 12th aspect of the Ti substrate, which is chemically etched or electrochemically electrolyzed, wherein the liquid and the liquid used in the electrochemical electrolysis method are An acid solution, a hydrochloric acid solution, or a mixture thereof. Fly_Luo 17 201011925 14. A flexible dye-sensitized solar cell according to the application of the third item, wherein the thickness of the nanometer can be between Between the melon and the about (10) array; and the thickness of the Ti substrate after the thickness reduction treatment can be between about 3 〇盥 ^ 200 um. π, for example, patentable range 14 of the wrapable dye A sensitized solar cell, wherein the Ti substrate having the Ti〇2 nanotube on / can be made into a roll-to-roll type solar cell material.) 10 ^ As claimed in the first item a flexible dye-sensitized solar cell, wherein The soft transparent conductive f cathode is formed by forming a transparent conductive oxide (JCO' Jransparent c〇nducting 〇xide) film on the soft transparent material, and the transparent electric oxide film is indium tin oxide (ITo) , indium tin oxide, A^O 'antimony tin oxide, fluorine tin oxide (FTO), aluminum zinc oxide (AZO 'aiuminum zinc 〇xide), or indium zinc oxide (IZ〇, indium zinc oxide) transparent conductive oxide film. For example, the flexible dye-sensitized solar cell of the sixth aspect of the patent application, wherein the material is a polyethylene naphthalate (PEN), and the poly(ethylene terephthalate) is used for the present invention. Pet, polyethylene terephthalate) polymer material. 18. The flexible dye-sensitized solar cell of claim 17, wherein the surface of the soft transparent material has an anti-refrise layer (AR). The flexible dye-sensitized solar cell of claim 1, wherein the substrate can be replaced by a soft transparent material, and a Ti film is formed on the surface of the soft transparent material in advance. 18 201011925 2〇. An electrochemical manufacturing method for a flexible dye-sensitized solar cell, comprising: roughing a surface of a titanium (Ti) substrate; and performing anodizing on the Τ level, a titanium dioxide (Ti02) nanotube can be grown on the surface as an anode of the battery; a photosensitive dye is adsorbed on the surface of the Ti 2 nanotube; the back surface of the Ti substrate is reduced in thickness Thin treatment; forming a transparent conductive oxide film on the semi-transparent transparent material and a turn-on (Pt) non-catalytic layer as a cathode of the battery; and 封装 encapsulating an electrolyte at the anode and the cathode between. Xueli, the electrochemistry of the flexible dye-sensitized solar cell of the 20th item: “The surface of the substrate is subjected to coarse saccharification treatment to electrochemical wet silver engraving. Electro-destruction _ treatment, mechanical grinding, or spraying One of the sand treatments. Two ί, 15 nd. The flexible anode of the flexible sensitized solar cell of the item ί, /,, in a soft encapsulant, the electrolyte is encapsulated in the cathode and • Xueli, the electrification of the flexible dye-sensitized solar cell in the 22nd item, wherein the soft encapsulant is UV glue or thermoset/shrink adhesive. The flexible dye-sensitized solar cell of the 2Gth item is taught. Electrochemically formed into Ti〇2 nanometer particles, in the grain. The surface of the Ti〇2 nanotube is formed by TiF4 or Ticl4 solution. The electrochemical solution of the flexible dye-sensitized solar cell of item 20 is obtained. , wherein the anode-treated electrolyte is an electrolysis method for a flexible dye-sensitized solar cell of the present invention, which is a ferrite ion (F_)-containing electrolysis 19 201011925 Patent No. 2G2, wherein the thickness thinning treatment system The Ti is chemically etched or electrochemically threshed The thickness of the back side of the board is reduced. Please use the electrochemical etchant and the electrolyte used in the electrochemical electrolysis method in the eliminator of the flexible dye-sensitized solar cell of Patent No. 11 : Hydrofluoric acid solution, helium solution, thief solution, or a mixture thereof. 28.t, f Please benefit from the scope of the 20th item of the flexible dye-sensitized solar cell technological manufacturing method's towel in the soft transparent An anti-reflection layer is formed on the surface of the material. The electrochemical manufacturing method of the drawable dye-sensitized solar cell of claim 20, wherein the Ti substrate can be replaced by a soft transparent material and previously transparent in the soft A Ti film is formed on the surface of the material, and then subjected to anodizing treatment and heat treatment to grow a dynasty tube. The electrochemical manufacturing method of the flexible dye-sensitized solar cell according to claim 29, wherein the heat treatment It can be carried out by microwave heating, laser heating, or red Φ external light heating. 31. Flexible dye-sensitized solar energy as claimed in claim 20 The electrochemical manufacturing method of the pool, wherein the Ti substrate can be replaced by a Ti alloy substrate. The electrochemical manufacturing method of the flexible pure sensitized solar cell according to claim 31, wherein the Ti alloy substrate is Ti-6A1_4V alloy 33. The electrochemical manufacturing method of the flexible dye-sensitized solar cell of the second aspect of the patent application, wherein the substrate can be replaced by one of the following substrates: 20 201011925 矽(Si ): indium (In), tungsten (W), _, zinc (Ζη), or tin (four); and the oxygen-containing nanotubes corresponding to the substitute substrate are respectively two (Si〇2), three oxidation Indium (In2〇3), tungsten trioxide (w〇3) zinc dichloride (ZnO), or tin dioxide (Sn〇2). The invention relates to an electrochemical method for a flexible dye-sensitized solar cell according to claim 20, wherein the substrate is subjected to heat treatment before being subjected to the roughening treatment, followed by pickling. ❹ 申请 Patent application 帛 2G-shaped flexible dye-sensitized solar cell electro-chemical manufacturing method, wherein the thickness of the Ti〇2 nanotube can be between about ^.^m and =ΙΟΟμηι; The thickness of the germanium substrate after the thickness thinning treatment is sufficient to be between about 30 μm and about 200 μm. U 奈#: 妓02池Γ^τι电^3⁄4 can be on the 35th of its type; /g 怀针 I ΐ, to the special law 11- please be strong (ro °tt4 (J system to 36 engine 4 material rice material into Electrolytic enough to be able to use the electric plate to be able to <-yangshuo 1 too t b7t h_tube and the electrification dye-sensitized solar cell of the patent scope 21 The etch-treated electrolyte contains two of the following halogen elements: fluorine (F), gas (C1), bromine (Br), iodine (I), or ruthenium (At); and the gas-containing electrolyte is hydrochloric acid ( One of HC1), sodium chloride (Naci), or perchloric acid (HC104), and the electrolyte containing fluorine is hydrofluoric acid (HF), potassium fluoride (KF), or fluorinated (NH4F). One. Η^一,图: 21
TW97133398A 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell TWI383511B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133398A TWI383511B (en) 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133398A TWI383511B (en) 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
TW201011925A true TW201011925A (en) 2010-03-16
TWI383511B TWI383511B (en) 2013-01-21

