TWI381360B - Transmissive-type liquid crystal display device and recording medium - Google Patents

Transmissive-type liquid crystal display device and recording medium Download PDF

Info

Publication number
TWI381360B
TWI381360B TW096148732A TW96148732A TWI381360B TW I381360 B TWI381360 B TW I381360B TW 096148732 A TW096148732 A TW 096148732A TW 96148732 A TW96148732 A TW 96148732A TW I381360 B TWI381360 B TW I381360B
Authority
TW
Taiwan
Prior art keywords
backlight
pixel
value
sub
liquid crystal
Prior art date
Application number
TW096148732A
Other languages
Chinese (zh)
Other versions
TW200844976A (en
Inventor
Takashi Morisue
Tsuyoshi Muramatsu
Hiroshi Tanaka
Atsushi Aoki
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200844976A publication Critical patent/TW200844976A/en
Application granted granted Critical
Publication of TWI381360B publication Critical patent/TWI381360B/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Description

穿透式液晶顯示裝置及記錄媒體Penetrating liquid crystal display device and recording medium

本發明係關於一種將主動背光源(active back light)使用於光源之穿透式液晶顯示裝置。The present invention relates to a transmissive liquid crystal display device that uses an active back light for a light source.

彩色顯示器有各式各樣種類,且分別已實用化。若大致區別薄型顯示器,可分類為如PDP(Plasma Display Panel,電漿顯示器面板)之自發光型顯示器、及由LCD(液晶顯示器)所代表之非發光型顯示器。在屬於非發光型顯示器之LCD中,已知有將背光源配置在液晶面板之背面側之穿透式LCD。There are various types of color displays, and they have been put into practical use. If the thin display is roughly distinguished, it can be classified into a self-luminous display such as a PDP (Plasma Display Panel) and a non-illuminated display represented by an LCD (Liquid Crystal Display). In an LCD which is a non-light-emitting type display, a transmissive LCD in which a backlight is disposed on the back side of a liquid crystal panel is known.

圖13係為顯示穿透式LCD之一般性結構之剖面圖。此穿透式LCD係在液晶面板100之背面配置背光源110。液晶面板100係形成為在一對透明基板101、102之間配置液晶層103、且於一對透明基板101、102之外側具備有偏光板104、105之構成。此外,藉由在液晶面板100內具備彩色濾光片(color filter)106即可進行彩色顯示。Figure 13 is a cross-sectional view showing the general structure of a transmissive LCD. This transmissive LCD is provided with a backlight 110 on the back surface of the liquid crystal panel 100. The liquid crystal panel 100 is configured such that a liquid crystal layer 103 is disposed between the pair of transparent substrates 101 and 102, and polarizing plates 104 and 105 are provided on the outer sides of the pair of transparent substrates 101 and 102. Further, color display can be performed by providing a color filter 106 in the liquid crystal panel 100.

圖示雖予以省略,惟在透明基板101、102之內側係形成有電極層及配向膜,藉由控制對於液晶層103之施加電壓,而使穿透液晶面板100之光之穿透量依每一像素被控制。亦即,穿透式LCD係將來自背光源110之照射光在液晶面板100進行穿透量控制而進行顯示控制。Although not shown, the electrode layer and the alignment film are formed inside the transparent substrates 101 and 102, and the amount of light penetrating through the liquid crystal panel 100 is controlled by controlling the voltage applied to the liquid crystal layer 103. One pixel is controlled. That is, the transmissive LCD performs display control by irradiating the illumination light from the backlight 110 on the liquid crystal panel 100 by the amount of penetration.

背光源110係用以照射包括彩色顯示器所需之RGB三色之波長之光,其藉由與彩色濾光片106之組合,將RGB之 各色之光之穿透率予以分別調整,即可藉此將作為像素之亮度或色相任意設定。此種背光源110一般係使用電致發光(electro luminescence,EL)、冷陰極管(Cold cathode fluorescent lamps,CCFL)、發光二極體(LED)等之白色光源。The backlight 110 is used to illuminate light of wavelengths of RGB three colors required for a color display, and by combining with the color filter 106, RGB The transmittance of the light of each color is separately adjusted, whereby the brightness or hue of the pixel can be arbitrarily set. Such a backlight 110 is generally a white light source such as an electro luminescence (EL), a cold cathode fluorescent lamp (CCFL), or a light emitting diode (LED).

在液晶面板100中,如圖14所示,係將複數個像素配置成矩陣狀,且各像素通常係由3個副像素所構成。各個副像素係配置成由彩色濾光片106中之紅色(R)、綠色(G)、及藍色(B)之濾光片層所對應。以下,茲將各個副像素稱為R副像素、G副像素、B副像素。In the liquid crystal panel 100, as shown in FIG. 14, a plurality of pixels are arranged in a matrix, and each pixel is usually composed of three sub-pixels. Each of the sub-pixels is arranged to correspond to a color filter layer of red (R), green (G), and blue (B) in the color filter 106. Hereinafter, each sub-pixel is referred to as an R sub-pixel, a G sub-pixel, and a B sub-pixel.

R、G、B之各副像素係將在從背光源110所發生之白色光之中所屬波長帶(亦即紅色、綠色、藍色)之光予以選擇性地穿透,而其他波長帶之光則予以吸收。Each of the sub-pixels of R, G, and B selectively penetrates light of a wavelength band (ie, red, green, blue) among white light generated from the backlight 110, and other wavelength bands Light is absorbed.

由於在上述構成之穿透式LCD中從背光源110所照射之光係在液晶面板100之各像素中被控制穿透量,因此當然會產生由液晶面板100所吸收之光。此外,在彩色濾光片106中,R、G、B之各副像素亦將在從背光源110所發生之白色光之中所屬波長帶以外之光加以吸收。如此,在一般之穿透式LCD中,由於由液晶面板或彩色濾光片所吸收之光量較多,而來自背光源之照射光之利用效率較低,因此會有在背光源之消耗電力變大之問題。Since the light irradiated from the backlight 110 in the above-described transmissive LCD is controlled to pass through in each pixel of the liquid crystal panel 100, the light absorbed by the liquid crystal panel 100 is of course generated. Further, in the color filter 106, the sub-pixels of R, G, and B are also absorbed by light other than the wavelength band of the white light generated from the backlight 110. Thus, in a general transmissive LCD, since the amount of light absorbed by the liquid crystal panel or the color filter is large, and the utilization efficiency of the illumination light from the backlight is low, the power consumption in the backlight is changed. Big problem.

作為削減此種穿透式LCD之消耗電力之技術,已知有使用可依據顯示圖像而調整發光亮度之主動背光源之方法(例如,日本公開專利公報之日本特開平11-65531號公報 (1999年3月9日公開))。As a technique for reducing the power consumption of such a transmissive LCD, there is known a method of using an active backlight that can adjust the luminance of the light according to the display image (for example, Japanese Laid-Open Patent Publication No. Hei 11-65531 (published on March 9, 1999)).

亦即,在日本特開平11-65531號公報中,係揭示有使用可調整亮度之主動背光源,並藉由液晶面板之穿透率與主動背光源之亮度控制來進行LCD之顯示控制(亮度控制),以謀求背光源之消耗電力之減低之技術。In the Japanese Patent Publication No. Hei 11-65531, an active backlight using adjustable brightness is disclosed, and display control of the LCD is performed by the transmittance of the liquid crystal panel and the brightness control of the active backlight (brightness). Control), in order to reduce the power consumption of the backlight.

在日本特開平11-65531號公報中,背光源之亮度係控制成與輸入圖像(輸入信號)中之最大亮度值一致。再者,液晶面板之穿透率係配合當時之背光源之亮度而調整穿透率。In Japanese Laid-Open Patent Publication No. Hei 11-65531, the brightness of the backlight is controlled to match the maximum brightness value in the input image (input signal). Furthermore, the transmittance of the liquid crystal panel adjusts the transmittance in accordance with the brightness of the backlight at the time.

此時,作為輸入信號之最大值之副像素之穿透率係成為100%,此外,其他副像素之穿透率亦成為由背光源值所計算之100%以下之值。因此,在圖像整體較暗時,可使背光源變暗,而減少背光源之消耗電力。At this time, the transmittance of the sub-pixel which is the maximum value of the input signal is 100%, and the transmittance of the other sub-pixels is also 100% or less calculated from the backlight value. Therefore, when the entire image is dark, the backlight can be darkened, and the power consumption of the backlight can be reduced.

如此,在日本特開平11-65531號公報中,係以輸入圖像之輸入信號RGB為依據而將背光源之明亮度抑制為必要最小限度,且使背光源變暗之程度,會使液晶之穿透率提昇,因此可減少由液晶面板所吸收之光量,而削減背光源之消耗電力。In the Japanese Laid-Open Patent Publication No. H11-65531, the brightness of the backlight is suppressed to the minimum necessary based on the input signal RGB of the input image, and the degree of darkening of the backlight is caused by the liquid crystal. Since the transmittance is increased, the amount of light absorbed by the liquid crystal panel can be reduced, and the power consumption of the backlight can be reduced.

然而,在上述習知之構成中,藉由減少由液晶面板所吸收之光量雖可謀求背光源之消耗電力削減,惟無法減少由彩色濾光片所吸收之光量。因此,只要可減少由彩色濾光片所吸收之光量,即可獲得消耗電力之更進一步之削減效果。However, in the above-described conventional configuration, it is possible to reduce the power consumption of the backlight by reducing the amount of light absorbed by the liquid crystal panel, but it is not possible to reduce the amount of light absorbed by the color filter. Therefore, as long as the amount of light absorbed by the color filter can be reduced, a further reduction effect of power consumption can be obtained.

本發明之目的在於提供一種不僅減少由液晶面板,亦減少由彩色濾光片所吸收之光量,可達成消耗電力之更進一步削減之穿透式液晶顯示裝置。An object of the present invention is to provide a transmissive liquid crystal display device which can reduce the amount of light absorbed by a color filter by a liquid crystal panel and further reduce power consumption.

為了達成上述目的,本發明之穿透式液晶顯示裝置係包括:液晶面板,其將1像素分割為紅(R)、綠(G)、藍(B)及白(W)之4副像素;白色主動背光源,其可控制發光亮度;彩度減低部,其對於作為輸入圖像之第1輸入RGB信號中所包含之像素資料之中,亮度及彩度較高之像素資料施以彩度減低處理,而將該第1輸入RGB信號轉換成第2輸入RGB信號;輸出信號產生部,其從上述第2輸入RGB信號產生上述液晶面板之各像素中之R、G、B、W之各副像素之穿透率信號,並且算出上述主動背光源中之背光源值;液晶面板控制部,其依據在上述輸出信號產生部所產生之上述穿透率信號驅動控制液晶面板;及背光源控制部,其根據在上述所算出之背光源值而控制上述背光源之發光亮度。In order to achieve the above object, a transmissive liquid crystal display device of the present invention includes: a liquid crystal panel that divides 1 pixel into 4 sub-pixels of red (R), green (G), blue (B), and white (W); a white active backlight capable of controlling the brightness of the light; and a chroma reduction unit for applying chroma to the pixel data having higher brightness and chroma among the pixel data included in the first input RGB signal as the input image The first input RGB signal is converted into a second input RGB signal, and the output signal generating unit generates R, G, B, and W among the pixels of the liquid crystal panel from the second input RGB signal. a transmittance signal of the sub-pixel, and calculating a backlight value in the active backlight; the liquid crystal panel control unit driving the liquid crystal panel according to the transmittance signal generated by the output signal generating unit; and backlight control The portion controls the luminance of the backlight based on the backlight value calculated as described above.

依據上述之構成,藉由使用將1像素分割為R、G、B、W之4個副像素之液晶面板,可將R、G、B之各色成分之一部分分配給沒有(或較少)因為濾光片吸收所導致之光量損失之W副像素。藉此,減少由彩色濾光片所吸收之光量,且與此對應而降低背光源值,故可實現穿透式液晶顯示裝置之消耗電力之削減。According to the above configuration, by using a liquid crystal panel in which one pixel is divided into four sub-pixels of R, G, B, and W, one of the color components of R, G, and B can be partially allocated to none (or less) because The filter absorbs the W sub-pixels of the amount of light loss caused by the filter. Thereby, the amount of light absorbed by the color filter is reduced, and accordingly, the backlight value is lowered, so that the power consumption of the transmissive liquid crystal display device can be reduced.

再者,藉由對於作為原輸入之第1輸入RGB信號進行彩度減低處理,並根據施行有該彩度減低處理之第2輸入 RGB信號而算出背光源值及RGBW穿透率,可更確實減低背光源值。Furthermore, the chroma input reduction processing is performed on the first input RGB signal as the original input, and the second input is performed according to the chroma reduction processing. By calculating the backlight value and the RGBW transmittance of the RGB signal, the backlight value can be more reliably reduced.

本發明之其他目的、特徵及優點由以下所示之記載當可充分得知。此外,本發明之效益由參照附圖之以下說明當可明瞭。Other objects, features, and advantages of the present invention will be apparent from the description appended claims. Further, the benefits of the present invention will become apparent from the following description with reference to the drawings.

茲根據圖式說明本發明之一實施形態如下。首先,參照圖1說明本實施形態之液晶顯示裝置(以下稱本液晶顯示裝置)之概略構成。An embodiment of the present invention will be described below with reference to the drawings. First, a schematic configuration of a liquid crystal display device (hereinafter referred to as a liquid crystal display device) of the present embodiment will be described with reference to Fig. 1 .

本液晶顯示裝置係包括:彩度減低部11、輸出信號產生部12、液晶面板控制部13、RGBW液晶面板(以下只稱液晶面板)14、背光源控制部15及白色背光源(以下只稱背光源)16。The liquid crystal display device includes a chroma reduction unit 11, an output signal generation unit 12, a liquid crystal panel control unit 13, an RGBW liquid crystal panel (hereinafter simply referred to as a liquid crystal panel) 14, a backlight control unit 15, and a white backlight (hereinafter referred to as Backlight) 16.

液晶面板14係將Np個像素配置於基體上而成,如圖2(a)、(b)所示,各像素係由R(紅)、G(綠)、B(藍)、W(白)之4個副像素所構成。另外,各像素中之R、G、B、W副像素之形狀及配置關係並未特別限定。此外,背光源16係使用冷陰極螢光燈(CCFL)或白色發光二極體(白色LED)等之白色光源者,係可控制照射光之明亮度之主動背光源。The liquid crystal panel 14 is formed by arranging Np pixels on a substrate. As shown in FIGS. 2(a) and 2(b), each pixel is composed of R (red), G (green), B (blue), and W (white). ) is composed of four sub-pixels. Further, the shape and arrangement relationship of the R, G, B, and W sub-pixels in each pixel are not particularly limited. Further, the backlight 16 is a white light source such as a cold cathode fluorescent lamp (CCFL) or a white light emitting diode (white LED), and is an active backlight capable of controlling the brightness of the illumination light.

液晶面板14中之R、G、B之各副像素係配置成由彩色濾光片(未圖示)中之R、G、B之濾光片層分別對應。因此,R、G、B之各副像素係將從背光源16所發生之白色光之中所屬波長帶之光予以選擇性地穿透,而其他波長帶之光則予以吸收。此外,W副像素基本上在彩色濾光片中並不具 有對應之吸收濾光片層。亦即,穿透W副像素之光不會受到由彩色濾光片完全之吸收,而會以白色光之狀態從液晶面板14射出。然而,W副像素亦可為具有背光源之光之吸收較R、G、B之彩色濾光片更少之濾光片層之構成。Each of the sub-pixels of R, G, and B in the liquid crystal panel 14 is disposed so as to correspond to the filter layers of R, G, and B in the color filter (not shown). Therefore, each of the sub-pixels of R, G, and B selectively penetrates the light of the wavelength band among the white light generated by the backlight 16, and the light of the other wavelength band absorbs it. In addition, the W sub-pixels are basically not in the color filter. There is a corresponding absorption filter layer. That is, the light that penetrates the W sub-pixel is not completely absorbed by the color filter, but is emitted from the liquid crystal panel 14 in the state of white light. However, the W sub-pixel may also be a filter layer having less light absorption from the backlight than the R, G, and B color filters.

此時,從W副像素所輸出之光係為白色,而於各RGB副像素之穿透率為相同時,從RGB副像素之各個所輸出之光之總和亦成為白色。然而,即使RGB副像素之穿透率與W副像素之穿透率相同,作為來自RGB副像素之光之總和而輸出之白色光之明亮度、與從W副像素所輸出之白色光之明亮度卻未必會相同。此係由於由各副像素之彩色濾光片所吸收之光之量、或副像素之大小而使明亮度變化之故。At this time, the light output from the W sub-pixels is white, and when the transmittances of the RGB sub-pixels are the same, the sum of the light output from each of the RGB sub-pixels also becomes white. However, even if the transmittance of the RGB sub-pixel is the same as the transmittance of the W sub-pixel, the brightness of the white light outputted as the sum of the light from the RGB sub-pixels and the brightness of the white light outputted from the W sub-pixels Degrees may not be the same. This is because the brightness is changed by the amount of light absorbed by the color filters of the respective sub-pixels or the size of the sub-pixels.

茲將此時之從W副像素所輸出之白色之光之強度相對於從RGB副像素所輸出之白色之光之強度之比設為白色亮度比WR。具體而言,係將RGB副像素之各穿透率設為x%並將W副像素之各穿透率設為0%時之顯示亮度P1、及將RGB副像素之各穿透率設為0%並將W副像素之各穿透率設為x%時之顯示亮度P2之比P2/P1設為白色亮度比WR。另外,通常係在某一片液晶面板中,於面板整體(亦即於所有像素)成為相同白色亮度比WR。The ratio of the intensity of the white light outputted from the W sub-pixels at this time to the intensity of the white light outputted from the RGB sub-pixels is set to the white luminance ratio WR. Specifically, the display luminance P1 when the respective transmittances of the RGB sub-pixels are set to x% and the respective transmittances of the W sub-pixels are set to 0%, and the respective transmittances of the RGB sub-pixels are set to The ratio P2/P1 of the display luminance P2 when 0% and the respective transmittances of the W sub-pixels are set to x% is set to the white luminance ratio WR. In addition, it is usually in a certain liquid crystal panel, and the same white luminance ratio WR is formed on the entire panel (that is, at all pixels).

本液晶顯示裝置係從個人電腦或電視調諧器(tuner)等之外部將應顯示之圖像資訊作為RGB信號(第1輸入RGB信號)接收,並以該RGB信號作為輸入信號Ri、Gi、Bi(i=1,2,…,Np)進行處理者。The liquid crystal display device receives image information to be displayed as an RGB signal (first input RGB signal) from outside a personal computer or a television tuner or the like, and uses the RGB signal as an input signal Ri, Gi, Bi. (i=1, 2, ..., Np) is processed.

彩度減低部11係在對於第1輸入RGB信號視需要進行彩 度減低處理之後,作為第2輸入RGB信號而向輸出信號產生部12輸出。The chroma reduction unit 11 performs coloring on the first input RGB signal as needed. After the degree reduction processing, the second input RGB signal is output to the output signal generation unit 12.

