TWI380234B - A method for organizing regions identified in image data, and an apparatus for processing regions of image data - Google Patents

A method for organizing regions identified in image data, and an apparatus for processing regions of image data Download PDF

Info

Publication number
TWI380234B
TWI380234B TW094103882A TW94103882A TWI380234B TW I380234 B TWI380234 B TW I380234B TW 094103882 A TW094103882 A TW 094103882A TW 94103882 A TW94103882 A TW 94103882A TW I380234 B TWI380234 B TW I380234B
Authority
TW
Taiwan
Prior art keywords
color
cluster
spot
spatial
clusters
Prior art date
Application number
TW094103882A
Other languages
English (en)
Other versions
TW200535729A (en
Inventor
Donald J Curry
Asghar Nafarieh
Doron Kletter
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of TW200535729A publication Critical patent/TW200535729A/zh
Application granted granted Critical
Publication of TWI380234B publication Critical patent/TWI380234B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/40Document-oriented image-based pattern recognition
    • G06V30/41Analysis of document content
    • G06V30/413Classification of content, e.g. text, photographs or tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10008Still image; Photographic image from scanner, fax or copier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30176Document

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Description

1380234 九、發明說明: 【發明所屬之技術欄位】 本發明係關於一種將影像資料分成具有同樣位置及顏 色特性之複數個區的方法及系統。 * 【先前技術】 • 在高解像度上所掃瞄的文件通常須要非常大量的儲存 空間。又’大容量的影像資料實質上須要較多時間及較寬的 帶寛以供諸如:透過區域或廣域網路、透過企業網路、企業 φ 區域網路或網際網路、或其他分布網路等而實行傳輸的運 作。 【發明內容】 . 爲了滿足諸如各種不同型式影像資料等資料的壓縮需 求,有一新的方法係使用一種編碼器管線(encoder pipeline) 來描述該資料,而該編碼器管線則係使用混合的光柵內容 (mixed raster content,MRC)格式者。影像資料、例如:具有 彩色及/或灰階資訊之文字的複合影像資料係分割成2個或 φ 更多個平面。通常此等平面有背景平面及前景平面兩種。對 於複合影像中的每一個像素而言,產生一選擇器平面 (selector plane)可用以指示複數個影像平面中的哪一個影 像平面含有必須用以重建最後輸出的實際影像資料。 . 依本發明所提供之系統及方法,係把文件變換爲具有複 數個二進位前景平面(binary foreground planes)之混合的光 柵內容格式。掃瞄文件後,利用邊界連續性及/或彩色連續 性對影像資料作分析以識別複數個區(regions),或斑點 1380234 e (blobs)。各像素被分配以一個id,此id只是在斑點的定界 矩形(bounding rectangle)內側時方需要成爲獨特性,並建構 有一表格(table) ’係藉定界矩形及像素id而識別複數斑.點並 表列其他的屬性(attribute)。把表格作分析以將複數的斑 點、叢聚(cluster)及具有相近位置(l〇caiity)與彩色特性之斑 點等加以分類及過濾。之後,把複數個叢聚置入複數二進位 前景層之一層中。各二進位前景層均分配有一彩色値,此一 彩色値則約爲被分配於該層之全部斑點的平均彩色。依此種 > 方法,則可輸出高品質的影像且其顏色的變化亦屬可接受。 【實施方式】 依本發明所揭示系統及方法各種代表性實施例係自動 的處理經掃瞄及/或經印刷的彩色文件以產生小的、高壓縮 的影像資料檔案,其可精確的捕捉原始文件的內容者。把複 數資料檔案掃瞄而產生在文件中,且因影像的複數像素爲同 樣的顏色並由一封閉之曲線邊界加以界定,故亦對資料加以 分析以確定哪些影像的像素可予以聚集在一起。之後,把在 # 空間上相互接近、同樣顏色之區塊(area)予以組合而將該等 區塊叢聚在一起。之後,將組合的區塊(叢聚的區域)置入複 數個二進位前景層中的一個二進位前景層內,且可予以壓縮 作爲例如PDF檔案的輸出。 第1圖爲分解成背景連續色調或灰階層(背景層)210及 _ N個二進位前景層之文件的影像資料圖。此一實施例中,係 有6個(N = 6)二進位前景層220-270。影像資料包含有分開成 6個不同顏色値的低空間頻率。各該6個的顏色値均各締合 -6- 1380234 有多種二進位前景層220-27〇中的一個特殊二進位前景層, 該等一進位前景層則爲包括具有6個顔色中一個顔色之區域 220’-270’的空間內容者。不包括在區域220,- 270’中之一個 區域內的資料仍存留在背景層210中。本發明係就用以產生 • 空間性區域220’-270,、各區域將被分配於一個二進位前景 . 層'的系統與方法作說明。 影像資料之像素可予識別成爲屬於—個”斑點 (blob) ”’其由一封閉的曲線邊界予以界定並包含具有同樣 % 顔色値的複數個像素。可予作成影像資料之地圖(map),其 係將非獨特的小id分配於每一個像素,則id僅是在分配有 id之斑點的定界矩形內方爲獨特。 第2圖爲斑點ID影像之例示。具有”1”之斑點id的斑 點係表示文字”A”的粗略外形。用以描述一斑點之參數 (parameter)者爲一斑點定界框(blob bounding box),其係整 個封閉斑點之最小矩形。在X方向上的最小値min_x 1,在X 方向的最大値maX_xl,及在Y方向上的最小値min_yl,以 # 及在Y方向上的最大値max_yl等係界定用於第2圖中、斑 點#1之斑點定界框的內容。 斑點#2爲另一個斑點,係以min_x2,max_x2,min_y2, •及max_y2予以定界。該2個斑點可藉一斑點叢聚處理模組 • 予以叢聚在一起。之後,可將該叢聚分配於N個二進位前景 _ 層中之一層,將於下述。 第3圖爲自一掃瞄的文件影像產生N個二進位前景層的 系統代表例。如第3圖所示,文件300係藉一掃瞄器400加 1380234 ♦ 以掃瞄以產生例如RGB顔色空間的影像資料,且影像資料 係輸入至N層影像資料產生系統1000。由N層影像資料產 生系統1000所產生的N層之後即被壓依模組800壓縮並輸 出而例如作爲PDF檔案。 N層影像資料產生系統1000中之第1模組爲顏色變換 模組500。N層影像資料產生系統顏色變換模組500可將RGB 資料變換爲例如YCC顏色空間。 之後,將YCC顔色空間中的影像輸入一斑點識別模組 | 60 0而可產生在影像中顯現之複數個區域、或複數個斑點的 表格(list)。 斑點識別模組600亦產生複數個斑點之全部的表格 (global list)(GTB),其係在文件影像280中所找出之全部斑 點的表格。GTB中之單一入口如第4圖所示。GTB含有與複 數個斑點等量之許多斑點入口。各GTB入口之第1組4個 欄位(field)3 10-340係締合有斑點之定界框的座標。 亮度(luminance)350 及色品値(chroma value)360 與 370 • 爲分配於一斑點之顏色總和;合計像數計數380係業經分配 於一指定像素之像素ID影像中的複數個像素總數量;選用 的var値係用於該斑點之色品値中的色散(variance); ID欄 位4 10係使用於地圖影像中之(非獨特)的斑點ID; INDEX 欄位420係一選用的獨特斑點識別器。含有各GTB入口之 mark欄位430,係藉斑點叢聚處理模組依斑點是否經過一 套測試準則而將施加於斑點的複數個記號(marks)予以儲存 之,此將於下述。儲存用以指示斑點之指示器的斑點next -8 - 1380234 欄位440及cont欄450位係以目前的斑點作連結。 亦由斑點識別模組產生者爲加強的顏色資料(ENH),其 係掃瞄的、YCC變換的影像。 斑點叢聚處理模組700係輸入斑點ID地圖影像、GTB、 • 及ENH,並分析斑點之全部表格,且把佔有某些顔色與空間 . 特性的斑點予以組合成N個叢聚的區域。斑點叢聚處理模組 200係依所叢聚區域之顏色値狀況而把所叢聚的區域分配於 N+1個二進位前景層中的一層。之後,在輸出成例如PDF φ 格式前將該等前景層以壓縮模組800作壓縮。 第5圖爲斑點叢聚處理(BCP)模組700之代表性實施例 方塊圖。該模組700包括一 CPU 710、一輸入/輸出埠780、 —記憶體770、一建構叢聚之模組720、一叢聚分類模組 7 30、一標記叢聚之模組740、一產生複數層之模組750、一 倂合叢聚模組705、及一內部斑點模組760。 斑點叢聚處理模組700係自斑點識別模組600經由輸入 /輸出埠輸入ENH、斑點ID地圖資料(BID)及GTB。 # 依接收來自斑點識別模組600的GTB,叢聚分類模組 7 30乃把斑點作分類,以將該等分類的斑點置排序俾利於嗣 後的斑點叢聚處理步驟。 叢聚分類模組730亦把GTB中之複數顏色總合藉由: . 把顏色總和除以總像素數以正規化(normalize)顏色總和以 _ 獲得一平均的斑點顔色。 之後,分類模組730乃把GTB傳至標記斑點模組740。 標記斑點模組740係用以分析GTB中的各斑點,並依若干 1380234 的測試狀況結果,施加一標記(mark)於mark欄位430上。 標記斑點的目的係可指示哪些斑點可在下游的過程中作估 計(estimate)俾可減少斑點的數量並因而可減少處理的負 擔。因之,標記處理所用的mark欄位430可達成減少處理 * 負擔的目的。 . 標記斑點模組740係依5種狀況測試斑點。倘符合該等 狀況(或條件),則mark欄位中的字元(bit)乃改變成標記斑 點。每一項狀況係指mark攔位中之一不同的字元圖型(bit φ pattern)。爲了加速處理,仍使用基於定界框而非確實之斑 點形狀的簡單測試。標記斑點模組740的諸項狀況係如下列 之秩序: 1) 倘斑點面積太小時,作檢查。 2) 倘像素計數密度小於預先界定的最小密度時,作檢 查。 3) 倘定界框之平面比例(寬度/高度)太大或太小時,作 檢查。此狀況可指示斑點爲線形。 φ 4)倘定界框寬度或高度太大時,作檢查。 5)倘斑點面積足夠大且平均亮度亦接近白色時,作檢 查。 完成後,mark欄位43 0即含有符合最後測試後的數碼 - (code)。僅在如果所有5個測試均失敗時,方仍有斑點未作 標記(數碼爲〇)。 標記斑點模組740既不去除亦不改變任何斑點,而僅係 在諸測試狀況中滿足一個或多個狀況時’方改變mark欄位。 -10- 1380234 同時,斑點中之全部或大部分的像素可用以作顏色變化 性的測試,而如第6圖所示,爲了增加顏色變化性測試的速 度,僅位在單線上、例如中線上的像素可予作測試。