Family

ID=44828799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133398A TWI383511B (en) 2008-09-01 2008-09-01 Electrochemical fabricating method thereof flexible dye-sensitized solar cell

Country Status (1)

Country Link
TW (1) TWI383511B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455339B (en) * 2011-12-22 2014-10-01 Atomic Energy Council A novel structure and new set-up method of flexible solar cells
US9831358B2 (en) 2015-05-15 2017-11-28 I-Shou University Photoelectric conversion device
TWI641010B (en) * 2017-11-29 2018-11-11 住華科技股份有限公司 Pressure sensitive adhesive composition, electrode composite film and manufacturing method for the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624472A (en) * 1926-10-13 1927-04-12 Hancock Bros Baggage-check holder
US6649824B1 (en) * 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
US7351359B2 (en) * 2003-10-08 2008-04-01 The Yokohama Rubber Co., Ltd. Method for producing conductive polyaniline and organic polymer composition
JP2005166313A (en) * 2003-11-28 2005-06-23 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
KR101074779B1 (en) * 2005-12-29 2011-10-19 삼성에스디아이 주식회사 Semiconductor electrode using carbon nanotube, preparaton method thereof and solar cell comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455339B (en) * 2011-12-22 2014-10-01 Atomic Energy Council A novel structure and new set-up method of flexible solar cells
US9831358B2 (en) 2015-05-15 2017-11-28 I-Shou University Photoelectric conversion device
TWI641010B (en) * 2017-11-29 2018-11-11 住華科技股份有限公司 Pressure sensitive adhesive composition, electrode composite film and manufacturing method for the same

Also Published As

Publication number Publication date
TWI383511B (en) 2013-01-21

Similar Documents

Publication Publication Date Title
Rho et al. Recent progress in dye-sensitized solar cells for improving efficiency: TiO 2 nanotube arrays in active layer
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
He et al. Enhanced sunlight harvesting of dye-sensitized solar cells assisted with long persistent phosphor materials
Que et al. High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires
CN102214661A (en) Thin film solar battery capable of absorbing sunlight with wide spectrum
CN105308701B (en) Dye-sensitized solar cell equipped with beam condensing unit
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
Wu et al. Nanosheet-based hierarchical ZnO structure decorated with TiO 2 particles for enhanced performance in dye-sensitized solar cell
CN107819074A (en) A kind of translucent solar cell based on graphene
TW201011925A (en) Flexible dye-sensitized solar cell and the electrochemical fabricating method thereof
GAO et al. Fabrication and photovoltaic performance of high efficiency front-illuminated dye-sensitized solar cell based on ordered TiO2 nanotube arrays
CN109267097A (en) The P-type silicon photolysis water hydrogen electrode and preparation method thereof of tantalum oxide protection
CN206225411U (en) A kind of perovskite solar battery group based on zinc oxide conductive layer
Javed et al. Anatase TiO2 nanotubes as photoanode for dye-sensitized solar cells
US20190017180A1 (en) Photocathode for a photoelectrolysis device, method for producing such a photocathode, and photoelectrolysis device
TWI473312B (en) A large area flexible dye-sensitized solar cell and the electrochemical fabricating method thereof
TWI331809B (en) Solar cell and photo-electrochemical substrate thereof
CN102723204B (en) The titanium foil sheet preparation method of dye-sensitized solar cells light anode
KR20160072938A (en) Photo-electorde for tandem structure photoelectrochemical cell comprising metal ultra-thin layer and photoelectrochemical cell comprising the same
Naduvath et al. Effect of nanograss and annealing temperature on TiO2 nanotubes based dye sensitized solar cells
Yang et al. Alumina template assistance in titania nanotubes dye-sensitized solar cell (TiO2 NT-DSSC) device fabrication
TW201010108A (en) Large area dye-sensitized solar cell and the thermal spraying fabrication methods thereof
Chen et al. Fabrication of dye-sensitized solar cells with a 3D nanostructured electrode
CN103093963A (en) Flexible and light dye-sensitized solar cell with double faces specular
TWI435460B (en) Method for manufacturing array type nanotube film of solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees