TW200929638A - Touch panel, method for making the same, and displaying device adopting the same - Google Patents

Touch panel, method for making the same, and displaying device adopting the same Download PDF

Info

Publication number
TW200929638A
TW200929638A TW96149383A TW96149383A TW200929638A TW 200929638 A TW200929638 A TW 200929638A TW 96149383 A TW96149383 A TW 96149383A TW 96149383 A TW96149383 A TW 96149383A TW 200929638 A TW200929638 A TW 200929638A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
touch screen
substrate
transparent conductive
Prior art date
Application number
TW96149383A
Other languages
Chinese (zh)
Other versions
TWI364860B (en
Inventor
Chang-Hong Liu
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96149383A priority Critical patent/TWI364860B/en
Publication of TW200929638A publication Critical patent/TW200929638A/en
Application granted granted Critical
Publication of TWI364860B publication Critical patent/TWI364860B/en

Links

Abstract

The present invention relates to a touch panel. The touch panel includes a base, a transparent conductive layer, and at least two electrodes. The transparent conductive layer is disposed on a surface of the base. The transparent conductive layer includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotubes arranged isotropy, along a fixed direction, or along different directions. The at least two electrodes are separately disposed at a certain distance and electrically connected to the transparent conductive layer. Further, the present invention also relates to a method for making the touch panel and a displaying device adopting the same.

Description

200929638 九、發明說明: .【發明所屬之技術領域】 本發明涉及一種觸摸屏、觸摸屏的製備方法及使用該 觸摸屏的顯示裝置,尤其涉及-種基于奈米碳管的觸摸 屏、該觸摸屏的製備方法及使用該觸摸屏的顯示裝置。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子 設備的高性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子 設備的利用者通過觸摸屏,一邊對位于觸摸屏背面的顯示 設備的顯示内容進行視覺確認,一邊利用手指或筆等方式 按壓觸摸屏來進行操作。由此,可以操作電子設備的各種 功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前技術 中的觸摸屏分爲四種類型,分別爲電阻式、電容式、紅外 線式以及表面聲波式。其中電容式觸摸屏因準確度較高、 抗干擾能力强應用較爲廣泛。 ^ 先前技術中的電容型觸摸屏(請參見“連續 式觸摸屏的研究,,,李樹本等,光電子技術 p62(1995))包括一玻璃基板,一透明導電層,以及多個金 屬電極。在該電容型觸摸屏中,玻璃基板的材料爲納飼玻 璃。透明導電層爲例如姻錫氧化物(IT〇 )或錄錫氧化物 (ΑΤΟ)等透明材料。電極爲通過印製具有低電阻的導電 金屬(例如銀)形成。電極間隔設置在透明導電層的各個 200929638 角處。此外,透明導電層上塗覆有鈍化層。該鈍化層由液 體玻璃材料通過硬化或緻密化工藝,並進行熱處理 化形成。 ❹ θ當手指等觸摸物觸摸在觸摸屏表面上時,由于人體電 場,手指等觸摸物和觸摸屏中的透明導電層之間形成一個 耦合電容。對于高頻電流來說,電容為直接導體,手指等 觸摸物的觸摸將從接觸點吸走一個很小的電流。這個^流 刀別從觸摸屏上的電極中流出,並且流經這四個電極的電 流與手指到四角的距離成正比,觸摸屏控制器通過對這四 個電流比例的精確計算,得出觸摸點的位置。 因此,透明導電層對于觸摸屏為一必需的部件, 技術中透明導電層通常採用ΙΤ0層,然:,Ιτ〇層 旅 =„方法製備’在製備的過程,;要較高的 ^環境及加熱到200〜30(rc,因此,使得ιτ〇層 Ο ==二ΓΙΤΟ層作爲透明導電層具有機械和化學 層存在電阻阻值分布不均勻的現象,導致先前 2電 谷式觸摸屏存在觸摸屏的分辨率低、精確度不高等顯電 有鑒于此,確有必要提供一種分辨率高、 耐用的觸摸屏,以及一種方法門 、月確度向及 地 間早成本低的觸#屉沾制 備方法及使用該觸摸屏的顯示裝置。 、屏的1 【發明内容】 -種觸摸屏’該觸摸屏包括一基體;一 該透明導電層設置于上述基體的—表面;以及至2層’ 極,該至少兩個電極間隔設置並與該透明導電^=電 200929638 霉 其中,上述透明導電層包括一奈米碳管層,該奈米碳管層 •包括各向同性或沿—固定方向取向或不同方向取向排列的 多個奈米碳管。 山+種觸摸屏的製備方法,包括以下步驟:提供一奈米 石厌管陣列形成于一基底及一基體;擠壓上述奈米碳管陣列 獲得一奈米碳管層形成在基體的一個表面;以及提供至少 兩個電極,並將至少兩個電極間隔設置並與上述奈米碳管 層形成電連接,從而形成所述的觸摸屏。 ® -種顯不裝置’其包括-觸摸屏,該觸摸屏包括一基 體,一透明導電層,該透明導電層設置于上述基體的一表 面,以及至少兩個電極,該至少兩個電極間隔設置並與該 透明導電層電連接;-顯示設備,該顯示設備正對且靠近 f摸屏的基體設置。其中,上述透明導電層包括一奈米碳 B層,該奈米碳管層包括各向同性或沿一固定方向取向或 不同方向取向排列的多個奈米碳管。 與先前技術相比較,本技術方案提供的觸摸屏、觸摸 屏的製備方法及顯示裝置具有以下優點:其一,由于奈米 碳管在所述的奈米碳管層中通過凡德瓦爾力相互吸引:緊 畨結合,形成由多個奈米碳管組成的自支撑結構,從而使 得上述的奈米碳管層具有較好的機械强度和韌性,故,採 用上述的奈米碳管層作透明導電層,可以相應的提高觸摸 屏的耐用性,進而提高了使用該觸摸屏的顯示裝置的耐用 性。其二’所述奈米碳管層包括各向同性或沿—固定方向 取向或不同方向取向排列的多個奈米碳管。故,採用上述 的奈米碳管層作透明導電層,可使得透明導電層具有均^ 8 200929638 的阻值分布和較好的透光特性,從而提高觸摸屏及使用該 $摸屏的顯示裝置的分辨率和精確度。其三,由于奈米碳 管=為通過一施壓裝置擠壓奈米碳管陣列獲得,製備方法 簡單’且該方法無需真空環境和加熱過程,故採用上述方 法製備的奈米碳管層作透明導電層,有利于降低觸摸屏及 使用該觸摸屏的顯示裝置的成本。 【實施方式】 ❺ ❾ 以下將結合附圖對本技術方案作進一步的詳細說明。 、請參閱圖1和圖2,觸摸屏20包括一基體22、一透明 導電層24、一防護層26及至少兩個電極。基體具有 第表面221以及與第一表面221相對的第二表面 222透明導電層24設置在基體22的第一表面⑵上;上 述至夕兩個電極28分別言免置在透明導電㉟24的每個角處 或邊上,且與透明導電層24形成電連接,用以在透明導電 層24上形成等電位面。防護層%可直接^置在透明導電 層24以及電極28上。 所述基體22爲-曲面型或平面型的結構。該基體22 由玻璃、石英、金剛石或塑料等硬性材料或柔性材料形成。 所述基體22主要起支撑的作用。 所述透明導電層24包括-個奈米碳管層。該奈米碳管 層,括各向同性或沿—固定方向取向或不同方向取向排列 的::奈米碳管。進-步地’該奈米碳管層中的奈米碳管 與=管層的表面成一夾“’其中,α大于等于零度 且 于15度(〇%15。)。優選地’所述奈米碳管層令 9 200929638 的奈米碳管平行于奈米碳管層的表面。所述奈米碳管層中 .的奈米碳管通過凡德瓦爾力相互吸引,緊密結合,形成一 自支撑結構,使得該奈米碳管薄膜具有很好的韌性,可以 彎折’故本技術方案實施例中的基體可爲柔性基體。 由于所述奈米碳管層包括各向同性或沿一固定方向取 向或不同方向取向排列的多個奈米碳管。因此所述奈米碳 官薄膜具有报好的透光特性和阻值分布,故採用上述的奈 >米碳管層作透明導電層可以提高觸摸屏的分辨率和精確 度0 本技術方案實施例中獲得的奈米碳管層的厚度爲〇5 奈米〜100微米,奈米碳管層的長度及寬度不限。該奈米碳 管層包括各向同性或沿一固定方向取向或不同方向取向排 列的多個奈米碳管。上述多個奈米碳管包括單壁夺米碳 管、雙壁奈米碳管及多壁奈米碳管中的—種或幾種 壁奈米碳管的直徑爲0.5奈米〜50奈米;該雙壁奈米碳管 ❹的直徑爲1.0奈米〜50奈米;該多壁奈米碳管的直徑 5 奈米〜50奈米。 可以理解,所述透明導電層24和基體22的形狀可以 根據觸摸屏20的觸摸區域的形狀進行選擇 20的觸㈣域可爲具有—長度的長線形觸摸區域、、 觸摸區域及矩形觸摸區域等。本實施例中,—月y 摸區域爲矩形觸摸區域。 、20的觸 的形狀 勻的電 對于矩形觸摸區域,透明導電層24和基體’ 也可爲矩形。爲了在上述的透明導電層2 ^ 曰 上形成 200929638 ,網絡’需在該透明導電層24的四個角處或四邊上分別形 .、四個電極。上述的四個電極可由金屬材料形成。具體地, ,在本實施例中,基體22爲玻璃基板,至少兩個電極: 屬=個電極爲由銀或銅等低電阻的導電金屬链 曰/ 屬/白片組成的條狀電極28。.上述電極28間隔讯 置在上述的透料電層24同—表面的四個邊上。可以^ 解,上述的電極28也可以設置在透明導電層24的不同表 ❹面上’其關鍵在于上述電極28的設置能使得在透明導電層 24、上形成等電位面即可。本實施例中,所述電極28設^ 在透明導電層24的遠離基體的一個表面上。 進一步地’爲了延長透明導電層24的使用壽命和限制 耦合在接觸點與透明導電4 24之間的電容’可以在透明導 電層24和電極之上設置一透明的防護層26,防護層26可 =化石夕、氧切、苯並環丁烯(BCB)、聚§|膜或丙烯酸 樹脂等形成。所述防護層26直接設置在電極^和透明導 ❺電層24上’該防護層26具有的硬度,對透明導電層 24起保4作用。可以理解,還可通過特殊的工藝處理,從 而使得防護層26具有以下功能,例如减小炫光、降低反射 等。 在本實施例中,在形成有電極28的透明導電層以上 °又置一一氧化矽層用作防護層26,該防護層20的硬度達 到7H(H爲洛氏硬度試驗中,卸除主試驗力後,在初試驗 力下壓痕殘留的深度)。可以理解,防護層26的硬度和厚 度可以根據需要進行選擇。所述防護層26可以通過粘結劑 11 200929638 直接粘結在透明導電層24上。 觸摸二二^^的電磁干擾’避免從 面222上钟署+ 還可在基體22的第二表 (ιτο)薄膜、铩4蔽層25。該屏蔽層25可由銦錫氧化物 =二踢氧化物(ΑΤ〇)薄膜或奈米碳管層等透 月等电材枓形成。本 Ο 性或沿-固定方向取白戈不二…卡碳管層包括各向同 管,其具體結構可*透:= 方向取向排列的多個奈来碳 爲電接地點,起到屏同。該奈米碳管層作 干擾的環境中工作=用解2°能在無 其它結構的奈米碳管^解,所述奈米碳管層還可以為 主要驟本技術方案實施例觸摸屏2°的製備方法 步驟一.提供一奈米碳管陣列形成于一基底,優選地, 該陣列爲超順排奈米碳管陣列;及提供-基體22。 ©〜纟技術方案實施例提供的奈米碳管陣列爲單壁奈米碳 s陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施 例中,超順排奈米碳管陣列的製備方法採用化學氣相沈積 法,其具體步驟包括:(a)提供一平整基底,該基底可選 用P型或N型石夕基底,或選用形成有氧化層的石夕基底,本 實施例優選爲採用4英寸的石夕基底;(b)在基底表面均句 七成一催化劑層,該催化劑層材料可選用鐵(Fe )、鈷 (Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述 形成有催化劑層的基底在7〇〇〜9〇〇。〇的空氣中退火約3〇分 12 200929638 鐘〜90分鐘;(d)將處理過的基底置于反應爐中,在保護 .氣體環境下加熱到500~74(TC,然後通入碳源氣體反應約 5〜30分鐘’生長得到超順排奈米碳管陣列,其高度爲 200〜400微米。該超順排奈米碳管陣列爲多個彼此平行且 垂直于基底生長的奈米碳管形成的純奈米碳管陣列。通過 上述控制生長條件,該超順排奈米碳管陣列中基本不含有 雜質’如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳 ❹管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣 列。該奈米碳管陣列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 可以理解,本實施例提供的奈米碳管陣列不限于上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、鐳射蒸 0發沈積法等。 … 進一步地,在本實施例中,基體22爲一矩形玻璃基 板,該基體22與奈米碳管陣列面積基本相同;其中,基體 22具有一第一表面221以及與第一表面221相對的第二表 面 222。 步驟一.擠壓上述奈米碳管陣列從而獲得一奈米碳管 層形成在基體22的表面。 具體地,所述的奈米碳管層包括一奈米碳管薄膜。其 中’由于本技術方案提供的奈米碳管具有很好的枯性,所 200929638 以上述基體22可以比較牢固地枯附在奈米碳管陣 故,擠壓上述奈米碳管陣列從而獲得一您、 =2的一個表面’包括以下兩種方式。其一:二= :裝置施加一定的壓力于上述奈米碳管陣列上;在壓力的 =下奈米碳管陣列與生長的基底分離,從而形成由多: 广碳管組,的具有自支撑結構的奈米碳管薄膜; ❹ 基體22的第-表面221。其二膠#結在 面221直接覆蓋在上述奈米碳管陣列上;提供::力第:: ^口一定的壓力于基體第二表面222上;在壓口 = :米叙官陣列與生長的基底分離,從而形成由多個奈 = g組成的具有自支撑結構的夺 的第一表面221。 ㈣“奴U膜點附在基體22 Ο 另外’在施壓的過程中,车半础总 下會與生長的基底分離,從而形:由;個奈== 乍用 Πϋϊ結St米碳管薄膜,且所述的多:::碳Ϊ 中,施壓的/面平行°本技術方案實施例 壓方向决=二;;表面光滑,壓頭的形狀及擠 …:奴官薄臈令奈米碳管的排列方式。 :也夕採用平面磨頭沿垂直于上述奈 ==擠壓時’可獲得奈米碳管爲各 = 請參閱圖4);當採用滾轴狀壓頭沿某-固 時可獲得奈米碳管沿該固定方向列 不未反官薄膜(請參閱圖川當採用滚柏狀壓頭沿不同方 200929638 向礙壓時’可獲得奈料管沿不同方向取向排列的奈米碳 管薄膜。 可以理解,當採用上述不同方式擠壓上述的奈米碳管 陣列時,奈米碳管會在壓力的作用下傾倒,並與相鄰的奈 米碳管通過凡德瓦爾力相互吸引、連接形成由多個奈米^ 管組成的具有自支撑結構的奈米碳管薄膜。所述的多個奈 米碳管與該奈米碳管薄膜的表面基本平行並爲各向同性或 ❾沿一固定方向取向或不同方向取向排列。另外,在壓力的 作用下,奈米碳管陣列會與生長的基底分離,從而使得該 奈米碳管薄膜容易與基底脫離。 本技術領域技術人員應明白,上述奈米碳管陣列的傾 倒程度(傾角)與壓力的大小有關,壓力越大,傾角越大。 製備的奈米碳管薄膜的厚度取决于奈米碳管陣列的高度以 及壓力大小。奈米碳管陣列的高度越大而施加的壓力越 小’則製備的奈米碳管薄膜的厚度越大;反之,奈米碳管 ❿陣列的尚度越小而施加的壓力越大,則製備的奈米碳管薄 膜的厚度越小。本實施例中的奈米碳管薄膜中的奈米碳管 與不米石反官薄膜的表面成一夾角α,其中,α大于等于零 度且小于等于15度(〇QSl 5。)。可以理解,所述奈米碳管 薄膜的導電性能與上述的夾角有關。具體地,所述夾角越 小’則製備的奈米碳管薄膜的導電性能越好。反之,所述 失角越大’則製備的奈米碳管薄膜的導電性能逐漸降低。 進一步地’上述的奈米碳管層可以為本實施例步驟二 中製備的一個奈米碳管薄膜或至少兩個重叠設置的奈米碳 15 200929638 管薄膜。具體地,上述奈米碳管薄膜進一步可以覆蓋 -奈米碳管陣列上,通過本技術方案實施例步驟 施壓裝置擠壓上述覆蓋有奈米碳管薄膜的奈米碳管陣歹^ 成:雙層奈米碳管薄膜,該雙層奈米碳管薄膜中的 : 管2膜之間通過凡德瓦爾力緊密結合。重複上述步;:、: 可仔到一個、含有多層奈米碳管薄膜的奈米碳管層。 Ο 本實施例中,上述的奈米碳管薄膜的寬度和長产盘太 =石反s陣列所生長的基底的尺寸有關,該奈米碳管薄膜的 寬度和長度不限,可根據實際需求制得。本技術方案實扩 例中採用4英寸的基底生長超順排奈米碳管陣列。該太二 2 =厚度爲〇.5奈米〜1〇0微米。當該奈米碳管:二 不未叙g爲單壁奈米碳管時,該單壁奈米碳管的直徑爲Β =〜50奈米。當該奈米碳管層中的奈米碳管爲雙壁太来 石反官時’該雙壁奈米碳管的直徑爲1〇奈米〜%奈米^ Ο 該奈米碳管層中的奈米碳管爲多壁奈米碳管時,該: 米碳管的直徑爲;1.5奈米〜5〇奈米。 / 土不 ^驟三:提供至少兩個電極28,將上述至少兩個電極 2〇間隔設置並與奈米碳管層形成電連接,從而形成觸摸屏 其中’所述奈米碳管層用作透明導電層^,所述電極 用濺射、電鍵、化學鑛等沈積方法直接形成在透 雷搞^ 上。另外,也可用銀膠等導電點結劑將上述的 參28枯結在透明導電層以上。本實施例令,上述至少 兩個電極28爲由銀或銅等低電阻的導電金屬鐘層或者金 16 200929638 屬二片組成的錄電極。該條狀電極透過激射方法直接間 •隔地沈積在奈米碳管層的四個邊上。 可以理解’所述的金屬電極28亦可設置于透明導電層 24與基體22之間,且與透明導電層24電連接, 上述的設置方式和粘結方式。只要 丁 明導電層上之間形成電連接要的m的/極28與透 護範圍内。 纟電連接的方式都應在本發明的保 ❹ 進一步地’可以在透明導電層24和電極之上設置一透 明的防遵層26,防護層26可由氮化石夕、氧化砂、苯並環 丁婦(BCB)、聚酯膜或丙埽酸樹脂等形成。該防護層%且 有一定的硬度’對透明導電層24起保護作用。 '、 在本實施例中,在形成有電極28的透明導電層以上 设置--乳化石夕層用作防護層26,該防護層%的硬度達 '二ΗΛΗ ί洛氏硬度試驗中’卸除主試驗力後,在初試驗 力下壓痕殘留的深唐)。可,ν挪& 木度)可以理解,防護層26的硬度和厚 ❹度可以根據需要進行選擇。所述防護層%可以通過枯結劑 直接枯結在透明導電層24上。 縮握二了减小由顯示設備產生的電磁干擾,避免從 觸摸屏0發出的信號產生錯誤,還可在基體22的第二表 設/ 一屏蔽層25。該屏蔽層25可由鋼锡氧化物 > _'_氧化物(ΑΤ0)薄膜、錄金薄膜、銀薄 膜米碳管層等透明導電材料形成。本實施例中’該奈 米反吕層包括多個奈米碳管平行于奈米碳管層表面,其具 體、構可與透明導電層24相同。該奈米碳管層作爲電接地 17 200929638 點,起到屏蔽的作用,從而使得觸摸屏20能在無干擾的環 境中工作。可以理解,所述奈米碳管層還可以為其它結構 的奈米碳管層。 請參閱圖6,本技術方案實施例提供一顯示裝置100, 該顯示裝置100包括一觸摸屏20, 一顯示設備30。該顯示 設備30正對且靠近觸摸屏20設置。進一步地,上述的顯 示設備30與觸摸屏20正對且靠近觸摸屏20的基體22的 第二表面222設置。上述的顯示設備30與觸摸屏20可間 ❹ 隔一預定距離設置或集成設置。 顯示設備30可以爲液晶顯示器、場發射顯示器、電漿 顯示器、電致發光顯示器、真空螢光顯示器及陰極射線管 等顯示設備中的一種。 請參閱圖7,進一步地,當顯示設備30與觸摸屏20 間隔一定距離設置時,可在觸摸屏20的屏蔽層25遠離基 體22的一個表面上設置一鈍化層104,該鈍化層104可由 ❹氮化矽、氧化矽、苯並環丁烯(BCB)、聚酯膜或丙烯酸樹 脂等形成。該鈍化層104與顯示設備30的正面間隔一間隙 106設置。具體地,在上述的鈍化層104與顯示設備30之 間設置兩個支撑體108。該鈍化層104作爲介電層使用, 所述鈍化層104與間隙106可保護顯示設備30不致于由于 外力過大而損壞。 當顯示設備30與觸摸屏20集成設置時,可將上述的 支撑體108直接除去,而將鈍化層104直接設置在顯示設 備30上。即,上述的鈍化層104與顯示設備30之間無間 18 200929638 隙地接觸設置。 • 另外,上述的顯示裝置100進一步包括一觸摸屏控制 器40、一顯示設備控制器6〇及一中央處理器5〇。其中, 觸摸屏控制器40、中央處理器50及顯示設備控制器6〇三 者用電路相互連接,觸摸屏控制器4〇連接觸摸屏2〇的電 極28 ’顯示設備控制器6〇連接顯示設備3〇。 本實施例觸摸屏20及顯示裝置100在應用時的原理如 ❹下·觸摸屏20在應用時可直接設置在顯示設備3〇的顯示 面上。觸摸屏控制器4〇根據手指等觸摸物7〇觸摸的圖標 或菜單位置來定位選擇信息輸入,並將該信息傳遞給中央 處理器50。中央處理器5〇通過顯示器控制器6〇控制顯示 設備30顯示。 μ 具體地,在使用時,透明導電層24上施加一預定電 壓。電壓通過電極28施加到透明導電層24上,從而在該 透明導電層24上形成等電位面。使用者—邊視覺確認在觸 ❹,屏20後面設置的顯示設備3〇的顯示,一邊通過手指或 筆等觸摸物70按壓或接近觸摸屏2〇的防護層26進行操作 時,觸摸物70與透明導電層24之間形成一耦合電容對 于高頻電流來說,電容為直接導體,于是手指從接觸點吸 走一個部分的電流。這個電流分別從觸摸屏2〇上的電極中 流出,並且流經這四個電極的電流與手指到四角的距離成 ^比’觸摸屏控制器40通過對這四個電流比例的精確計 算,得出觸摸點的位置。之後,觸摸屏控制器4〇將數字化 的觸摸位置數據傳送給中央處理器5〇。然後,中央處理器 19 200929638 50接受上述的觸摸位置數據並執行。最後,中央處理器50 ‘將該觸摸位置數據傳輸給顯示器控制器6G,從而在顯示設 備30上顯示接觸物7〇發出的觸摸信息。 本技術方案實施例提供的顯示裝置1〇〇具有以下優 點.其一,由于奈米碳管在所述的奈米碳管層中通過凡德 瓦爾力相互吸引,緊在、結合,形成由多個奈米碳管組成的 自支撑結構’從而使得上述的奈米碳管層具有較好的機械 ❾强度和韌性,故,採用上述的奈米碳管層作透明導電層 24,可以相應的提高觸摸屏2〇的耐用性,進而提高了使^ 摸屏20的顯示裝置1〇〇的耐用性。其二,上述該奈米 碳管層包括各向同性或沿一固定方向取向或不同方向取向 =列的多個奈米碳管。故’採用上述的奈米碳管層作透明 電層24’可使得透明導電層24具有均㈣阻值分布和 較好的透光特性,從而提高觸摸屏2G及使用該觸摸屏的顯 示裝置_的分辨率和精確度。其三,由于奈米碳管層為 ❹通過-施Μ裝置擠壓奈米碳管陣列獲得,製備方法簡單, 且該方法無需真空環境和加熱過程,故採用上述方法製備 的奈米碳管層作透料電層24,有利于降低職屏2〇及 使用該觸摸屏的顯示裝置1〇〇的成本。 a綜上所述,本發明確已符合發明專利之要件,遂依法 ,出專利申請。惟’以上所述者僅為本發明之較佳實施例, 不月b以此限製本案之巾請專利範圍。舉凡熟悉本案技藝 f人士援依本發明之精神所作之等效修飾或變化,皆應涵 盍于以下申請專利範圍内。 20 200929638 【圖式簡單說明】 圖1為本技術方案實施例的觸摸屏的結構示意圖。 圖2為沿圖1所示的線^,的剖視圖。 圖3為本技術方案實施例觸摸屏的製備方法的流程示 同性的奈米碳管 取向的奈米碳管 圖4為本技術方案實施例獲得的各向 薄獏的掃描電鏡照片。The invention relates to a touch screen, a method for preparing a touch screen, and a display device using the touch screen, in particular to a carbon nanotube-based touch screen, a method for preparing the touch screen, and a method for preparing the touch screen. A display device using the touch screen. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display device such as a liquid crystal are gradually increasing. The user of such an electronic device operates the display content of the display device located on the back surface of the touch panel while visually checking the touch panel by a finger or a pen. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the touch screens in the prior art are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic wave. Among them, the capacitive touch screen is widely used due to its high accuracy and strong anti-interference ability. ^ Capacitive touch screens of the prior art (see "Research on Continuous Touch Screens,", Li Shuben et al., Optoelectronics Technology p62 (1995)) include a glass substrate, a transparent conductive layer, and a plurality of metal electrodes. In the touch screen, the material of the glass substrate is nano-feed glass. The transparent conductive layer is a transparent material such as tin oxide (IT〇) or tin oxide (ΑΤΟ). The electrode is a conductive metal with low resistance by printing (for example) Silver) is formed. The electrode spacing is disposed at each corner of the transparent conductive layer at 200929638. Further, the transparent conductive layer is coated with a passivation layer formed by a liquid glass material by a hardening or densification process and heat treatment. When a touch object such as a finger touches the surface of the touch screen, a coupling capacitance is formed between the touch object such as a finger and a transparent conductive layer in the touch screen due to the electric field of the human body. For high-frequency current, the capacitance is a direct conductor, a touch object such as a finger The touch will draw a small current from the contact point. This ^ flow knife does not flow out of the electrode on the touch screen. And the current flowing through the four electrodes is proportional to the distance from the finger to the four corners, and the touch screen controller obtains the position of the touch point by accurately calculating the ratio of the four currents. Therefore, the transparent conductive layer is necessary for the touch screen. In the component, the transparent conductive layer in the technology usually adopts ΙΤ0 layer, then:, Ιτ〇 layer brigade = „method preparation' in the preparation process; the higher ^ environment and heating to 200~30 (rc, therefore, make ιτ〇 Layer Ο == ΓΙΤΟ layer as a transparent conductive layer with mechanical and chemical layers, the phenomenon of uneven distribution of resistance value, resulting in the previous 2 electric valley touch screen has a low resolution of the touch screen, the accuracy is not high, etc. It is indeed necessary to provide a high-resolution, durable touch screen, and a method for preparing a door, a monthly accuracy, and a low-cost early touch, and a display device using the touch screen. a touch screen comprising: a substrate; a transparent conductive layer disposed on a surface of the substrate; and a 2-layer 'pole, the at least two electrodes Intersected and arranged with the transparent conductive material, wherein the transparent conductive layer comprises a carbon nanotube layer, including the isotropic or oriented in a fixed direction or in different directions. Nano carbon tube. The preparation method of the mountain + type touch screen comprises the steps of: providing a nanometer stone anatomical array formed on a substrate and a substrate; extruding the carbon nanotube array to obtain a carbon nanotube layer formation And a surface of the substrate; and providing at least two electrodes, and at least two electrodes are spaced apart and electrically connected to the carbon nanotube layer to form the touch screen. a touch screen, the touch screen includes a substrate, a transparent conductive layer, the transparent conductive layer is disposed on a surface of the substrate, and at least two electrodes, the at least two electrodes are spaced apart and electrically connected to the transparent conductive layer; The display device is facing and close to the base of the f-screen. Wherein, the transparent conductive layer comprises a nano carbon layer, and the carbon nanotube layer comprises a plurality of carbon nanotubes which are isotropic or oriented in a fixed direction or in different directions. Compared with the prior art, the touch screen provided by the technical solution, the method for preparing the touch screen and the display device have the following advantages: First, since the carbon nanotubes are attracted to each other by the van der Waals force in the carbon nanotube layer: Immediately combined to form a self-supporting structure composed of a plurality of carbon nanotubes, so that the above-mentioned carbon nanotube layer has good mechanical strength and toughness, so the above-mentioned carbon nanotube layer is used as a transparent conductive layer. The durability of the touch screen can be correspondingly improved, thereby improving the durability of the display device using the touch screen. The two carbon nanotube layers include a plurality of carbon nanotubes that are isotropic or oriented in a fixed orientation or in a different orientation. Therefore, by using the above-mentioned carbon nanotube layer as a transparent conductive layer, the transparent conductive layer can have a resistance distribution and a good light transmission property, thereby improving the touch screen and the display device using the $ touch screen. Resolution and accuracy. Thirdly, since the carbon nanotubes are obtained by extruding a carbon nanotube array through a pressure applying device, the preparation method is simple, and the method does not require a vacuum environment and a heating process, so the carbon nanotube layer prepared by the above method is used. The transparent conductive layer is advantageous for reducing the cost of the touch screen and the display device using the touch screen. [Embodiment] The present technical solution will be further described in detail below with reference to the accompanying drawings. Referring to Figures 1 and 2, the touch screen 20 includes a substrate 22, a transparent conductive layer 24, a protective layer 26, and at least two electrodes. The base has a first surface 221 and a second surface 222 opposite to the first surface 221. The transparent conductive layer 24 is disposed on the first surface (2) of the base 22; the above-mentioned two electrodes 28 are respectively disposed on each of the transparent conductive 3524 The corners or sides are electrically connected to the transparent conductive layer 24 for forming an equipotential surface on the transparent conductive layer 24. The protective layer % can be placed directly on the transparent conductive layer 24 and the electrode 28. The base 22 is of a curved surface type or a planar type. The base 22 is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support. The transparent conductive layer 24 includes a carbon nanotube layer. The carbon nanotube layer includes isotropic or oriented in a fixed direction or in a different direction: a carbon nanotube. Stepwise 'the carbon nanotubes in the carbon nanotube layer are in a sandwich with the surface of the tube layer '', wherein α is greater than or equal to zero degrees and is at 15 degrees (〇%15.). Preferably The carbon nanotube layer makes the carbon nanotubes of 9 200929638 parallel to the surface of the carbon nanotube layer. The carbon nanotubes in the carbon nanotube layer are attracted to each other through the van der Waals force, and are tightly combined to form a self. The support structure makes the carbon nanotube film have good toughness and can be bent. Therefore, the substrate in the embodiment of the technical solution may be a flexible substrate. Since the carbon nanotube layer includes isotropic or fixed along a fixed a plurality of carbon nanotubes arranged in a directional orientation or in a different orientation. Therefore, the nano carbon official film has a reported light transmission property and a resistance distribution, so that the above-mentioned carbon nanotube layer is used as a transparent conductive layer. The resolution and accuracy of the touch screen can be improved. The thickness of the carbon nanotube layer obtained in the embodiment of the technical solution is 〇5 nm to 100 μm, and the length and width of the carbon nanotube layer are not limited. The tube layer includes isotropic or oriented in a fixed direction or different a plurality of carbon nanotubes arranged in a directional orientation, wherein the plurality of carbon nanotubes comprise a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube The diameter of the tube is 0.5 nm to 50 nm; the diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm; the diameter of the multi-walled carbon nanotube is 5 nm to 50 nm. The shape of the transparent conductive layer 24 and the base 22 may be selected according to the shape of the touch area of the touch screen 20. The touch (four) field may be a long line touch area having a length, a touch area, a rectangular touch area, and the like. In the example, the month y touch area is a rectangular touch area. The shape of the touch of 20 is uniform for the rectangular touch area, and the transparent conductive layer 24 and the base ' can also be rectangular. For the above transparent conductive layer 2 ^ 曰Forming 200929638, the network 'has to be formed at four corners or four sides of the transparent conductive layer 24, four electrodes. The above four electrodes may be formed of a metal material. Specifically, in the present embodiment, the substrate 22 For the glass substrate, at least two electrodes: The electrodes are strip electrodes 28 composed of a low-resistance conductive metal chain/genus/white sheet such as silver or copper. The electrodes 28 are spaced apart from each other on the four sides of the same surface of the dielectric layer 24 It can be understood that the above-mentioned electrodes 28 can also be disposed on different surface of the transparent conductive layer 24. The key point is that the electrodes 28 can be disposed such that the equipotential surface is formed on the transparent conductive layer 24. In an embodiment, the electrode 28 is disposed on a surface of the transparent conductive layer 24 away from the substrate. Further 'to extend the life of the transparent conductive layer 24 and limit the capacitance coupled between the contact point and the transparent conductive 4 24 A transparent protective layer 26 may be disposed over the transparent conductive layer 24 and the electrode, and the protective layer 26 may be formed of fossil, oxygen cut, benzocyclobutene (BCB), polystyrene film or acrylic resin. The protective layer 26 is disposed directly on the electrode and the transparent conductive layer 24. The protective layer 26 has a hardness which acts as a protective layer for the transparent conductive layer 24. It will be appreciated that processing may also be carried out by special processes such that the protective layer 26 has the following functions, such as reducing glare, reducing reflection, and the like. In the present embodiment, a layer of ruthenium oxide is placed over the transparent conductive layer on which the electrode 28 is formed as a protective layer 26, and the hardness of the protective layer 20 reaches 7H (H is a Rockwell hardness test, and the main body is removed. After the test force, the depth of the indentation remains under the initial test force). It will be appreciated that the hardness and thickness of the protective layer 26 can be selected as desired. The protective layer 26 can be bonded directly to the transparent conductive layer 24 by an adhesive 11 200929638. Touching the electromagnetic interference of the two ^^^ avoids the clocking from the surface 222 + and also the second sheet (the film) of the substrate 22, the layer 4 of the layer 4. The shield layer 25 may be formed of a material such as an indium tin oxide/two-knit oxide film or a carbon nanotube layer. The Ο 或 沿 沿 沿 沿 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡 卡. The carbon nanotube layer works in an interference environment. The solution can be solved in a carbon nanotube without other structures by using a solution of 2°. The carbon nanotube layer can also be a touch screen of the main embodiment of the present invention. Preparation Method Step 1. Providing a carbon nanotube array formed on a substrate, preferably, the array is a super-sequential carbon nanotube array; and providing a substrate 22. The carbon nanotube arrays provided by the examples of the technical solutions are single-walled nano carbon s arrays, double-walled carbon nanotube arrays or multi-walled carbon nanotube arrays. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be a P-type or N-type Shi Xi substrate, or In the embodiment, a 4 inch stone base is used, and (b) a catalyst layer is formed on the surface of the substrate. The catalyst layer material may be iron (Fe) or cobalt (Co). And one of alloys of nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is at 7 〇〇 to 9 〇〇. Annealing in the air of the crucible for about 3 minutes 12 200929638 minutes ~ 90 minutes; (d) placing the treated substrate in a reaction furnace, heating to 500~74 (TC) in a protective atmosphere, and then introducing carbon source gas The reaction is about 5 to 30 minutes to grow to obtain a super-sequential carbon nanotube array having a height of 200 to 400 μm. The super-aligned carbon nanotube array is a plurality of carbon nanotubes which are parallel to each other and grow perpendicular to the substrate. Forming a pure carbon nanotube array. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles, etc. by the above controlled growth conditions. The nanocarbon nanotube array is The carbon nanotubes are in close contact with each other to form an array by van der Waals force. The carbon nanotube array has substantially the same area as the above substrate. In this embodiment, the carbon source gas may be a chemically active carbon such as acetylene, ethylene or methane. The carbon source gas of the present embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. It is understood that the carbon nanotube array provided in the embodiment is not limited. The preparation method may also be a graphite electrode constant current arc discharge deposition method, a laser vapor deposition method, etc. Further, in the embodiment, the substrate 22 is a rectangular glass substrate, and the substrate 22 and the carbon nanotubes are used. The array area is substantially the same; wherein the substrate 22 has a first surface 221 and a second surface 222 opposite to the first surface 221. Step 1. Squeeze the carbon nanotube array to obtain a carbon nanotube layer formed on the substrate Specifically, the carbon nanotube layer comprises a carbon nanotube film, wherein 'the carbon nanotubes provided by the technical solution have good dryness, and the 200929638 can be compared with the above substrate 22 Firmly attached to the carbon nanotube array, squeeze the above-mentioned carbon nanotube array to obtain a surface of you, = 2 'includes the following two ways. One: two =: the device exerts a certain pressure on the above On the carbon nanotube array; under the pressure = the carbon nanotube array is separated from the grown substrate to form a carbon nanotube film having a self-supporting structure; a ❹ substrate 22 - surface 22 1. The second glue # knot is directly covered on the above-mentioned carbon nanotube array on the surface 221; provides:: force:: ^ a certain pressure on the second surface 222 of the substrate; in the pressure port =: m Separating from the growing substrate to form a first surface 221 having a self-supporting structure composed of a plurality of n=g. (4) "Nu U film points attached to the substrate 22 Ο In addition, during the pressing process, the vehicle half The base will be separated from the growing substrate, and thus the shape: by; a nai == 乍 Πϋϊ St St m carbon tube film, and the more::: carbon Ϊ, pressure / face parallel ° this technology The embodiment of the scheme is in the direction of pressing = 2; the surface is smooth, the shape of the indenter and the extrusion...: The arrangement of the thin carbon nanotubes by the slaves: the same time, the plane grinding head is perpendicular to the above-mentioned nai == extrusion 'Any carbon nanotubes are available for each = please refer to Figure 4); when a roller-shaped indenter is used along a certain solid state, the carbon nanotubes can be obtained along the fixed direction without a retroreflective film (see Figure Chuan. Using a cypress-shaped indenter along different sides 200929638 to obey pressure, the carbon nanotube film can be arranged in different directions. It can be understood that when the above-mentioned carbon nanotube array is extruded by the above different methods, the carbon nanotubes are poured under the action of pressure, and are attracted and connected with adjacent carbon nanotubes through the van der Waals force. A carbon nanotube film having a self-supporting structure composed of a plurality of nanotubes. The plurality of carbon nanotubes are substantially parallel to the surface of the carbon nanotube film and are oriented isotropic or oriented in a fixed direction or in different directions. In addition, under the action of pressure, the carbon nanotube array is separated from the grown substrate, so that the carbon nanotube film is easily detached from the substrate. Those skilled in the art will appreciate that the degree of tilt (inclination) of the carbon nanotube array described above is related to the magnitude of the pressure, and the greater the pressure, the greater the angle of inclination. The thickness of the prepared carbon nanotube film depends on the height of the carbon nanotube array and the pressure. The higher the height of the carbon nanotube array is, the smaller the applied pressure is, the larger the thickness of the prepared carbon nanotube film is. On the contrary, the smaller the degree of the carbon nanotube array is, the higher the applied pressure is. The thickness of the prepared carbon nanotube film is smaller. The carbon nanotubes in the carbon nanotube film of this embodiment are at an angle α to the surface of the non-meterite eclipse film, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees (〇QSl 5). It can be understood that the conductivity of the carbon nanotube film is related to the above-mentioned angle. Specifically, the smaller the angle is, the better the conductivity of the prepared carbon nanotube film is. Conversely, the larger the loss angle, the lower the conductivity of the prepared carbon nanotube film. Further, the above-mentioned carbon nanotube layer may be a carbon nanotube film prepared in the second step of the embodiment or at least two overlapping carbon carbon 15 200929638 tube films. Specifically, the carbon nanotube film may further cover the carbon nanotube array, and the carbon nanotube film covered with the carbon nanotube film is extruded by the step pressing device of the embodiment of the present technical solution: A double-layered carbon nanotube film, in the double-layered carbon nanotube film: the tube 2 membrane is tightly bonded by van der Waals force. Repeat the above steps;:,: You can pick up a carbon nanotube layer containing a multi-layered carbon nanotube film. Ο In this embodiment, the width of the above-mentioned carbon nanotube film is related to the size of the substrate on which the long-distribution disk is too stone-resistant, and the width and length of the carbon nanotube film are not limited, and may be according to actual needs. be made of. A 4 inch substrate growth super-sequential carbon nanotube array is used in this technical solution. The Tai 2 2 = thickness is 〇.5 nm ~ 1 〇 0 μm. When the carbon nanotube: the second wall is not a single-walled carbon nanotube, the diameter of the single-walled carbon nanotube is Β = ~ 50 nm. When the carbon nanotube in the carbon nanotube layer is a double-walled terracotta antimony, the diameter of the double-walled carbon nanotube is 1 〇 nanometer ~% nanometer ^ Ο the carbon nanotube layer When the carbon nanotube is a multi-walled carbon nanotube, the diameter of the carbon nanotube is 1.5 nm to 5 〇 nanometer. / soil is not three: provide at least two electrodes 28, the at least two electrodes 2 〇 are arranged and electrically connected with the carbon nanotube layer to form a touch screen, wherein the carbon nanotube layer is used as a transparent Conductive layer ^, the electrode is directly formed on the lightning through sputtering, electric bonding, chemical ore deposition methods. Alternatively, the above-mentioned ginseng 28 may be condensed above the transparent conductive layer by a conductive bonding agent such as silver paste. In this embodiment, the at least two electrodes 28 are recording electrodes composed of a low-resistance conductive metal clock layer such as silver or copper or two sheets of gold 16 200929638. The strip electrodes are deposited directly on the four sides of the carbon nanotube layer by lasing. It can be understood that the metal electrode 28 can also be disposed between the transparent conductive layer 24 and the substrate 22, and electrically connected to the transparent conductive layer 24, the above arrangement and bonding manner. As long as the electrical connection between the D-Ming conductive layers is formed, the /pole 28 of m is required to be in the range of the protective range. The method of electrical connection should be in the protection of the present invention. Further, a transparent anti-alignment layer 26 can be disposed on the transparent conductive layer 24 and the electrode. The protective layer 26 can be made of nitriding oxide, oxidized sand, and benzocyclobutene. Formed as a woman (BCB), a polyester film or a propionate resin. The protective layer has a certain hardness & has a protective effect on the transparent conductive layer 24. In the present embodiment, the emulsified layer is provided above the transparent conductive layer on which the electrode 28 is formed. The emulsified layer is used as the protective layer 26, and the hardness of the protective layer is 'removed' in the 'two ΗΛΗ 洛 Rockwell hardness test' After the main test force, the deep indentation of the indentation under the initial test force). However, it can be understood that the hardness and thickness of the protective layer 26 can be selected as needed. The protective layer % can be directly dried on the transparent conductive layer 24 by a deadting agent. Shrinking the second reduces the electromagnetic interference generated by the display device, avoiding errors in the signal emitted from the touch screen 0, and also providing a shield layer 25 on the second surface of the substrate 22. The shield layer 25 may be formed of a transparent conductive material such as a steel tin oxide > _'_ oxide (ΑΤ0) film, a gold film, or a silver film carbon nanotube layer. In the present embodiment, the nano-rear layer includes a plurality of carbon nanotubes parallel to the surface of the carbon nanotube layer, and the specific structure can be the same as that of the transparent conductive layer 24. The carbon nanotube layer acts as an electrical ground 17 200929638, which acts as a shield, allowing the touch screen 20 to operate in a non-interfering environment. It will be understood that the carbon nanotube layer may also be a carbon nanotube layer of other structure. Referring to FIG. 6 , an embodiment of the present disclosure provides a display device 100 . The display device 100 includes a touch screen 20 and a display device 30 . The display device 30 is disposed directly adjacent to the touch screen 20. Further, the above-described display device 30 is disposed opposite the touch screen 20 and adjacent to the second surface 222 of the base 22 of the touch screen 20. The display device 30 and the touch screen 20 described above may be disposed at a predetermined distance or integrated. The display device 30 may be one of display devices such as a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. Referring to FIG. 7 , further, when the display device 30 is disposed at a distance from the touch screen 20 , a passivation layer 104 may be disposed on a surface of the shielding layer 25 of the touch screen 20 away from the substrate 22 , and the passivation layer 104 may be nitrided by tantalum. It is formed of ruthenium, osmium oxide, benzocyclobutene (BCB), a polyester film or an acrylic resin. The passivation layer 104 is spaced from the front side of the display device 30 by a gap 106. Specifically, two support bodies 108 are disposed between the passivation layer 104 and the display device 30 described above. The passivation layer 104 is used as a dielectric layer that protects the display device 30 from damage due to excessive external forces. When the display device 30 is integrated with the touch screen 20, the above-described support 108 can be directly removed, and the passivation layer 104 can be directly disposed on the display device 30. That is, the passivation layer 104 described above is disposed in contact with the display device 30 without gaps. In addition, the above display device 100 further includes a touch screen controller 40, a display device controller 6A, and a central processing unit 5A. The touch screen controller 40, the central processing unit 50, and the display device controller 6 are connected to each other by a circuit, and the touch screen controller 4 is connected to the touch panel 2's electrode 28'. The display device controller 6 is connected to the display device 3A. The principle of the touch screen 20 and the display device 100 in this embodiment is as follows: The touch screen 20 can be directly disposed on the display surface of the display device 3 when applied. The touch screen controller 4 aligns the selection information input based on the icon or menu position touched by the touch object 7 手指 or the like, and transmits the information to the central processing unit 50. The central processing unit 5 controls the display of the display device 30 via the display controller 6. Specifically, in use, a predetermined voltage is applied to the transparent conductive layer 24. A voltage is applied to the transparent conductive layer 24 through the electrode 28 to form an equipotential surface on the transparent conductive layer 24. The user visually confirms the display of the display device 3A disposed behind the screen 20 at the touch panel, and when the user touches or approaches the protective layer 26 of the touch screen 2 by a touch object 70 such as a finger or a pen, the touch object 70 is transparent. A coupling capacitor is formed between the conductive layers 24. For high-frequency currents, the capacitance is a direct conductor, and the finger draws a portion of the current from the contact point. This current flows out from the electrodes on the touch screen 2, respectively, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch screen controller 40 accurately calculates the ratio of the four currents to obtain a touch. The location of the point. Thereafter, the touch screen controller 4 transmits the digitized touch position data to the central processing unit 5〇. Then, the central processing unit 19 200929638 50 accepts the above-described touch position data and executes it. Finally, the central processing unit 50 'transmits the touch position data to the display controller 6G, thereby displaying the touch information issued by the contact 7 on the display device 30. The display device 1 provided by the embodiment of the present technical solution has the following advantages. First, since the carbon nanotubes are attracted to each other by the van der Waals force in the carbon nanotube layer, they are tightly combined and formed. The self-supporting structure composed of carbon nanotubes makes the above-mentioned carbon nanotube layer have better mechanical strength and toughness. Therefore, the use of the above-mentioned carbon nanotube layer as the transparent conductive layer 24 can be correspondingly improved. The durability of the touch screen 2 进而 further improves the durability of the display device 1 of the touch panel 20. Second, the carbon nanotube layer comprises a plurality of carbon nanotubes that are isotropic or oriented in a fixed direction or oriented in different directions = column. Therefore, the use of the above-mentioned carbon nanotube layer as the transparent electric layer 24' can make the transparent conductive layer 24 have a uniform (four) resistance distribution and better light transmission characteristics, thereby improving the resolution of the touch screen 2G and the display device using the touch screen. Rate and accuracy. Thirdly, since the carbon nanotube layer is obtained by squeezing the carbon nanotube array through the sputum device, the preparation method is simple, and the method does not require a vacuum environment and a heating process, so the carbon nanotube layer prepared by the above method is used. As the dielectric layer 24, it is advantageous to reduce the cost of the screen 2 and the display device using the touch screen. a In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is made according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application for this case is limited. Equivalent modifications or variations made by persons familiar with the skill of the present invention in accordance with the spirit of the present invention are intended to be within the scope of the following claims. 20 200929638 [Simple Description of the Drawings] FIG. 1 is a schematic structural diagram of a touch screen according to an embodiment of the present technical solution. Figure 2 is a cross-sectional view taken along line y of Figure 1. 3 is a flow chart showing a method for preparing a touch panel according to an embodiment of the present invention. The same type of carbon nanotube-oriented carbon nanotubes. FIG. 4 is a scanning electron micrograph of each of the thin tubes obtained in the embodiment of the present invention.

圖5為本技術方案實施例獲得的擇優. 薄膜的掃描電鏡照片。 圖6為本技術方案實施例的顯示裝置的結構示意圖。 圖7為本技術方案實施例的顯示裝置的工作原理示咅 【主要元件符號說明】 顯示裝_置 100 鈍化層 104 間隙 106 支撑體 108 觸摸屏 20 基體 22 第一表面 221 第二表面 222 透明導電層 24 屏蔽層 25 防護層 26 21 200929638 電極 28 顯示設備 30 觸摸屏控製器 40 中央處理器 50 顯示設備控製器 60 觸摸物 70 ❹ 22Figure 5 is a scanning electron micrograph of a preferred film obtained in an embodiment of the present technical solution. FIG. 6 is a schematic structural diagram of a display device according to an embodiment of the present technical solution. FIG. 7 is a schematic diagram showing the working principle of the display device according to the embodiment of the present invention. [Main component symbol description] Display device 100 100% passivation layer 104 gap 106 support body 108 touch screen 20 substrate 22 first surface 221 second surface 222 transparent conductive layer 24 Shield 25 Protective layer 26 21 200929638 Electrode 28 Display device 30 Touch screen controller 40 Central processor 50 Display device controller 60 Touch object 70 ❹ 22

Claims (1)

200929638 1. ❹ 2. 3. 4. ❹ 5. 6. 、申請專利範圍 一種觸摸屏,包括: 2體:一透明導電層,該透明導電層設置于上述基 " 面,以及至少兩個電極,該至少兩個電極間 與該透明導電層電連接,其改良在于,上述 勺衽夂A層進一步包括—奈米碳管層,該奈米碳管層 包括各向同性或沿一固 ^ 排列的多個奈米碳管。° °或不冋方向取向 二I::·圍第1項所述的觸摸屏,其中,所述奈 未反行于奈米碳管層的表面。 的觸摸屏,其中,所述奈 择 :、不只石反s與奈米碳管層的表面成一夹 度α,其中, 女 八 (〇加15。)。 于等于零度且小于等于15度 範圍第1項所述的觸摸屏,其中,所述奈 ^社1θ的奈米碳管通過凡德瓦爾力相互吸引、緊 ::二形成由多個奈来碳管組成的自支樓結構。 米碳管層的厚^ ^觸料,其中,所述奈 如申請專利範圍微米。 米碳管包括單壁述的觸摸屏,其中,所述奈 碳管中的—種或2 雙壁奈米碳管及多壁奈米 如申請專利範圍第6垣邮、 壁奈米碳管的直^ 返的觸摸屏,其中,所述單 L爲0.5奈米〜50奈米,雙壁奈米碳 7. 200929638 管的直徑爲1.0奈米 8. 爲1.5奈米〜50奈米。’丁、未’多壁奈米碳管的直徑 如申請專利範圍第i馆 9. 少兩電極致斤述的觸摸屏,其中,所述至 兩電極爲金屬鑛層或金屬箱片。 tlf專㈣”1項所述的龍屏,其中,所述至 面。 置在透明導電層遠離基體的表 ❹ Ο 瓜如申請專利範^ 少兩個電極通過一導雷“縣八中所述至 面。 4電銀膠設置在透明|電層的表 11. 如申睛專利範圍第1項所、+、μ A 摸屏進一步包括 迷的觸摸屏,其中,所述觸 層遠離基體的表面。該防護層設置在透明導電 12. 如申請專利範圍第11項所述的觸摸屏,1中’所过、 防護層的材料爲氮化矽、氧化矽、苯並環;烯、:t 膜或丙烯酸樹脂。 婦 1酉曰 13. 如申請專利範圍第i 摸屏進-步包括一屏蔽層二=’其中’所述觸 遠離透明導電層的-表面上π置于上述基體 薄膜、銻錫氧化物薄膜、屏蔽層爲鋼錫氣化物 管層。膜錄金薄膜、銀薄膜或奈米碳 14. 一種觸摸屏的製備方法,該方法包括以下步驟. 美供-奈米碳管陣列形成于—基底及一基體· 擠壓上述奈米碳管陣列從而獲得一奈米碳管層形成 24 200929638 在基體的一個表面;以及 . 提供至少兩個電極,並將至少兩個電極間隔設置並與 上述奈米碳管層形成電連接,從而形成所述的觸摸 屏。 15. 如申請專利範圍第14項所述的觸摸屏的製備方法, 其中,所述獲得奈米碳管層並形成在上述基體的一個 表面的過程’具體包括以下步驛: ❹ 提供一施壓裝置,施加壓力于上述奈米碳管陣列,形 成由多個奈米碳管組成的具有自支撐結構的奈米碳 管薄膜;以及 將上述奈米碳管薄膜粘結于所述基體的一個表面上。 16. 如申請專利範圍第14項所述的觸摸屏的製備方法, 其中,所述獲得奈米碳管層形成在基體的一個表面的 過程,具體包括以下步驟: 將上述基體的一個表面直接覆蓋在上述奈米碳管陣 〇 列上;以及 提供一施加裝置,施加壓力于基體的另一個表面,形 ^由多個奈米碳管組成的具有自支撑結構的奈米碳 ^薄膜點結在基體的一個表面。 17. 如申請專利範圍第15或16項所述的觸摸屏的製備方 法,其中’所述施壓裝置爲一平面壓頭。 18. 如申請專利範圍第17項所述的觸摸屏的製備方法, 其中,所述擠壓奈米碳管陣列的過程爲採用平面壓頭 ☆垂直于上述奈米碳管陣列生長的基底的方向擠磨。 200929638 19.如申請專利範圍第15或16項所述的觸摸屏的製備方 法,其中,所述施壓裝置爲一滾軸狀壓頭。 ,20.如申請專利範圍第19項所述的觸摸屏的製備方法, 其中,所述擠壓奈米碳管陣列的過程爲採用滾軸狀壓 頭沿某一固定方向碾壓或沿不同方向碾壓。 21. —種顯示裝置,包括: 一觸摸屏,該觸摸屏包括一基體;一透明導電層,該 ❻ 透明導電層設置于上述基體的一表面;以及至^兩^ 電極,該至少兩個電極間隔設置並與該透明導電層電 連接; 一顯示設備’該顯示設備正對且靠近觸摸屏的基體遠 離透明導電層的一個表面設置, 其改良在于,所述透明導電層進一步包括一奈米碳管 層,該奈米碳管層包括各向同性或沿一固定方向取向 或不同方向取向排列的多個奈米破管。 ❹22·如申請專利範圍第21項所述的觸摸屏的製備方法, 其中,所述的顯示设備爲液晶顯示器、場發射顯示 器、電漿顯示器、電致發光顯示器、真空螢光顯示器 及陰極射線管中的一種。 23.如申請專利範圍第 其申,顯示設備邀 圍第21 g所述的觸摸屏的製備方法,200929638 1. ❹ 2. 3. 4. ❹ 5. 6. Patent application A touch screen comprising: 2 body: a transparent conductive layer, the transparent conductive layer is disposed on the base & surface, and at least two electrodes, The at least two electrodes are electrically connected to the transparent conductive layer, and the improvement is that the scoop A layer further comprises a carbon nanotube layer, and the carbon nanotube layer comprises isotropic or arranged along a solid Multiple carbon nanotubes. Orientation of the carbon nanotube layer, wherein the nanosphere is not retrograde on the surface of the carbon nanotube layer. The touch screen, wherein the selection: not only the stone anti-s and the surface of the carbon nanotube layer are in a degree α, wherein, the female eight (〇 plus 15). The touch screen of the first item, wherein the carbon nanotubes of the 1θ are attracted to each other by the van der Waals force, and the two are formed by a plurality of carbon nanotubes. The self-supporting building structure. The thickness of the carbon nanotube layer is ^^, wherein the nanometer is as claimed. The carbon nanotube tube comprises a single-walled touch screen, wherein the carbon nanotubes or the two-walled carbon nanotubes and the multi-walled nano-particles are as straight as the patented range 6th postal and wall-nanocarbon tubes. ^ Back to the touch screen, wherein the single L is 0.5 nm ~ 50 nm, double-walled nano carbon 7. 200929638 The diameter of the tube is 1.0 nm 8. For 1.5 nm ~ 50 nm. The diameter of the 'Ding, No' multi-walled carbon nanotubes is as described in the scope of the patent application. 9. The touch screen of the two electrodes is a metal ore or metal box. Tlf special (four)" Long screen described in item 1, wherein, the surface is placed on the surface of the transparent conductive layer away from the substrate Ο 瓜 如 申请 申请 申请 申请 如 如 如 如 如 如 两个 两个 两个 两个 两个 两个 两个 两个 两个 两个 两个To the surface. 4 Electro-silver glue is set on the transparent | electric layer table 11. As in the scope of the patent application, the +, μ A touch screen further includes a touch screen in which the touch layer is away from the surface of the substrate. The protective layer is disposed on the transparent conductive layer. 12. The touch screen according to claim 11 of the patent application, wherein the material of the protective layer is tantalum nitride, tantalum oxide, benzo ring; olefin, :t film or acrylic Resin.妇1酉曰13. If the application scope of the i-th touch screen further includes a shield layer two = 'where the touch away from the transparent conductive layer - on the surface π placed on the base film, tantalum oxide film, The shielding layer is a steel tin oxide tube layer. Film gold film, silver film or nano carbon 14. A method for preparing a touch screen, the method comprising the following steps: a US-nano carbon nanotube array is formed on a substrate and a substrate, and the carbon nanotube array is extruded Obtaining a carbon nanotube layer forming 24 200929638 on one surface of the substrate; and providing at least two electrodes, and spacing at least two electrodes and electrically connecting with the above-mentioned carbon nanotube layer to form the touch screen . 15. The method of preparing a touch panel according to claim 14, wherein the process of obtaining a carbon nanotube layer and forming a surface of the substrate comprises the following steps: ❹ providing a pressure applying device Applying pressure to the above-described carbon nanotube array to form a carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes; and bonding the above-mentioned carbon nanotube film to a surface of the substrate . The method for preparing a touch panel according to claim 14, wherein the obtaining the carbon nanotube layer on one surface of the substrate comprises the following steps: directly covering a surface of the substrate The above-mentioned carbon nanotube array is arranged; and an application device is provided to apply pressure to the other surface of the substrate, and a nano carbon film having a self-supporting structure composed of a plurality of carbon nanotubes is attached to the substrate a surface. 17. The method of preparing a touch screen according to claim 15 or 16, wherein the pressing device is a planar indenter. 18. The method for preparing a touch panel according to claim 17, wherein the process of extruding the carbon nanotube array is performed by using a planar indenter ☆ perpendicular to a direction of the substrate grown by the carbon nanotube array. mill. The method of producing a touch panel according to claim 15 or claim 16, wherein the pressing device is a roller-shaped indenter. The method for preparing a touch panel according to claim 19, wherein the process of extruding the carbon nanotube array is rolling in a fixed direction or rolling in a different direction using a roller-shaped indenter Pressure. 21. A display device comprising: a touch screen comprising a substrate; a transparent conductive layer disposed on a surface of the substrate; and to two electrodes, the at least two electrodes being spaced apart And being electrically connected to the transparent conductive layer; a display device is disposed adjacent to the surface of the touch screen and away from the surface of the transparent conductive layer, the improvement is that the transparent conductive layer further comprises a carbon nanotube layer. The carbon nanotube layer comprises a plurality of nanotubes that are isotropic or oriented in a fixed orientation or oriented in different directions. The method for preparing a touch panel according to claim 21, wherein the display device is a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. One of them. 23. As claimed in the patent application, the display device is invited to prepare the touch screen described in the 21st g, 設置于觸摸屏和顯示設備之間, •鈍化層,該鈍化層 與觸摸屏相接觸設 26 200929638 置,與顯示設備間隔一定距離設置。 • 25^申請專利範圍第以項所述的觸摸屏 ' "中,所述鈍化層的材料爲氮化矽、氧化 J ’ 丁烯、聚酯膜或丙烯酸樹脂。 夕、本並環 26.如申請專利範圍第25項所诚 其中,所隸1班 觸摸屏的製傷方法, 、甲所述顯不裝置進一步包括一鯧 顯示設備控制器及—中央處理=屏控制器、- 器、中央處if 51$ & 、 盗,其中,觸摸屏控制 連接,觸摸屏控制器連接觸摸==者通過電路相互 制器連接顯示設備。屏的電極,顯示設備控 27Between the touch screen and the display device, • a passivation layer, the passivation layer is placed in contact with the touch screen, and is disposed at a distance from the display device. In the touch panel of the above-mentioned patent application, the material of the passivation layer is tantalum nitride, oxidized J' butene, polyester film or acrylic resin. Xi, this and the ring 26. As claimed in the 25th section of the patent application, the method of injury to the touch screen of the class 1, the device of the display device further includes a display device controller and - central processing = screen control , - , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Screen electrode, display device control 27
TW96149383A 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same TWI364860B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149383A TWI364860B (en) 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149383A TWI364860B (en) 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same

Publications (2)

Publication Number Publication Date
TW200929638A true TW200929638A (en) 2009-07-01
TWI364860B TWI364860B (en) 2012-05-21

Family

ID=44864573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149383A TWI364860B (en) 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same

Country Status (1)

Country Link
TW (1) TWI364860B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
TWI399675B (en) * 2009-08-17 2013-06-21 Hon Hai Prec Ind Co Ltd Touch panel and display device using the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
TWI417771B (en) * 2010-06-24 2013-12-01 Beijing Funate Innovation Tech Touch panel
TWI481923B (en) * 2010-06-24 2015-04-21 Beijing Funate Innovation Tech Liquid crystal display with touch panel
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US9304630B2 (en) 2010-06-11 2016-04-05 Beijing Funate Innovation Technology Co., Ltd. Touch panel
TWI582667B (en) * 2015-06-10 2017-05-11 宸鴻科技(廈門)有限公司 Pressure sensing pattern layer and pressure sensing input device including the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
TWI399675B (en) * 2009-08-17 2013-06-21 Hon Hai Prec Ind Co Ltd Touch panel and display device using the same
US9304630B2 (en) 2010-06-11 2016-04-05 Beijing Funate Innovation Technology Co., Ltd. Touch panel
TWI481923B (en) * 2010-06-24 2015-04-21 Beijing Funate Innovation Tech Liquid crystal display with touch panel
TWI417771B (en) * 2010-06-24 2013-12-01 Beijing Funate Innovation Tech Touch panel
TWI582667B (en) * 2015-06-10 2017-05-11 宸鴻科技(廈門)有限公司 Pressure sensing pattern layer and pressure sensing input device including the same

Also Published As

Publication number Publication date
TWI364860B (en) 2012-05-21

Similar Documents

Publication Publication Date Title
TW200929638A (en) Touch panel, method for making the same, and displaying device adopting the same
CN101458597B (en) Touch screen, method for producing the touch screen, and display device using the touch screen
CN101419519B (en) Touch panel
CN101458608B (en) Touch screen preparation method
TWI354921B (en) Touch panel and displaying device using the same
CN101470565B (en) Touch screen and display equipment
CN101458598B (en) Touch screen and display device
CN101470560B (en) Touch screen and display equipment
TWI357167B (en) Touch panel, method for making the same, and displ
CN101470559A (en) Touch screen and display equipment
CN101470558A (en) Touch screen and display equipment
CN101458593A (en) Touch screen and display device
KR20090064309A (en) Touch panel and display device using the same
TW200921482A (en) Touch panel
TW200926471A (en) Touch panel and displaying device using the same
CN101458596A (en) Touch screen and display device
CN101464766B (en) Touch screen and display equipment
TWI386831B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
TWI436510B (en) Touch panel and displaying device using the same
TW201108051A (en) Touch panel and display device using the same
TW200929636A (en) Touch panel and displaying device using the same
TW200929642A (en) Touch panel, method for making the same, and displaying device adopting the same
TWI423084B (en) Touch panel and displaying device using the same
TWI500194B (en) Touch panel, method for making the same, and displaying device adopting the same