輸出信號產生部12係為從第2輸入RGB信號求出液晶面板14中之各副像素之穿透率、及背光源16中之背光源值之手段。亦即,輸出信號產生部12係用以從作為第2輸入RGB信號之輸入信號Rsi、Gsi、Bsi求出背光源值Wbs,並且將輸入信號Rsi、Gsi、Bsi轉換成適合上述背光源值Wbs之穿透率信號rsi、gsi、bsi、wsi。The output signal generation unit 12 is a means for obtaining the transmittance of each sub-pixel in the liquid crystal panel 14 and the backlight value in the backlight 16 from the second input RGB signal. That is, the output signal generating unit 12 is configured to obtain the backlight value Wbs from the input signals Rsi, Gsi, and Bsi as the second input RGB signals, and convert the input signals Rsi, Gsi, and Bsi into the backlight value Wbs. The penetration rate signals rsi, gsi, bsi, wsi.

所求出之背光源值Wbs係輸出至背光源控制部15,而背光源控制部15係依據該背光源值Wbs而調節背光源16之亮度。背光源16係為利用CCFL或白色LED等之白色光源者,其藉由背光源控制部15而可控制成與背光源值成比例之明亮度。背光源16之明亮度之控制方法係依所使用之光源之種類而不同,惟例如可藉由施加與背光源值成比例之電壓、或流通與背光源值成比例之電流而控制明亮度。此外,背光源為LED等時,亦可藉由脈衝寬度調變(Pulse Width Modulation,PWM)來改變負載比(duty ratio)而控制明亮度。再者,背光源光源之明亮度具有非線形特性時,亦有從背光源值在查詢表(lookup table)求出對於光源之施加電壓及施加電流等而進行對於背光源之明亮度之控制,藉此而控制為所希望之明亮度之方法等。The obtained backlight value Wbs is output to the backlight control unit 15, and the backlight control unit 15 adjusts the brightness of the backlight 16 in accordance with the backlight value Wbs. The backlight 16 is a white light source such as a CCFL or a white LED, and can be controlled by the backlight control unit 15 to have a brightness proportional to the backlight value. The method of controlling the brightness of the backlight 16 varies depending on the type of light source used, but the brightness can be controlled, for example, by applying a voltage proportional to the backlight value or by circulating a current proportional to the backlight value. Further, when the backlight is an LED or the like, the brightness ratio can be controlled by changing the duty ratio by Pulse Width Modulation (PWM). Further, when the brightness of the backlight source has a non-linear characteristic, the brightness of the backlight is controlled by determining the applied voltage and the applied current to the light source from the backlight value in the lookup table. This is controlled to the desired brightness and the like.

穿透率信號rsi、gsi、bsi、wsi係輸出於液晶面板控制部13,而液晶面板控制部13係根據此穿透率信號而控制為使液晶面板14之各副像素之穿透率成為所希望之穿透率。液 晶面板控制部13係為包括掃描線驅動電路、信號線驅動電路等之構成,其用以產生掃描信號及資料信號,而藉由此掃描信號及資料信號等之面板控制信號以驅動液晶面板14。穿透率信號rsi、gsi、bsi、wsi係用於產生在信號線驅動電路之資料信號。在液晶面板14之穿透率控制中,係有施加與副像素之穿透率成比例之電壓而控制液晶面板之穿透率之方法、及為了將非線形特性予以線形化,而由副像素之穿透率從查詢表查出施加於液晶面板之電壓,以將液晶面板控制為所希望之穿透率之方法等。The transmittance signals rsi, gsi, bsi, and wsi are output to the liquid crystal panel control unit 13, and the liquid crystal panel control unit 13 controls the transmittance of each sub-pixel of the liquid crystal panel 14 based on the transmittance signal. The penetration rate of hope. liquid The crystal panel control unit 13 is configured to include a scanning line driving circuit, a signal line driving circuit, and the like for generating a scanning signal and a data signal, and driving the liquid crystal panel 14 by using panel control signals such as scanning signals and data signals. . The transmittance signals rsi, gsi, bsi, wsi are used to generate data signals in the signal line drive circuit. In the transmittance control of the liquid crystal panel 14, there is a method of applying a voltage proportional to the transmittance of the sub-pixel to control the transmittance of the liquid crystal panel, and a method of controlling the transmittance of the liquid crystal panel by linearizing the non-linear characteristics. The penetration rate is a method of detecting the voltage applied to the liquid crystal panel from the lookup table to control the liquid crystal panel to a desired transmittance.

另外,在本發明之液晶顯示裝置中,輸入信號並不以上述之RGB信號為限,亦可以是YUV信號等之彩色信號。當輸入RGB信號以外之彩色信號時,亦可為將其轉換為RGB信號再輸入至輸出信號產生部12之構成,或者亦可為輸出信號產生部12將RGB信號以外之彩色輸入信號轉換成RGBW信號之構成。Further, in the liquid crystal display device of the present invention, the input signal is not limited to the RGB signal described above, and may be a color signal such as a YUV signal. When a color signal other than the RGB signal is input, it may be converted into an RGB signal and input to the output signal generating portion 12, or the output signal generating portion 12 may convert the color input signal other than the RGB signal into RGBW. The composition of the signal.

在本液晶顯示裝置中,液晶面板14之各副像素中之顯示亮度係藉由背光源之明亮度(照射亮度)、該副像素中之穿透率、及白色亮度比WR來表示。將RGB之各副像素之明亮度設為背光源之明亮度與該副像素中之穿透率之乘積時,W副像素之明亮度係藉由背光源之明亮度與W副像素中之穿透率與白色亮度比WR之乘積來表示。在此,各副像素中之顯示亮度係與該副像素之穿透量成比例。In the liquid crystal display device of the present invention, the display luminance in each sub-pixel of the liquid crystal panel 14 is represented by the brightness (irradiation brightness) of the backlight, the transmittance in the sub-pixel, and the white luminance ratio WR. When the brightness of each sub-pixel of RGB is set as the product of the brightness of the backlight and the transmittance of the sub-pixel, the brightness of the W sub-pixel is worn by the brightness of the backlight and the W sub-pixel. The transmittance is expressed as the product of the white luminance ratio WR. Here, the display brightness in each sub-pixel is proportional to the penetration amount of the sub-pixel.

另外,在本實施之形態中雖係使用「背光源值」之用語,惟此背光源值係為具有與背光源之明亮度成比例之關 係者,嚴格來說,並非與背光源之明亮度相同之值。同樣地,副像素之穿透量係為具有與副像素之明亮度成比例之關係者,而非相同之值。亦即,本實施形態中之所謂背光源值,係為傳送至背光源之信號,而所謂實際之明亮度僅只是具有比例關係者。Further, in the embodiment of the present embodiment, the term "backlight value" is used, but the backlight value is proportional to the brightness of the backlight. The system, strictly speaking, is not the same value as the brightness of the backlight. Similarly, the amount of penetration of the sub-pixels is a relationship that is proportional to the brightness of the sub-pixels, not the same value. That is, the so-called backlight value in the present embodiment is a signal transmitted to the backlight, and the actual brightness is only a proportional relationship.

具體而言,在本實施形態中,穿透量係可藉由將穿透率(W副像素時再加上WR)乘上背光源值而求出。針對此點,副像素之明亮度係藉由對於背光源之亮度值(明亮度),乘上各副像素之顏色濾光片之穿透率、及副像素之LCD穿透率而求出。Specifically, in the present embodiment, the amount of penetration can be obtained by multiplying the transmittance (when WR is added to the sub-pixel) by the backlight value. In response to this, the brightness of the sub-pixel is obtained by multiplying the luminance value (brightness) of the backlight by the transmittance of the color filter of each sub-pixel and the LCD transmittance of the sub-pixel.

此外,白色亮度比WR係為(依RGB副像素之白色亮度):(依W副像素之白色亮度)之比,其係以RGB為基準考慮。白色亮度比亦可藉由(依W彩色濾光片之穿透率)/(依RGB彩色濾光片之穿透率)而求出。Further, the white luminance ratio WR is (according to the white luminance of the RGB sub-pixels): (based on the white luminance of the W sub-pixels), which is considered based on RGB. The white luminance ratio can also be obtained by (through the transmittance of the W color filter) / (depending on the transmittance of the RGB color filter).

在此,茲詳細說明本液晶顯示裝置中之顯示原理、及消耗電力削減效果如下。另外,在本液晶顯示裝置中,背光源值及副像素穿透率係在輸出信號產生部12求出。因此,以下所說明之背光源值及副像素穿透率之算出方法係對於從彩度減低部11輸入至輸出信號產生部12之第2輸入RGB信號所施加之處理。Here, the display principle and the power consumption reduction effect in the liquid crystal display device will be described in detail as follows. Further, in the liquid crystal display device of the present invention, the backlight value and the sub-pixel transmittance are obtained by the output signal generating unit 12. Therefore, the method of calculating the backlight value and the sub-pixel transmittance described below is a process of applying the second input RGB signal input from the chroma reducing unit 11 to the output signal generating unit 12.

在本液晶顯示裝置中之背光源值及副像素穿透率之決定方法中,最初,係依每一個與背光源對應之顯示區域內之所有像素求出必要最小限度之背光源值。接著,從依每一像素所求出之必要最小限度之背光源值,求出1張圖像中 之最大值,並以該值作為背光源值。在此,要求出各像素中之必要最小限度之背光源值時,依據像素之顯示資料內容,背光源值之求解方式可分為2個方法。具體而言,係依據注目像素內之副像素中之最大亮度(亦即max (Rsi,Gsi,Bsi))與最小亮度(亦即min (Rsi,Gsi,Bsi))之關係,對於該注目像素之背光源值之求解方式有所不同。In the method of determining the backlight value and the sub-pixel transmittance in the liquid crystal display device, first, the minimum necessary backlight value is obtained for each pixel in the display region corresponding to the backlight. Then, one image is obtained from the necessary minimum backlight value obtained for each pixel. The maximum value and use this value as the backlight value. Here, when the minimum necessary backlight value in each pixel is required, the method of solving the backlight value can be divided into two methods according to the display data content of the pixel. Specifically, according to the relationship between the maximum brightness (ie, max (Rsi, Gsi, Bsi)) and the minimum brightness (ie, min (Rsi, Gsi, Bsi)) in the sub-pixels in the pixel of interest, for the pixel of interest The way the backlight values are solved is different.

首先說明作為min (Rsi、Gsi、Bsi)≧max (Rsi、Gsi、Bsi)/(1+1/WR)之注目像素中之必要最小限度之背光源值之求解方式。First, the solution of the necessary minimum backlight value in the pixel of interest of min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, Bsi) / (1 + 1 / WR) will be described.

茲將對於輸出信號產生部之第2RGB輸入信號Rsi、Gsi、Bsi之最大值設為maxRGBsi、最小值設為minRGBsi。在此雖係說明與最大值maxRGBsi相符之副像素之顏色成分為R(紅)之情形,惟maxRGBsi為G(綠)及B(藍)時亦可同樣考慮。另外,maxRGBsi及minRGBsi均係為以副像素之穿透量所表示之值。The maximum value of the second RGB input signals Rsi, Gsi, and Bsi of the output signal generating unit is set to maxRGBsi, and the minimum value is set to minRGBsi. Here, the case where the color component of the sub-pixel corresponding to the maximum value maxRGBsi is R (red) is described, but the same can be considered when maxRGBsi is G (green) and B (blue). In addition, both maxRGBsi and minRGBsi are values expressed by the amount of penetration of the sub-pixels.

在此,若僅就穿透量maxRGBsi之R成分之顯示光進行考慮,對於該顯示光最能將背光源值加以減低,係為在將穿透量分配給R副像素及W副像素藉而使R副像素及W副像素之穿透率均成為100%之時。Here, considering only the display light of the R component of the penetration amount maxRGBsi, the backlight value can be most reduced for the display light, and the amount of penetration is assigned to the R sub-pixel and the W sub-pixel. When the transmittances of the R sub-pixel and the W sub-pixel are both 100%.

若將此時之必要最小限度之背光源值設為Blmin,且考慮白色亮度比WR,則由於R副像素及W副像素之穿透率均為100%,故來自R副像素之出射光之亮度成為Blmin、而來自W副像素之出射光之亮度成為WR×Blmin。再者,來自R副像素及W副像素之出射光之總和、亦即 (1+WR)×Blmin成為R成分之穿透量。再者,由於(1+WR)×Blmin相等於maxRGBsi,因此Blmin成為maxRGBsi/(1+WR)。If the minimum necessary backlight value at this time is set to Blmin, and the white luminance ratio WR is considered, since the transmittances of the R sub-pixel and the W sub-pixel are both 100%, the outgoing light from the R sub-pixel is The luminance becomes Blmin, and the luminance of the outgoing light from the W sub-pixel becomes WR × Blmin. Furthermore, the sum of the outgoing light from the R sub-pixel and the W sub-pixel, that is, (1 + WR) × Blmin becomes the penetration amount of the R component. Furthermore, since (1+WR)×Blmin is equal to maxRGBsi, Blmin becomes maxRGBsi/(1+WR).

然而,上述之想法係僅就R成分之顯示光考慮之情形,並未考慮G及B成分。實際上,於minRGBsi<maxRGBsi/(1+1/WR)時若將背光源值設定為maxRGBsi/(1+WR),則如以下式所示,與最小值minRGBsi相符之顏色成分之穿透量將會超過必要量。However, the above idea is based only on the case where the display light of the R component is considered, and the G and B components are not considered. In fact, if the backlight value is set to maxRGBsi/(1+WR) at minRGBsi<maxRGBsi/(1+1/WR), the penetration of the color component corresponding to the minimum value minRGBsi is as shown in the following equation. Will exceed the necessary amount.

maxRGBsi/(1+WR)×WR=maxRGBsi/(1+1/WR)>minRGBsimaxRGBsi/(1+WR)×WR=maxRGBsi/(1+1/WR)>minRGBsi

因此,在某注目像素中,僅在minRGBsi≧maxRGBsi/(1+1/WR)成立時,該注目像素中之必要最小限度之背光源值才根據上述想法設定為maxRGBsi/(1+WR)。Therefore, in a certain pixel of interest, only when minRGBsi≧maxRGBsi/(1+1/WR) is established, the necessary minimum backlight value in the target pixel is set to maxRGBsi/(1+WR) according to the above idea.

再者,在minRGBsi<maxRGBsi/(1+1/WR)之注目像素中,為使與最小值minRGBsi相符之顏色成分之穿透量不會超過必要量,可分配至W副像素之最大之穿透量係成為minRGBsi。此時,在與最大值maxRGBsi相符之顏包成分之副像素中,係藉由將同量之穿透量分配至W副像素,而使其後之穿透量成為maxRGBsi-minRGBsi。其結果,上述注目像素中之必要最小限度之背光源值即成為maxRGBsi-minRGBsi。Furthermore, in the attention pixel of minRGBsi<maxRGBsi/(1+1/WR), in order to make the penetration amount of the color component corresponding to the minimum value minRGBsi not exceed the necessary amount, it can be assigned to the maximum wear of the W sub-pixel. The penetration system becomes minRGBsi. At this time, in the sub-pixel of the face pack component corresponding to the maximum value maxRGBsi, the amount of penetration of the same amount is distributed to the W sub-pixel, and the amount of penetration thereafter becomes maxRGBsi-minRGBsi. As a result, the minimum necessary backlight value in the above-mentioned pixel of interest becomes maxRGBsi-minRGBsi.

如此,求出各像素中之必要最小限度之背光源值,且將1張圖像之所有像素中必要之背光源值之最大值設為背光源值Wbs。In this way, the minimum necessary backlight value in each pixel is obtained, and the maximum value of the backlight values necessary for all the pixels of one image is set as the backlight value Wbs.

由此背光源值Wbs,各副像素之穿透率可如以下方式求出。亦即,RGB之各副像素之穿透率係以(穿透量)/(背光源值)來表示。此外,W副像素之穿透率係可表示為(穿透量)/(背光源值)/(白色亮度比)。此係由於W副像素相較於RGB之各副像素更明亮白色亮度比WR倍,因此W副像素之輸出亮度值所必要之背光源值係可以RGB副像素所必要之背光源值之1/WR倍來計算。Thus, the backlight value Wbs and the transmittance of each sub-pixel can be obtained as follows. That is, the transmittance of each sub-pixel of RGB is represented by (penetration amount) / (backlight value). Further, the transmittance of the W sub-pixel can be expressed as (penetration amount) / (backlight value) / (white luminance ratio). This is because the W sub-pixels are brighter than the RGB sub-pixels with a brighter white luminance ratio of WR times. Therefore, the backlight value necessary for the W sub-pixel output luminance value is one of the backlight values necessary for the RGB sub-pixels. WR times to calculate.

以下使用圖3、圖4、圖15~圖18說明具體例。Specific examples will be described below with reference to FIGS. 3, 4, and 15 to 18.

首先在使用白色亮度比WR為1之液晶面板時,於成為min (Rsi,Gsi,Bsi)≧max (Rsi,Gsi,Bsi)/(1+1/WR)之像素中,參照圖3(a)、(b)說明背光源值之求解方式。在此,圖3(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖。此外,圖3(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。First, when using a liquid crystal panel whose white luminance ratio is WR, in the pixel which becomes min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, Bsi) / (1 + 1 / WR), refer to FIG. 3 (a ), (b) explain how the backlight value is solved. Here, FIG. 3(a) is a view showing a manner of solving the backlight value in the liquid crystal display device. In addition, FIG. 3(b) is a diagram for explaining the manner of solving the backlight value in Patent Document 1 for comparison.

在圖3(a)、(b)中,考慮某注目像素之作為目標之面板輸出亮度為(R,G,B)=(50,60,40)之情形。此時,G之亮度值60為max (Rsi,Gsi,Bsi),而B之亮度值40為min (Rsi,Gsi,Bsi),滿足min (Rsi,Gsi,Bsi)≧max (Rsi,Gsi,Bsi)/(1+1/WR)之關係。In FIGS. 3(a) and 3(b), a case where the panel output luminance of a target pixel is (R, G, B) = (50, 60, 40) is considered. At this time, the luminance value 60 of G is max (Rsi, Gsi, Bsi), and the luminance value 40 of B is min (Rsi, Gsi, Bsi), which satisfies min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, The relationship between Bsi)/(1+1/WR).

在專利文獻1中之顯示方法中,如圖3(b)所示,背光源值係設定為max (Rsi,Gsi,Bsi)=60,而各副像素之穿透率係配合此背光源值來決定。亦即,R、G、B之各副像素中之各個穿透率係設定為83%(=50/60)、100%(=60/60)、67%(=40/60)。In the display method of Patent Document 1, as shown in FIG. 3(b), the backlight value is set to max (Rsi, Gsi, Bsi) = 60, and the transmittance of each sub-pixel is matched with the backlight value. To decide. That is, each of the sub-pixels of R, G, and B is set to 83% (= 50/60), 100% (= 60/60), and 67% (= 40/60).

另一方面,在本液晶顯示裝置中,係在輸入信號Rsi、Gsi、Bsi之R、G、B各成分中,將與max (Rsi,Gsi,Bsi)/(1+1/WR)相符之值份分配至W成分之穿透量。其結果,以RGB信號所表示之輸入信號(R,G,B)=(50,60,40)係轉換為以RGBW信號所表示之穿透量(R,G,B,W)=(20,30,10,30)。此外,在此注目像素中,背光源值係設定為max (Rsi,Gsi,Bsi)/(1+WR)=30。此外,R、G、B、W之各副像素中之各個穿透率係配合此背光源值來決定。亦即,在R、G、B、W之各副像素中之各個穿透率係設定為67%(=20/30)、100%(=30/30)、33%(=10/30)、100%(=30/30/WR)。然而,在圖3(a)中所顯示之穿透率係為例示在該注目像素中所求出之背光源值相對於所有像素所求出之複數個背光源值之中最大,且作為該背光源中之亮度值所採用時之穿透率者。On the other hand, in the present liquid crystal display device, among the components R, G, and B of the input signals Rsi, Gsi, and Bsi, it is matched with max (Rsi, Gsi, Bsi) / (1 + 1 / WR). The value is assigned to the penetration of the W component. As a result, the input signal (R, G, B) = (50, 60, 40) represented by the RGB signal is converted into the amount of penetration expressed by the RGBW signal (R, G, B, W) = (20) , 30, 10, 30). Further, in this pixel of interest, the backlight value is set to max (Rsi, Gsi, Bsi) / (1 + WR) = 30. In addition, each of the sub-pixels of R, G, B, and W is determined by the backlight value. That is, each of the sub-pixels of R, G, B, and W is set to 67% (= 20/30), 100% (= 30/30), and 33% (= 10/30). , 100% (= 30/30/WR). However, the transmittance shown in FIG. 3( a ) is the largest among the plurality of backlight values obtained by determining the backlight value found in the pixel of interest with respect to all the pixels, and as the The transmittance at which the luminance value in the backlight is used.

此外,若將本液晶顯示裝置中之上述背光源值與由專利文獻1之方法所求出之背光源值比較,亦必須要考慮副像素之面積比。亦即,相對於在專利文獻1中係將1像素分割為3個副像素,在本液晶顯示裝置則係將1像素分割為4個副像素。因此,假設各副像素被均等分割,則在本液晶顯示裝置中,由於1個副像素之面積相較於專利文獻1只有3/4之面積,而為了補償此種副像素中之面積之降低,因而在本液晶顯示裝置中,係將背光源值設為4/3倍,藉此即可以與由專利文獻1之方法所求出之背光源值相同之基準來比較。Further, when the backlight value in the liquid crystal display device is compared with the backlight value obtained by the method of Patent Document 1, it is necessary to consider the area ratio of the sub-pixel. In other words, in Patent Document 1, one pixel is divided into three sub-pixels, and in the present liquid crystal display device, one pixel is divided into four sub-pixels. Therefore, in the liquid crystal display device, since the area of one sub-pixel is only 3/4 of that of Patent Document 1, the area of the sub-pixel is reduced. Therefore, in the liquid crystal display device, the backlight value is set to be 4/3 times, whereby the reference value can be compared with the reference value obtained by the method of Patent Document 1.

其結果,只要將圖3(a)之例中之背光源值修正為與圖3(b)之背光源值相同基準,則成為(4/3)×60/(1+WR)=40。在進行同樣之顯示之圖3(b)之例中,背光源值係為60,因此可明瞭在上述注目像素中,依據本發明之消耗電力之削減效果。As a result, if the backlight value in the example of FIG. 3(a) is corrected to be the same as the backlight value of FIG. 3(b), it becomes (4/3) × 60 / (1 + WR) = 40. In the example of Fig. 3(b) for performing the same display, since the backlight value is 60, it is possible to clarify the power consumption reduction effect according to the present invention in the above-mentioned attention pixel.

接著,參照圖4(a)、(b)說明在使用白色亮度比WR為1之液晶面板時,作為min (Rsi,Gsi,Bsi)<max (Rsi,Gsi,Bsi)/(1+1/WR)之像素中之背光源值之求解方式。在此,圖4(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖。此外,圖4(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Next, referring to Figs. 4(a) and 4(b), when a liquid crystal panel having a white luminance ratio WR of 1 is used, as min (Rsi, Gsi, Bsi) < max (Rsi, Gsi, Bsi) / (1 + 1 / The way the backlight value is solved in the pixel of WR). Here, FIG. 4(a) is a view showing a manner of solving the backlight value in the liquid crystal display device. In addition, FIG. 4(b) is a view showing a manner of solving the backlight value in Patent Document 1 for comparison.

茲考慮在圖4(a)、(b)中,某注目像素之作為目標之面板輸出亮度為(R,G,B)=(50,60,20)之情形。此時,G之亮度值60為max (Rsi,Gsi,Bsi),而B之亮度值20為min (Rsi,Gsi,Bsi),滿足min (Rsi,Gsi,Bsi)<max (Rsi,Gsi,Bsi)/(1+1/WR)之關係。It is considered that in the case of FIG. 4 (a), (b), the target panel output luminance of a target pixel is (R, G, B) = (50, 60, 20). At this time, the luminance value 60 of G is max (Rsi, Gsi, Bsi), and the luminance value 20 of B is min (Rsi, Gsi, Bsi), which satisfies min (Rsi, Gsi, Bsi) < max (Rsi, Gsi, The relationship between Bsi)/(1+1/WR).

在專利文獻1之顯示方法中,如圖4(b)所示,背光源值係設定為max (Rsi,Gsi,Bsi)=60,而各副像素之穿透率係配合此背光源值來決定。亦即,R、G、B之各副像素中之各個穿透率係設定為83%(=50/60)、100%(=60/60)、33%(=20/60)。In the display method of Patent Document 1, as shown in FIG. 4(b), the backlight value is set to max (Rsi, Gsi, Bsi) = 60, and the transmittance of each sub-pixel is matched with the backlight value. Decide. That is, each of the sub-pixels of R, G, and B is set to 83% (= 50/60), 100% (= 60/60), and 33% (= 20/60).

另一方面,在本液晶顯示裝置中,係在輸入信號Rsi、Gsi、Bsi之R、G、B各成分中,將與min (Rsi,Gsi,Bsi)相符之值份分配至W成分之穿透量。其結果,以RGB信號所 表示之輸入信號(R,G,B)=(50,60,20)係轉換為以RGBW信號所表示之穿透量(R,G,B,W)=(30,40,0,20)。此外,在此注目像素中,背光源值係設定為(max (Rsi,Gsi,Bsi)-min (Rsi,Gsi,Bsi))=40。此外,R、G、B、W之各副像素中之各個穿透率係配合此背光源值來決定。在R、G、B、W之各副像素中之各個穿透率係設定為75%(=30/40)、100%(=40/40)、0%(=0/40)、50%(=20/40/WR)。On the other hand, in the present liquid crystal display device, among the components R, G, and B of the input signals Rsi, Gsi, and Bsi, a value portion corresponding to min (Rsi, Gsi, Bsi) is distributed to the W component. Throughput. The result is RGB signal The input signal (R, G, B) = (50, 60, 20) is converted to the amount of penetration expressed by the RGBW signal (R, G, B, W) = (30, 40, 0, 20) . Further, in this pixel of interest, the backlight value is set to (max (Rsi, Gsi, Bsi) - min (Rsi, Gsi, Bsi)) = 40. In addition, each of the sub-pixels of R, G, B, and W is determined by the backlight value. Each of the sub-pixels of R, G, B, and W is set to 75% (= 30/40), 100% (= 40/40), 0% (=0/40), 50%. (=20/40/WR).

然而,在圖4(a)中所顯示之穿透率係為例示在該注目像素中所求出之背光源值相對於所有像素所求出之複數個背光源值之中最大,且作為該背光源中之亮度值所採用時之穿透率者。此外,在圖4(a)之例中,亦藉由將背光源值設為4/3倍,即可以與由專利文獻1之方法所求出之背光源值相同之基準來比較。However, the transmittance shown in FIG. 4( a ) is the largest among the plurality of backlight values obtained by determining the backlight value found in the pixel of interest with respect to all the pixels, and as the The transmittance at which the luminance value in the backlight is used. Further, in the example of FIG. 4(a), by setting the backlight value to 4/3 times, it is possible to compare with the reference value obtained by the method of Patent Document 1.

其結果,在圖4(a)之例中,背光源值即成為(4/3)×(60-20)=53.3。在進行同樣之顯示之圖4(b)之例中,背光源值係為60,因此可明瞭在上述注目像素中,依據本發明之消耗電力之削減效果。As a result, in the example of Fig. 4(a), the backlight value is (4/3) × (60-20) = 53.3. In the example of Fig. 4(b) for performing the same display, since the backlight value is 60, it is possible to clarify the power consumption reduction effect according to the present invention among the above-mentioned attention pixels.

接著,參照圖15(a)、(b)說明在使用白色亮度比WR為1.5之液晶面板時,作為min (Rsi,Gsi,Bsi)≧max (Rsi,Gsi,Bsi)/(1+1/WR)之像素中之背光源值之求解方式。在此,圖15(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖。此外,圖15(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Next, referring to Figs. 15(a) and 15(b), when a liquid crystal panel having a white luminance ratio WR of 1.5 is used, as min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, Bsi) / (1 + 1 / The way the backlight value is solved in the pixel of WR). Here, FIG. 15(a) is a view showing a manner of solving the backlight value in the liquid crystal display device. In addition, FIG. 15(b) is a diagram for explaining the manner of solving the backlight value in Patent Document 1 for comparison.

茲考慮在圖15(a)、(b)中,某注目像素之作為目標之面板輸出亮度為(R,G,B)=(100,120,80)之情形。此時,G之亮度值120為max (Rsi,Gsi,Bsi),而B之亮度值80為min (Rsi,Gsi,Bsi),滿足min (Rsi,Gsi,Bsi)≧max (Rsi,Gsi,Bsi)/(1+1/WR)=72之關係。In the case of Fig. 15 (a) and (b), the target panel output luminance of a target pixel is (R, G, B) = (100, 120, 80). At this time, the luminance value 120 of G is max (Rsi, Gsi, Bsi), and the luminance value 80 of B is min (Rsi, Gsi, Bsi), which satisfies min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, Bsi) / (1 + 1 / WR) = 72 relationship.

在專利文獻1之顯示方法中,如圖15(b)所示,背光源之亮度值係設定為max (Rsi,Gsi,Bsi)=120,而各副像素之穿透率係配合此背光源值來決定。亦即,R、G、B之各副像素中之各個穿透率係設定為83%(=100/120)、100%(=120/120)、67%(=80/120)。In the display method of Patent Document 1, as shown in FIG. 15(b), the luminance value of the backlight is set to max (Rsi, Gsi, Bsi) = 120, and the transmittance of each sub-pixel is matched with the backlight. The value is determined. That is, each of the sub-pixels of R, G, and B is set to 83% (=100/120), 100% (=120/120), and 67% (=80/120).

另一方面,在本液晶顯示裝置中,係在輸入信號Rsi、Gsi、Bsi之R、G、B各成分中,將與max (Rsi,Gsi,Bsi)/(1+1/WR)相符之值份分配至W成分之穿透量。其結果,以RGB信號所表示之輸入信號(R,G,B)=(100,120,80)係轉換為以RGBW信號所表示之穿透量(R,G,B,W)=(28,48,8,72)。此外,在此注目像素中,背光源值係設定為max (Rsi,Gsi,Bsi)/(1+WR)=48。On the other hand, in the present liquid crystal display device, among the components R, G, and B of the input signals Rsi, Gsi, and Bsi, it is matched with max (Rsi, Gsi, Bsi) / (1 + 1 / WR). The value is assigned to the penetration of the W component. As a result, the input signal (R, G, B) = (100, 120, 80) represented by the RGB signal is converted into the amount of penetration (R, G, B, W) = (28) represented by the RGBW signal. , 48, 8, 72). Further, in this pixel of interest, the backlight value is set to max (Rsi, Gsi, Bsi) / (1 + WR) = 48.

此外,R、G、B、W之各副像素中之各個穿透率係配合從該背光源值所作之背光源之明亮度來決定。由於W副像素係較RGB之副像素明亮白色亮度比WR倍,因此W副像素之穿透量所必要之背光源值係可以RGB副像素所必要之背光源值之1/WR倍來計算。亦即,R、G、B、W之各副像素中之各個穿透率係設定為58%(=28/48)、100%(=48/48)、16.7%(=8/48)、100%(=72/48/WR)。In addition, each of the sub-pixels of R, G, B, and W is determined by the brightness of the backlight from the backlight value. Since the W sub-pixel system is WR times brighter than the RGB sub-pixel bright white luminance ratio, the backlight value necessary for the W sub-pixel penetration amount can be calculated by 1/WR times the backlight value necessary for the RGB sub-pixel. That is, each of the sub-pixels of R, G, B, and W is set to 58% (= 28/48), 100% (= 48/48), and 16.7% (= 8/48), 100% (=72/48/WR).

然而,在圖15(a)中所顯示之穿透率係為例示在該注目像素中所求出之背光源值相對於所有像素所求出之複數個背光源值之中最大,且作為該背光源中之亮度值所採用時之穿透率者。此外,在圖15(a)之例中,亦藉由將背光源之亮度值設為4/3倍,即可以與由專利文獻1之方法所求出之背光源值相同之基準來比較。However, the transmittance shown in FIG. 15( a ) is the largest among the plurality of backlight values obtained by determining the backlight value found in the pixel of interest with respect to all the pixels, and as the The transmittance at which the luminance value in the backlight is used. Further, in the example of Fig. 15(a), by comparing the luminance value of the backlight to 4/3 times, it is possible to compare with the reference value obtained by the method of Patent Document 1.

其結果,只要將圖15(a)之例中之背光源值修正為與圖15(b)之背光源值相同之基準,則成為(4/3)×48=64。在進行同樣之顯示之圖15(b)之例中,背光源值係為120,因此可明瞭在上述注目像素中,依據本發明之消耗電力之削減效果。As a result, if the backlight value in the example of FIG. 15(a) is corrected to the same reference as the backlight value of FIG. 15(b), it becomes (4/3) × 48 = 64. In the example of Fig. 15(b) for performing the same display, since the backlight value is 120, it is possible to clarify the power consumption reduction effect according to the present invention among the above-mentioned attention pixels.

接著,參照圖16(a)、(b)說明在使用白色亮度比WR為1.5之液晶面板時,作為min (Rsi,Gsi,Bsi)<max (Rsi,Gsi,Bsi)/(1+1/WR)之像素中之背光源值之求解方式。在此,圖16(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖。此外,圖16(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Next, referring to FIGS. 16(a) and 16(b), when a liquid crystal panel having a white luminance ratio WR of 1.5 is used, as min (Rsi, Gsi, Bsi) < max (Rsi, Gsi, Bsi) / (1+1/) The way the backlight value is solved in the pixel of WR). Here, FIG. 16(a) is a view showing a manner of solving the backlight value in the liquid crystal display device. In addition, FIG. 16(b) is a view showing a manner of solving the backlight value in Patent Document 1 for comparison.

茲考慮在圖16(a)、(b)中,某注目像素之作為目標之面板輸出亮度為(R,G,B)=(100,120,70)之情形。此時,G之亮度值120為max (Rsi,Gsi,Bsi),而B之亮度值70為min (Rsi,Gsi,Bsi),滿足min (Rsi,Gsi,Bsi)<max (Rsi,Gsi,Bsi)/(1+1/WR)之關係。In the case of Fig. 16 (a) and (b), the target panel output luminance of a target pixel is (R, G, B) = (100, 120, 70). At this time, the luminance value 120 of G is max (Rsi, Gsi, Bsi), and the luminance value 70 of B is min (Rsi, Gsi, Bsi), which satisfies min (Rsi, Gsi, Bsi) < max (Rsi, Gsi, The relationship between Bsi)/(1+1/WR).

在專利文獻1之顯示方法中,如圖16(b)所示,背光源之亮度值係設定為max (Rsi,Gsi,Bsi)=120,而各副像素之 穿透率係配合此背光源值來決定。亦即,R、G、B之各副像素中之各個穿透率係設定為83%(=100/120)、100%(=120/120)、58%(=70/120)。In the display method of Patent Document 1, as shown in FIG. 16(b), the luminance value of the backlight is set to max (Rsi, Gsi, Bsi) = 120, and each sub-pixel is The penetration rate is determined by the value of this backlight. That is, each of the sub-pixels of R, G, and B is set to 83% (=100/120), 100% (=120/120), and 58% (=70/120).

另一方面,在本液晶顯示裝置中,係在輸入信號Rsi、Gsi、Bsi之R、G、B各成分中,將與min (Rsi,Gsi,Bsi)相符之值份分配至W成分之穿透量。其結果,以RGB信號所表示之輸入信號(R,G,B)=(100,120,70)係轉換為以RGBW信號所表示之穿透量(R,G,B,W)=(30,50,0,70)。此外,在此注目像素中,背光源值係設定為(max (Rsi,Gsi,Bsi)-min (Rsi,Gsi,Bsi))=50。此外,R、G、B、W之各副像素中之各個穿透率係設定為60%(=30/50)、100%(=50/50)、0%(=0/50)、93%(=70/50/WR)。On the other hand, in the present liquid crystal display device, among the components R, G, and B of the input signals Rsi, Gsi, and Bsi, a value portion corresponding to min (Rsi, Gsi, Bsi) is distributed to the W component. Throughput. As a result, the input signal (R, G, B) = (100, 120, 70) represented by the RGB signal is converted into the amount of penetration (R, G, B, W) = (30) represented by the RGBW signal. , 50, 0, 70). Further, in this pixel of interest, the backlight value is set to (max (Rsi, Gsi, Bsi) - min (Rsi, Gsi, Bsi)) = 50. In addition, each of the sub-pixels of R, G, B, and W is set to 60% (= 30/50), 100% (= 50/50), 0% (=0/50), 93. %(=70/50/WR).

然而,在圖16(a)中所顯示之穿透率係為例示在該注目像素中所求出之背光源值相對於所有像素所求出之複數個背光源值之中最大,且作為該背光源值中之亮度值所採用時之穿透率者。此外,在圖16(a)之例中,亦藉由將背光源之亮度值設為4/3倍,即可以與由專利文獻1之方法所求出之背光源值相同之基準來比較。However, the transmittance shown in FIG. 16( a ) is the largest among the plurality of backlight values obtained by determining the backlight value found in the pixel of interest with respect to all the pixels, and as the The transmittance at which the luminance value in the backlight value is used. Further, in the example of Fig. 16 (a), by comparing the luminance value of the backlight to 4/3 times, it can be compared with the reference value obtained by the method of Patent Document 1.

其結果,在圖16(a)之例中,背光源值即成為(4/3)×(120-70)=66.7。在進行同樣之顯示之圖16(b)之例中,背光源值係為120,因此可明瞭在上述注目像素中,依據本發明之消耗電力之削減效果。As a result, in the example of Fig. 16 (a), the backlight value is (4/3) × (120 - 70) = 66.7. In the example of Fig. 16(b) for performing the same display, since the backlight value is 120, it is possible to clarify the power consumption reduction effect according to the present invention among the above-mentioned attention pixels.

接著,參照圖17(a)、(b)說明在白色亮度比WR使用0.6之 液晶面板時,作為min (Rsi,Gsi,Bsi)≧max (Rsi,Gsi,Bsi)/(1+1/WR)之像素中之背光源值之求解方式。在此,圖17(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖。此外,圖17(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Next, referring to FIGS. 17(a) and 17(b), it is explained that the white luminance ratio WR is 0.6. In the case of a liquid crystal panel, it is a solution of the backlight value in pixels of min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, Bsi) / (1 + 1 / WR). Here, FIG. 17(a) is a view showing a manner of solving the backlight value in the liquid crystal display device. In addition, FIG. 17(b) is a view showing a manner of solving the backlight value in Patent Document 1 for comparison.

茲考慮在圖17(a)、(b)中,某注目像素之作為目標之面板輸出亮度為(R,G,B)=(100,120,50)之情形。此時,G之亮度值120為max (Rsi,Gsi,Bsi),而B之亮度值50為min (Rsi,Gsi,Bsi),滿足min (Rsi,Gsi,Bsi)≧max (Rsi,Gsi,Bsi)/(1+1/WR)=45之關係。In the case of Fig. 17 (a) and (b), the target panel output luminance of a target pixel is (R, G, B) = (100, 120, 50). At this time, the luminance value 120 of G is max (Rsi, Gsi, Bsi), and the luminance value 50 of B is min (Rsi, Gsi, Bsi), which satisfies min (Rsi, Gsi, Bsi) ≧ max (Rsi, Gsi, Bsi) / (1 + 1 / WR) = 45 relationship.

在專利文獻1之顯示方法中,如圖17(b)所示,背光源之亮度值係設定為max (Rsi,Gsi,Bsi)=120,而各副像素之穿透率係配合此背光源值來決定。亦即,R、G、B之各副像素中之各個穿透率係設定為83%(=100/120)、100%(=120/120)、42%(=50/120)。In the display method of Patent Document 1, as shown in FIG. 17(b), the luminance value of the backlight is set to max (Rsi, Gsi, Bsi) = 120, and the transmittance of each sub-pixel is matched with the backlight. The value is determined. That is, each of the sub-pixels of R, G, and B is set to 83% (=100/120), 100% (=120/120), and 42% (=50/120).

另一方面,在本液晶顯示裝置中,係在輸入信號Rsi、Gsi、Bsi之R、G、B各成分中,將與max (Rsi,Gsi,Bsi)/(1+1/WR)相符之值份分配至W成分之穿透量。其結果,以RGB信號所表示之輸入信號(R,G,B)=(100,120,50)係轉換為以RGBW信號所表示之穿透量(R,G,B,W)=(55,75,5,45)。此外,在此注目像素中,背光源值係設定為max (Rsi,Gsi,Bsi)/(1+WR)=75。此外,R、G、B、W之各副像素中之各個穿透率係設定為73%(=55/75)、100%(=75/75)、6.7%(=5/75)、100%(=45/75/ WR)。On the other hand, in the present liquid crystal display device, among the components R, G, and B of the input signals Rsi, Gsi, and Bsi, it is matched with max (Rsi, Gsi, Bsi) / (1 + 1 / WR). The value is assigned to the penetration of the W component. As a result, the input signal (R, G, B) = (100, 120, 50) represented by the RGB signal is converted into the amount of penetration (R, G, B, W) = (55) represented by the RGBW signal. , 75, 5, 45). Further, in this pixel of interest, the backlight value is set to max (Rsi, Gsi, Bsi) / (1 + WR) = 75. In addition, each of the sub-pixels of R, G, B, and W is set to 73% (= 55/75), 100% (= 75/75), 6.7% (= 5/75), 100. %(=45/75/ WR).

然而,在圖17(a)中所顯示之穿透率係為例示在該注目像素中所求出之背光源值相對於所有像素所求出之複數個背光源值之中最大,且作為該背光源中之亮度值所採用時之穿透率者。此外,在圖17(a)之例中,亦藉由將背光源之亮度值設為4/3倍,即可以與由專利文獻1之方法所求出之背光源值相同之基準來比較。However, the transmittance shown in FIG. 17(a) is the largest among the plurality of backlight values obtained by determining the backlight value found in the pixel of interest with respect to all the pixels, and as the The transmittance at which the luminance value in the backlight is used. Further, in the example of Fig. 17 (a), by comparing the luminance value of the backlight to 4/3 times, it is possible to compare with the same reference value as the backlight value obtained by the method of Patent Document 1.

其結果,只要將圖17(a)之例中之背光源值修正為與圖17(b)之背光源值相同之基準,則成為(4/3)×75=100。在進行同樣之顯示之圖17(b)之例中,背光源值係為120,因此可明瞭在上述注目像素中,依據本發明之消耗電力之削減效果。As a result, if the backlight value in the example of FIG. 17(a) is corrected to the same reference as the backlight value of FIG. 17(b), (4/3) × 75 = 100. In the example of Fig. 17(b) for performing the same display, since the backlight value is 120, it is possible to clarify the power consumption reduction effect according to the present invention among the above-mentioned attention pixels.

接著,參照圖18(a)、(b)說明在使用白色亮度比WR為0.6之液晶面板時,作為min (Rsi,Gsi,Bsi)<max (Rsi,Gsi,Bsi)/(1+1/WR)之像素中之背光源值之求解方式。在此,圖18(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖。此外,圖18(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Next, referring to Figs. 18(a) and (b), when a liquid crystal panel having a white luminance ratio WR of 0.6 is used, as min (Rsi, Gsi, Bsi) < max (Rsi, Gsi, Bsi) / (1 + 1 / The way the backlight value is solved in the pixel of WR). Here, FIG. 18(a) is a view showing a manner of solving the backlight value in the liquid crystal display device. Further, Fig. 18(b) is a diagram for explaining the manner of solving the backlight value in Patent Document 1 for comparison.

茲考慮在圖18(a)、(b)中,某注目像素之作為目標之面板輸出亮度為(R,G,B)=(100,120,40)之情形。此時,G之亮度值120為max (Rsi,Gsi,Bsi),而B之亮度值40為min (Rsi,Gsi,Bsi),滿足min (Rsi,Gsi,Bsi)<max (Rsi,Gsi,Bsi)/(1+1/WR)之關係。In the case of Fig. 18 (a) and (b), the target panel output luminance of a target pixel is (R, G, B) = (100, 120, 40). At this time, the luminance value 120 of G is max (Rsi, Gsi, Bsi), and the luminance value 40 of B is min (Rsi, Gsi, Bsi), which satisfies min (Rsi, Gsi, Bsi) < max (Rsi, Gsi, The relationship between Bsi)/(1+1/WR).

在專利文獻1之顯示方法中,如圖18(b)所示,背光源值 係設定為max (Rsi,Gsi,Bsi)=120,而各副像素之穿透率係配合此背光源值來決定。亦即,R、G、B之各副像素中之各個穿透率係設定為83%(=100/120)、100%(=120/120)、33%(=40/120)。In the display method of Patent Document 1, as shown in FIG. 18(b), the backlight value It is set to max (Rsi, Gsi, Bsi) = 120, and the transmittance of each sub-pixel is determined by the value of this backlight. That is, each of the sub-pixels of R, G, and B is set to 83% (=100/120), 100% (=120/120), and 33% (=40/120).

另一方面,在本液晶顯示裝置中,係在輸入信號Rsi、Gsi、Bsi之R、G、B各成分中,將與min (Rsi,Gsi,Bsi)相符之值份分配至W成分之穿透量。其結果,以RGB信號所表示之輸入信號(R,G,B)=(100,120,40)係轉換為以RGBW信號所表示之輸出信號(R,G,B,W)=(60,80,0,40)。此外,在此注目像素中,背光源值係設定為(max (Rsi,Gsi,Bsi)-min (Rsi,Gsi,Bsi))=80。此外,R、G、B、W之各副像素中之各個穿透率係設定為75%(=60/80)、100%(=80/80)、0%(=0/80)、83%(=40/80/WR)。On the other hand, in the present liquid crystal display device, among the components R, G, and B of the input signals Rsi, Gsi, and Bsi, a value portion corresponding to min (Rsi, Gsi, Bsi) is distributed to the W component. Throughput. As a result, the input signal (R, G, B) = (100, 120, 40) represented by the RGB signal is converted into an output signal (R, G, B, W) = (60, represented by the RGBW signal). 80,0,40). Further, in this pixel of interest, the backlight value is set to (max (Rsi, Gsi, Bsi) - min (Rsi, Gsi, Bsi)) = 80. In addition, each of the sub-pixels of R, G, B, and W is set to 75% (=60/80), 100% (=80/80), 0% (=0/80), 83. %(=40/80/WR).

然而,在圖18(a)中所顯示之穿透率係為例示在該注目像素中所求出之背光源值相對於所有像素所求出之複數個背光源值之中最大,且作為該背光源中之背光源值所採用時之穿透率者。此外,在圖18(a)之例中,亦藉由將背光源之亮度值設為4/3倍,即可以與由專利文獻1之方法所求出之背光源值相同之基準來比較。However, the transmittance shown in FIG. 18( a ) is the largest among the plurality of backlight values obtained by determining the backlight value found in the pixel of interest with respect to all the pixels, and as the The transmittance at which the backlight value in the backlight is used. Further, in the example of Fig. 18(a), by comparing the luminance value of the backlight to 4/3 times, it is possible to compare with the same reference value as the backlight value obtained by the method of Patent Document 1.

其結果,在圖18(a)之例中,背光源值係成為(4/3)×(120-40)=107。在進行同樣之顯示之圖18(b)之例中,背光源值係為120,因此可明瞭在上述注目像素中,依據本發明之消耗電力之削減效果。As a result, in the example of Fig. 18(a), the backlight value is (4/3) × (120 - 40) = 107. In the example of Fig. 18(b) for performing the same display, since the backlight value is 120, it is possible to clarify the power consumption reduction effect according to the present invention among the above-mentioned attention pixels.

上述圖3、圖4、圖15~圖18雖係說明關於各像素之必要最小限度之背光源值之求解方式者,惟依循上述之方法,求出每一與背光源對應之顯示區域內之所有像素必要最小限度之背光源值。茲將如此所求出之複數個背光源值之中,最大之值設定作為該背光源中之亮度值。3, FIG. 4, and FIG. 15 to FIG. 18 are diagrams for explaining the method of solving the minimum necessary backlight value for each pixel, but by performing the above method, each of the display areas corresponding to the backlight is obtained. A minimum backlight value is required for all pixels. Among the plurality of backlight values thus obtained, the largest value is set as the luminance value in the backlight.

茲參照圖5(a)~(e)說明依據上述說明之方法所實施之本液晶顯示裝置中之背光源值及副像素穿透率之決定順序。The order of determining the backlight value and the sub-pixel transmittance in the liquid crystal display device implemented by the method described above will be described with reference to FIGS. 5(a) to 5(e).

圖5(a)係為顯示與某一個背光源對應之顯示區域之輸入信號(Rsi,Gsi,Bsi)者。在此,為了簡化說明,係設為以白色亮度比WR為1,而上述顯示區域則由4個像素A~D構成。實際之白色亮度比WR係為由液晶面板所決定之值,其相對於所有像素具有共通之值,為較0大之值。Fig. 5(a) shows an input signal (Rsi, Gsi, Bsi) indicating a display area corresponding to a certain backlight. Here, in order to simplify the description, the white luminance ratio WR is set to 1, and the display region is composed of four pixels A to D. The actual white luminance ratio WR is a value determined by the liquid crystal panel, and has a common value with respect to all pixels, which is a value larger than zero.

針對此等像素A~D,將輸入信號(Rsi,Gsi,Bsi)轉換為以RGBW信號所表示之輸出信號(Rtsi,Gtsi,Btsi,Wtsi)之結果即成為圖5(b)所示者。此外,依每一像素所求出之背光源值係成為圖5(c)所示者。藉此,背光源值係設定為依每一像素所求出之複數個背光源值之中之最大值,亦即100。For these pixels A to D, the result of converting the input signal (Rsi, Gsi, Bsi) into an output signal (Rtsi, Gtsi, Btsi, Wtsi) represented by the RGBW signal is as shown in Fig. 5(b). Further, the backlight value obtained for each pixel is as shown in FIG. 5(c). Thereby, the backlight value is set to the maximum value among the plurality of backlight values determined for each pixel, that is, 100.

相對於如此所求出之背光源值100,各像素之穿透率(rsi、gsi、bsi、wsi)係根據圖5(b)所示之輸出信號(Rtsi,Gtsi,Btsi,Wtsi)之值而求出,其結果即成為圖5(d)所示者。再者,最終之各像素中之顯示亮度係成為圖5(e)所示之結果,可確認與圖5(a)所示之輸入信號(Rsi,Gsi,Bsi)之亮度值一致。The transmittance (rsi, gsi, bsi, wsi) of each pixel is based on the value of the output signal (Rtsi, Gtsi, Btsi, Wtsi) shown in Fig. 5(b) with respect to the backlight value 100 thus obtained. The result is obtained as shown in Fig. 5(d). Further, the display luminance in each of the final pixels is a result shown in FIG. 5(e), and it can be confirmed that the luminance values of the input signals (Rsi, Gsi, Bsi) shown in FIG. 5(a) coincide.

如此,在上述之輸出信號產生部12中之背光源值及副像素穿透率之算出處理中,係藉由使W副像素分擔白成分之光量而抑制由彩色濾光片所吸收之光,而可削減背光源16中之消耗電力者。因此,在顯示圖像資料中,可分配至W副像素之白成分光量,即成為用以獲得背光源消耗電力之削減效果之必要條件。As described above, in the calculation process of the backlight value and the sub-pixel transmittance in the output signal generating unit 12 described above, the light absorbed by the color filter is suppressed by sharing the light amount of the white component by the W sub-pixel. The power consumption in the backlight 16 can be reduced. Therefore, in the display image data, the amount of white component light that can be allocated to the W sub-pixels is a necessary condition for obtaining a reduction effect of the backlight power consumption.

亦即,在輸出信號產生部12中之背光源值及副像素穿透率之算出處理,係於在與背光源對應之顯示區域內之所有像素分配至W副像素之白成分光量較多(亦即彩度較低)時,背光源消耗電力之削減效果變大。另一方面,在與背光源對應之顯示區域內若有分配至W副像素之白成分光量較少(亦即彩度較高)之像素,則背光源消耗電力之削減效果變小,再者若亮度較高,則相較於專利文獻1之顯示方法反而消耗電力亦有可能會增加。In other words, the calculation of the backlight value and the sub-pixel transmittance in the output signal generating unit 12 is performed by distributing the amount of white component light to the W sub-pixels in all the pixels in the display region corresponding to the backlight ( In other words, when the chroma is low, the effect of reducing the power consumption of the backlight becomes large. On the other hand, if there is a pixel in which the amount of light of the white component allocated to the W sub-pixel is small (that is, the chroma is high) in the display region corresponding to the backlight, the effect of reducing the power consumption of the backlight is small, and further If the brightness is high, the power consumption may be increased as compared with the display method of Patent Document 1.

以下係表示在使用白色亮度比WR為1之液晶面板時,關於亮度相同而彩度不同之2個像素之背光源值之設定例。The following is an example of setting the backlight value of two pixels having the same luminance and different chroma when the liquid crystal panel having the white luminance ratio WR is used.

首先,(R,G,B)=(176,240,112)之像素A(亮度=208、彩度=0.533)時,背光源值係以下列方式算出。First, when the pixel A of (R, G, B) = (176, 240, 112) (luminance = 208, saturation = 0.533), the backlight value is calculated in the following manner.

在像素A中,分配至W副像素之光量係為(112)。再者,將分配至W副像素之光量扣除之R,G,B副像素之各光量係成為(64,128,0)。其結果,在像素A中所設定之背光源值即成為(128)。In the pixel A, the amount of light allocated to the W sub-pixel is (112). Further, the amount of light of the R, G, and B sub-pixels to which the amount of light allocated to the W sub-pixel is subtracted is (64, 128, 0). As a result, the backlight value set in the pixel A is (128).

另一方面,(R,G,B)=(160,256,64)之像素B(亮度=208、彩度=0.75)時,背光源值係以下列方式算出。On the other hand, when (R, G, B) = (160, 256, 64) pixel B (brightness = 208, saturation = 0.75), the backlight value is calculated in the following manner.

在像素B中,分配至W副像素之光量係為(64)。再者,將分配至W副像素之光量扣除之R,G,B副像素之各光量係成為(96,192,0)。其結果,在像素B中所設定之背光源值即成為(192)。In the pixel B, the amount of light allocated to the W sub-pixel is (64). Further, the amount of light of the R, G, and B sub-pixels to which the amount of light allocated to the W sub-pixel is subtracted is (96, 192, 0). As a result, the backlight value set in the pixel B is (192).

如此,若比較像素A與像素B,則兩者儘管亮度相等,然而背光源值係以彩度較高之像素B設定為較大,可明瞭背光源消耗電力之削減效果較小。As described above, when the pixels A and B are compared, the luminance values are equal, but the backlight value is set to be larger with the pixel B having a higher chroma, and the effect of reducing the power consumption of the backlight is small.

在此,輸出信號產生部12係針對最初對於本液晶顯示裝置輸入之原圖像資料(亦即第1輸入RGB信號),亦可藉由上述處理來算出背光源值及副像素穿透率。然而,此時,由於上述之理由,未必可對所有圖像獲得消耗電力削減效果(另外,實際上,在顯示機會被認為最多之通常之中間調顯示畫面中,可獲得消耗電力削減之效果之情形較多)。Here, the output signal generation unit 12 calculates the backlight value and the sub-pixel transmittance by the above-described processing for the original image data (that is, the first input RGB signal) that is first input to the liquid crystal display device. However, at this time, for the above reasons, it is not always possible to obtain a power consumption reduction effect for all the images (in addition, in actuality, in the normal intermediate display screen where the display opportunity is considered to be the most, the power consumption reduction effect can be obtained. More situations).

因此,在本液晶顯示裝置中,係將彩度減低部11配置於輸出信號產生部12之前段,且對於第1輸入RGB信號施以彩度減低處理而轉換為第2輸入RGB信號。藉此,在輸出信號產生部12中之處理,可更確實更大幅獲得背光源消耗電力之減低效果。以下詳細說明彩度減低部11中之彩度減低處理。Therefore, in the liquid crystal display device of the present invention, the chroma reducing unit 11 is placed in front of the output signal generating unit 12, and the first input RGB signal is subjected to chroma reduction processing to be converted into the second input RGB signal. Thereby, the processing in the output signal generating unit 12 can more reliably obtain the effect of reducing the power consumption of the backlight. The chroma reduction processing in the chroma reduction unit 11 will be described in detail below.

圖6係為顯示彩度減低部11之概略構成之區塊圖。彩度減低部11係如圖6所示包括有背光源上限值算出部21、信號轉換部22而構成。背光源上限值算出部21係從第1輸入RGB信號之上限值、白色亮度比WR、及背光源值設定率算出背光源上限值,並將該背光源上限值輸出至信號轉換 部22。信號轉換部22係從第1輸入RGB信號、及從背光源上限值算出部21所輸出之背光源上限值,算出第2輸入RGB信號並加以輸出。FIG. 6 is a block diagram showing a schematic configuration of the chroma reduction unit 11. The chroma reduction unit 11 includes a backlight upper limit value calculation unit 21 and a signal conversion unit 22 as shown in FIG. 6 . The backlight upper limit value calculation unit 21 calculates the backlight upper limit value from the first input RGB signal upper limit value, the white luminance ratio WR, and the backlight value setting rate, and outputs the backlight upper limit value to the signal conversion. Part 22. The signal conversion unit 22 calculates and outputs the second input RGB signal from the first input RGB signal and the backlight upper limit value output from the backlight upper limit calculation unit 21.

圖7係為用以說明彩度減低部11之動作之流程圖。FIG. 7 is a flowchart for explaining the operation of the chroma reduction unit 11.

最初,在S11中,係在背光源上限值算出部21中算出背光源上限值(S11)。在彩度減低部11中,直接分配至W副像素之光量較少(亦即彩度較高),而且,僅對於亮度較高之像素才進行彩度減低處理,惟對於彩度或亮度之至少一方較低之像素則不進行彩度減低處理。此係由於在彩度較低之像素中,即使例如亮度較高亦可藉由將較多之光量分配至W副像素而可大幅降低背光源值,此外,在亮度較低之像素中,原本在顯示中就不需要較高之背光源值之故。上述背光源上限值係用於判定應進行彩度減低處理之像素。茲詳細說明背光源上限值之算出順序如下。First, in S11, the backlight upper limit value calculation unit 21 calculates the backlight upper limit value (S11). In the chroma reduction section 11, the amount of light directly allocated to the W sub-pixels is small (that is, the chroma is high), and the chroma reduction processing is performed only for the pixels having higher luminance, but for chroma or brightness Pixel reduction processing is not performed for pixels that are at least one of the lower pixels. This is because in a pixel with low chroma, even if, for example, the brightness is high, the backlight value can be greatly reduced by allocating a larger amount of light to the W sub-pixel, and further, in the pixel with lower brightness, the original A higher backlight value is not required in the display. The above-described backlight upper limit value is used to determine pixels for which chroma reduction processing should be performed. The calculation procedure for the upper limit value of the backlight will be described in detail as follows.

首先考慮對於圖像資料(亦即輸入RGB信號)不進行彩度減低處理之情形,而且,背光源值變成最大之情形。此係為彩度為1(無法分擔光量至W副像素),而且RGB值之至少1個為MAX(意指輸入RGB信號之上限值)之像素存在之情形。此外,此時之背光源值亦成為MAX。First, a case where the chroma data reduction processing is not performed for the image data (that is, the input RGB signal) is considered, and the backlight value becomes the maximum. This is the case where the chroma is 1 (the amount of light cannot be shared to W sub-pixels), and at least one of the RGB values is a pixel of MAX (meaning the upper limit of the input RGB signal). In addition, the backlight value at this time also becomes MAX.

接著考慮對於圖像資料(亦即輸入RGB信號)進行彩度減低處理之情形,而且,背光源值變為最大之情形。另外,在此之彩度減低處理係設為對於施行該處理之像素,在處理前後不使亮度變化,而使彩度最小之處理。此時,彩度為0(無法將彩度更為降低,因此無法降低背光源值),而且 RGB值之所有為MAX之像素存在時,成為最大之背光源值。在此,由於W副像素係可較RGB副像素更明亮WR倍發光,因此在上述像素中,係可將RGB值之各個中之光量之WR/(1+WR)分配至W副像素,且對於各RGB副像素予以分配1/(1+WR)即成為最有效率之背光源。此時之背光源值係成為MAX/(1+WR)。Next, a case where the chroma processing is performed on the image data (that is, the input RGB signal) is considered, and the backlight value becomes the maximum. In addition, the chroma reduction processing is a process of minimizing the chroma without changing the brightness before and after the processing for the pixel performing the processing. At this time, the chroma is 0 (the chroma cannot be lowered, so the backlight value cannot be lowered), and When all of the RGB values are present in the MAX pixel, they become the largest backlight value. Here, since the W sub-pixel system can emit light WR times brighter than the RGB sub-pixel, in the above-mentioned pixels, WR/(1+WR) of the light amount in each of the RGB values can be assigned to the W sub-pixel, and Assigning 1/(1+WR) to each RGB sub-pixel becomes the most efficient backlight. The backlight value at this time is MAX/(1+WR).

因此,背光源上限值MAXw之範圍係成為MAX/(1+WR)~MAX,而將B1Ratio之範圍設為1/(1+WR)~1.0時,背光源上限值MAXw係可以下述之(1)式來表示。Therefore, the range of the upper limit of the backlight MAXw is MAX/(1+WR)~MAX, and when the range of B1Ratio is set to 1/(1+WR)~1.0, the upper limit of the backlight MAXw can be as follows. It is expressed by the formula (1).

MAXw=MAX×B1Ratio………(1)MAXw=MAX×B1Ratio.........(1)

另外,在此所稱之MAX係指輸入RGB信號之上限值,並非限於一值,而可考慮複數個值。亦即,MAX之下限值係成為輸入RGB信號之所有RGB值之最大值(MAXi)。此係由於若將MAX設為較MAXi更小之值,則無法保障設為所希望之背光源值之故。另一方面,MAX之上限值係成為輸入RGB信號之可取得之值之最大值(MAXs)。此係由於不需要較MAXs大之背光源值之故。In addition, the term "MAX" as used herein refers to an upper limit value of an input RGB signal, and is not limited to a single value, but a plurality of values may be considered. That is, the lower limit of MAX is the maximum value (MAXi) of all RGB values of the input RGB signal. This is because if MAX is set to a value smaller than MAXi, it is not guaranteed to be the desired backlight value. On the other hand, the MAX upper limit is the maximum value (MAXs) of the values that can be obtained for the input RGB signal. This is because there is no need for a larger backlight value than MAXs.

將輸入RGB信號之位元寬度設為Bw時,MAXs係以下式來表示。When the bit width of the input RGB signal is set to Bw, MAXs is expressed by the following equation.

MAXs=2Bw -1MAXs=2 Bw -1

例如,Bw為8時,MAXs係成為28 -1=255。因此,有效之MAX之範圍係以下式來表示。For example, when Bw is 8, MAXs becomes 2 8 -1=255. Therefore, the range of effective MAX is expressed by the following formula.

MAXi≦MAX≦MAXsMAXi≦MAX≦MAXs

基本上以MAX之設定值而言,只要滿足MAXi≦MAX≦MAXs,則可以是任何值。若設定為MAX=MAXi,則最可降低背光源值。惟需依每一圖像計算MAX。另一方面,若設定為MAX=MAXs,則背光源上限值(MAXw)相較於MAXi雖會變高,惟MAX會成為不依存於圖像之一定值,因此不需依每一圖像重新計算MAX。Basically, in terms of the set value of MAX, as long as MAXi≦MAX≦MAXs is satisfied, it can be any value. If set to MAX=MAXi, the backlight value can be reduced most. Only calculate MAX for each image. On the other hand, if it is set to MAX=MAXs, the backlight upper limit value (MAXw) will become higher than MAXi, but MAX will become a certain value that does not depend on the image, so there is no need to rely on each image. Recalculate MAX.

此外,在上述(1)式中,B1Ratio係為顯示彩度減低處理之程度之常數。亦即,B1Ratio為1時,相當於不進行上述彩度減低處理之情形,而B1Ratio為1/(1+WR)時,相當於進行使彩度最小之處理之情形。在上述彩度減低處理中,愈是將彩度更為減低,則背光源消耗電力之削減效果就愈大,惟當然由彩度減低所導致之畫質劣化之程度亦變大。因此,考慮消耗電力之削減效果與畫質劣化之平衡,依據所要求之彩度減低位準而將B1Ratio在1/(1+WR)~1之範圍中任意設定即可。Further, in the above formula (1), B1Ratio is a constant showing the degree of chroma reduction processing. In other words, when B1Ratio is 1, it is equivalent to the case where the chroma reduction processing is not performed, and when B1Ratio is 1/(1+WR), it corresponds to the case where the processing for minimizing the chroma is performed. In the above-described chroma reduction processing, the more the chroma is reduced, the greater the effect of reducing the power consumption of the backlight is, but the degree of deterioration of the image quality caused by the reduction in chroma is also increased. Therefore, in consideration of the balance between the power consumption reduction effect and the image quality deterioration, B1Ratio can be arbitrarily set in the range of 1/(1+WR)-1 depending on the required chroma reduction level.

只要以此方式決定背光源上限值MAXw,接著,在S12中,即根據下述之(2)式而依每一像素判定是否進行彩度減低處理之判斷。The backlight upper limit value MAXw is determined in this manner, and then, in S12, it is determined whether or not the chroma reduction processing is performed for each pixel in accordance with the following formula (2).

MAXw<maxRGB-minRGB………(2)MAXw<maxRGB-minRGB.........(2)

惟在上述(2)式中,maxRGB=max (Ri,Gi,Bi)minRGB=min (Ri,Gi,Bi)。However, in the above formula (2), maxRGB = max (Ri, Gi, Bi) min RGB = min (Ri, Gi, Bi).

在某注目像素中,其RGB值滿足上述(2)式時,該注目像素係被判定為在維持該狀態下,背光源值係為會超過背光 源上限值MAXw之亮度及彩度較高之像素。因此,對於該種像素,係藉由S13來實施彩度減低處理。In a pixel of interest, when the RGB value satisfies the above formula (2), the pixel of interest is determined to maintain the state, and the backlight value is higher than the backlight. A pixel with a higher luminance and chroma of the upper limit value of the source MAXw. Therefore, for such a pixel, the chroma reduction processing is performed by S13.

另外,藉由此彩度減低處理,在色彩之鮮明度之點,輸入圖像之畫質雖會劣化,惟在一般之圖像中,高亮度且高彩度之部分並不那麼多,彩度降低之部分大多限於圖像之一部分。再者,人的視覺特性相較於明亮度之變化,對於顏色之變化並不那麼敏感,因此彩度減低所導致之畫質劣化,大多不會被人所辨識。另一方面,在人的視覺特性中,亮度變化係被辨識為較大之畫質劣化。因此,在此彩度減低處理中,重要的是不使亮度變化,而僅將彩度減低。In addition, by the chroma reduction process, the image quality of the input image deteriorates at the point of the vividness of the color, but in the general image, the portion of high brightness and high chroma is not so much, and the chroma is lowered. Most of the parts are limited to one part of the image. Furthermore, human visual characteristics are less sensitive to changes in color than changes in brightness, so the deterioration of image quality caused by reduced chroma is mostly unrecognizable. On the other hand, in human visual characteristics, the change in luminance is recognized as a large deterioration in image quality. Therefore, in this chroma reduction process, it is important that the luminance is not changed, and only the chroma is reduced.

另一方面,在S12中未滿足上述(2)式之像素,係被判定為即使在該狀態下,背光源值亦為不會超過背光源上限值MAXw之亮度或彩度較低之像素。對於該種像素,不須進行彩度減低處理,而移至S14,第1輸入RGB資料中之像素資料亦直接在第2輸入RGB資料中使用。On the other hand, if the pixel of the above formula (2) is not satisfied in S12, it is determined that even in this state, the backlight value is a pixel whose luminance or chroma is not higher than the backlight upper limit value MAXw. . For this type of pixel, the chroma data reduction processing is not required, and the pixel data in the first input RGB data is directly used in the second input RGB data.

在此說明上述(2)式使用於是否判定關於注目像素之彩度減低處理之理由。Here, the reason why the above formula (2) is used for determining whether or not the chroma reduction processing for the pixel of interest is determined is explained.

首先,不進行彩度減低時之W副像素穿透量Wti之算出式係成為以下之(3)式。First, the calculation formula of the W sub-pixel penetration amount Wti when the chroma reduction is not performed is the following formula (3).

Wti=min(maxRGB/(1+1/WR),minRGB)………(3)Wti=min(maxRGB/(1+1/WR), minRGB).........(3)

再者,RGB副像素之穿透量(Rti,Gti,Bti)係成為下述之(4)~(6)式。Further, the amount of penetration of the RGB sub-pixels (Rti, Gti, Bti) is expressed by the following equations (4) to (6).

Rti=Ri-Wti………(4)Rti=Ri-Wti.........(4)

Gti=Gi-Wti………(5)Gti=Gi-Wti.........(5)

Bti=Bi-Wti………(6)Bti=Bi-Wti.........(6)

在上述(3)~(6)式中,RGBW穿透量之各個,並無Wti超過minRGB之情形,因此其值不會低於0。In the above formulas (3) to (6), each of the RGBW penetration amounts does not have a case where Wti exceeds minRGB, so the value thereof is not lower than zero.

接著,RGB穿透量之各個不超過MAXw之條件係為以下之(7)~(9)。Then, the conditions in which the RGB penetration amount does not exceed MAXw are as follows (7) to (9).

Rti≦MAXw………(7)Rti≦MAXw.........(7)

Gti≦MAXw………(8)Gti≦MAXw.........(8)

Bti≦MAXw………(9)Bti≦MAXw.........(9)

另一方面,W穿透量不超過MAXw之條件,係W副像素相對於RGB副像素為以WR倍發光,因此以WR除Wti之值即成為不超過MAXw之條件,由上述(3)式,最後成為以下之(10)式。On the other hand, the W penetration amount does not exceed the condition of MAXw, and the W sub-pixel emits light at WR times with respect to the RGB sub-pixel. Therefore, the value of Wti is divided by WR to be a condition that does not exceed MAXw, and the above (3) is obtained. Finally, it becomes the following formula (10).

Wti/WR≦MAXwWti/WR≦MAXw

因此,min(maxRGB/(1+1/WR),minRGB)≦MAXw×WR………(10)Therefore, min(maxRGB/(1+1/WR), minRGB)≦MAXw×WR.........(10)

由上述(3)~(6)式、及(7)~(9)式,RGB穿透量之各個不超過MAXw之條件係成為以下之(11)式。From the above equations (3) to (6) and (7) to (9), the condition that each of the RGB penetration amounts does not exceed MAXw is the following formula (11).

max (Rti,Gti,Bti)≦MAXw maxRGB-Wti≦MAXwMax (Rti, Gti, Bti)≦MAXw maxRGB-Wti≦MAXw

因此,maxRGB-min(maxRGB/(1+1/WR),minRGB)≦MAXw………(11)Therefore, maxRGB-min(maxRGB/(1+1/WR), minRGB)≦MAXw.........(11)

在此,(A)maxRGB/(1+1/WR)≦minRGB時,W穿透量不超過MAXw之條件係由上述(10)式導出,maxRGB/(1+1/WR)≦MAXw×WRHere, (A) maxRGB / (1 + 1 / WR) ≦ min RGB, the condition that the W penetration amount does not exceed MAXw is derived from the above formula (10), maxRGB / (1 + 1 / WR) ≦ MAXw × WR

因此成為maxRGB/(1+WR)≦MAXw………(12)。Therefore, it becomes maxRGB/(1+WR)≦MAXw...(12).

此外,MAXw係在MAX/(1+WR)≦MAXw≦MAX之範圍,因此成為maxRGB/(1+WR)≦MAX/(1+WR)≦MAXw,上述(12)式總是成立。In addition, MAXw is in the range of MAX/(1+WR)≦MAXw≦MAX, so it becomes maxRGB/(1+WR)≦MAX/(1+WR)≦MAXw, and the above formula (12) is always true.

接著,RGB穿透量不超過MAXw之條件係由上述(11)式導出,maxRGB-maxRGB/(1+1/WR)≦MAXwThen, the condition that the RGB penetration does not exceed MAXw is derived from the above formula (11), maxRGB-maxRGB/(1+1/WR)≦MAXw

因此成為maxRGB/(1+WR)≦MAXwSo become maxRGB/(1+WR)≦MAXw

上述式係與上述(12)式相同,因此總是成立。The above formula is the same as the above formula (12), and therefore is always true.

另一方面,W穿透量不超過MAXw之條件係由上述(10)式導出而成為minRGB≦MAXw×WROn the other hand, the condition that the W penetration does not exceed MAXw is derived from the above formula (10) and becomes minRGB≦MAXw×WR.

此時,從MAX/(1+WR)≦MAXw≦MAX、及minRGB<maxRGB/(1+1/WR)導出而成為minRGB<maxRGB/(1+1/WR)=WR×maxRGB/(1+WR)≦WR×MAX/(1+WR)≦MAXw×WR,上述式總是成立。At this time, it is derived from MAX/(1+WR)≦MAXw≦MAX, and minRGB<maxRGB/(1+1/WR) to become minRGB<maxRGB/(1+1/WR)=WR×maxRGB/(1+ WR) ≦ WR × MAX / (1 + WR) ≦ MAXw × WR, the above formula is always true.

接著RGB穿透量不超過MAXw之條件係從上述(11)式導 出而成為maxRGB-minRGB≦MAXw………(13)Then the condition that the RGB penetration does not exceed MAXw is guided by the above (11) Becomes maxRGB-minRGB≦MAXw......(13)

上述(13)式並未一定總是成立,因此RGBW穿透量之所有不超過MAXw之條件係於(B)minRGB<maxRGB/(1+1/WR)之時成為上述(13)式。The above formula (13) is not always true. Therefore, the condition that all of the RGBW penetration amounts do not exceed MAXw is the above formula (13) when (B) minRGB<maxRGB/(1+1/WR).

反之,RGBW穿透量之至少一者超過MAXw之條件係於(B)minRGB<maxRGB/(1+1/WR)之時成為上述之(2)式。On the other hand, the condition that at least one of the RGBW penetration amounts exceeds MAXw is (B) minRGB<maxRGB/(1+1/WR) becomes the above formula (2).

上述(2)式成立時,由MAX/(1+WR)≦MAXw≦MAX導出maxRGB/(1+1/WR)≦MAX/(1+1/WR)=WR×MAX/(1+WR)≦MAXw×WR<(maxRGB-minRGB)×WR maxRGB/(1+1/WR)<(maxRGB-minRGB)×WRWhen the above formula (2) is satisfied, maxRGB/(1+1/WR)≦MAX/(1+1/WR)=WR×MAX/(1+WR) is derived from MAX/(1+WR)≦MAXw≦MAX. ≦MAXw×WR<(maxRGB-minRGB)×WR maxRGB/(1+1/WR)<(maxRGB-minRGB)×WR

因此成為minRGB<maxRGB/(1+1/WR)So become minRGB<maxRGB/(1+1/WR)

亦即,(B)minRGB<maxRGB/(1+1/WR)總是成立。That is, (B) minRGB<maxRGB/(1+1/WR) is always true.

因此,RGBW穿透量之至少一者超過MAXw之條件係無條件成為上述(2)式。Therefore, the condition that at least one of the RGBW penetration amounts exceeds MAXw is unconditionally the above formula (2).

亦即,Ri、Gi、Bi滿足上述(2)式時,係藉由進行彩度減低處理,以使背光源值不超過MAXw。That is, when Ri, Gi, and Bi satisfy the above formula (2), the chroma reduction process is performed so that the backlight value does not exceed MAXw.

接下來根據上述(2)式詳細說明對於彩度及亮度均被判定為高之像素所實施之彩度減低處理。Next, the chroma reduction processing performed on the pixels whose chroma and luminance are both judged to be high will be described in detail based on the above formula (2).

對於需要彩度減低處理之亮度及彩度均高之像素,係在信號轉換部22中,使用下述之(16)~(19)而實施彩度減低處理,處理前之第1RGB信號(Ri,Gi,Bi)係轉換為第2RGB 信號(Rsi,Gsi,Bsi)。The pixel conversion unit 22 performs the chroma reduction processing using the following (16) to (19), and the first RGB signal before processing (Ri) is required for the pixel having the high luminance and chroma of the chroma reduction processing. , Gi, Bi) is converted to the second RGB Signal (Rsi, Gsi, Bsi).

Rsi=α×Ri+(1-α)×Yi………(16)Rsi=α×Ri+(1-α)×Yi......(16)

Gsi=α×Gi+(1-α)×Yi………(17)Gsi=α×Gi+(1-α)×Yi.........(17)

Bsi=α×Bi+(1-α)×Yi………(18)Bsi=α×Bi+(1-α)×Yi.........(18)

α=MAXw/(maxRGB-minRGB)………(19)==MAXw/(maxRGB-minRGB)............(19)

惟在上述(16)~(18)式中,Yi係為輸入RGB信號(Ri,Gi,Bi)之亮度(例如,Yi=(2×Ri+5×Gi+Bi)/8)。However, in the above equations (16) to (18), Yi is the luminance of the input RGB signal (Ri, Gi, Bi) (for example, Yi = (2 × Ri + 5 × Gi + Bi) / 8).

在此說明上述彩度減低處理之算出式之(16)~(19)式之導出過程。Here, the derivation process of the equations (16) to (19) of the above-described calculation formula of the chroma reduction processing will be described.

首先,亮度及色相不變,僅使彩度減低之RGB信號之轉換式,係按照滿足下述(20)式時之上述(16)~(18)式。First, the luminance and hue do not change, and only the conversion formula of the RGB signal in which the chroma is reduced is expressed by the above formulas (16) to (18) when the following formula (20) is satisfied.

0<α<1………(20)0<α<1.........(20)

上述(16)~(18)式在彩度減低處理前後未改變RGB信號之亮度及色相之證明如下。The above formulas (16) to (18) have not changed the brightness and hue of the RGB signal before and after the chroma reduction process as follows.

首先,若將RGB值為(R,G,B)時之亮度之算出式設為(2×R+5×G+B)/8,則相對於彩度減低前之亮度Yi,彩度減低後之亮度Ysi係以下述之(21)式來表示。First, if the calculation formula of the luminance when the RGB value is (R, G, B) is (2 × R + 5 × G + B) / 8, the chroma is reduced with respect to the luminance Yi before the chroma reduction. The latter luminance Ysi is expressed by the following formula (21).

Ysi=(2×Rsi+5×Gsi+Bsi)/8………(21)Ysi=(2×Rsi+5×Gsi+Bsi)/8.........(21)

若將上述(16)~(18)式代入上述(21)式,則如下述之(22)所示。Substituting the above formulas (16) to (18) into the above formula (21) is as shown in the following (22).

Ysi=α×(2×Ri+5×Gi+Bi)/8+(1-α)×Yi=α×Yi+(1-α)×Yi=Yi………(22)Ysi=α×(2×Ri+5×Gi+Bi)/8+(1-α)×Yi=α×Yi+(1-α)×Yi=Yi.........(22)

由上述(22)式可得知使用上述(16)~(18)式之彩度減低處 理在處理前後未使亮度變化。It can be known from the above formula (22) that the chroma reduction of the above formulas (16) to (18) is used. The brightness is not changed before and after the treatment.

另一方面,關於色相,首先,考慮R值為最大時。R值為最大時之彩度減低處理前之色相Hi係如下述(23)所示。On the other hand, regarding the hue, first, consider the case where the R value is maximum. The hue Hi before the chroma reduction treatment when the R value is the maximum is as shown in the following (23).

Hi=(Cb-Cg)×60………(23)Hi=(Cb-Cg)×60.........(23)

惟,Cb=(maxRGB-Bi)/(maxRGB-minRGB)Cg=(maxRGB-Gi)/(maxRGB-minRGB)However, Cb=(maxRGB-Bi)/(maxRGB-minRGB)Cg=(maxRGB-Gi)/(maxRGB-minRGB)

接著,彩度減低處理後之色相Hsi係如下述(24)所示。Next, the hue Hsi after the chroma reduction treatment is as shown in the following (24).

Hsi=(Cbs-Cgs)×60………(24)Hsi=(Cbs-Cgs)×60.........(24)

惟,Cbs=(maxRGBs-Bsi)/(maxRGBs-minRGBs)Cgs=(maxRGBs-Gsi)/(maxRGBs-minRGBs)maxRGBs=max (Rsi,Gsi,Bsi)minRGBs=min (Rsi,Gsi,Bsi)However, Cbs = (maxRGBs - Bsi) / (maxRGBs - minRGBs) Cgs = (maxRGBs - Gsi) / (maxRGBs - minRGBs) maxRGBs = max (Rsi, Gsi, Bsi) minRGBs = min (Rsi, Gsi, Bsi)

若將上述(24)式變形,進一步代入(16)~(18)式,則如下述(25)所示。When the above formula (24) is modified and further substituted into the formulas (16) to (18), it is as shown in the following (25).

Hsi={(maxRGBs-Bsi)-(maxRGBs-Gsi)}/(maxRGBs-minRGBs)×60={(Gsi-Bsi)/(maxRGBs-minRGBs)}×60=α×(Gi-Bi)/{α×(maxRGB-minRGB)}×60={(Gi-Bi)/(maxRGB-minRGB)}×60={(maxRGB-Bi)-(maxRGB-Gi)}/(maxRGB-minRGB)×60=(Cb-Cg)×60 =Hi………(25)Hsi={(maxRGBs-Bsi)-(maxRGBs-Gsi)}/(maxRGBs-minRGBs)×60={(Gsi-Bsi)/(maxRGBs-minRGBs)}×60=α×(Gi-Bi)/{α ×(maxRGB-minRGB)}×60={(Gi-Bi)/(maxRGB-minRGB)}×60={(maxRGB-Bi)-(maxRGB-Gi)}/(maxRGB-minRGB)×60=(Cb -Cg)×60 =Hi.........(25)

由上述(25)式可得知使用上述(16)~(18)式之彩度減低處理於處理前後未使色相變化。G值、或B值為最大時亦同樣。From the above formula (25), it is understood that the chroma reduction treatment using the above formulas (16) to (18) does not cause the hue change before and after the treatment. The same applies when the G value or the B value is maximum.

接著,在上述(16)~(18)式中,導出背光源值成為背光源上限值MAXw之α。Next, in the above equations (16) to (18), the backlight value is derived as α of the backlight upper limit value MAXw.

對於滿足(2)式之所有像素,只要進行彩度減低以滿足下式,則背光源值必會成為MAXw以下。For all the pixels satisfying the formula (2), as long as the chroma is reduced to satisfy the following formula, the backlight value must be equal to or less than MAXw.

MAXw=maxRGBs-minRGBsMAXw=maxRGBs-minRGBs

從(16)~(18)式、及上述式可導出α×maxRGB+(1-α)×Yi-α×minRGB-(1-α)×Yi=MAXw α×(maxRGB-minRGB)=MAXwFrom (16) to (18), and the above formula, α × maxRGB + (1 - α) × Yi - α × min RGB - (1 - α) × Yi = MAXw α × (maxRGB - minRGB) = MAXw

因此,α=MAXw/(maxRGB-minRGB)。Therefore, α = MAXw / (maxRGB - minRGB).

如此,彩度減低部11係藉由依據上述說明之處理,將第1輸入RGB信號轉換為用以輸入至後段之輸出信號產生部12之第2輸入RGB信號。亦即,第2輸入RGB信號係成為將第1輸入RGB信號中之亮度及彩度較高之像素資料轉換為已減低彩度之像素資料者。此外,第1輸入RGB信號中之亮度或彩度較低之像素資料並未轉換,而在第2輸入RGB信號中亦直接使用原來之資料。In this manner, the chroma reduction unit 11 converts the first input RGB signal into the second input RGB signal for input to the output signal generating unit 12 in the subsequent stage by the processing described above. In other words, the second input RGB signal is a pixel data in which pixel data having a higher luminance and chroma in the first input RGB signal is converted into pixel data having reduced chroma. In addition, the pixel data with lower luminance or chroma in the first input RGB signal is not converted, and the original data is directly used in the second input RGB signal.

接著參照圖8說明輸出信號產生部12之概略構成。輸出信號產生部12係如圖8所示,包括有W穿透量算出部31、 RGB穿透量算出部32、背光源值算出部33、穿透率算出部34而構成。此外,圖9係用以說明輸出信號產生部12之動作之流程圖。Next, a schematic configuration of the output signal generating unit 12 will be described with reference to Fig. 8 . As shown in FIG. 8, the output signal generating unit 12 includes a W penetration amount calculating unit 31, The RGB penetration amount calculation unit 32, the backlight value calculation unit 33, and the transmittance calculation unit 34 are configured. In addition, FIG. 9 is a flowchart for explaining the operation of the output signal generating unit 12.

W穿透量算出部31係由從彩度減低部11所輸入之第2輸入RGB信號,使用下述(26)式而算出W穿透量(S21)。The W penetration amount calculation unit 31 calculates the W penetration amount using the second input RGB signal input from the chroma reduction unit 11 by the following equation (26) (S21).

Wtsi=min(maxRGBs/(1+1/WR),minRGBs)………(26)Wtsi=min(maxRGBs/(1+1/WR), minRGBs).........(26)

此W穿透量係輸出至RGB穿透量算出部32、背光源值算出部33、及穿透率算出部34。RGB穿透量算出部32係從第2輸入RGB信號及W穿透量,使用下述(27)~(29)式而算出RGB穿透量(S22)。This W penetration amount is output to the RGB penetration amount calculation unit 32, the backlight value calculation unit 33, and the transmittance calculation unit 34. The RGB penetration amount calculation unit 32 calculates the RGB penetration amount from the second input RGB signal and the W penetration amount using the following equations (27) to (29) (S22).

Rtsi=Rsi-Wtsi………(27)Rtsi=Rsi-Wtsi.........(27)

Gtsi=Gsi-Wtsi………(28)Gtsi=Gsi-Wtsi.........(28)

Btsi=Bsi-Wtsi………(29)Btsi=Bsi-Wtsi.........(29)

此RGB穿透量係輸出至背光源值算出部。上述S21及S22之處理係重複相當於輸入RGB信號中之像素之數量。This RGB penetration amount is output to the backlight value calculation unit. The processing of the above S21 and S22 is repeated corresponding to the number of pixels in the input RGB signal.

背光源值算出部33係從W穿透量算出部31、及從RGB穿透量算出部32所輸出之圖像內之所有像素之RGBW穿透量,使用下述(33)式而算出該圖像中之背光源值Wbs(S23)。The backlight value calculation unit 33 calculates the RGBW penetration amount of all the pixels in the image output from the W penetration amount calculation unit 31 and the RGB penetration amount calculation unit 32 using the following formula (33). The backlight value Wbs in the image (S23).

Wbs=max(Rtsl,Gtsl,Btsl,Wtsl/WR,…RtsNp,GtsNp,BtsNp,WtsNp/WR)………(33)Wbs=max(Rtsl, Gtsl, Btsl, Wtsl/WR, ...RtsNp, GtsNp, BtsNp, WtsNp/WR).........(33)

或是亦可在背光源值算出部33中,從W穿透量算出部31、及從RGB穿透量算出部32所輸出之圖像內之所有像素之RGBW穿透量之中除W穿透量以外之RGB穿透量,使用下述(34)式而算出該圖像中之背光源值Wbs。此係由於若以前述之方法求出W穿透量Wts,則相對於各RGB穿透量Rts、Gts、Bts必定會成為max (Rts,Gts,Bts)≧Wts/WR之故。Alternatively, the backlight value calculation unit 33 may wear the RGBW penetration amount of all the pixels in the image output from the W penetration amount calculation unit 31 and the RGB penetration amount calculation unit 32. The RGB penetration amount other than the transmittance is calculated by the following formula (34) to calculate the backlight value Wbs in the image. In this case, if the W penetration amount Wts is obtained by the above-described method, the RGB penetration amounts Rts, Gts, and Bts are necessarily max (Rts, Gts, Bts) ≧ Wts/WR.

Wbs=max(Rtsl,Gtsl,Btsl,…RtsNp,GtsNp,BtsNp)………(34)Wbs=max(Rtsl, Gtsl, Btsl, ...RtsNp, GtsNp, BtsNp).........(34)

此背光源值Wbs係輸出至穿透率算出部34。穿透率算出部34係從W穿透量算出部31、及從RGB穿透量算出部32所輸出之RGBW穿透量、及從背光源值算出部33所輸出之背光源值Wbs,使用下述(35)~(38)式而算出各副像素之穿透率(S24)。上述S24之處理係重複相當於輸入RGB信號中之像素之數量。This backlight value Wbs is output to the transmittance calculation unit 34. The transmittance calculation unit 34 is used from the W penetration amount calculation unit 31 and the RGBW penetration amount output from the RGB penetration amount calculation unit 32 and the backlight value Wbs output from the backlight value calculation unit 33. The transmittance of each sub-pixel is calculated by the following equations (35) to (38) (S24). The processing of the above S24 is repeated corresponding to the number of pixels in the input RGB signal.

rsi=Rtsi/Wbs………(35)Rsi=Rtsi/Wbs.........(35)

gsi=Gtsi/Wbs………(36)Gsi=Gtsi/Wbs.........(36)

bsi=Btsi/Wbs………(37)Bsi=Btsi/Wbs.........(37)

wsi=Wtsi/Wbs/WR………(38)Wsi=Wtsi/Wbs/WR.........(38)

如此,在本實施形態之液晶顯示裝置中,係於在輸出信號產生部12算出背光源值及RGBW穿透率之前,藉由對於作為原輸入之輸入RGB信號進行彩度減低處理,即可確實減低背光源值。As described above, in the liquid crystal display device of the present embodiment, before the output signal generating unit 12 calculates the backlight value and the RGBW transmittance, it is possible to perform the chroma reduction processing on the input RGB signal as the original input. Reduce the backlight value.

例如,使用白色亮度比WR=1之液晶面板時,若以前述所例示之(R,G,B)=(160,256,64)之像素B來考慮,則不進行彩度減低處理時之背光源值係為192。For example, when a liquid crystal panel having a white luminance ratio of WR=1 is used, if the pixel B of (R, G, B) = (160, 256, 64) is exemplified, the chroma reduction processing is not performed. The backlight value is 192.

另一方面,同樣對於像素B以MAX=256、B1Ratio=1/(1+WR)=0.5進行彩度減低處理時,在第2輸入RGB信號中之該像素B之彩度減低後之像素值係如以下方式導出。On the other hand, when the chroma reduction processing is performed on the pixel B with MAX=256 and B1Ratio=1/(1+WR)=0.5, the pixel value of the pixel B in the second input RGB signal is reduced. It is exported as follows.

MAXw=MAX×B1Ratio=256×0.5=128(由(1)式導出)MAXw=MAX×B1Ratio=256×0.5=128 (derived by (1))

α=128/(256-64)=2/3(由(19)式導出)α=128/(256-64)=2/3 (derived from (19))

Y1=(2×R1+5×G1+B1)/8=(2×160+5×256+64)/8=208 Rs1=α×R1+(1-α)×Y1=(2/3)×160+(1-2/3)×208=176(由(16)式導出)Y1=(2×R1+5×G1+B1)/8=(2×160+5×256+64)/8=208 Rs1=α×R1+(1-α)×Y1=(2/3)× 160+(1-2/3)×208=176 (derived by (16))

Gs1=α×G1+(1-α)×Y1=(2/3)×256+(1-2/3)×208=240(由(17)式導出)Gs1=α×G1+(1-α)×Y1=(2/3)×256+(1-2/3)×208=240 (derived from (17))

Bs1=α×B1+(1-α)×Y1=(2/3)×64+(1-2/3)×208=112(由(18)式導出)Bs1=α×B1+(1-α)×Y1=(2/3)×64+(1-2/3)×208=112 (derived from (18))

因此,像素B中之彩度減低後之輸入RGB值係成為(176,240,112),此時之背光源值係成為128。Therefore, the input RGB value after the chroma in the pixel B is reduced is (176, 240, 112), and the backlight value is 128.

亦即,藉由彩度減低處理,背光源值可從192減低至128(約33%之減低)。That is, by the chroma reduction process, the backlight value can be reduced from 192 to 128 (about 33% reduction).

此外,在本液晶顯示裝置中所實施彩度減低處理亦可藉由在1/(1+WR)~1之範圍調節(1)式中之B1Ratio之值,而使其程度變化。亦即,在本液晶顯示裝置中,藉由使其保持變更B1Ratio之值之功能,即可由使用者任意選擇要畫質 優先(將B1Ratio之值增大)或省電力化優先(將B1Ratio之值減小)。此外,此時,只要將B1Ratio之值設定為1,則不會實施上述彩度減低處理,因此亦可選擇上述彩度減低處理之執行、不執行。Further, the chroma reduction processing performed in the liquid crystal display device can be changed by adjusting the value of B1Ratio in the equation (1) in the range of 1/(1+WR)~1. In other words, in the liquid crystal display device, the user can select the desired image quality by maintaining the function of changing the value of B1Ratio. Priority (increase the value of B1Ratio) or power saving priority (decrease the value of B1Ratio). Further, at this time, if the value of B1Ratio is set to 1, the chroma reduction processing described above is not performed, and therefore, execution or non-execution of the chroma reduction processing described above may be selected.

在本液晶顯示裝置中,背光源16基本上係相對於複數個像素設置1個。因此,例如圖1所示之液晶顯示裝置係例示使一個白色背光源16對應於液晶面板14之顯示畫面整體之構成。然而,本發明並不以此為限,亦可將液晶面板14之顯示畫面分割為複數個區域,以依每一區域可進行背光源亮度調整之方式作成具備有複數個背光源之構成。In the present liquid crystal display device, the backlight 16 is basically provided with respect to a plurality of pixels. Therefore, for example, the liquid crystal display device shown in FIG. 1 exemplifies a configuration in which one white backlight 16 corresponds to the entire display screen of the liquid crystal panel 14. However, the present invention is not limited thereto, and the display screen of the liquid crystal panel 14 may be divided into a plurality of regions, and a plurality of backlights may be formed to adjust the brightness of the backlight in each region.

圖10雖係表示相對於1片顯示區域具有2個白色背光源之例者,惟背光源之數量不予以限定。Although FIG. 10 shows an example in which two white backlights are provided for one display area, the number of backlights is not limited.

圖10所示之液晶顯示裝置係包括彩度減低部11、輸入信號分割部41、輸出信號產生部12a及12b、液晶面板控制部13a及13b、液晶面板14、背光源控制部15a及15b、及白色背光源16a及16b所構成。The liquid crystal display device shown in FIG. 10 includes a chroma reduction unit 11, an input signal division unit 41, output signal generation units 12a and 12b, liquid crystal panel control units 13a and 13b, a liquid crystal panel 14, and backlight control units 15a and 15b. And white backlights 16a and 16b.

輸入信號分割部41係將從彩度減低部11所輸入之1畫面份之第2輸入RGB信號分配為2個區域份之信號,且將各個區域之輸入RGB信號輸入至輸出信號產生部12a及12b。輸出信號產生部12a及12b係對於所對應之各區域,進行與圖1中之輸出信號產生部12同等之處理。The input signal dividing unit 41 distributes the second input RGB signals of one screen input from the chroma reducing unit 11 into signals of two areas, and inputs the input RGB signals of the respective areas to the output signal generating unit 12a and 12b. The output signal generating units 12a and 12b perform processing equivalent to the output signal generating unit 12 of Fig. 1 for each corresponding region.

液晶面板控制部13a及13b雖係對於所對應之各區域進行與圖1中之液晶面板控制部13同等之處理,惟各控制部係用以控制相當於液晶面板14所對應之區域之位置之像素穿 透率。The liquid crystal panel control units 13a and 13b perform the same processing as the liquid crystal panel control unit 13 in FIG. 1 for each corresponding region, but each control unit controls the position corresponding to the region corresponding to the liquid crystal panel 14. Pixel wear Transmittance.

背光源控制部15a及15b係對於所對應之各區域進行與圖1中之背光源控制部15同等之處理。白色背光源16a及16b係分別為與背光源16相同之結構,惟各背光源係用以分別照明所對應之區域。The backlight control units 15a and 15b perform the same processing as the backlight control unit 15 in Fig. 1 for each corresponding region. The white backlights 16a and 16b are respectively the same structure as the backlight 16, but each backlight is used to respectively illuminate the corresponding area.

如此,藉由將1畫面分割為複數個區域,且以區域單位進行控制,即可進一步將背光源值降低。另外,在本實施例中,雖係將1畫面分割為2個區域,惟亦可分割為3個以上區域進行控制。In this manner, by dividing one screen into a plurality of regions and controlling in units of regions, the backlight value can be further reduced. Further, in the present embodiment, although one screen is divided into two regions, it is also possible to divide into three or more regions for control.

在一般之圖像中,係於近旁區域具有類似之顏色連續之性質。因此,如圖10所示之構成,藉由將背光源區域分割,可使聚集較暗像素之背光源區域之背光源更暗。其結果,相較於不分割背光源時,以分割背光源較能將整體之背光源消耗電力降低。In a typical image, the vicinity of the region has a similar color continuity. Therefore, as shown in FIG. 10, by dividing the backlight region, the backlight of the backlight region that collects the darker pixels can be made darker. As a result, the overall backlight power consumption can be reduced by dividing the backlight compared to when the backlight is not divided.

彩度減低部11及輸出信號產生部12之處理係以將其在個人電腦上可動作之軟體來實現。以下說明將上述處理以軟體來實現時之順序。The processing of the chroma reduction unit 11 and the output signal generation unit 12 is realized by a software that can be operated on a personal computer. The following describes the order in which the above processing is implemented in software.

圖11係表示將上述處理以軟體來實現時之系統構成之圖。上述系統係由個人電腦本體51、輸出入裝置55所構成。此外,個人電腦本體51係包括有CPU 52、記憶體53、輸出入介面54。輸出入裝置55係包括記憶媒體56。Fig. 11 is a view showing a system configuration when the above processing is realized by software. The above system is composed of a personal computer main body 51 and an input/output device 55. Further, the personal computer main body 51 includes a CPU 52, a memory 53, and an input/output interface 54. The input/output device 55 includes a memory medium 56.

首先CPU 52係經由輸出入介面54而控制輸出入裝置55,且從記憶媒體56將彩度減低.輸出信號產生程式、參數檔案(輸入RGB信號之上限值、及背光源值設定率、或將1畫 面分割為複數個區域之際所使用之區域資訊等)、以及輸入圖像資料進行讀取,並存放於記憶體53。First, the CPU 52 controls the input/output device 55 via the input/output interface 54, and reduces the chroma from the memory medium 56. Output signal generation program, parameter file (input RGB signal upper limit, and backlight value setting rate, or 1 draw) The area information used for dividing the surface into a plurality of areas, and the input image data are read and stored in the memory 53.

再者,CPU 52係從記憶體53將彩度減低.輸出信號產生程式、參數檔案、及輸入圖像資料進行讀取,並依據彩度減低.輸出信號產生程式之各命令,對所輸入之輸入圖像資料進行彩度減低、及輸出信號產生之後,經由輸出入介面54而控制輸出入裝置55,並將輸出信號產生後之背光源值、及RGBW穿透率輸出至記憶媒體56。Furthermore, the CPU 52 reduces the chroma from the memory 53. The output signal generation program, parameter file, and input image data are read and reduced according to chroma. The output signal generates commands for the program, after the input image data is input, the chroma is reduced, and the output signal is generated, and then the input/output device 55 is controlled via the input/output interface 54, and the backlight value of the output signal is generated, And the RGBW transmittance is output to the memory medium 56.

或者如圖12所示,亦可經由輸出入介面54而將輸出信號產生後之背光源值、及RGBW穿透率分別輸出至背光源控制部15、液晶面板控制部13,藉此而控制白色背光源16、及液晶面板14,而實際顯示圖像。Alternatively, as shown in FIG. 12, the backlight source value and the RGBW transmittance of the output signal may be output to the backlight control unit 15 and the liquid crystal panel control unit 13 via the input/output interface 54, thereby controlling the white color. The backlight 16 and the liquid crystal panel 14 actually display an image.

如此,在上述系統中,係可在個人電腦上進行上述之彩度減低、及輸出信號產生。藉此,實際上在進行彩度減低部或輸出信號產生部試作之前,即可確認彩度減低方法或輸出信號產生方法之妥當性、及背光源值減低之效果。Thus, in the above system, the above-described chroma reduction and output signal generation can be performed on a personal computer. As a result, it is possible to confirm the validity of the chroma reduction method or the output signal generation method and the effect of reducing the backlight value before actually performing the chroma reduction unit or the output signal generation unit.

如上所述,本發明之穿透式液晶顯示裝置係包括:液晶面板,其將1像素分割為紅(R)、綠(G)、藍(B)、及白(W)之4副像素;白色主動背光源,其可控制發光亮度;彩度減低部,其對於在作為輸入圖像之第1輸入RGB信號中所包含之像素資料之中,亮度及彩度較高之像素資料施以彩度減低處理,而將該第1輸入RGB信號轉換成第2輸入RGB信號;輸出信號產生部,其從上述第2輸入RGB信號產生上述液晶面板之各像素中之R、G、B、W之各副像素之穿透 率信號,並且算出上述主動背光源中之背光源值;液晶面板控制部,其以在上述輸出信號產生部所產生之上述穿透率信號為依據將液晶面板予以驅動控制;及背光源控制部,其根據在上述所算出之背光源值而控制上述背光源之發光亮度。As described above, the transmissive liquid crystal display device of the present invention includes: a liquid crystal panel that divides 1 pixel into 4 sub-pixels of red (R), green (G), blue (B), and white (W); a white active backlight, which can control the brightness of the light; a chroma reduction unit that applies color to the pixel data having higher brightness and chroma among the pixel data included in the first input RGB signal as the input image The first input RGB signal is converted into a second input RGB signal, and the output signal generating unit generates R, G, B, and W among the pixels of the liquid crystal panel from the second input RGB signal. Penetration of each sub-pixel Rate the signal, and calculate a backlight value in the active backlight; the liquid crystal panel control unit drives and controls the liquid crystal panel based on the transmittance signal generated by the output signal generating unit; and the backlight control unit The light-emitting luminance of the backlight is controlled based on the backlight value calculated as described above.

依據上述之構成,藉由使用將1像素分割為R、G、B、W之4個副像素之液晶面板,即可將R、G、B之各色成分之一部分分配給沒有(或較少)因為濾光片吸收所導致之光量損失之W副像素。藉此,即可減少由彩色濾光片所吸收之光量,且與此對應而降低背光源值,故可實現穿透式液晶顯示裝置中之消耗電力之削減。According to the above configuration, by using a liquid crystal panel in which one pixel is divided into four sub-pixels of R, G, B, and W, one of the color components of R, G, and B can be allocated to none (or less). Because the filter absorbs the W sub-pixels lost by the amount of light. Thereby, the amount of light absorbed by the color filter can be reduced, and the backlight value can be reduced in accordance with this, so that the power consumption in the transmissive liquid crystal display device can be reduced.

再者,藉由對於作為原輸入之第1輸入RGB信號進行彩度減低處理,並根據施行有該彩度減低處理之第2輸入RGB信號而算出背光源值及RGBW穿透率,即可更確實減低背光源值。Furthermore, by performing chroma reduction processing on the first input RGB signal as the original input and calculating the backlight value and the RGBW transmittance based on the second input RGB signal subjected to the chroma reduction processing, It really reduces the backlight value.

此外,在上述穿透式液晶顯示裝置中,係以作成上述彩度減低部在施行上述彩度減低處理之像素資料中,於該彩度減低處理前後,不使亮度及色相變化而僅使彩度減低之構成為較佳。Further, in the above-described transmissive liquid crystal display device, the chroma data reduction unit is configured to perform the color reduction processing, and the color data is not changed until the luminance and hue are changed before and after the chroma reduction processing. The composition of the degree reduction is preferred.

依據上述之構成,藉由不使對於人的視覺特性影響較大之亮度及色相變化,而僅使對於視覺特性影響較小之彩度減低,即可抑制隨著上述彩度減低處理所導致之畫質劣化。According to the above configuration, by reducing the luminance and the hue which have a large influence on the visual characteristics of a person, and reducing only the chroma having less influence on the visual characteristics, it is possible to suppress the processing due to the above-described chroma reduction processing. The picture quality is degraded.

此外,在上述穿透式液晶顯示裝置中,係以作成上述彩 度減低部可變更彩度減低處理之程度之構成為較佳。Further, in the above transmissive liquid crystal display device, the above color is created It is preferable that the degree reduction unit can change the degree of chroma reduction processing.

此外,彩度減低處理之程度之範圍係以作成依據使用之液晶面板之特性而可變更範圍之構成為較佳。液晶面板之特性之一係表示在各RGBW副像素之穿透率相同時,W副像素之白色之明亮度相對於由RGB副像素所作之白色之明亮度之比之白色亮度比WR。Further, the range of the degree of chroma reduction treatment is preferably a configuration in which the range can be changed depending on the characteristics of the liquid crystal panel to be used. One of the characteristics of the liquid crystal panel is a white luminance ratio WR which is a ratio of the brightness of white of the W sub-pixel to the brightness of white by the RGB sub-pixel when the transmittance of each RGBW sub-pixel is the same.

依據上述之構成,即可由使用者選擇性設定藉由彩度減低處理之消耗電力削減效果、與隨著彩度減低處理所導致之畫質劣化之平衡。According to the above configuration, the user can selectively set the power consumption reduction effect by the chroma reduction processing and the balance of the image quality deterioration caused by the chroma reduction processing.

此外,在上述穿透式液晶顯示裝置中,亦可設為上述彩度減低部藉由以下(A)之順序將作為輸入圖像之第1輸入RGB信號中所包含之像素資料之中,亮度及彩度較高之像素資料予以抽出,並對於所抽出之像素資料,藉由以下(B)之順序施以彩度減低處理之構成。Further, in the above-described transmissive liquid crystal display device, the chroma reduction unit may be configured to include luminance in a pixel data included in a first input RGB signal as an input image in the order of (A) below. And the pixel data with higher chroma is extracted, and for the extracted pixel data, the composition of the chroma reduction processing is applied by the following sequence (B).

(A)藉由MAXw=MAX×B1Ratio之式算出背光源上限值MAXw,並將滿足MAXw<maxRGB-minRGB之注目像素資料抽出作為亮度及彩度較高之像素資料。(A) The backlight upper limit value MAXw is calculated by the formula of MAXw=MAX×B1Ratio, and the pixel data satisfying MAXw<maxRGB-minRGB is extracted as pixel data having higher luminance and chroma.

惟設為如下:MAX:不進行彩度減低處理時之背光源值之上限值The setting is as follows: MAX: The upper limit of the backlight value when the chroma reduction processing is not performed

WR:白色亮度比WR: white brightness ratio

B1Ratio:背光源值設定率(1/(1+WR)≦B1Ratio≦1.0)maxRGB=max (Ri,Gi,Bi) minRGB=min (Ri,Gi,Bi)B1Ratio: backlight value setting rate (1/(1+WR)≦B1Ratio≦1.0)maxRGB=max (Ri, Gi, Bi) minRGB=min (Ri, Gi, Bi)

Ri,Gi,Bi(i=1,2,…,Np):第1輸入RGB信號中之注目像素之RGB值Ri, Gi, Bi (i = 1, 2, ..., Np): RGB values of the pixel of interest in the first input RGB signal

Np:輸入圖像之像素數Np: the number of pixels in the input image

max(A,B,…):A,B,…之最大值Max(A,B,...): the maximum value of A, B, ...

min(A,B,…):A,B,…之最小值Min(A,B,...): the minimum of A, B, ...

(B)對於所抽出之像素資料,藉由以下之式來求出彩度減低處理後之像素資料。(B) For the extracted pixel data, the pixel data after the chroma reduction processing is obtained by the following equation.

Rsi=α×Ri+(1-α)×YiRsi=α×Ri+(1-α)×Yi

Gsi=α×Gi+(1-α)×YiGsi=α×Gi+(1-α)×Yi

Bsi=α×Bi+(1-α)×YiBsi=α×Bi+(1-α)×Yi

惟設為如下:Rsi,Gsi,Bsi(i=1,2,…,Np):第2輸入RGB信號中之彩度減低處理後之注目像素之RGB值However, it is set as follows: Rsi, Gsi, Bsi (i = 1, 2, ..., Np): the RGB value of the pixel of interest after the chroma reduction in the second input RGB signal

Yi(i=1,2,…,Np):注目像素之亮度Yi (i = 1, 2, ..., Np): the brightness of the pixel of interest

α=MAXw/(maxRGB-minRGB)==MAXw/(maxRGB-minRGB)

此外,在上述穿透式液晶顯示裝置中,係可設為以下之構成:上述輸出信號產生機構係包括:W穿透量算出部,其藉由以下(A)之順序,將各W副像素之穿透量(Wtsi)予以算出;RGB穿透量算出部,其藉由以下(B)之順序,將各RGB副像素之穿透量(Rtsi,Gtsi,Btsi)予以算出;背光源值算出部,其藉由以下(C)之順序算出背光源值(Wbs);及穿透率算出機構,其藉由以下(D)之順序,將各RGB副像素之穿透率(rsi,gsi,bsi,wsi)予以算出。Further, in the above-described transmissive liquid crystal display device, the output signal generating means may include a W penetration amount calculating unit that sets each of the W sub-pixels in the order of (A) below. The amount of penetration (Wtsi) is calculated; the RGB penetration amount calculation unit calculates the penetration amount (Rtsi, Gtsi, Btsi) of each RGB sub-pixel in the order of (B) below; a backlight value (Wbs) calculated by the following sequence (C); and a transmittance calculation mechanism that converts the transmittance of each RGB sub-pixel by the order of (D) below (rsi, gsi, Bsi, wsi) is calculated.

(A)藉由Wtsi=min(maxRGBs/(1+1/WR),minRGBs)之式算出W穿透量(Wtsi)。(A) The W penetration amount (Wtsi) is calculated by the equation of Wtsi=min(maxRGBs/(1+1/WR), minRGBs).

惟設為如下:maxRGBs=max (Rsi,Gsi,Bsi)minRGBs=min (Rsi,Gsi,Bsi)Only set as follows: maxRGBs=max (Rsi, Gsi, Bsi) minRGBs=min (Rsi, Gsi, Bsi)

(B)藉由Rtsi=Rsi-Wtsi Gtsi=Gsi-Wtsi Btsi=Bsi-Wtsi之式算出RGB穿透量(Rtsi,Gtsi,Btsi)。(B) The RGB penetration amount (Rtsi, Gtsi, Btsi) was calculated by the formula of Rtsi = Rsi - Wtsi Gtsi = Gsi - Wtsi Btsi = Bsi - Wtsi.

(C)藉由Wbs=max(Rtsl,Gtsl,Btsl,Wtsl/WR…RtsNp,GtsNp,BtsNp,WtsNp/WR)之式算出背光源值(Wbs)。或者,不使用W副像素穿透量,而藉由Wbs=max (Rtsl,Gtsl,Btsl,…RtsNp,GtsNp,BtsNp)之式算出。(C) The backlight value (Wbs) is calculated by the equation of Wbs=max (Rtsl, Gtsl, Btsl, Wtsl/WR...RtsNp, GtsNp, BtsNp, WtsNp/WR). Alternatively, the W sub-pixel penetration amount is not used, but is calculated by the equation of Wbs = max (Rtsl, Gtsl, Btsl, ... RtsNp, GtsNp, BtsNp).

(D)藉由rsi=Rtsi/Wbs gsi=Gtsi/Wbs bsi=Btsi/Wbs wsi=Wtsi/Wbs/WR之式算出RGBW穿透率(rsi,gsi,bsi,wsi)。(D) by rsi=Rtsi/Wbs gsi=Gtsi/Wbs The RGBW transmittance (rsi, gsi, bsi, wsi) is calculated by the formula bsi = Btsi / Wbs wsi = Wtsi / Wbs / WR.

惟Wbs=0時,設為rsi=gsi=bsi=wsi=0。However, when Wbs=0, it is set to rsi=gsi=bsi=wsi=0.

此外,在上述穿透式液晶顯示裝置中,係可設為以下構成:相對於上述液晶面板包括複數個主動背光源,且依與各主動背光源對應之每一區域,進行液晶面板之穿透率控制及背光源之背光源值控制。Further, in the transmissive liquid crystal display device described above, the liquid crystal panel may be configured to include a plurality of active backlights with respect to the liquid crystal panel and to penetrate the liquid crystal panel in accordance with each region corresponding to each active backlight. Rate control and backlight source value control.

依據上述之構成,藉由將背光源分割,即可依所分割之每一背光源區域設定最佳背光源值,而可使整體之背光源消耗電力降低。According to the above configuration, by dividing the backlight, an optimum backlight value can be set for each of the divided backlight regions, and the overall backlight power consumption can be reduced.

發明之詳細說明之項中所作具體實施態樣或實施例均僅是使本發明之技術內容更明確,不應僅限定於該種具體例而作狹義解釋,在本發明之精神及以下所記載之專利請求事項之範圍內,均可作各種變更而加以實施。The specific embodiments and examples in the detailed description of the invention are merely to clarify the technical content of the present invention, and should not be limited to the specific examples, and the invention is not limited to the specific examples, and is described in the spirit of the present invention and the following. Within the scope of the patent claims, various changes can be implemented.

11‧‧‧彩度減低部11‧‧‧Color Reduction Department

12、12a、12b‧‧‧輸出信號產生部12, 12a, 12b‧‧‧ output signal generation unit

13、13a、13b‧‧‧液晶面板控制部13, 13a, 13b‧‧‧ LCD panel control department

14‧‧‧RGBW液晶面板(液晶面板)14‧‧‧RGBW LCD panel (liquid crystal panel)

15、15a、15b‧‧‧背光源控制部15, 15a, 15b‧‧‧ Backlight Control Department

16、16a、16b‧‧‧白色背光源(主動背光源)16, 16a, 16b‧‧‧White backlight (active backlight)

21‧‧‧背光源上限值算出部21‧‧‧Backlight upper limit calculation unit

22‧‧‧信號轉換部22‧‧‧Signal Conversion Department

31‧‧‧W穿透量算出部31‧‧‧W penetration calculation unit

32‧‧‧RGB穿透量算出部32‧‧‧RGB penetration calculation unit

33‧‧‧背光源值算出部33‧‧‧Backlight value calculation unit

34‧‧‧穿透率算出部34‧‧‧Transmission rate calculation unit

41‧‧‧輸入信號分割部41‧‧‧Input signal division

51‧‧‧個人電腦本體51‧‧‧ PC main body

52‧‧‧CPU52‧‧‧CPU

53‧‧‧記憶體53‧‧‧ memory

54‧‧‧輸出入介面54‧‧‧Output interface

55‧‧‧輸出入裝置55‧‧‧Input and output device

56‧‧‧記憶媒體56‧‧‧Memory Media

100‧‧‧液晶面板100‧‧‧LCD panel

101、102‧‧‧透明基板101, 102‧‧‧ Transparent substrate

103‧‧‧液晶層103‧‧‧Liquid layer

104、105‧‧‧偏光片104, 105‧‧‧ polarizer

106‧‧‧彩色濾光片106‧‧‧Color filters

110‧‧‧背光源110‧‧‧ Backlight

圖1係為顯示本發明之實施形態者,其為顯示液晶顯示裝置之主要部分構成之區塊圖。Fig. 1 is a block diagram showing the configuration of a main portion of a liquid crystal display device, showing an embodiment of the present invention.

圖2(a)、(b)係為顯示上述穿透式液晶顯示裝置中之副像素之配置例之圖。2(a) and 2(b) are diagrams showing an arrangement example of sub-pixels in the transmissive liquid crystal display device.

圖3(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖,圖3(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Fig. 3(a) is a view showing a manner of solving the backlight value in the liquid crystal display device, and Fig. 3(b) is a view showing a method of solving the backlight value in Patent Document 1 for comparison.