標記斑 點模組740係對中線上的斑點像素作評價(evaluate),係自 定界框所確定之左方上的第1個斑點像素開始並在右方上的 最後1個斑點像素開始並在右方上的最後1個斑點像素終 止。之後,標記斑點模組740對中線上之斑點像素的顔色變 化作檢核。 > 標記斑點模組740係計測以Cb,Cr顔色總和所指定之 目前”X”像素顏色與平均斑點色品兩者間的差異而計算顔色 變化。 之後,標記斑點模組740就所計算之色品變化對預先界 定的限度作出比較。倘色品變化超出了限度値,即對斑點加 以標記。 複數的斑點均作標記後,乃把具有同樣顏色特性之斑點 予以組合而叢聚在附近的處所上。建構叢聚的模組7 20係基 • 於顏色與空間關係而把已分類及已標記的斑點分割成複數 個叢聚。 建構叢聚之模組720開始把影像面積區分成複數個相鄰 近且不相重疊的方塊。該等方塊的目的係可將擬作評價的影 像面積減少成較易管理的尺寸。影像面積及方塊的關係示於 第7圖。 建構叢聚的模組720係以顏色及空間位置把斑點分組以 形成斑點的顏色叢聚及空間叢聚。每一個顔色叢聚含有一個 1380234 或多個顏色相同的斑點,亦即,以顏色區分成複數個不同的 區域’其顏色量係少於一顔色門檻値者。各顔色叢聚均含有 至少一個空間叢聚,且各空間叢聚亦含有至少一個斑點。倘 一個顔色叢聚含有多重的空間叢聚時,該等叢聚之顔色必須 . 接近方可。而倘一空間叢聚含有多重的斑點時,該等斑點必 . 須相近方可。 爲了確定一斑點是否須結合一空間叢聚,乃使用一種擴 大的定界框。擴大的定界框之目的係用以界定兩個仍擬作確 φ 認在相同空間叢聚中之斑點間的一可接受距離門檻値。重疊 在擴大定界框之斑點可認爲係足夠的相互接近而屬於相同 的空間叢聚。 第8圖爲擴大的定界框例示圖。擴大的定界框7 54之寬 度及高度係和原定界框比例的擴大並至一預先界定的極限 値。 例如,返回第2圖所示,識別爲斑點”1”(文字”A”)之斑 點具有一擴大的定界框,其係以指定擴大的定界框邊界 ex_max_xl在X方向上作2行(two columns)的擴大,同樣 的,斑點#2亦係以指定擴大的定界框邊界ex_min_x2作2 行的擴大。因此,倘該處的顏色値足夠接近,因爲斑點 #l(exp_max_xl)之擴大的定界框係重疊斑點#2(exp_min_x2) . 之擴大的定界框,故斑點#1乃和識別爲斑點#2同被包含在 相同的空間叢聚中。 擴大框之擴大尺寸係基於:複數前景層之最後數量、及 複數二進位層之壓縮效率、兩者間的平衡作選擇。 -12- 1380234 當複數個叢聚由複數個斑點作組合時,爲了追蹤叢聚之 內容,建構叢聚模組720係保持在方塊(tile)上2階層的叢 聚資料。空間叢聚之cont欄位係經常指示斑點表格的頭部 且顔色叢聚之cent欄位則係經常的指示空間叢聚表格之頭 部。 next欄位係指示表格中的次一個記錄。斑點之next欄 位係指示斑點。空間叢聚之next欄位係指示空間叢聚。顔 色叢聚之next欄位係指示顏色叢聚。next欄位係在表格尾 端之NULL。建構叢聚模組720之資料構造示於第9圖。 第9圖爲3階層資料構造方塊圖,係用以對複數個結合 成叢聚的斑點作各別的追蹤。資料構造之最高階層(top level)735例如含有顏色叢聚746、747及748。該等顏色叢 聚在比較一預先界定的顏色門檻下係具有相同或近似顏色 之複數個空間叢聚的群組(groupings)。資料構造之第2階層 736含有空間叢聚731、732、733及734,該等空間叢聚則 包含具有重疊、擴大定界框的斑點。 底部階層737則含有以cont指示器耦連於空間叢聚並 以次一個指示器耦連於相同叢聚中之斑點等的原始斑點。因 此,各叢聚或斑點係使用”next”指示器在相同的階層中耦連 於另外的叢聚或斑點,且諸叢聚_係以”cont”指示器在較低的 階層上耦連於另外的叢聚。 各方塊中找出的第1斑點係初始新的叢聚鏈,其後之複 數個斑點則可耦連於該等叢聚鏈。 方塊中找出的第2斑點可予分配於一既有的空間叢聚, -13- 1380234 或是可作成含有該斑點的一個新叢聚。例如,倘目前斑點87 2 確認無法和任何已作成之顏色叢聚相匹配時,可在叢聚表格 中作一個新的顔色叢聚846,並在顏色叢聚鏈之起始處***。 第10圖爲把一個新的顏色叢聚846***已含845及8 44 之叢聚鏈的過程圖。爲了***一個新的顏色叢聚,於新顏色 叢聚***前之對應方塊入口中的叢聚索引係被複印於新顏 色叢聚之next欄位中,並把方塊入口修改以含有新顔色叢 聚之索引。 | 第11圖爲來自叢聚資料構造之耦連的叢聚入口代表 圖。複數個叢聚入口係對應於第10圖底部中之複數個叢聚。 倘兩個顏色叢聚之顏色値在顏色門檻內時,或兩個空間 叢聚爲重疊於擴散的定界框時,可將該兩個叢聚倂合。倂合 係包括平均顏色及像數計數的更新。將兩個擴大的定界框組 合而產生可包圍兩者之一個新的定界框。 因爲上述之叢聚倂合法甚爲適當,故在把複數個斑點插 入方塊叢聚構造之初始***期間亦可利用之。作成一後補暫 # 時性空間叢聚,其係具有用於目前斑點經計算的擴展定界 框,且其cont欄位係指示該斑點者。顔色匹配可探察顔色 叢聚鏈。倘未找出匹配的顏色叢聚時,利用目前叢聚之顏色 及擴展的定界框攔位把一新的顏色叢聚予以初始化。之後, 探查匹配的(或新的)顏色叢聚之空間叢聚表格可用於具有 和目前空間叢聚相交之複數個擴展定界框的任何空間叢 聚。倘找出爲空間匹配時,則把目前的叢聚倂合成匹配的空 間叢聚。倘找出係未匹配時,則把目前的叢聚加於顏色叢聚 -14- 1380234 既有內容之起始處。用於空間匹配之測試例示於第i2圖。 倘找出重疊的叢聚,則把目前的叢聚倂合成該空間叢 聚。建立一個新集合的定界框,包括複數個已倂合之定界框 的範圍(extent)。 • 如上所述’倘未找出空間性重疊的叢聚時,係把目前的 . 空間叢聚加諸於(可能爲新的)顔色叢聚之內容表格初始 處。第13圖爲把一新空間叢聚***一既有叢聚鏈的處理圖。 新叢聚859係***空間叢聚鏈之啓始處。顏色叢聚846之先 φ 前cont欄位係複印於叢聚859的next欄位,之後,把先前 即已指示叢聚858之顏色叢聚846的cont欄位加以修正以 指示新的叢聚859。最後,新空間斑點859之cont欄位加以 更新而可成爲目前的斑點873。如此,則完成了此狀況中之 3 _階層構造。 其次,建構複數個叢聚之模組720乃檢査GTB中之次 —個斑點。此一過程一直重複直到所有的斑點基於其等之顏 色匹配及空間近似性並業已***3-階層構造735-737爲止。 • 一旦實現了整個3-階層構造,建構複數個叢聚模組720 即開始倂合叢聚以減少所剩叢聚的數量。 如第14圖所示,叢聚倂合後,把重疊誇於方塊邊界之 複數個叢聚倂合而去除各2x2組相鄰近方塊間的邊界。在方 . 塊邊界間之邊界去除前,第14圖中之頂一左方之方塊係具 有了顏色叢聚810、814及816,頂一右方之方塊係具有2 顏色叢聚812及816,而其他的方塊則爲一個方塊各具有一 個顏色叢聚8 20及822(用於共6個的叢聚)。假設平均顏色 1380234 爲匹配時’則第14圖之底部係表示在—個倂合步驟824, 826. 828及830後係僅保持4個顏色叢聚。 在此點上’一個新的叢聚陣列係以半數的方塊在各方向 中作分配,且複數個入口則塡充以組合的資料。用於一個2x2 • 組之複數個方塊的倂合步驟示於第14圖。倂合過程係一直 . 重複進行直到方塊大小覆蓋整個影像資料爲止。 最後的叢聚構造係送至併合叢聚模組705。併合叢聚模 組705首先係把顏色叢聚之最高階層735自叢聚構造中去 φ 除。第1 5圖爲倂合叢聚模組705之動作例示圖。 倂合叢聚模組705係基於顏色匹配及空間重疊而再次探 查用於倂合叢聚可能性之空間叢聚鏈。倘找出爲匹配時,則 如上述把資料倂合於第1叢聚中並刪除第2叢聚。把複數個 鏈路(links)再連接以保持表格而未有業已去除的叢聚。第16 圖爲倂合叢聚模組705之動作圖。 複數個空間叢聚係自所配合之斑點資料內容以倂合叢 聚模組705再計算之。倂合叢聚模組705之再計算係評價諸 # 空間叢聚的鏈(chain)爲之。對各空間叢聚而言,係基於叢聚 中所含之斑點對像素計數、顏色平均値、及集合的定界框(無 擴展)作再計算。 倂合叢聚7 05可去除可能爲不良的叢聚,且再調整斑點 • mark欄位。如上述所指示已作標記之空間叢聚係予以消除 _ 並把次一個鏈路更新以保持空間叢聚的表格而未有已去除 之叢聚。 斑點識別處理之當然結果係每一個斑點爲整個的在每 -16- 1380234 « 9 —個另外斑點之內部或外側。在併合叢聚模組705完成了倂 合過程後,內部斑點模組760即檢查各斑點以察看該斑點是 否整個含在另外一個未標記的斑點內,亦即其是否 爲”inner(內部)”。確定爲”內部”之任何斑點均自叢聚中去 . 除。 . 內部斑點模組760之動作須檢查在所有成對斑點間可能 的內部。由於此一狀況所呈現在計算上之負載(load),故在 倂合叢聚模組之後設置內部斑點模組,以消除諸多不良或小 φ 的斑點(已作標記)。 內部斑點模組760係檢試所有可能的斑點對組合。一第 1斑點,即斑點A係順序性的由事先業已以定界框之min,Y 所分類的GTB中予以檢出。第2斑點;即斑點B,在之後即 由恰自A後之GTB起始處予以檢出。對於各斑點而言,定 界框及斑點ID係由斑點之全面性表格中找回。第2斑點, 即斑點B,係對應斑點A作測試而作爲內部。 ' 用於決定斑點B是否爲一內部斑點a之過程例示於第 φ 17圖。如第17圖所示’定界框884之一中間線881爲含有 斑點A。中間線8 8 1之各第1個3像素係作確定以成爲內側 斑點A,且轉變爲用於像素883之斑點B。因已符合前先的 各種條件,故識別斑點B作爲斑點A。 . 第18圖所示之狀態機器(state machine)890係例示用以 決定內部斑點的代表性處理流程。 一旦見及第1斑點ID ’狀態即變更至1。如今,狀態機 器890開始察看用於斑點ID B之發生。狀態一直停留在1 1380234 令斑點ID A持續的可予觀測。但是,如果A或B以外之任 何ID在斑點ID A後且在ID OB前到來時,則狀態重置爲零 以重新啓始。僅當斑點ID B在斑點ID A之後來到右方,狀 態方變爲2用以指示爲B且爲內部。到達此一狀態時,測試 即迅速的中斷。 倘找出狀態2,乃藉由導通B斑點之mark欄位430中 的內部字元而將B斑點作標記而作爲內部斑點。 如上述,檢査B是否爲A之內部,流程即移至檢查GIB | 中之次一個B。此種動作一直持續直到GTB之最後一個斑點 業已加以評估或B之min y大於A之max y爲止。 之後,內部斑點模組7 60乃基於各斑點的像素數量再計 算定界框連接(bounding box union)(不含內部斑點)及新加 權的(new weighted)平均顏色。倘結果的叢聚足夠大,則以 像素計數將更新的YCC顏色總和予以正規化,且把未含於 內部斑點之新的平均顔色上傳(upload)於叢聚資料中以取代 先前的總和。同樣的,不含內部斑點之新像素計數及更新的 • 定界框資料係上傳於叢聚資料中。 叢聚分類模組730係把複數個空間叢聚以尺寸大小予以 分類成自最大至最小的像數計數。分類方法可依以下第19 圖所示,基於氣泡分類演算法爲之。 此時,一個叢聚之後跟隨有空間叢聚鏈991、992及 993»在各步驟中,目前叢聚991之尺寸係和之後的叢聚992 之尺寸相比較。之後的叢聚992係以隨後次一個來自目前叢 聚991之鏈路(link)作識別。叢聚尺寸係由count欄位指定, -18- 1380234 其係含有叢聚中所集合的像素數。倘991中之像素數小於 99 2之count欄位中的像素數時,諸鏈中的位置乃被切換, 且其等的次一個鏈路即被更新以反映諸個新的位置。 產生階層之模組750係追隨著叢聚分類模組730。產生 階層之模組750係把空間叢聚變換成二進位掩蔽平面 (binary mask plan)。各叢聚係由1開始,順序性的分配以一 個層號。如前述,諸空間叢聚及因此之二進位平面係以下降 的像數計數値予以分類,故層數係和尙殘存的空間叢聚+1 > 的數量相同。 之後,該產生階層之模組750係作成二進位(N+1)平面。 平面1至N係包含用於對應該層的二進位資料。平面〇則包 含等效於由層1至N所”或”(OR-ed)資料的二進位選擇器 層。平面〇之尺寸與背景平面相同。 產生複數層之模組750在一個時間上作成一個平面。如 前述,叢聚模組730係以減少的像素計數値把諸平面分類。 對每一個平面而言,係使用定界框計算平面尺寸並分配用於 φ 二進位影像之記憶儲存正確量。開始時,該平面係設定爲 零。之後,處理平面叢聚內容表格中的各斑點。對各斑點而 言,對應於斑點定位層之ID地圖影像的全部位置係予以作 測試。對定界框中之每一個其ID等於斑點ID的地圖像素而 言,該層平面中之對應字元係設定爲1。 雖然上述係以硬體實施例作說明,但斑點叢聚之處理亦 可用軟體在一微處理器內之執行而實現之。在此狀況中,本 方法之各個步驟係藉由一適當程式化之微處理器,或藉由軟 -19- 1380234 體與硬體之結合等而達成。 第20圖爲用以把表列於斑點之全面性表格中的斑點變 換成η個二進位前景層方法之流程圖》如第20圖所示,此 方法係自步驟S 200開始動作,於此步驟中,係把斑點之全 • 面性表格中的斑點予以正規化。在各不同的代表性實施例 . 中,斑點係依其像素計數作正規化。之後,至步驟S300。 在步驟S300中,倘選擇選用時,係把斑點的YCC變換爲連 續之灰色色調。其後,至步驟S400,在步驟S400中,把斑 φ 點依其在掃瞄之影像中的位置加以分類。之後,至步驟 S 5 00,在步驟S500中,係把一索引分配於各斑點以儲存其 之順序。處理續至步驟S600,在步驟S600中,係依照諸測 試條件中之一個條件分析斑點並予以標記。步驟再至S 800, 於步驟S800中,係把顏色變化性超出了某一門檻値之斑點 作標記。之後,步驟至S900。 在步驟S900中,係自GTB中建構叢聚,其中係由彼此 之顏色相似且相接近之斑點作成叢聚。在步驟S1000中,係 φ 把步驟S900中所作成之叢聚表格中的最高階層(顏色階層) 予以去除》在步驟s 1 100中,係把顏色幾近相同且在空間上 相重疊之叢聚予以倂合以減少尙殘留叢聚的數量。在步驟 S1 200中,把步驟S1 100作倂合動作後剩餘的叢聚顏色作再 . 計算並更新叢聚計數。在步驟S1 300中,係把不含在像素之 最小門檻數的叢聚自叢聚表格中消除之。在步驟S 1400中, 把整個含在另一個斑點中的斑點標記爲”內部"(inner)。在步 驟S 1500中,係把事先已標記爲”內部”之斑點去除之。在步 -20- 4 1380234 驟S 1600中’係把步驟S 1 500去除該種”內部”斑點後所餘的 叢聚再作計算。在步驟S1 700中,係以尺寸來分類斑點。 在步驟S1 800中,係把剩下的叢聚依序的分配予二進位 前景平面,在步驟S1900中’係把不同的前景平面予以位元 • 組對齊(byte-aligned)至偶數位元組邊界(eveil byte . boundary)。其次,在步驟S2000中,係產生N+1個二進位 平面。平面〇’亦即,選擇器平面,係用以掩蔽灰階背景平 面內的影像資料。調整灰階背景平面以改善壓縮能力。之 φ 後,在步驟S2100中,係把步驟S19 00中所確定之複數個分 開二進位前景平面中的各個前景平面利用適合於該等二進 位前景平面之壓縮技術予以壓縮。動作再至步驟S2200。 在步驟S2200中,係使用適合於該時資料之壓縮技術壓 縮背景平面。之後,在步驟S 2300中,係由壓縮的二進位前 景平面及壓縮的灰階平面中產生携帶式文件格式(PDF)文件 檔案。其次,在步驟S2400中,係把所產生之携帶式文件格 式(PDF)文件檔案輸出至下游的處理器及/或儲存在記憶器 φ 中。至此,動作乃結束。 此間應了解者,在諸代表性實施例中,於步驟S 2 300及 S2400所使用之携帶式文件格式(PDF)可代之以之前已知或 之後開發的文件格式。 . 同時,本發明上述所舉之實施例僅爲代表性’並非限制 僅如所陳,在本發明創新思想及精神下之各種變化與修改, 自應屬本發明專利保護範疇。 【圖式簡單說明】 -2 1- 1380234 第1圖係將一影像予以分解成多重二進位前景平面及背 景平面之代表性實施例。 第2圖爲斑點ID影像資料之代表性實施例。 第3圖爲一代表性系統,其中斑點叢聚處理模組可作動 作。 第4圖爲用於斑點之一全面性表格中之一斑點或一叢聚 的入口代表性實施例。 第5圖爲第3圖所示斑點叢聚處理模組之代表性實施 _ 例。 第6圖爲一定界框之代表性實施例。 第7圖爲何以可將一頁的影像資料分成複數個方塊的說 明圖。 第8圖爲擴展之定界框代表性實施例。 第9圖爲依照所描述叢聚之空間與顏色關係,而用於該 叢聚之資料構造代表性實施例。 第10圖爲藉由第4圖所示斑點叢聚處理模組將一新的 Φ 叢聚***該叢聚鏈起始處之說明圖。 第1 1圖爲具有next及cont鏈環欄位之叢聚表格入口例 示圖。 第12圖爲擬將一叢聚確定爲空間性的重疊另一個叢聚 的需求說明圖。 第1 3圖係如何的把具有空間性重疊之擴展的定界框以 第5圖斑點叢聚處理模組之建構複數斑點模組加於叢聚鏈的 說明圖。 -22- 1380234 第14圖爲如何的藉由影像頁之組合方塊把複數個叢聚 作組合的說明圖。 第15圖爲如何的藉由斑點叢聚處理模組之叢聚倂合模 組將顏色叢聚的最高階層去除之說明圖。 • 第16圖爲如何的藉由斑點處理模組之叢聚倂合模組將 . 空間叢聚加以符合之說明圖。 第1 7圖爲藉由斑點叢聚處理模組之內部斑點模組對一 內部斑點作檢測之說明圖。 Φ 第18圖爲用以遂行一內部斑點之檢測之狀態機器例示 圖。 第19圖爲叢聚分類模組所使用之氣泡分類程序圖〇 第20圖爲流程圖,係說明用以把斑點區分並標記成二 進位平面資料之方法,則該二進位平面資料乃可用以產生一 頁之經壓縮的圖像。 【元件符號說明】
300 文 件 400 掃 瞄 器 500 顏 色 變 換 模 組 600 斑 點 識 別 模 組 705 倂 合 叢 聚 模 組 700 斑 點 叢 聚 處 理模組 7 10 中 央 處 理 單 元 720 建 構 叢 聚 模 組 730 叢 聚 分 類 模 組 -23- 1380234
740 標 記 斑 點 模 組 750 產 生 平 面 模 組 760 內 部 斑 點 模 組 770 記 憶 器 780 輸 入 / 輸 出 埠 800 壓 縮 模 組 1000 N 層 影 像 資 料產生系統 8 4 4* 846 顏 色 叢 聚 856〜 859 空 間 叢 聚 873 斑 點 99 1〜 993 空 間 叢 聚 鏈
-24-

Claims (1)

1380234 第=4103882「組織在影像資料中所辨識之區域的 及理衫像資料之區域的裝置」專利案 (2012 年 2 月 20 十、申請專利範圍: -丨· 一種組織在影像資料中所辨識之區域的方法, 求出空間叢聚内之複數個區域的顏色之平 生平均顏色; 將上述平均顏色定為上述空間叢聚之顏色 _ 將上述空間叢聚之大小設定為上述空間叢 之像素的總數; 形成一個以上之顏色叢聚,每一個顏色叢 包含景>像資料中之具有低於顏色極限值之色 域; 若顏色叢聚内所含之兩個以上的區域的最 在距離極限值的範圍内’則將上述兩個以上的 合為一個以上之空間叢聚中的一個空間叢聚; • 將每一個空間叢聚定為二進位輸出平面; 從顏色叢聚或空間叢聚中刪除判定為完全 其它區域之範圍内的區域。 2.—種組織在影像資料中所辨識之區域的方法, 將上述影像資料中之影像區域分割為複數 塊(tiles); • 根據上述影像資料之區域中之每一個區域 框之位置,將一個以上之上述區域定為小區塊 若第一顏色叢聚内所含之兩個以上的區域 修正本 1方法以 曰修正) 包含: 均以產 t 聚所含 聚内皆 差的區 近邊界 區域集 以及 涵蓋在 包含: 個小區 的定界 9 ^之最近 1380234 邊界 色極 叢聚 聚, 色叢 叢聚 距離 叢聚 中之 以及 域的 聚結 之邊 塊内 中的 3.—種 彼此 修正本 在距離極限值的範圍内,則藉使具有差異少 限值之顏色的小區塊内之區域包含 ^ ώ a母—個顏 内’或藉將上述兩個以上的區域隼人 σ為空間叢 從而形成—個以上的顏色叢聚; 若上述小區塊内之第一區域未包含於任— 聚内’則為上述第一區域創造新的顏色叢聚.^ 若上述新的顏色叢聚中之未包含於上述新的顏色 中之現存的空間叢聚内的區域之最近邊界大於一 極限值,則在上述新的顏色叢聚中創造新的空間 ,其中,該距離極限值係偏離上述新的顏色叢聚 上述現存的空間叢聚内的任何其它區域之邊界: a)將數倘小區塊的2χ2區塊結合為 + 竹的小區塊; )右上述新的小區塊内之複數個 巴叢聚内之區 願色各自低於上述顏色極限值, Κ认 將上述顏色叢 a马新的小區塊;以及 若上述新的小區塊内之複數個空 « ^ ^ 1因工間叢聚内的區域 介各自低於上述距離極限值,則脾 ^ L , 則將上述新的小區 之上述空間叢聚結合; c)重新命名上述新的小區塊為 I 鬼,以及 董複a)-c)直到單一小區塊包含 區塊。 3所〇述影像資料 處理影像資料之區域的裝置,包含: 顏色叢聚處理器,其係藉將上述爭 像資料中之在 的顏色極限值之範圍内的區域隼入 。,從而形成一 1380234 修正本 個以上的顏色叢聚,及/或空間叢聚處理器,其 一個上述顏色顏色叢聚形成一個以上的空間叢 中,上述顏色叢聚之區域係在其等各自之定界 此的距離極限值的範圍内時包含於上述空間叢 以及 平面產生器,其係根據上述顏色叢聚或空 創造二進位輸出平面,及内部斑點(blob)模組, 顏色叢聚及/或空間叢聚刪除判定為完全涵蓋在 域之範圍内的區域; 其中,上述顏色叢聚處理器亦將上述影像 的影像區域分割為一組小區塊,根據上述影像 的每*個區域之定界框的位置而將上述區域定 小區塊,並依上述區域之顏色特性及/或空間特 述區域集合為叢聚。 係為每 聚,其 框在彼 聚内; 間叢聚 其係從 其它區 資料中 資料中 為上述 性將上
TW094103882A 2004-02-12 2005-02-05 A method for organizing regions identified in image data, and an apparatus for processing regions of image data TWI380234B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/776,602 US7343046B2 (en) 2004-02-12 2004-02-12 Systems and methods for organizing image data into regions

Publications (2)

Publication Number Publication Date
TW200535729A TW200535729A (en) 2005-11-01
TWI380234B true TWI380234B (en) 2012-12-21

Family

ID=34701361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094103882A TWI380234B (en) 2004-02-12 2005-02-05 A method for organizing regions identified in image data, and an apparatus for processing regions of image data

Country Status (5)

Country Link
US (1) US7343046B2 (zh)
EP (1) EP1564684B1 (zh)
JP (1) JP4587832B2 (zh)
CN (1) CN100446542C (zh)
TW (1) TWI380234B (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590291B2 (en) * 2004-12-06 2009-09-15 Intel Corporation Method and apparatus for non-parametric hierarchical clustering
US7814129B2 (en) * 2005-03-11 2010-10-12 Ross Neil Williams Method and apparatus for storing data with reduced redundancy using data clusters
US7792359B2 (en) 2006-03-02 2010-09-07 Sharp Laboratories Of America, Inc. Methods and systems for detecting regions in digital images
US7889932B2 (en) * 2006-03-02 2011-02-15 Sharp Laboratories Of America, Inc. Methods and systems for detecting regions in digital images
US8630498B2 (en) * 2006-03-02 2014-01-14 Sharp Laboratories Of America, Inc. Methods and systems for detecting pictorial regions in digital images
US8437054B2 (en) * 2006-06-15 2013-05-07 Sharp Laboratories Of America, Inc. Methods and systems for identifying regions of substantially uniform color in a digital image
US7864365B2 (en) 2006-06-15 2011-01-04 Sharp Laboratories Of America, Inc. Methods and systems for segmenting a digital image into regions
US7876959B2 (en) 2006-09-06 2011-01-25 Sharp Laboratories Of America, Inc. Methods and systems for identifying text in digital images
ITVA20060079A1 (it) * 2006-12-19 2008-06-20 St Microelectronics Srl Metodo di classificazione cromatica di pixel e metodo di miglioramento adattativo di un'immagine a colori
US8621064B2 (en) 2007-03-28 2013-12-31 Yahoo! Inc. System and method for associating a geographic location with an Internet protocol address
US8024454B2 (en) * 2007-03-28 2011-09-20 Yahoo! Inc. System and method for associating a geographic location with an internet protocol address
US8068684B2 (en) * 2007-05-04 2011-11-29 I.R.I.S. Compression of digital images of scanned documents
US20090041344A1 (en) * 2007-08-08 2009-02-12 Richard John Campbell Methods and Systems for Determining a Background Color in a Digital Image
US7907778B2 (en) * 2007-08-13 2011-03-15 Seiko Epson Corporation Segmentation-based image labeling
US8014596B2 (en) * 2007-10-30 2011-09-06 Sharp Laboratories Of America, Inc. Methods and systems for background color extrapolation
US8339399B2 (en) 2007-10-31 2012-12-25 Microsoft Corporation Declustering point-of-interest icons
US8503036B2 (en) * 2008-06-23 2013-08-06 Xerox Corporation System and method of improving image quality in digital image scanning and printing by reducing noise in output image data
JP5100543B2 (ja) * 2008-07-11 2012-12-19 キヤノン株式会社 文書管理装置、文書管理方法、及びコンピュータプログラム
US8446463B2 (en) 2008-08-22 2013-05-21 Genprime, Inc. Apparatus, method and article to perform assays using assay strips
US20100124372A1 (en) * 2008-11-12 2010-05-20 Lockheed Martin Corporation Methods and systems for identifying/accessing color related information
US8351691B2 (en) * 2008-12-18 2013-01-08 Canon Kabushiki Kaisha Object extraction in colour compound documents
JP4698743B2 (ja) * 2009-01-22 2011-06-08 シャープ株式会社 画像圧縮方法、画像圧縮装置、画像形成装置、コンピュータプログラム及び記録媒体
JP5173898B2 (ja) * 2009-03-11 2013-04-03 キヤノン株式会社 画像処理方法、画像処理装置、及びプログラム
CN101527779B (zh) * 2009-03-12 2012-06-27 北京大学 一种校色的方法和装置
JP4998496B2 (ja) * 2009-03-16 2012-08-15 富士ゼロックス株式会社 画像処理装置、情報処理装置および画像読取装置
US8761465B2 (en) * 2009-03-18 2014-06-24 Microsoft Corporation Centroid processing
US8659620B2 (en) * 2009-04-13 2014-02-25 Accusoft Corporation Methods and apparatus for rendering images
CN101887409B (zh) * 2009-05-12 2012-10-03 上海易狄欧电子科技有限公司 阅读器间共享电子书数据的传输方法
DE102010028894B4 (de) * 2009-05-13 2018-05-24 Koh Young Technology Inc. Verfahren zur Messung eines Messobjekts
US8532437B2 (en) * 2009-05-18 2013-09-10 Citrix Systems, Inc. Systems and methods for block recomposition for compound image compression
US20100296734A1 (en) * 2009-05-20 2010-11-25 Colorcom, Ltd. Identifying and clustering blobs in a raster image
JP2011013898A (ja) * 2009-07-01 2011-01-20 Canon Inc 画像処理装置、画像処理方法、及び、プログラム
JP5327469B2 (ja) * 2009-08-10 2013-10-30 富士ゼロックス株式会社 画像処理装置、画像処理プログラム
JP2011040970A (ja) * 2009-08-10 2011-02-24 Canon Inc データ処理装置、および、データ処理方法
US8306345B2 (en) * 2009-09-22 2012-11-06 Xerox Corporation 3+N layer mixed raster content (MRC) images and processing thereof
US8565531B2 (en) * 2009-10-09 2013-10-22 Xerox Corporation Edge detection for mixed raster content (MRC) images for improved compression and image quality
US20110134245A1 (en) * 2009-12-07 2011-06-09 Irvine Sensors Corporation Compact intelligent surveillance system comprising intent recognition
CN102110122B (zh) 2009-12-24 2013-04-03 阿里巴巴集团控股有限公司 一种建立样本图片索引表和图片过滤、搜索方法及装置
US8335379B2 (en) * 2009-12-28 2012-12-18 Xerox Corporation System and method for cleanup of MRC images for improved compression and image quality
JP5636674B2 (ja) * 2010-01-07 2014-12-10 富士ゼロックス株式会社 画像処理装置及び画像処理プログラム
US8582906B2 (en) * 2010-03-03 2013-11-12 Aod Technology Marketing, Llc Image data compression and decompression
US9697751B2 (en) * 2010-03-09 2017-07-04 Microsoft Technology Licensing, Llc Interactive representation of clusters of geographical entities
US20110225546A1 (en) * 2010-03-09 2011-09-15 Ramos Gonzalo A Map spotlights
US8345998B2 (en) 2010-08-10 2013-01-01 Xerox Corporation Compression scheme selection based on image data type and user selections
US8457426B1 (en) * 2011-05-18 2013-06-04 Adobe Systems Incorporated Method and apparatus for compressing a document using pixel variation information
CN102253970B (zh) * 2011-06-09 2013-11-13 北京新媒传信科技有限公司 一种图像处理方法
JP5842441B2 (ja) * 2011-07-29 2016-01-13 ブラザー工業株式会社 画像処理装置およびプログラム
JP5796392B2 (ja) 2011-07-29 2015-10-21 ブラザー工業株式会社 画像処理装置、および、コンピュータプラグラム
JP5853470B2 (ja) 2011-07-29 2016-02-09 ブラザー工業株式会社 画像処理装置、画像処理プラグラム
JP5776419B2 (ja) 2011-07-29 2015-09-09 ブラザー工業株式会社 画像処理装置、画像処理プラグラム
US9552129B2 (en) 2012-03-23 2017-01-24 Microsoft Technology Licensing, Llc Interactive visual representation of points of interest data
US20130257885A1 (en) * 2012-03-28 2013-10-03 Intel Corporation Low Power Centroid Determination and Texture Footprint Optimization For Decoupled Sampling Based Rendering Pipelines
US10002310B2 (en) 2014-04-29 2018-06-19 At&T Intellectual Property I, L.P. Method and apparatus for organizing media content
US10045029B2 (en) * 2014-05-06 2018-08-07 Intel Corporation Clustering and encoding for color compression
US9646202B2 (en) 2015-01-16 2017-05-09 Sony Corporation Image processing system for cluttered scenes and method of operation thereof
US10361919B2 (en) * 2015-11-09 2019-07-23 At&T Intellectual Property I, L.P. Self-healing and dynamic optimization of VM server cluster management in multi-cloud platform
US20180047193A1 (en) * 2016-08-15 2018-02-15 Qualcomm Incorporated Adaptive bounding box merge method in blob analysis for video analytics
US10576475B2 (en) 2016-09-15 2020-03-03 Genprime, Inc. Diagnostic assay strip cassette
US10158784B2 (en) 2016-12-07 2018-12-18 Xerox Corporation System and method for adaptively compressing data having noisy images using lossless compression
US10409451B2 (en) * 2017-07-01 2019-09-10 Ledvance Llc Apparatus containing color coded group and member icons and method of grouping and degrouping members icons in lighting applications
WO2019157029A1 (en) 2018-02-06 2019-08-15 Vatbox, Ltd. System and method for classifying images of an evidence
WO2021226535A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Multi-layer reprojection techniques for augmented reality
US20240037845A1 (en) * 2022-07-26 2024-02-01 Adobe Inc. Systems for Efficiently Generating Blend Objects

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849914A (en) 1987-09-22 1989-07-18 Opti-Copy, Inc. Method and apparatus for registering color separation film
US5515452A (en) 1992-12-31 1996-05-07 Electroglas, Inc. Optical character recognition illumination method and system
US5544256A (en) * 1993-10-22 1996-08-06 International Business Machines Corporation Automated defect classification system
US5577135A (en) * 1994-03-01 1996-11-19 Apple Computer, Inc. Handwriting signal processing front-end for handwriting recognizers
US5583659A (en) 1994-11-10 1996-12-10 Eastman Kodak Company Multi-windowing technique for thresholding an image using local image properties
US5745596A (en) 1995-05-01 1998-04-28 Xerox Corporation Method and apparatus for performing text/image segmentation
US6024018A (en) * 1997-04-03 2000-02-15 Intex Israel Technologies Corp., Ltd On press color control system
US6741655B1 (en) * 1997-05-05 2004-05-25 The Trustees Of Columbia University In The City Of New York Algorithms and system for object-oriented content-based video search
US5900953A (en) 1997-06-17 1999-05-04 At&T Corp Method and apparatus for extracting a foreground image and a background image from a color document image
AUPO960297A0 (en) * 1997-10-03 1997-10-30 Canon Information Systems Research Australia Pty Ltd Colour advising and selection method
US6058214A (en) 1998-01-20 2000-05-02 At&T Corp. Compression of partially masked still images
IL124616A0 (en) * 1998-05-24 1998-12-06 Romedix Ltd Apparatus and method for measurement and temporal comparison of skin surface images
US6236764B1 (en) * 1998-11-30 2001-05-22 Equator Technologies, Inc. Image processing circuit and method for reducing a difference between pixel values across an image boundary
US6324305B1 (en) * 1998-12-22 2001-11-27 Xerox Corporation Method and apparatus for segmenting a composite image into mixed raster content planes
US6400844B1 (en) * 1998-12-02 2002-06-04 Xerox Corporation Method and apparatus for segmenting data to create mixed raster content planes
US6598054B2 (en) * 1999-01-26 2003-07-22 Xerox Corporation System and method for clustering data objects in a collection
US6115031A (en) * 1999-04-23 2000-09-05 Lexmark International, Inc. Method of converting color values
US6469706B1 (en) * 1999-11-16 2002-10-22 International Business Machines Corporation Method and apparatus for detecting regions belonging to a specified color surface in an unsegmented image
US6473522B1 (en) * 2000-03-14 2002-10-29 Intel Corporation Estimating text color and segmentation of images
US6633670B1 (en) * 2000-03-31 2003-10-14 Sharp Laboratories Of America, Inc. Mask generation for multi-layer image decomposition
US7672022B1 (en) 2000-04-07 2010-03-02 Hewlett-Packard Development Company, L.P. Methods and apparatus for analyzing an image
DE60138073D1 (de) * 2000-07-12 2009-05-07 Canon Kk Bildverarbeitungsverfahren und Bildverarbeitungsvorrichtung
JP2002209103A (ja) * 2001-01-09 2002-07-26 Minolta Co Ltd 画像処理装置
US7145676B2 (en) * 2001-01-31 2006-12-05 Hewlett-Packard Development Company, L.P. Compound document image compression using multi-region two layer format
US6721448B2 (en) * 2001-02-20 2004-04-13 International Business Machines Corporation Color clustering and segmentation using sigma filtering
DE60109278T2 (de) * 2001-06-26 2006-03-30 Nokia Corp. Verfahren und Gerät zur Lokalisierung von Schriftzeichen in Bildern aus einer Digitalkamera
US8103104B2 (en) * 2002-01-11 2012-01-24 Hewlett-Packard Development Company, L.P. Text extraction and its application to compound document image compression
US20030165263A1 (en) * 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
TW577227B (en) * 2002-04-23 2004-02-21 Ind Tech Res Inst Method and apparatus for removing background of visual content
US7324120B2 (en) * 2002-07-01 2008-01-29 Xerox Corporation Segmentation method and system for scanned documents
US7386166B2 (en) * 2004-02-12 2008-06-10 Xerox Corporation Systems and methods for connecting regions image data having similar characteristics
US7379587B2 (en) * 2004-02-12 2008-05-27 Xerox Corporation Systems and methods for identifying regions within an image having similar continuity values
US7403661B2 (en) * 2004-02-12 2008-07-22 Xerox Corporation Systems and methods for generating high compression image data files having multiple foreground planes

Also Published As

Publication number Publication date
EP1564684A2 (en) 2005-08-17
JP2005228341A (ja) 2005-08-25
EP1564684A3 (en) 2007-12-05
EP1564684B1 (en) 2015-04-08
US20050180647A1 (en) 2005-08-18
JP4587832B2 (ja) 2010-11-24
CN100446542C (zh) 2008-12-24
US7343046B2 (en) 2008-03-11
TW200535729A (en) 2005-11-01
CN1655584A (zh) 2005-08-17

Similar Documents

Publication Publication Date Title
TWI380234B (en) A method for organizing regions identified in image data, and an apparatus for processing regions of image data
TWI406180B (zh) 用於產生具有多重前景平面之高度壓縮影像資料檔案的系統及方法
DE602005005230T2 (de) Vorrichtung und Verfahren zum Zusammenführen von Bildbereichen mit ähnlichen Eigenschaften
JP5008572B2 (ja) 画像処理方法、画像処理装置およびコンピュータ可読媒体
US8532374B2 (en) Colour document layout analysis with multi-level decomposition
CN111738318B (zh) 一种基于图神经网络的超大图像分类方法
US8319987B2 (en) Image processing apparatus and control method for compressing image data by determining common images amongst a plurality of page images
EP0618546A1 (en) Method for determining color boundaries for correcting for plate misregistration in color printing
Greenfield et al. Image recoloring induced by palette color associations
US20060153447A1 (en) Characteristic region extraction device, characteristic region extraction method, and characteristic region extraction program
EP0843275A2 (en) Pattern extraction apparatus and method for extracting patterns
JP3185900B2 (ja) 画像処理システム用画像編集装置及び方法
US5761385A (en) Product and method for extracting image data
JP4275866B2 (ja) カラー画像から文字列パターンを抽出する装置および方法
RU2004121993A (ru) Сегментация изображений с использщованием метода водораздела
CN113255289A (zh) 一种文案排版布局的方法及***
JPH08287258A (ja) カラー画像認識装置
JP4116377B2 (ja) 画像処理方法および画像処理装置
CN100543766C (zh) 图像分段方法、紧凑表示产生方法、图像分析方法及装置
AU2007249098B2 (en) Method of multi-level decomposition for colour document layout analysis
van den Broek et al. Weighted distance mapping (WDM)
JP2004261979A (ja) スクリーンの作成方法及びその装置並びに作成プログラム
US7277591B1 (en) Edge smoothing on raster images
CN113343744A (zh) 一种解决pdf中复杂流程图的自动识别与解析方法
JP3045810B2 (ja) 二値画像処理方法および装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees