TWI363362B - Thermal emission electron source - Google Patents

Thermal emission electron source Download PDF

Info

Publication number
TWI363362B
TWI363362B TW97115291A TW97115291A TWI363362B TW I363362 B TWI363362 B TW I363362B TW 97115291 A TW97115291 A TW 97115291A TW 97115291 A TW97115291 A TW 97115291A TW I363362 B TWI363362 B TW I363362B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electron source
heat
emitting electron
strand
Prior art date
Application number
TW97115291A
Other languages
Chinese (zh)
Other versions
TW200945401A (en
Inventor
Lin Xiao
Liang Liu
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97115291A priority Critical patent/TWI363362B/en
Publication of TW200945401A publication Critical patent/TW200945401A/en
Application granted granted Critical
Publication of TWI363362B publication Critical patent/TWI363362B/en

Links

Description

101年.02月08日修正替換頁 1363362 六、發明說明: 【發明所屬之技術領域】 [0001]本發3月涉及一種熱發射電子源,尤其涉及一種基於奈米 碳管的熱發射電子源。 【先前技術】 [0002]熱電子發射係把物體加熱到足夠高的溫度,物體内部電 子的能莖隨著溫度的升ifj而增大,其中一部分電子的能 量大到足以克服阻礙它們逸出的障礙,即逸出功,而由 物體内進入真空。在熱電子發射過程中,發射電子的物 體被稱為熱發射電子源◊良妤的熱發射電子源的材料應 滿足下列要求:其一,逸出功低,熔點高,蒸發率小; 其二,具有良好的機械性能,尤其高溫性能;其三良 好的化學穩定性。普通熱電子源材料通常採用純金屬材 料、硼化物材科或者氧化物材料。 [0003]採用純金屬材料製備熱發射電子源時,通常熱發射電子 源為帶狀、絲狀、薄膜狀或網狀的純金屬材料,其具有 較高的比表面積。傳統的亦為最常見的熱發射電子源為 鈍鎢絲,其由許多纖維狀的長條微晶組成。純鎢絲作為 熱發射電子源的優點係價格較便宜,對真空度要求不言 ,缺點係熱電子發射效率低,發射源真徑較大,即使經 過二級或三級聚光鏡,在樣品表面上的電子束斑直徑也 在5奈米-7奈米,因此儀器解析度受到限制。而且,鶴絲 被加熱到高溫再冷卻後即產生再結晶,其晶粒由原來的 細長纖維變為塊狀結晶,因此,鎢絲易變脆,極易斷驴 ’大大影響了其作為熱發射電子源的壽命。 第3頁/共23頁 09711529^單編號 A0101 ^13045218-0 [0004]1363362 採用硼化物材料或金屬氧化物材料製備熱發射電子源時 ,該熱發射電子源的結構為硼化物材料或金屬氧化物材 料包覆在耐炫基金屬基底的表面β由於此類熱發射電子 源的化學性能十分穩定,且逸出功較低,所以廣泛地用 作電子束分析儀器、電子束加工設備、粒子加速器以及 其他一些動態真空系統中的電子源。然而這樣製備的熱 發射電子源中塗層和金屬基底結合不牢固,容易脫落。 此外,在工作溫度下,熱發射電子源中的硼元素容易蒸 發,極大縮短了熱電子發射體的壽命。 [0005] 奈米碳管(Carbon Nanotube,CNT)係一種新型碳材料 ,請參見 “Helical Microtubules of Graphitic101. February 08, revised replacement page 1363362 VI. Description of the invention: [Technical field of invention] [0001] The present invention relates to a heat-emitting electron source, and more particularly to a heat-emitting electron source based on a carbon nanotube . [Prior Art] [0002] Thermionic emission system heats an object to a sufficiently high temperature, and the energy stem of the electron inside the object increases as the temperature rises, and the energy of a part of the electrons is large enough to overcome the hindrance of their escape. The obstacle, that is, the work function, enters the vacuum from inside the object. In the process of thermal electron emission, the electron-emitting object is called the thermal emission electron source. The material of the heat-emitting electron source of ◊liang妤 should meet the following requirements: First, the work function is low, the melting point is high, and the evaporation rate is small; , has good mechanical properties, especially high temperature performance; its three good chemical stability. Ordinary hot electron source materials are usually made of pure metal materials, boride materials or oxide materials. [0003] When a heat-emitting electron source is prepared using a pure metal material, the heat-emitting electron source is usually a strip-shaped, filament-like, film-like or network-like pure metal material having a high specific surface area. The most common and common source of thermal emission electrons is the blunt tungsten filament, which consists of a number of fibrous elongated crystallites. The advantage of pure tungsten wire as a heat-emitting electron source is that the price is relatively cheap, and the vacuum degree is not required. The disadvantage is that the thermal electron emission efficiency is low, and the true diameter of the emission source is large, even after passing through the secondary or tertiary condenser, on the surface of the sample. The electron beam spot diameter is also in the range of 5 nm to 7 nm, so the instrument resolution is limited. Moreover, after the crane wire is heated to a high temperature and then cooled, recrystallization occurs, and the crystal grains change from the original elongated fiber to a massive crystal. Therefore, the tungsten wire is easily brittle and extremely easy to break, which greatly affects its function as heat emission. The life of the electron source. Page 3 of 23 97911529^Single No. A0101 ^13045218-0 [0004]1363362 When preparing a heat-emitting electron source using a boride material or a metal oxide material, the structure of the heat-emitting electron source is boride material or metal oxidation The material is coated on the surface of the refractory-based metal substrate. Since the chemical properties of such a thermal emission electron source are very stable and the work function is low, it is widely used as an electron beam analysis instrument, an electron beam processing device, and a particle accelerator. And other sources of electrons in dynamic vacuum systems. However, in the heat-emitting electron source thus prepared, the coating and the metal substrate are not firmly bonded and are easily peeled off. In addition, at the operating temperature, the boron element in the heat-emitting electron source is easily evaporated, which greatly shortens the life of the hot electron emitter. [0005] Carbon Nanotube (CNT) is a new type of carbon material, see "Helical Microtubules of Graphitic

Carbon , S. Iijima, Nature, vol.354, p56 (1991)。奈米碳管具有極優異的導電性能、良好的化學 穩定性和大的長徑比,且具有較高的機械強度,因而奈 米妓管在熱發射真空電子源領域具有潛在的應用前景。 柳鵬等人提供一種基於奈米碳管的熱發射電子源,請參 見 Thermionic emission and work function of multiwalled carbon nanotube yarns", Peng Liu et al, PHYSICAL REVIEW B, Vol73, P235412-1 (20〇6)。該熱發射電子源採用奈米碳管長線 作為熱發射電子源,由於奈米碳管具有較高的機械強度 ,因此該熱發射電子源具有較長的壽命,然,由於奈米 碳管具有較高的逸出功(4. 54-4. 64電子伏),所以該 熱發射電子源發射效率較低,當奈米碳管長線的溫度達 到2000C時方能發射電子,因此,難以在較低的溫度下 _529产單编號A〇101 第4頁/共23頁 1013045218-0 1363362 101年.02月08日修正替換頁 獲得較高的熱發射電流密度。 [0006] 有鑑於此,提供一種壽命較長,能在較低的溫度下發射 電子且發射效率較高的熱發射電子源實為必要。 【發明内容】 [0007] 一種熱發射電子源包括一奈米碳管絞線,其中,該奈米 碳管絞線包括複數個相互纏繞的奈米碳管,該熱發射電 子源進一步包括低逸出功材料顆粒,該低逸出功材料顆 粒至少部分填充於該奈米碳管絞線内。 [0008] 與先前技術相比較,本技術方案所提供的熱發射電子源 中低逸出功材料填充於奈米碳管絞線内,與奈米碳管絞 線結合牢固,不易脫落,因此該熱發射電子源壽命較長 。而且,低逸出功材料可以使該熱發射電子源能在較低 的溫度下發射電子,因此該熱發射電子源發射效率較高 。另外,該熱發射電子源可廣泛應用於真空螢光顯示器 、X射線管和電子腔等儀器設備中。 【實施方式】 [0009] 以下將結合附圖詳細說明本技術方蒙熱發射電子源及其 製備方法。 [0010] 請參閱圖1,本技術方案實施例提供一種熱發射電子源10 ,包括至少一奈米碳管絞線12,該熱發射電子源10進一 步包括複數個低逸出功材料顆粒14,其中,該複數個低 逸出功材料顆粒14部分填充於該奈米碳管絞線12内、部 分附著在該奈米碳管絞線12表面且均勻分佈,即,該低 逸出功材料顆粒14均勻分佈於奈米碳管絞線12内部或表 09711529产早編號 A〇101 第5頁/共23頁 1013045218-0 1363362 101年.02月08日修正替換頁 面。 [0011] 可選擇地,上述熱發射電子源10進一步包括一第一電極 16和一第二電極18,第一電極16和一第二電極18間隔設 置於熱發射電子源10的兩端,並與熱發射電子源10的兩 端電性連接,可通過導電膠將熱發射電子源10的兩端分 別粘附於第一電極16和一第二電極18上。所述電極材料 可選擇為金、銀、銅、奈米碳管或石墨等導電物質,所 述第一電極16和第二電極18的具體結構不限,本實施例 中,所述第一電極16和第二電極18優選為一長方體結構 的銅塊,熱發射電子源10的兩端分別通過銀膠粘附於第 一電極16和第二電極18上,實現熱發射電子源10與第一 電極16和第二電極18的電性連接。第一電極16和第二電 極18用於使熱發射電子源10與外部電路電連接,使熱發 射電子源10在應用時更加方便。 [0012] 所述之奈米碳管絞線12包括複數個相互纏繞的奈米碳管 ,奈米碳管在奈米碳管絞線12中均勻分佈,該奈米碳管 之間通過凡德瓦爾力緊密結合。該奈米碳管絞線12的直 徑為20微米-1毫米。該奈米碳管絞線12中的奈米碳管為 單壁奈米碳管、雙壁奈米碳管、多壁奈米碳管或其任意 組合的混合物。所述單壁奈米碳管的直徑為0. 5-50奈米 ,雙壁奈米碳管的直徑為1-50奈米,多壁奈米碳管的直 徑為1. 5-50奈米,奈米碳管的長度均為10微米-5000微 米。 [0013] 所述低逸出功材料顆粒14為氧化鋇顆粒、氧化锶顆粒、 氧化鈣顆粒、硼化钍顆粒、硼化釔顆粒或其任意組合的 1013045218-0 09711529^單編號Α〇1ίΠ 第6頁/共23頁 1363362 混合物,該低逸出 米。 功材料顆粒14 [101^-02^ oejggg 的直徑為1〇奈米-100微 [0014]Carbon, S. Iijima, Nature, vol. 354, p56 (1991). The carbon nanotubes have excellent electrical conductivity, good chemical stability, large aspect ratio, and high mechanical strength, so the nanotubes have potential applications in the field of thermal emission vacuum electron sources. Liu Peng et al. provide a thermal emission electron source based on carbon nanotubes, see Thermionic emission and work function of multiwalled carbon nanotube yarns", Peng Liu et al, PHYSICAL REVIEW B, Vol73, P235412-1 (20〇6) . The heat-emitting electron source adopts a long carbon nanotube wire as a heat-emitting electron source. Since the carbon nanotube has high mechanical strength, the heat-emitting electron source has a long life, however, since the carbon nanotube has a comparative High work function (4. 54-4. 64 electron volts), so the heat emission electron source emits low efficiency, and when the temperature of the long carbon nanotube line reaches 2000C, it can emit electrons, so it is difficult to be lower. The temperature of the _529 production order number A〇101 page 4 / total 23 pages 1013045218-0 1363362 101. February 08 correction replacement page to obtain a higher thermal emission current density. In view of the above, it is necessary to provide a heat-emitting electron source which has a long life and is capable of emitting electrons at a relatively low temperature and having a high emission efficiency. SUMMARY OF THE INVENTION [0007] A heat-emitting electron source includes a carbon nanotube strand, wherein the carbon nanotube strand comprises a plurality of intertwined carbon nanotubes, the heat-emitting electron source further comprising a low-emission The material particles are at least partially filled in the carbon nanotube strand. [0008] Compared with the prior art, the low-emission work material in the thermal emission electron source provided by the technical solution is filled in the carbon nanotube stranded wire, and is firmly combined with the carbon nanotube stranded wire, and is not easy to fall off, so The heat-emitting electron source has a long life. Moreover, the low work function material allows the heat emission electron source to emit electrons at a lower temperature, so that the heat emission electron source emits more efficiently. In addition, the heat-emitting electron source can be widely used in equipment such as vacuum fluorescent displays, X-ray tubes and electronic chambers. [Embodiment] [0009] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 , an embodiment of the present technical solution provides a heat-emitting electron source 10 including at least one carbon nanotube strand 12 , and the heat-emitting electron source 10 further includes a plurality of low-emission work material particles 14 . Wherein, the plurality of low work function material particles 14 are partially filled in the carbon nanotube strand 12 and partially adhered to the surface of the carbon nanotube strand 12 and uniformly distributed, that is, the low work function material particles 14 evenly distributed inside the carbon nanotube strand 12 or table 09711529 early production number A〇101 page 5 / total 23 page 1013045218-0 1363362 101. February 08 correction replacement page. [0011] Optionally, the heat-emitting electron source 10 further includes a first electrode 16 and a second electrode 18, and the first electrode 16 and the second electrode 18 are disposed at two ends of the heat-emitting electron source 10, and The two ends of the thermal emission electron source 10 are respectively adhered to the first electrode 16 and the second electrode 18 through a conductive paste. The electrode material may be selected from a conductive material such as gold, silver, copper, carbon nanotubes or graphite. The specific structure of the first electrode 16 and the second electrode 18 is not limited. In this embodiment, the first electrode 16 and the second electrode 18 is preferably a copper block having a rectangular parallelepiped structure, and two ends of the heat-emitting electron source 10 are respectively adhered to the first electrode 16 and the second electrode 18 by silver glue, thereby realizing the heat-emitting electron source 10 and the first The electrode 16 and the second electrode 18 are electrically connected. The first electrode 16 and the second electrode 18 are used to electrically connect the heat-emitting electron source 10 to an external circuit, making the heat-emitting electron source 10 more convenient in application. [0012] The carbon nanotube strand 12 comprises a plurality of intertwined carbon nanotubes, and the carbon nanotubes are uniformly distributed in the carbon nanotube strand 12, and the carbon nanotubes pass through the van der Waals Valli is closely integrated. The carbon nanotube strand 12 has a diameter of from 20 μm to 1 mm. The carbon nanotubes in the carbon nanotube strands 12 are a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube or a mixture of any combination thereof. 5-50纳米米。 The diameter of the single-walled carbon nanotubes is 0. 5-50 nm, the diameter of the double-walled carbon nanotubes is 1-50 nm, the diameter of the multi-walled carbon nanotubes is 1. 5-50 nm The length of the carbon nanotubes is from 10 micrometers to 5000 micrometers. [0013] The low work function material particles 14 are cerium oxide particles, cerium oxide particles, calcium oxide particles, barium boride particles, barium boride particles or any combination thereof 1013045218-0 09711529 ^ single number Α〇 1ίΠ 6 pages / total 23 pages 1363362 mixture, the low escape rice. The work material particle 14 [101^-02^ oejggg has a diameter of 1 〇 nanometer - 100 micro [0014]

知參間圖所述低逸出功㈣軸U至少部分填充於奈 米碳管絞線12内部。低逸出功材料顆粒U的質量為奈米 碳管絞線12的質量的5{)%__。可以理解逸出功材料 顆粒H與奈米碳營絞線12的結構關係包括以下三種同時 存在的情況:其―,當逸出功材料魏U的直徑小於奈 来碳管絞線12的直徑時,該逸出功材料顆粒听 完全: 充於奈緑管絞線12_部;其二,低逸出功材料顆粒 14的-部分填充於奈来碳管絞奶的内部,逸出功材料 顆粒14另-部分在奈米碳管絞線12的表面;其三,一些 低逸出功材料雛14也可完全分佈在奈米碳管絞線12的 表面。由於低逸出功材料顆粒14至少部分填充於奈来碳 官絞線12内部,因此,低逸出功材料顆粒14與奈米碳管 絞線12結合較為牢固。熱發射電子源1〇發射電子時的溫 度與低逸出功材料顆粒14的質量有關。低逸出功材料顆 粒14的質量越大,熱發射電子源1〇發射電子時的溫度越 低’低逸出功材料顆粒14的質量越小,熱發射電子源10 發射電子時的溫度越高。本技術方案所提供的熱發射電 子源10的最低發射溫度可為8〇(rc。 [0015] 進—步地,兩個或兩個以上的至少内部填充有低逸出功 材料顆粒14的奈米碳管絞線12可相互扭曲纏繞形成一熱 發射電子源10,該熱發射電子源1〇具有更大的直徑,方 便應用於宏觀領域,且該熱發射電子源10強度更大,壽 命較長。 〇9711529产單編號 A0101 第7頁/共23頁 1013045218-0 1363362 101年02月08日修正替換頁 [0016] 步地,至少一至少内部填充有低逸出功材料顆粒14 的奈米碳管絞線12可與至少一導線(圖未示)相互扭曲 纏繞形成一複合絞線結構,該複合絞線結構作為熱發射 電子源1〇可具有較大的強度,壽命較長。該導線的材料 不限可為金、銀、銅、或石墨等導電物質。 [0017] 應用時’在熱發射電子源10的兩端加一定的電壓,或在 第一電極u和第二電極18之間施加一定的電壓,該電壓 使奈米碜管絞線12中產生電流,由於焦耳熱的作用,使 奈米碳言絞線12逐漸升溫,奈米碳管絞線12將熱量傳遞 φ 低逸出功材料顆粒14,該低逸出功材料顆粒14内部的 電子隨著溫度的升高能量逐漸增加,當熱發射電子源10 的/JBl度達到800°c左右時,電子的能量超出低逸出功材料 顆粒14的逸出功,便從該低逸出功材料顆粒⑽逸出, 即該熱發射電子源丨0發射出電子。 [0018] 本技術方案所提供的熱發射電子源1Q存在以下優點:其 一’熱發射電子源10中的低逸出功材料顆粒魔該熱發 射電子源1G開始發射電子的溫度降低,提高了熱發射電 « 子源1◦的熱發射效率;其二,低逸出雜料顆粒14填充 於奈米碳做線12内、附著在奈米碳管絞線邮面且均 勾分佈’與奈米碳管絞線12結合牢固,不易脫落,因此 該熱發射電子源1Q的壽命較長;其三,由於奈米碳管絞 線12的比表面餘大,可使❹的⑼雜料顆粒14填 充於奈《管絞線12内、附著在奈米碳管絞㈣表面且 均句分佈(逸出功材料顆粒14的質量為奈米碳管絞仙 的_-_,顯著降低熱發射電子源1〇發射電子時的 09711529产單編號 A〇101 第8頁/共23頁 1013045218-0 1363362 101年.02月08日梭正_頁 溫度(可最低降至〇C)。 [0019] 請參閱圖2,本技術方案實施例提供一種製備上述熱發射 電子源1 0的方法,具體包括以下步驟: [0020] 步驟一:提供一奈米碳管薄膜。 [0021] 該奈米碳管薄膜的製備方法包括以下步驟: [0022] 首先,提供一奈米碳管陣列形成於一基底,優選地,該 陣列為定向排列的奈米碳管陣列。 • [0023] 本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管 陣列'雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種 。該奈米碳管陣列的製備方法採用化學氣相沈積法,其 具體步驟包括:(a)提供一平整基底,該基底可選用P 型或N型矽基底,或遘用形成有·氧化層的矽基底,本技術 方案實施例優選為採用4英寸的矽基底;(b)在基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe )、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c • )將上述形成有催化劑層的基底在700°C-900°C的空氣中 退火約30分鐘-90分鐘;(d)將處理過的基底置於反應 爐中,在保護氣體環境丁加熱到500°C-74(TC,然後通入 碳源氣體反應約5分鐘_30分鐘’生長得到奈米碳管陣列 。該奈米碳管陣列為複數個彼此平行且垂直於基底生長 的奈米碳管形成的純奈米碳管陣列。通過上述控制生長 條件,該定向排列的奈米碳管陣列中基本不含有雜質, 如無定型碳或殘留的催化劑金屬顆粒等。 [0024] 本技術方案實施例中碳源氣可選用乙炔、乙烯等化學性 09"711529产單编號A0101 第9頁/ - 23頁 1013045218-0 1363362 __ 101年.02月08日修正替換頁 質較活潑的碳氫化合物,本技術方案實施例優選的碳源 氣為乙炔;保護氣體為氮氣或惰性氣體,本技術方案實 施例優選的保護氣體為氬氣。 [0025] 可以理解,本技術方案實施例提供的奈米碳管陣列不限 於上述製備方法,也可為石墨電極恒流電弧放電沈積法 、鐳射蒸發沈積法等等。 [0026] 其次,利用上述奈米碳管陣列製備一奈米碳管薄膜。 [0027] 奈米碳管薄膜的製備方法分為兩種,一種為絮化方法,The low work function (four) axis U described in the inter-figure diagram is at least partially filled inside the carbon nanotube strand 12. The mass of the low work function material particles U is 5{)%__ of the mass of the carbon nanotube strands 12. It can be understood that the structural relationship between the work function material particles H and the nano carbon camp strands 12 includes the following three simultaneous situations: when the diameter of the work function material Wei U is smaller than the diameter of the nylon tube strand 12 The work function material particles are completely heard: filled in the 12-section of the green tube strand; and second, the portion of the low work function material particles 14 is filled in the interior of the nylon tube stranded milk, and the work material particles are 14 another part is on the surface of the carbon nanotube strand 12; third, some of the low work function material 14 can also be completely distributed on the surface of the carbon nanotube strand 12. Since the low work function material particles 14 are at least partially filled inside the nylon carbon strands 12, the low work function material particles 14 are more firmly bonded to the carbon nanotube strands 12. The temperature at which the heat-emitting electron source 1 emits electrons is related to the quality of the low-work function material particles 14. The higher the mass of the low work function material particles 14 , the lower the temperature at which the electron emission electron source 1 〇 emits electrons. The smaller the mass of the low work function material particles 14 , the higher the temperature at which the heat emission electron source 10 emits electrons. . The minimum emission temperature of the heat-emitting electron source 10 provided by the present technical solution may be 8 〇 (rc.) [0015] Further, two or more of the at least inner layers of the low-working material particles 14 are filled with The carbon nanotube strands 12 can be twisted and twisted to each other to form a heat-emitting electron source 10 having a larger diameter, which is convenient for application in a macroscopic field, and the heat-emitting electron source 10 has greater strength and longer life. 〇9711529Industry No.A0101 Page 7/Total 23 Page 1013045218-0 1363362 Modified on February 08, 2011 Correction Replacement Page [0016] Step, at least one of the nanoparticles at least internally filled with particles of low work function material 14 The carbon tube strand 12 can be twisted and twisted with at least one wire (not shown) to form a composite strand structure, and the composite strand structure can have greater strength and long life as a heat-emitting electron source. The material may be any one of a conductive material such as gold, silver, copper, or graphite. [0017] When applied, a certain voltage is applied to both ends of the heat-emitting electron source 10, or at the first electrode u and the second electrode 18 Apply a certain voltage between the voltages The electric current is generated in the twisted wire 12, and the nano carbon twisted wire 12 is gradually heated due to the action of the Joule heat, and the carbon nanotube strand 12 transfers the heat to the low work material particle 14, which is low work function. The electrons inside the material particles 14 gradually increase in energy with an increase in temperature. When the /JB1 degree of the heat-emitting electron source 10 reaches about 800 ° C, the energy of the electrons exceeds the work function of the low-resistance material particles 14 . The low-emission work material particle (10) escapes, that is, the heat-emitting electron source 丨0 emits electrons. [0018] The heat-emitting electron source 1Q provided by the present technical solution has the following advantages: a 'thermal emission electron source 10 The low-emission work material particles in the low-temperature energy source 1G start to emit electrons at a lower temperature, which improves the heat-emitting efficiency of the heat-emitting electrons «substrate 1 ;; second, the low-emission slag particles 14 are filled in the nai The carbon carbon is made in the wire 12 and attached to the carbon nanotube stranded wire surface and is uniformly distributed. The combination with the carbon nanotube strand 12 is firm and not easy to fall off. Therefore, the heat-emitting electron source 1Q has a long service life; Because the specific surface of the carbon nanotube strand 12 is large, The yttrium (9) granules 14 are filled in the inner tube strand 12 and attached to the surface of the carbon nanotube strands (four) and are evenly distributed (the mass of the work material particles 14 is the carbon nanotube stranded _- _, significantly reduce the heat emission electron source 1 097 when the electron emission is 97111529 production order number A 〇 101 page 8 / total 23 page 1013045218-0 1363362 101. February 08 shuttle _ page temperature (can be reduced to 〇 minimum [0019] Referring to FIG. 2, an embodiment of the present technical solution provides a method for preparing the above-mentioned heat-emitting electron source 10, which specifically includes the following steps: [0020] Step 1: providing a carbon nanotube film. [0021] The method for preparing the carbon nanotube film comprises the following steps: [0022] First, an array of carbon nanotubes is provided on a substrate, and preferably, the array is an array of aligned carbon nanotubes. [0023] The carbon nanotube array provided by the embodiment of the present technical solution is one of a single-walled carbon nanotube array 'double-walled carbon nanotube array and a multi-walled carbon nanotube array. The method for preparing the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or may be formed with an oxide layer. The substrate is preferably a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co), nickel (Ni) or One of the alloys of any combination thereof; (c • ) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in the reaction In the furnace, the protective gas atmosphere is heated to 500 ° C-74 (TC, and then the carbon source gas is reacted for about 5 minutes _30 minutes to grow to obtain a carbon nanotube array. The carbon nanotube array is a plurality of each other. An array of pure carbon nanotubes formed by carbon nanotubes grown parallel and perpendicular to the substrate. The aligned carbon nanotube arrays contain substantially no impurities, such as amorphous carbon or residual catalyst metal, by controlling the growth conditions described above. Particles, etc. [0024] The present technology In the example, the carbon source gas can be selected from acetylene, ethylene and other chemical 09"711529 production order number A0101 page 9 / - 23 pages 1013045218-0 1363362 __ 101 years. February 08 correction replacement page quality more active carbon Hydrogen compound, preferred carbon source gas of the embodiment of the present invention is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas of the embodiment of the present invention is argon. [0025] It can be understood that the embodiments of the present technical solution provide The carbon nanotube array is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. [0026] Next, a carbon nanotube film is prepared by using the above carbon nanotube array. [0027] The preparation method of the carbon nanotube film is divided into two types, one is a flocculation method,

一種為擠壓方法。絮化方法包括以下步驟: IOne is the extrusion method. The flocculation method comprises the following steps: I

[0028] (一)採用刀片或其他工具將上述奈米碳管陣列從基底 刮落,獲得一奈米碳管原料。 [0029] 所述之奈米碳管原料中,奈米碳管的長度大於10微米。 [0030] (二)將上述奈米碳管原料添加到一溶劑中並進行絮化 處理獲得一奈米碳管絮狀結構,將上述奈米碳管絮狀結 構從溶劑中分離,並對該奈米碳管絮狀結構定型處理以 _ 獲得一奈米碳管薄膜。 [0031] 本技術方案實施例中,溶劑可選用水、易揮發的有機溶 劑等。絮化處理可通過採用超聲波分散處理或高強度攪 拌等方法。優選地,本技術方案實施例採用超聲波分散 10分鐘-30分鐘。由於奈米碳管具有極大的比表面積,相 互纏繞的奈米碳管之間具有較大的凡德瓦爾力。上述絮 化處理並不會將該奈米碳管原料中的奈米碳管完全分散 在溶劑中,奈米碳管之間通過凡德瓦爾力相互吸引、纏 09711529产單编號 A〇101 第10頁/共23頁 1013045218-0 1363362 101年.02月08日梭正替換頁 繞,形成網路狀結構。 [0032] 本技術方案實施例中,所述之分離奈米碳管絮狀結構的 方法具體包括以下步驟:將上述含有奈米碳管絮狀結構 的溶劑倒入一放有濾紙的漏斗中;靜置乾燥一段時間從 而獲得一分離的奈米碳管絮狀結構。 [0033] 本技術方案實施例中,所述之奈米碳管絮狀結構的定型 處理過程具體包括以下步驟:將上述奈米碳管絮狀結構 置於一容器中;將該奈米碳管絮狀結構按照預定形狀攤 φ 開;施加一定壓力於攤開的奈米碳管絮狀結構;以及, 將該奈米碳管絮狀結構中殘留的溶劑烘乾或等溶劑自然 揮發後獲得一奈米碳管薄膜。 [0034] 可以理解,本技術方案實施例可通過控制該奈米碳管絮 狀結構攤開的面積來控制該奈米碳管薄膜的厚度和麵密 度。奈米碳管絮狀結構攤開的面積越大,則該奈米碳管 薄膜的厚度和麵密度就越小。本技術方案實施例中獲得 的奈米碳管薄膜,該奈米碳管薄膜的厚度為1微米-2毫米 [0035] 另外,上述分離與定型處理奈米碳管絮狀結構的步驟也 可直接通過抽濾的方式實現,具體包括以下步驟:提供 一微孔濾膜及一抽氣漏斗;將上述含有奈米碳管絮狀結 構的溶劑經過該微孔濾膜倒入該抽氣漏斗中;抽濾並乾 燥後獲得一奈米碳管薄膜。該微孔濾膜為一表面光滑、 孔徑為0. 22微米的濾膜。由於抽濾方式本身將提供一較 大的氣壓作用於該奈米碳管絮狀結構,該奈米碳管絮狀 097115291^單編號 A〇101 第11頁/共23頁 1013045218-0 1363362 __ 101年02月08日梭正替换頁 結構經過抽濾會直接形成一均勻的奈米碳管薄膜。且, 由於微孔濾膜表面光滑,該奈米碳管薄膜容易剝離。 [0036] 上述奈米碳管薄膜中包括相互纏繞的奈米碳管,所述奈 米碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網路 狀結構,因此該奈米碳管薄膜具有很好的韌性。該奈米 碳管薄膜中,奈米碳管為各向同性,均勻分佈,無規則 排列。 [0037] 所述之採用擠壓方法製備奈米碳管薄膜的過程為採用一[0028] (1) scraping off the above-mentioned carbon nanotube array from the substrate by using a blade or other tool to obtain a carbon nanotube raw material. [0029] In the carbon nanotube raw material, the length of the carbon nanotube is greater than 10 micrometers. [0030] (2) adding the above-mentioned carbon nanotube raw material to a solvent and performing a flocculation treatment to obtain a nano carbon tube floc structure, separating the above-mentioned nano carbon tube floc structure from a solvent, and The carbon nanotube floc structure is shaped to obtain a carbon nanotube film. [0031] In the embodiment of the technical solution, the solvent may be selected from water, a volatile organic solvent or the like. The flocculation treatment can be carried out by a method such as ultrasonic dispersion treatment or high-strength agitation. Preferably, the embodiment of the technical solution is dispersed by ultrasonic waves for 10 minutes to 30 minutes. Due to the extremely large specific surface area of the carbon nanotubes, there is a large van der Waals force between the intertwined carbon nanotubes. The above flocculation treatment does not completely disperse the carbon nanotubes in the carbon nanotube raw material in the solvent, and the carbon nanotubes are mutually attracted by the van der Waals force, and the 90711529 single number A〇101 is entangled. 10 pages/total 23 pages 1013045218-0 1363362 101. On February 08, the shuttle is replacing the page winding to form a network structure. [0032] In the embodiment of the technical solution, the method for separating the carbon nanotube floc structure specifically includes the following steps: pouring the solvent containing the carbon nanotube floc structure into a funnel with a filter paper; The mixture was allowed to stand for a while to obtain a separated carbon nanotube floc structure. [0033] In the embodiment of the technical solution, the shaping process of the nano carbon tube floc structure specifically includes the following steps: placing the carbon nanotube floc structure in a container; the carbon nanotube The floc structure is spread according to a predetermined shape; a certain pressure is applied to the expanded carbon nanotube floc structure; and the residual solvent in the nano carbon tube floc structure is dried or the solvent is naturally volatilized to obtain a Nano carbon tube film. It will be appreciated that embodiments of the present technical solution can control the thickness and surface density of the carbon nanotube film by controlling the area in which the carbon nanotube floc is spread. The larger the area of the carbon nanotube floc spread, the smaller the thickness and areal density of the carbon nanotube film. The carbon nanotube film obtained in the embodiment of the technical solution has a thickness of 1 micrometer to 2 millimeters. [0035] In addition, the step of separating and shaping the carbon nanotube floc structure can also be directly performed. The method comprises the following steps: providing a microporous membrane and an extraction funnel; and pouring the solvent containing the nanocarbon tube floc structure into the suction funnel through the microfiltration membrane; After suction filtration and drying, a carbon nanotube film was obtained. The microfiltration membrane is a filter having a smooth surface and a pore size of 0.22 μm. Since the suction filtration method itself will provide a large gas pressure acting on the carbon nanotube floc structure, the carbon nanotube flocculation 097115291 ^ single number A 〇 101 page 11 / 23 pages 1013045218-0 1363362 __ 101 On February 08, the shuttle replacement page structure directly formed a uniform carbon nanotube film by suction filtration. Moreover, since the surface of the microporous membrane is smooth, the carbon nanotube film is easily peeled off. [0036] The carbon nanotube film includes intertwined carbon nanotubes, and the carbon nanotubes are mutually attracted and entangled by van der Waals force to form a network structure, and thus the carbon nanotube film Has good toughness. In the carbon nanotube film, the carbon nanotubes are isotropic, evenly distributed, and irregularly arranged. [0037] The process of preparing a carbon nanotube film by an extrusion method is to adopt a method

施壓裝置,擠壓上述奈米碳管陣列獲得一奈米碳管薄膜 I ,其具體過程為: [0038] 該施壓裝置施加一定的壓力於上述奈米碳管陣列上。在 施壓的過程中,奈米碳管陣列在壓力的作用下會與生長 的基底分離,從而形成由複數個奈米碳管組成的具有自 支撐結構的奈米碳管薄膜,且所述之複數個奈米碳管基 本上與奈米碳管薄膜的表面平行。本技術方案實施例中 ,施壓裝置為一壓頭,壓頭表面光滑,壓頭的形狀及擠 _ 壓方向決定製備的奈米碳管薄膜中奈米碳管的排列方式 。具體地,當採用平面壓頭沿垂直於上述奈米碳管陣列 生長的基底的方向擠壓時,可獲得奈米碳管為各向同性 排列的奈米碳管薄膜;當採用滾軸狀壓頭沿某一固定方 向碾壓時,可獲得奈米碳管沿該固定方向取向排列的奈 米碳管薄膜;當採用滾軸狀壓頭沿不同方向碾壓時,可 獲得奈米碳管沿不同方向取向排列的奈米碳管薄膜。 [0039] 可以理解,當採用上述不同方式擠壓上述的奈米碳管陣 〇971152#單编號删1 第12頁/共23頁 1013045218-0 1363362 101年.02月08日慘正替換頁 列時,奈米碳管會在壓力的作用下傾倒,並與相鄰的奈 米碳管通過凡德瓦爾力相互吸引、連接形成由複數個奈 米碳管組成的具有自支撐結構的奈米碳管薄膜。所述之 複數個奈米碳管與該奈米碳管薄膜的表面基本平行並為 各向同性或沿一固定方向取向或不同方向取向排列。另 外,在壓力的作用下,奈米碳管陣列會與生長的基底分 離,從而使得該奈米碳管薄膜容易與基底脫離。 [0040] 本技術領域技術人員應明白,上述奈米碳管陣列的傾倒 程度(傾角)與壓力的大小有關,壓力越大,傾角越大 "。製備的奈米碳管薄膜的厚度取決於奈米碳管陣列的高 度以及壓力大小。奈米碳管陣列的高度越大而施加的壓 力越·小,則製備的奈米碳管薄膜的厚度越大;反之,奈 米碳管陣列的高度越小而施加的壓力越大,則製備的奈 米碳管薄膜的厚度越小。該奈米碳管薄膜的寬度與奈米 碳管陣列所生長的基底的尺寸有關,該奈米碳管薄膜的 長度不限,可根據實際需求制得。本技術方案實施例中 獲得的奈米碳管薄膜,該奈米碳管薄膜的厚度為1微米-2 毫米。 [0041] 上述奈米碳管薄膜中包括複數個沿同一方向或擇優取向 排列的奈米碳管,所述奈米碳管之間通過凡德瓦爾力相 互吸引,因此該奈米碳管薄膜具有很好的韌性。該奈米 碳管薄膜中,奈米碳管均勻分佈,規則排列。 [0042] 可以理解,本技術方案實施例中該奈米碳管薄膜可根據 實際應用切割成預定的形狀和尺寸,以擴大其應用範圍 0971152#早編號 A〇101 第13頁/共23頁 1013045218-0 1363362 [0043] [0044] [0045] [0046] [0047] [0048] [0049] [0050] 101年02月08日修正替換頁 步驟提供-含有低逸出功材料或者低逸出功材料前 驅物的4液’採用此溶液浸潤上述奈米碳管薄膜。 ^試s將冷液不斷液滴落於奈米碳管薄膜表面m 5 分鐘,或者將奈米碳管薄膜浸人溶液中1秒-D. 5分鐘。 所述低逸出讀料的前驅物為可於—定溫度下分解生成 〜低逸出功材料的物質,如低逸出功材料屬於金屬氧 化物時’則低逸出功材料前驅物可選用該金屬氧化物所 對應的鹽類》 所述溶液的溶劑的具體成分不限,其可以溶解低逸出功 φ 材料的前驅物形成溶液即可,該溶劑包括水、乙醇、甲 醇、丙_或其混合物。 所述低逸出雜料的前驅物包括硝_、顧鎖或姐 鈣等可形成低溢出功材料的物質。 本實施例巾’所述溶液的溶質優選為硝酸鋇' 魏錄和 罐酸舞的混合物’其摩爾比優選為1:1:〇 〇5,溶劑優選 為體積比為1:1的去離子水與乙醇的混合物。氧化銘顆冑 鲁 和氧化鈣顆粒可降低熱發射電子源10的逸出功和熱發射 電子源10於高溫工作時氧化鋇顆粒的蒸發率,且可以提 高該熱發射電子源10的抗燒結能力。 溶液浸潤後的奈米碳管薄膜中,溶液包覆於奈米碳管薄 膜中奈米碳管的表面。 步驟二.採用機械方法處理浸潤後的奈米碳管薄膜形成 一奈米碳管絞線12» 〇9謂9产單編號删1 第14頁/共23頁 1013045218-0 1363362 -101年.02月08日修正替換頁 [0051] 將奈米碳管薄膜的一端粘附於一工具上,以一定的速度 旋轉該工具,將該奈米碳管薄膜擰成一奈米碳管絞線12 [0052] 可以理解,上述工具的旋轉方式不限,可以正轉,也可 以反轉。 [0053] 本實施例中,所述工具為一紡紗轴,將該奈米碳管薄膜 的一端與紡紗軸結合後,以200轉/分鐘速度正轉該紡紗 軸3分鐘,即得到一奈米碳管絞線12。 [0054] 上述機械方法處理奈米碳管薄膜的過程中,由於奈米碳 管薄膜中的奈米碳管的表面包覆有含有低逸出功材料或 者低逸出功材料前驅物的溶液,因此,經過機械方法處 理奈米碳管薄膜得到奈米碳管絞線12後,該溶液填充於 奈米碳管絞線1 2的内部或分佈於奈米碳管絞線12的表面 [0055] 步驟四:烘乾該奈米碳管絞線12。 [0056] 將上述的奈米碳管絞線12放置於空氣中,於1 00-400°C 下烘乾該奈米碳管絞線12。本實施例中,將上述奈米碳 管絞線12置於空氣中,於溫度為100°C下烘乾10分鐘-2 小時。此過程中,填充於奈米碳管絞線12内或分佈於奈 米碳管絞線12表面的溶液中的溶劑完全揮發,溶質以顆 粒的形式填充於奈米碳管絞線12内、附著於奈米碳管絞 線12表面且均勻分佈於奈米碳管絞線12的内部和表面。 可以理解, [0057] 本實施例中,浸潤於奈米碳管絞線12中的硝酸鋇、硝酸 09711529产單編號 A〇101 第15頁/共23頁 1013045218-0 [0058} [0059] [0060] [0061] [0062] [101年02月08日梭正替換i 鳃和硝酸鈣的混合溶液的溶劑完全揮發,溶質硝酸鋇、 硝醆鰓和硝酸鈣以顆粒的形式填充於奈米碳管絞線” 附著於奈米碳官絞線12表面且均勻分佈 步驟五:激活上述烘乾後的奈米碳管絞線上 發射電子源10。 將上述烘乾後的奈米碳管絞線12放置於_壓強為ΐχΐ()_2 帕-lxlO — 6帕真空系統中,於奈米碳管绞線的兩端施加電 壓,使該奈米碳管絞線的溫度達到8〇〇_14〇〇它,持續工 内 2,即得到熱 09711529^ 單編號1 Α0101 分鐘-1小時’得到熱發射電子源1〇 本實施射,將上祕乾後的奈Μ管絞線㈣於壓強 為IxW帕的真空系統中,於該奈米碳管絞線12的兩端 施加電壓,使奈米碳管絞線12的溫度達到⑽吖,持續 20分鐘。通常’溫度越高時,所需激活時間越短。此過 程中,硝酸綱粒、硝酸㈣㈣“肖_顆粒分解生成 氧化鋇顆粒、氧化链顆粒和氧化舞顆粒,彡直經為1〇奈 j-100微米’填充於奈$碳管絞線12内、附著於奈^ 管絞線12表面且均勻分佈。真空高溫環境可除去該奈 碳管絞線12表面的氣體,該氣體包括水蒸氣、二氡^匕碳 等。將該奈米碳管絞線12從真空系統中取出”_ 發射電子源10。 ”' 激活的目的係為了降低熱發射電子源10的逸出功、 使其於較低的溫度下發射電子。 可選擇地,上述熱發射電子源10的製備方法還可進乎 包括一將至少兩個激活後的奈米碳管絞線12通過:械: 第16頁/共23頁 1013045218-0 1363362 [0063] 101:年.02月08日按正_頁 力擰成一絞線結構的熱發射電子源1〇的步驟,該熱發射 電子源10中,至少兩個奈米碳管絞線12相互扭曲缠燒。 可選擇地,上述熱發射電子源10的製備方法還可進一步 包括一將至少一個激活後的奈求碳管絞線12與至少一導 線通過機械外力擰成-複合絞線結構的熱發射電子源10 的步驟,該熱發射電子源10中’奈求碳管絞線12與至少 一導線相互扭曲纏繞。 [0064] 可選擇地,還可進一步包括一上述熱發射電子源1〇的兩 端與第一電極16和第二電極18分別電性連接的步驟可 以通過導電膠,將第一電極16和第二電極18粘附於熱發 射電子源10的兩端,與第一電極16和第二電極18電性連 接。 [0065] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0066] 圖1係本技術方案實施例的熱發射電子源的結構示意圖。 [0067] 圖2係本技術方案實施例的熱發射電子源的掃描電鏡照片 0 [0068] 圖3係本技術方案實施例的熱發射電子源的製備方法的流 程圖<* 【主要元件符號說明】 09711529^^^ A0101 ^ 17 1 / ^· 23 1 1013045218-0 1363362 [0069] 熱發射電子源:10 [0070] 奈米碳管絞線:12 [0071] 低溢出功材料顆粒:1 4 [0072] 第一電極:16 [0073] 第二電極:18 09711529!^單编號 A〇101 第18頁/共23頁 101年.02月08日修正替換頁 1013045218-0Pressing device, extruding the carbon nanotube array to obtain a carbon nanotube film I, the specific process is: [0038] The pressing device applies a certain pressure to the carbon nanotube array. During the pressing process, the carbon nanotube array is separated from the grown substrate by pressure, thereby forming a carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes, and A plurality of carbon nanotubes are substantially parallel to the surface of the carbon nanotube film. In the embodiment of the technical solution, the pressing device is an indenter, the surface of the indenter is smooth, and the shape of the indenter and the direction of the extrusion pressure determine the arrangement of the carbon nanotubes in the prepared carbon nanotube film. Specifically, when the planar indenter is pressed in a direction perpendicular to the substrate grown by the carbon nanotube array, the carbon nanotubes are isotropically aligned carbon nanotube film; when a roller-shaped pressure is used When the head is rolled in a certain fixed direction, a carbon nanotube film which is aligned along the fixed direction of the carbon nanotubes can be obtained; when the roller-shaped indenter is rolled in different directions, the carbon nanotubes can be obtained. A carbon nanotube film oriented in different directions. [0039] It can be understood that when the above-mentioned different manner is used to squeeze the above-mentioned carbon nanotubes 〇 152 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 When it is listed, the carbon nanotubes will be poured under the pressure and interact with the adjacent carbon nanotubes through the van der Waals force to form a self-supporting structure composed of a plurality of carbon nanotubes. Carbon tube film. The plurality of carbon nanotube tubes are substantially parallel to the surface of the carbon nanotube film and are isotropic or oriented in a fixed direction or in different directions. In addition, under the action of pressure, the carbon nanotube array is separated from the grown substrate, thereby making the carbon nanotube film easily detached from the substrate. [0040] Those skilled in the art should understand that the degree of tilting (inclination) of the above-mentioned carbon nanotube array is related to the magnitude of the pressure, and the greater the pressure, the greater the inclination angle ". The thickness of the prepared carbon nanotube film depends on the height of the carbon nanotube array and the pressure. The higher the height of the carbon nanotube array and the smaller the applied pressure, the greater the thickness of the prepared carbon nanotube film; conversely, the smaller the height of the carbon nanotube array and the greater the applied pressure, the preparation The smaller the thickness of the carbon nanotube film. The width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. The carbon nanotube film obtained in the embodiment of the technical solution has a thickness of 1 μm to 2 mm. [0041] The carbon nanotube film includes a plurality of carbon nanotubes arranged in the same direction or in a preferred orientation, and the carbon nanotubes are mutually attracted by van der Waals force, so the carbon nanotube film has Very good toughness. In the carbon nanotube film, the carbon nanotubes are evenly distributed and regularly arranged. [0042] It can be understood that, in the embodiment of the technical solution, the carbon nanotube film can be cut into a predetermined shape and size according to an actual application to expand the application range of the number 0971152# early number A〇101 page 13/total 23 page 1013045218 [0046] [0049] [0049] [0050] [0050] The revised replacement page step is provided on February 08, 101 - contains low work function material or low work function The 4 liquids of the material precursor used this solution to infiltrate the above carbon nanotube film. ^ Try to continuously drop the cold liquid on the surface of the carbon nanotube film for 5 minutes, or soak the carbon nanotube film in the solution for 1 second - D. 5 minutes. The precursor of the low-emission readout is a substance which can be decomposed to a low-emission work material at a constant temperature. For example, when the low work function material belongs to a metal oxide, the precursor of the low work function material can be selected. The specific component of the solvent of the salt corresponding to the metal oxide is not limited, and it may dissolve a precursor forming solution of a material having a low work function φ, the solvent including water, ethanol, methanol, C- or Its mixture. The precursor of the low-emission miscellaneous material includes a substance such as nitrate, Gusuo or Sister calcium which can form a low-spill work material. The solute of the solution of the present embodiment is preferably a mixture of yttrium nitrate 'weilu and canned acid dance' having a molar ratio of preferably 1:1: 〇〇5, preferably a solvent having a volume ratio of 1:1 deionized water. Mixture with ethanol. The oxidation of the ruthenium and the calcium oxide particles can reduce the work function of the heat-emitting electron source 10 and the evaporation rate of the cerium oxide particles when the heat-emitting electron source 10 is operated at a high temperature, and can improve the anti-sintering ability of the heat-emitting electron source 10. . In the carbon nanotube film after solution infiltration, the solution is coated on the surface of the carbon nanotube in the carbon nanotube film. Step 2. Mechanically treat the infiltrated carbon nanotube film to form a carbon nanotube stranded wire 12» 〇9 says 9 production order number deletion 1 Page 14 of 23 1013045218-0 1363362 -101 year.02 Revised replacement page of the month of 08 [0051] Adhering one end of the carbon nanotube film to a tool, rotating the tool at a certain speed, twisting the carbon nanotube film into a carbon nanotube strand 12 [0052] It can be understood that the above-mentioned tool can be rotated in any way, and can be rotated forward or reversed. [0053] In the embodiment, the tool is a spinning shaft, and one end of the carbon nanotube film is combined with the spinning shaft, and the spinning shaft is forwardly rotated at a speed of 200 rpm for 3 minutes. One nano carbon tube strand 12 [0054] In the above mechanical method of treating the carbon nanotube film, since the surface of the carbon nanotube in the carbon nanotube film is coated with a solution containing a low work function material or a precursor of a low work function material, Therefore, after the carbon nanotube film 12 is mechanically treated to obtain the carbon nanotube strand 12, the solution is filled in the interior of the carbon nanotube strand 12 or distributed on the surface of the carbon nanotube strand 12 [0055] Step 4: Dry the carbon nanotube strand 12 . [0056] The above-mentioned carbon nanotube strand 12 is placed in the air, and the carbon nanotube strand 12 is dried at 100-400 °C. In the present embodiment, the above-mentioned carbon nanotube strands 12 are placed in the air and dried at a temperature of 100 ° C for 10 minutes to 2 hours. In this process, the solvent filled in the solution of the carbon nanotube strand 12 or distributed on the surface of the carbon nanotube strand 12 is completely volatilized, and the solute is filled in the form of particles in the carbon nanotube strand 12, and attached. The surface of the carbon nanotube strand 12 is uniformly distributed on the inside and the surface of the carbon nanotube strand 12. It can be understood that, in the present embodiment, cerium nitrate and nitric acid infiltrated in the carbon nanotube strand 12 are produced in the number 91 A 〇 101 page 15 / 23 pages 1013045218-0 [0058] [0059] [0061] [0062] [February 08, 2011, the shuttle is replacing the solvent of the mixed solution of i 鳃 and calcium nitrate completely volatilized, and the solute lanthanum nitrate, nitronium and calcium nitrate are filled in the form of particles in the nano carbon. The tube strand is attached to the surface of the nano carbon stranded wire 12 and uniformly distributed. Step 5: activating the electron source 10 on the stranded carbon nanotube strand after drying. The dried carbon nanotube strand 12 is dried. Placed in a vacuum system with _ pressure ΐχΐ()_2 Pa-lxlO-6 Pa, applying voltage to both ends of the carbon nanotube strand, so that the temperature of the carbon nanotube strand reaches 8〇〇_14〇〇 It, continuous work 2, that is, get hot 09911529 ^ single number 1 Α 0101 minutes -1 hour 'get the heat emission electron source 1 〇 this implementation shot, will be the secret tube after the navel tube strand (four) at the pressure of IxW Pa In the vacuum system, a voltage is applied across the carbon nanotube strand 12 to bring the temperature of the carbon nanotube strand 12 to (10) 吖, It lasts for 20 minutes. Usually, the higher the temperature is, the shorter the activation time is required. In this process, the nitric acid particles and the nitric acid (4) (4) "Xiao_granules decompose to form cerium oxide particles, oxidized chain particles and oxidized dance particles. 1〇奈 j-100 μm is filled in the carbon nanotube strand 12 and attached to the surface of the strand 12 and uniformly distributed. The gas in the vacuum high temperature environment can remove the gas on the surface of the carbon nanotube strand 12, and the gas includes water vapor, carbon dioxide, and the like. The carbon nanotube strand 12 is taken out of the vacuum system "_emissive electron source 10." The purpose of the activation is to reduce the work function of the heat-emitting electron source 10 to emit electrons at a lower temperature. Alternatively, the method for preparing the above-described thermal emission electron source 10 may further include passing at least two activated carbon nanotube strands 12 through: Machinery: Page 16 of 23 1013045218-0 1363362 [0063 101: On February 08, 2008, the step of twisting into a stranded-structured thermal emission electron source 1〇, at least two carbon nanotube strands 12 twisted and twisted in the heat-emitting electron source 10 burn. Optionally, the method for preparing the heat-emitting electron source 10 may further include: thermally transmitting the at least one activated carbon nanotube strand 12 and the at least one wire to a heat-emitting electron source of the composite strand structure. In the step of 10, the heat-emitting electron source 10 is twisted and twisted with at least one wire. Optionally, the method further includes the step of electrically connecting the two ends of the heat-emitting electron source 1 与 to the first electrode 16 and the second electrode 18 respectively, and the first electrode 16 and the first electrode The two electrodes 18 are adhered to both ends of the heat-emitting electron source 10, and are electrically connected to the first electrode 16 and the second electrode 18. [0065] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0066] FIG. 1 is a schematic structural view of a heat-emitting electron source according to an embodiment of the present technical solution. 2 is a scanning electron micrograph of a thermal emission electron source according to an embodiment of the present technical solution. [0068] FIG. 3 is a flow chart of a method for preparing a thermal emission electron source according to an embodiment of the present technical solution. Explanation] 09711529^^^ A0101 ^ 17 1 / ^· 23 1 1013045218-0 1363362 [0069] Thermal emission electron source: 10 [0070] Nano carbon tube strand: 12 [0071] Low overflow work material particles: 1 4 [0072] First electrode: 16 [0073] Second electrode: 18 09711529! ^ Single number A 〇 101 Page 18 / Total 23 pages 101. February 08 Revision replacement page 1013045218-0

Claims (1)

101年02月08日核正替換頁 1363362 七、申請專利範圍: 1 . 一種熱發射電子源,包括至少一奈米碳管絞線,其改良在 於,該奈米碳管絞線包括複數個相互纏繞的奈米碳管,該 熱發射電子源進一步包括低逸出功材料顆粒,該低逸出功 材料顆粒至少部分填充於該奈米碳管絞線内。 2 .如申請專利範圍第1項所述之熱發射電子源,其中,所述 之低逸出功材料顆粒進一步附著在該奈米碳管絞線的表面 3 .如申請專利範圍第2項所述之熱發射電子源,其中,所述 之低逸出功材料顆粒均勻分佈於該奈米碳管絞線的内部和 表面。 4 .如申請專利範圍第1項所述之熱發射電子源,其中,所述 之低逸出功材料顆粒的質量為該奈米碳管絞線質量的 50%-90%。 5 .如申請專利範圍第1項所述之熱發射電子源,其中,所述 之熱發射電子源進一步包括至少兩個奈米碳管絞線,該奈 米碳管絞線相互扭曲纏繞。 6. 如申請專利範圍第1項所述之熱發射電子源,其中,所述 之熱發射電子源進一步包括至少一導線與至少一奈米碳管 絞線,該導線與該奈米碳管絞線相互扭曲纏繞。 7. 如申請專利範圍第6項所述之熱發射電子源,其中,所述 導線的材料為金、銀、銅或石墨。 8. 如申請專利範圍第1項所述之熱發射電子源,其中,所述 之熱發射電子源開始發射電子的溫度為800°C。 9. 如申請專利範圍第1項所述之熱發射電子源,其中,所述 09711529产單编號 A0101 第19頁/共23頁 1013045218-0 1363362 101年02月08日梭正替換頁 之奈米碳管絞線中的奈米碳管之間通過凡德瓦爾力連接。 10 .如申請專利範圍第1項所述之熱發射電子源,其中,所述 之奈米碳管為單壁奈米碳管、雙壁奈米碳管、多壁奈米碳 管或其任意組合的混合物。 11 .如申請專利範圍第10項所述之熱發射電子源,其中,所述 之單壁奈米碳管的直徑為0.5奈米-50奈米,雙壁奈米碳 管的直徑為1奈米-50奈米,多壁奈米碳管的直徑為1.5奈 米-50奈米,該等奈米碳管的長度均為10微米-5000微米 〇 12 .如申請專利範圍第1項所述之熱發射電子源,其中,所述 之奈米碳管絞線的直徑為20微米-1毫米。 13 .如申請專利範圍第1項所述之熱發射電子源,其中,所述 之低逸出功材料為氧化鎖、氧化錄、氧化妈、硼化钍、硼 化釔或其任意組合的混合物。 14.如申請專利範圍第1項所述之熱發射電子源,其中,所述 之低逸出功材料顆粒的直徑為10奈米-100微米。 15 .如申請專利範圍第1項所述之熱發射電子源,其中,該熱 發射電子源進一步包括一第一電極和一第二電極間隔設置 於其兩端,並與所述奈米碳管絞線電性連接。 16 .如申請專利範圍第15項所述之熱發射電子源,其中,所述 之第一電極和第二電極的材料為金、銀、銅、奈米碳管或 石墨。 Q97U529I^單編號A0101 第20頁/共23頁 1013045218-0February 08, 101 Nuclear replacement page 1363362 VII. Patent application scope: 1. A thermal emission electron source, comprising at least one carbon nanotube stranded wire, the improvement is that the nano carbon nanotube strand comprises a plurality of mutual The wound carbon nanotubes further comprise low work function material particles that are at least partially filled within the carbon nanotube strands. 2. The heat-emitting electron source according to claim 1, wherein the low work function material particles are further attached to the surface of the carbon nanotube strand 3. As claimed in claim 2 The heat-emitting electron source is characterized in that the low work function material particles are uniformly distributed inside and on the surface of the carbon nanotube strand. 4. The thermal emission electron source of claim 1, wherein the low work function material particles have a mass of from 50% to 90% of the mass of the carbon nanotube strand. The heat-emitting electron source of claim 1, wherein the heat-emitting electron source further comprises at least two carbon nanotube strands twisted and twisted with each other. 6. The heat-emitting electron source of claim 1, wherein the heat-emitting electron source further comprises at least one wire and at least one carbon nanotube strand, the wire and the carbon nanotube stranded The wires are twisted and twisted each other. 7. The heat-emitting electron source of claim 6, wherein the wire is made of gold, silver, copper or graphite. 8. The heat-emitting electron source of claim 1, wherein the heat-emitting electron source starts to emit electrons at a temperature of 800 °C. 9. The heat-emitting electron source according to claim 1, wherein the 09711529 production order number A0101 page 19/23 pages 1013045218-0 1363362 101 February 2010 shuttle is replacing the page The carbon nanotubes in the carbon nanotube strands are connected by van der Waals force. 10. The heat-emitting electron source according to claim 1, wherein the carbon nanotubes are single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes or any of them. Combined mixture. 11. The heat-emitting electron source according to claim 10, wherein the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1 nm. M-50 nm, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm, and the length of the carbon nanotubes is from 10 μm to 5000 μm 〇12. As described in claim 1 The heat-emitting electron source, wherein the nano carbon tube strand has a diameter of 20 μm to 1 mm. The thermal emission electron source according to claim 1, wherein the low work function material is a mixture of oxidative lock, oxidation record, oxidation mother, barium boride, barium boride or any combination thereof. . 14. The heat-emitting electron source of claim 1, wherein the low work function material particles have a diameter of from 10 nm to 100 μm. The heat-emitting electron source of claim 1, wherein the heat-emitting electron source further comprises a first electrode and a second electrode spaced apart at both ends thereof, and the carbon nanotube The stranded wires are electrically connected. The heat-emitting electron source of claim 15, wherein the first electrode and the second electrode are made of gold, silver, copper, carbon nanotubes or graphite. Q97U529I^单号A0101 Page 20 of 23 1013045218-0
TW97115291A 2008-04-25 2008-04-25 Thermal emission electron source TWI363362B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97115291A TWI363362B (en) 2008-04-25 2008-04-25 Thermal emission electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97115291A TWI363362B (en) 2008-04-25 2008-04-25 Thermal emission electron source

Publications (2)

Publication Number Publication Date
TW200945401A TW200945401A (en) 2009-11-01
TWI363362B true TWI363362B (en) 2012-05-01

Family

ID=44869735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97115291A TWI363362B (en) 2008-04-25 2008-04-25 Thermal emission electron source

Country Status (1)

Country Link
TW (1) TWI363362B (en)

Also Published As

Publication number Publication date
TW200945401A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
JP5139457B2 (en) Method for producing carbon nanotube structure
CN101086939B (en) Field radiation part and its making method
CN101093764B (en) Field emission component, and preparation method
CN101556884B (en) Thermal emitting electron source
JP5243478B2 (en) Nanomaterial thin film
TWI320026B (en) Field emission componet and method for making same
CN101499389B (en) Electronic emitter
JP4960397B2 (en) Carbon nanotube needle and manufacturing method thereof
JP2010115778A (en) Manufacturing method of nanowire structure
JP2008509540A5 (en)
CN101093765B (en) Field emission component, and preparation method
CN101556888B (en) Preparation method of thermal emitting electron source
JP2009164124A (en) Thermion emission element
CN101425438A (en) Producing method for field emission type electron source
CN101465254B (en) Thermal emission electron source and preparation method thereof
CN101499390A (en) Electronic emitter and method for producing the same
CN101442848B (en) Method for locally heating object
Ummethala et al. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests
TWI343591B (en) Field emission componet and method for making same
TWI363362B (en) Thermal emission electron source
TWI362684B (en) Method of making field emission electron source
TW200945402A (en) Method of making thermal emission electron source
TWI362677B (en) Method for making field emission electron source
TW201001484A (en) Field emitter and method for making the same
TWI383425B (en) Hot emission electron source and method of making the same