圖4(a)係為顯示本液晶顯示裝置中之背光源值之求解方 式之圖,圖4(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。4(a) is a diagram showing the solution of the backlight value in the liquid crystal display device. FIG. 4(b) is a diagram showing a manner of solving the backlight value in Patent Document 1 for comparison.

圖5(a)~(e)係為顯示上述液晶顯示裝置中之背光源值及副像素穿透率之決定順序之圖。5(a) to 5(e) are diagrams showing the order of determination of the backlight value and the sub-pixel transmittance in the liquid crystal display device.

圖6係為在上述液晶顯示裝置中,顯示彩度減低部之構成例之區塊圖。Fig. 6 is a block diagram showing a configuration example of a chroma reduction unit in the liquid crystal display device.

圖7係為顯示上述彩度減低部之動作順序之流程圖。Fig. 7 is a flow chart showing the operation sequence of the chroma reduction unit.

圖8係為在上述液晶顯示裝置中,顯示輸出信號產生部之構成例之區塊圖。FIG. 8 is a block diagram showing an example of the configuration of the display output signal generating unit in the liquid crystal display device.

圖9係為顯示上述輸出信號產生部之動作順序之流程圖。Fig. 9 is a flow chart showing the operation sequence of the output signal generating unit.

圖10係為顯示本發明之另一實施形態者,其為顯示穿透式液晶顯示裝置之主要部分構成之區塊圖。Fig. 10 is a block diagram showing the configuration of a main part of a transmissive liquid crystal display device, showing another embodiment of the present invention.

圖11係為顯示本發明之以軟體實現顯示控制處理時之系統構成之圖。Fig. 11 is a view showing the system configuration when the display control processing is implemented by software in the present invention.

圖12係為顯示本發明之以軟體實現顯示控制處理時之系統構成之變形例之圖。Fig. 12 is a view showing a modification of the system configuration when the display control processing is implemented by software in the present invention.

圖13係為顯示穿透式液晶顯示裝置之一般性構成之剖面圖。Figure 13 is a cross-sectional view showing a general configuration of a transmissive liquid crystal display device.

圖14係為顯示穿透式液晶顯示裝置中之副像素之一般性配置例之圖。Fig. 14 is a view showing a general arrangement example of sub-pixels in a transmissive liquid crystal display device.

圖15(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖,圖15(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Fig. 15 (a) is a view showing a manner of solving the backlight value in the liquid crystal display device, and Fig. 15 (b) is a view showing a method of solving the backlight value in Patent Document 1 for comparison.

圖16(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖,圖16(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Fig. 16(a) is a view showing a manner of solving the backlight value in the liquid crystal display device, and Fig. 16(b) is a view showing a method of solving the backlight value in Patent Document 1 for comparison.

圖17(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖,圖17(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。Fig. 17 (a) is a view showing a manner of solving the backlight value in the liquid crystal display device, and Fig. 17 (b) is a view showing a method of solving the backlight value in Patent Document 1 for comparison.

圖18(a)係為顯示本液晶顯示裝置中之背光源值之求解方式之圖,圖18(b)係用以比較而顯示專利文獻1中之背光源值之求解方式之圖。18(a) is a view showing a manner of solving the backlight value in the liquid crystal display device, and FIG. 18(b) is a view showing a method of solving the backlight value in Patent Document 1 for comparison.

11‧‧‧彩度減低部11‧‧‧Color Reduction Department

12‧‧‧輸出信號產生部12‧‧‧Output signal generation unit

13‧‧‧液晶面板控制部13‧‧‧LCD Panel Control Department

14‧‧‧RGBW液晶面板(液晶面板)14‧‧‧RGBW LCD panel (liquid crystal panel)

15‧‧‧背光源控制部15‧‧‧Backlight Control Department

16‧‧‧白色背光源(主動背光源)16‧‧‧White backlight (active backlight)

Claims (9)

一種穿透式液晶顯示裝置,其包括:液晶面板,其將1像素分割為紅(R)、綠(G)、藍(B)、及白(W)之4個副像素;白色主動背光源,其可控制發光亮度;彩度減低部,其對於作為輸入圖像之第1輸入RGB信號中所包含之像素資料之中,亮度及彩度較高之像素資料施以彩度減低處理,而將該第1輸入RGB信號轉換成第2輸入RGB信號;輸出信號產生部,其從上述第2輸入RGB信號產生上述液晶面板之各像素中之R、G、B、W之各副像素之穿透率信號,並且算出上述主動背光源中之背光源值;液晶面板控制部,其依據在上述輸出信號產生部所產生之上述穿透率信號驅動控制液晶面板;及背光源控制部,其根據在上述輸出信號產生部所算出之背光源值而控制上述背光源之發光亮度。A transmissive liquid crystal display device comprising: a liquid crystal panel dividing one pixel into four sub-pixels of red (R), green (G), blue (B), and white (W); a white active backlight The illuminance reduction unit is configured to apply chroma processing to the pixel data having higher luminance and chroma among the pixel data included in the first input RGB signal as the input image, and Converting the first input RGB signal into a second input RGB signal; and outputting a signal generating unit for generating, by the second input RGB signal, each of the sub-pixels of R, G, B, and W in each pixel of the liquid crystal panel a transmittance signal, and calculating a backlight value in the active backlight; the liquid crystal panel control unit driving and controlling the liquid crystal panel according to the transmittance signal generated by the output signal generating unit; and a backlight control unit according to the backlight control unit The luminance of the backlight is controlled by the backlight value calculated by the output signal generating unit. 如請求項1之穿透式液晶顯示裝置,其中上述彩度減低部係在施行上述彩度減低處理之像素資料中,於該彩度減低處理前後,不使亮度及色相變化而僅使彩度減低。The transmissive liquid crystal display device of claim 1, wherein the chroma reduction unit is in the pixel data for performing the chroma reduction processing, and only chroma is changed without changing the brightness and hue before and after the chroma reduction processing. reduce. 如請求項1之穿透式液晶顯示裝置,其中上述彩度減低部可變更彩度減低處理之程度。The transmissive liquid crystal display device of claim 1, wherein the chroma reduction unit changes the degree of chroma reduction processing. 如請求項3之穿透式液晶顯示裝置,其中以將RGB副像素之各穿透率設為x%並將W副像素之各 穿透率設為0%時之顯示亮度P1、及將RGB副像素之各穿透率設為0%並將W副像素之各穿透率設為x%時之顯示亮度P2之比P2/P1為白色亮度比WR時,上述彩度減低部依據白色亮度比WR而設定彩度減低處理之程度之變更範圍。The transmissive liquid crystal display device of claim 3, wherein each of the RGB sub-pixels has a transmittance of x% and each of the W sub-pixels The display luminance P1 when the transmittance is set to 0%, and the ratio P2/ of the display luminance P2 when the transmittance of each of the RGB sub-pixels is set to 0% and the respective transmittances of the W sub-pixels are set to x%. When P1 is the white luminance ratio WR, the chroma reduction unit sets the range of change in the degree of chroma reduction processing in accordance with the white luminance ratio WR. 如請求項1之穿透式液晶顯示裝置,其中上述彩度減低部係藉由以下(A)之順序抽出作為輸入圖像之第1輸入RGB信號中所包含之像素資料之中,亮度及彩度較高之像素資料;並對於所抽出之像素資料,藉由以下(B)之順序施以彩度減低處理;(A)藉由MAXw=MAX×B1Ratio之式算出背光源上限值MAXw,並將滿足MAXw<maxRGB-minRGB之注目像素資料抽出作為亮度及彩度較高之像素資料,其中WR:白色亮度比(將RGB副像素之各穿透率設為x%並將W副像素之各穿透率設為0%時之顯示亮度P1、及將RGB副像素之各穿透率設為0%並將W副像素之各穿透率設為x%時之顯示亮度P2之比P2/P1)MAX:不進行彩度減低處理時之背光源值之上限值B1Ratio:背光源值設定率(1/(1+WR)≦B1Ratio≦1.0) maxRGB=max (Ri,Gi,Bi)minRGB=min (Ri,Gi,Bi)Ri,Gi,Bi(i=1,2,…,Np):第1輸入RGB信號中之注目像素之RGB值Np:輸入圖像之像素數max(A,B,…):A,B,…之最大值min(A,B,…):A,B,…之最小值(B)對於所抽出之像素資料,藉由以下之式來求出彩度減低處理後之像素資料:Rsi=α×Ri+(1-α)×Yi Gsi=α×Gi+(1-α)×Yi Bsi=α×Bi+(1-α)×Yi其中Rsi,Gsi,Bsi(i=1,2,…,Np):第2輸入RGB信號中之彩度減低處理後之注目像素之RGB值Yi(i=1,2,…,Np):注目像素之亮度α=MAXw/(maxRGB-minRGB)。The transmissive liquid crystal display device of claim 1, wherein the chroma reduction unit extracts, among the pixel data included in the first input RGB signal as the input image, in the order of (A) below, the brightness and the color a higher pixel data; and for the extracted pixel data, the chroma reduction process is performed by the following sequence (B); (A) the backlight upper limit value MAXw is calculated by the formula of MAXw=MAX×B1Ratio, And extracting the pixel data of MAXw<maxRGB-minRGB as pixel data with higher brightness and chroma, wherein WR: white brightness ratio (setting each transmittance of RGB sub-pixels to x% and W sub-pixels) The display brightness P1 when each transmittance is set to 0%, and the ratio P2 of the display brightness P2 when the respective transmittances of the RGB sub-pixels are set to 0% and the respective transmittances of the W sub-pixels are set to x% /P1)MAX: Upper limit value of backlight value when chroma processing is not performed B1Ratio: Backlight value setting rate (1/(1+WR)≦B1Ratio≦1.0) maxRGB=max (Ri, Gi, Bi) minRGB=min (Ri, Gi, Bi)Ri, Gi, Bi(i=1, 2, . . . , Np): RGB value Np of the pixel of interest in the first input RGB signal : the number of pixels of the input image max (A, B, ...): the maximum value of A, B, ... min (A, B, ...): the minimum value of A, B, ... (B) for the extracted pixel data The pixel data after the chroma reduction process is obtained by the following formula: Rsi=α×Ri+(1-α)×Yi Gsi=α×Gi+(1-α)×Yi Bsi=α×Bi+(1- α)×Yi where Rsi, Gsi, Bsi (i=1, 2, . . . , Np): the RGB value of the attention pixel after the chroma reduction in the second input RGB signal is Yi (i=1, 2, . Np): The brightness of the pixel of interest is α=MAXw/(maxRGB-minRGB). 如請求項5之穿透式液晶顯示裝置,其中上述輸出信號產生機構係包括:W穿透量算出部,其藉由以下(A)之順序算出各W副像素之穿透量(Wtsi); RGB穿透量算出部,其藉由以下(B)之順序算出各RGB副像素之穿透量(Rtsi,Gtsi,Btsi);背光源值算出部,其藉由以下(C)之順序算出背光源值 (Wbs);及穿透率算出機構,其藉由以下(D)之順序算出各RGBW副像素之穿透率(rsi,gsi,bsi,wsi); (A)藉由Wtsi=min(maxRGBs/(1+1/WR),minRGBs)之式算出W穿透量(Wtsi),其中maxRGBs=max (Rsi,Gsi,Bsi)minRGBs=min (Rsi,Gsi,Bsi)(B)藉由Rtsi=Rsi-Wtsi Gtsi=Gsi-Wtsi Btsi=Bsi-Wtsi之式算出RGB穿透量(Rtsi,Gtsi,Btsi),(C)藉由Wbs=max(Rtsl,Gtsl,Btsl,Wtsl/WR,…RtsNp,GtsNp,BtsNp,WtsNp/WR)之式算出背光源值(Wbs),(D)藉由rsi=Rtsi/Wbs gsi=Gtsi/Wbs bsi=Btsi/Wbs wsi=Wtsi/Wbs/WR 之式算出RGBW穿透率(rsi,gsi,bsi,wsi)其中Wbs=0時,rsi=gsi=bsi=wsi=0。The transmissive liquid crystal display device of claim 5, wherein the output signal generating means comprises: a W penetration amount calculating unit that calculates a penetration amount (Wtsi) of each W sub-pixel by the following order (A); The RGB penetration amount calculation unit calculates the penetration amount (Rtsi, Gtsi, Btsi) of each RGB sub-pixel in the order of (B) below, and the backlight value calculation unit calculates the backlight in the following order (C) Source value (Wbs); and a transmittance calculation mechanism that calculates the transmittance (rsi, gsi, bsi, wsi) of each RGBW sub-pixel by the following order (D); (A) by Wtsi = min (maxRGBs/ (1+1/WR), minRGBs) formulas the W penetration amount (Wtsi), where maxRGBs=max (Rsi, Gsi, Bsi) minRGBs=min (Rsi, Gsi, Bsi) (B) by Rtsi=Rsi -Wtsi Gtsi=Gsi-Wtsi Btsi=Bsi-Wtsi formula calculates RGB penetration (Rtsi, Gtsi, Btsi), (C) by Wbs=max(Rtsl, Gtsl, Btsl, Wtsl/WR,...RtsNp, GtsNp , BtsNp, WtsNp / WR) to calculate the backlight value (Wbs), (D) by rsi = Rtsi / Wbs gsi = Gtsi / Wbs bsi = Btsi / Wbs wsi = Wtsi / Wbs / WR The equation calculates the RGBW transmittance (rsi, gsi, bsi, wsi) where Wbs = 0, rsi = gsi = bsi = wsi = 0. 如請求項1之穿透式液晶顯示裝置,其中相對於上述液晶面板包括複數個主動背光源;且對與各主動背光源對應之每一區域,進行液晶面板之穿透率控制及背光源之背光源值控制。The transmissive liquid crystal display device of claim 1, wherein the liquid crystal panel comprises a plurality of active backlights; and for each region corresponding to each active backlight, the transmittance control of the liquid crystal panel and the backlight are performed. Backlight value control. 一種記錄媒體,其特徵為:記錄有控制程式,其使電腦進行如上述請求項5之各功能部之處理。A recording medium characterized by recording a control program for causing a computer to perform processing of each functional unit as in the above request item 5. 一種記錄媒體,其特徵為:記錄有控制程式,其使電腦進行如上述請求項6之各功能部之處理。A recording medium characterized by recording a control program for causing a computer to perform processing of each functional portion of the above-mentioned request item 6.
TW096148732A 2006-12-21 2007-12-19 Transmissive-type liquid crystal display device and recording medium TWI381360B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006345017 2006-12-21
JP2007031239A JP4477020B2 (en) 2006-12-21 2007-02-09 Transmission type liquid crystal display device

Publications (2)

Publication Number Publication Date
TW200844976A TW200844976A (en) 2008-11-16
TWI381360B true TWI381360B (en) 2013-01-01

Family

ID=39703292

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148732A TWI381360B (en) 2006-12-21 2007-12-19 Transmissive-type liquid crystal display device and recording medium

Country Status (3)

Country Link
JP (1) JP4477020B2 (en)
KR (1) KR20080058236A (en)
TW (1) TWI381360B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057884B2 (en) 2007-08-15 2012-10-24 株式会社ジャパンディスプレイイースト Display device
JP4457137B2 (en) 2007-09-27 2010-04-28 シャープ株式会社 Transmission type liquid crystal display device
JP4509159B2 (en) 2007-09-27 2010-07-21 シャープ株式会社 Transmission type liquid crystal display device
JP5128418B2 (en) * 2008-08-21 2013-01-23 シャープ株式会社 Transmission type liquid crystal display device, control program, and computer-readable recording medium
JP5270279B2 (en) * 2008-09-18 2013-08-21 シャープ株式会社 Transmission type liquid crystal display device, control program, and recording medium
JP5236422B2 (en) * 2008-10-16 2013-07-17 シャープ株式会社 Transmission type liquid crystal display device
TW201037655A (en) * 2009-04-07 2010-10-16 Numen Technology Inc Displaying method of large scale LED display device
TWI466088B (en) * 2012-01-06 2014-12-21 Innolux Corpration Display apparatus
JP2014155024A (en) 2013-02-07 2014-08-25 Japan Display Inc Color conversion device, display device, electronic apparatus, and color conversion method
DE112014000821B4 (en) 2013-02-14 2023-12-07 Mitsubishi Electric Corporation Signal conversion device and method, and program and storage medium
CN104143320B (en) 2013-05-06 2018-03-16 咏传电子科技(上海)有限公司 Luminance compensation method and its display control unit and image display
US9099028B2 (en) * 2013-06-28 2015-08-04 Intel Corporation RGBW dynamic color fidelity control
JP6389728B2 (en) * 2013-10-22 2018-09-12 株式会社ジャパンディスプレイ Display device and color conversion method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515700B2 (en) * 1997-05-07 2003-02-04 Sony Corporation Picture signal processing apparatus, color video camera and picture signal processing method
CN1637834A (en) * 2003-12-30 2005-07-13 Lg.菲利浦Lcd株式会社 Apparatus and method for driving liquid crystal display
TW200623001A (en) * 2004-12-31 2006-07-01 Wintek Corp Image-processing device and method for enhancing the luminance and the image quality of display panels
TW200630680A (en) * 2005-02-24 2006-09-01 Samsung Electronics Co Ltd Four-color liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515700B2 (en) * 1997-05-07 2003-02-04 Sony Corporation Picture signal processing apparatus, color video camera and picture signal processing method
CN1637834A (en) * 2003-12-30 2005-07-13 Lg.菲利浦Lcd株式会社 Apparatus and method for driving liquid crystal display
TW200623001A (en) * 2004-12-31 2006-07-01 Wintek Corp Image-processing device and method for enhancing the luminance and the image quality of display panels
TW200630680A (en) * 2005-02-24 2006-09-01 Samsung Electronics Co Ltd Four-color liquid crystal display

Also Published As

Publication number Publication date
JP4477020B2 (en) 2010-06-09
TW200844976A (en) 2008-11-16
JP2008176247A (en) 2008-07-31
KR20080058236A (en) 2008-06-25

Similar Documents

Publication Publication Date Title
TWI381360B (en) Transmissive-type liquid crystal display device and recording medium
TWI389090B (en) Transmission liquid crystal display device and computer readable recording medium
US8233013B2 (en) Transmissive-type liquid crystal display device
US8872743B2 (en) Liquid crystal display device and control method therefor
JP4457137B2 (en) Transmission type liquid crystal display device
US10210821B2 (en) Light source apparatus, image display apparatus and control method for light source apparatus
RU2443006C1 (en) Display device
US20100321414A1 (en) Display device
JP4757545B2 (en) Liquid crystal display
WO2018110056A1 (en) Light source control device, display device, image processing device, method for controlling light source control device, and control program
US20100045694A1 (en) Image Display Apparatus
US20120026210A1 (en) Liquid crystal display
JP2009086053A (en) Transmissive liquid crystal display device
WO2011004516A1 (en) Liquid crystal display device and method for controlling display of liquid crystal display device
JP5319836B2 (en) Image display device
JP5270279B2 (en) Transmission type liquid crystal display device, control program, and recording medium
JP2010113099A (en) Display device and display control method
JP2009210924A (en) Transmissive liquid crystal display
WO2010109720A1 (en) Liquid crystal display apparatus
JP2010156817A (en) Transmission type liquid crystal display device
JP5176896B2 (en) Liquid crystal display
JP2009217052A (en) Transmissive liquid crystal display device
JP2019020664A (en) Display device
JP2009192636A (en) Transmissive-type liquid crystal display device
JP2008134466A (en) Transmissive liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees