TWI360830B - Method for making thermionic electron source - Google Patents

Method for making thermionic electron source Download PDF

Info

Publication number
TWI360830B
TWI360830B TW96151305A TW96151305A TWI360830B TW I360830 B TWI360830 B TW I360830B TW 96151305 A TW96151305 A TW 96151305A TW 96151305 A TW96151305 A TW 96151305A TW I360830 B TWI360830 B TW I360830B
Authority
TW
Taiwan
Prior art keywords
electrode
carbon nanotube
nanotube film
substrate
preparing
Prior art date
Application number
TW96151305A
Other languages
Chinese (zh)
Other versions
TW200929314A (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151305A priority Critical patent/TWI360830B/en
Publication of TW200929314A publication Critical patent/TW200929314A/en
Application granted granted Critical
Publication of TWI360830B publication Critical patent/TWI360830B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

1360830 .九、發明說明: 【發明所屬之技術領域] 本發明涉及一種熱電子源的製備方法,尤其涉及一種 基於奈米碳管的熱電子源的製備方法。 【先前技術】 從1991年曰本科學家Iijima首次發現奈米碳管以來 (口月參見 Helical microtubules of graphitic carbon,Nature, ⑩Sumio Iijima,vol 354, P56(1991)),以奈米碳管為代表的奈 米材料以其獨特的結構和性質引起了人們極大的關注。近 幾年來,隨著奈米碳管及奈米材料研究的不斷深入,其廣 闊的應用前景不斷顯現出來。如,由於奈米碳管所具有的 獨特的電磁學、光學、力學、化學等性能,大量有關其在 電子發射裝置、感測器、新型光學材料、軟鐵磁材料等領 域的應用研究不斷被報導。 通韦,電子發射裝置採用熱電子發射體或者冷電子發 _射體作為電子發射源。利用熱電子發射體從電子發射裝置 發射電子的現象稱為熱電子發射現象。熱電子發射係利用 加熱的方法使發射體内部電子的動能增加,以致使一部分 電子的動能大到足以克服發射體表面勢壘而逸出體外。從 發射體表面發射的電子可以稱為熱電子,發射熱電子的發 射體可以稱為熱電子發射體。 * 一先前技術令,熱電子源一般包括一熱電子發射體、一 t電極和-第二電極。所述熱電子發射體設置於所述第 一電極和第二電極之間並與所述第一電極和第二電極電接 6 1360830 .觸。通常採用金屬、硼化物材料或者氧化物材料作為熱電 子發射體材料。熱電子源—般分為直熱式和間熱式兩類。 直熱式即採用金屬作為熱電子發射體材料,將金屬做成帶 狀或者極細的絲,通過焊接等技術將金屬固定到所述第一 電極和第二電極之間。在所述第一電極和第二電極之間施 加I壓,流過金屬的電流產生熱量而使金屬内部的電子 逸出體外。間熱式即採用硼化物材料或者氧化物材料作為 熱電子發射體材料’借助於真空沈積、濺射或其他適用的 技術將導電漿料直接塗覆或者等離子喷塗在一加熱子上; 通過焊接等技術將加熱子固定到所述第―電極和第二電極 之間。在所述第一電極和第二電極之間施加一電壓,流過 加熱子的電流產生熱量加熱硼化物材料或者氧化物材料, 而使硼化物材料或者氧化物材料内部的電子逸出體外。然 而採用金屬、硼化物材料或者鹼土金屬碳酸鹽材料所製 備熱電子發射體的尺寸較大,從而限制了其在微型器件方 面的應用。❿且,通過直接塗覆或者等離子喷塗含金屬、 硼化物材料或者鹼土金屬碳酸鹽材料,所形成的塗層具有 相當高的電阻率,所製備熱電子源在加熱而發射時產生的 功耗比較大,限制了其對於快速開關的响應,因此不適合 於大電流雄度和咼亮度的應用。 _有鑒于此,提供一種具有優良的熱發射性能且使用壽 τ问可用於大電流密度和高亮度的平板顯示和邏輯電路 等多個領域的熱電子源的製備方法實為必要。 【發明内容】 7 供一Γ板n的/備方法’其具體包括以下步驟:提 二雷r / 的表面間隔地形成一第—電極和-第 二:亟’形成一奈米碳管薄膜結構覆蓋所述第—電極 通熱:子發射體,該奈米碳管薄膜結構至少部: 一熱電極和第二電極與所述基板間隔’從而得到 與先前技術相比較,所述的熱電子源的製備方 用-拉伸工具從奈米碳管陣列中拉取獲得—夺 ^ =方法簡單,且應用所述熱電子源製備方法所;備 …、電子源在較低的熱功率下即可實現熱電子的發射 低了熱發射時加熱產生的功耗,可用於大電流密度和高= 度的平板顯不和邏輯電路等多個領域。 【實施方式】 以下將結合附圖詳細說明本技術方案熱電子源及 備方法。 < 請參閱圖1,本技術方案實施例所製備的熱電子源10 包括基板12、-第-電極14、—第二電極16和—熱電 子發射體18。所述第一電極14和第二電極16 @隔設置於 所述基板12的表©’並與該基板12的表面接觸。所述熱 電子發射體18與所述第—電極14和第二電極㈣表面電 接觸。所述熱電子發射體18為一薄膜結 體18至少料㈣所述第_電極14和第二祕== 基板12間隔設置。 請參閱圖2,本技術方案實施例提供一種製備熱電子 1360830 .源ίο的方法,其具體包括以下步驟: 步驟一:提供一基板12,在該基板12的表面間隔地 形成一第一電極14和一第二電極16。 所述基板12採用絕緣材料可為H玻璃、樹脂、石 英等。其中’所述基板12的形狀大小不限,可依據實際需 要進行改變。本技術方案實施例中所述基板12優選為一玻 璃基板。 所述第電極U和第二電極16的厚度為1〇微米〜% 微米。所述第-電極14和第二電極16之間的間隔距離為 150微米〜450微米。所述第-電極U和第二電極通過絲 網印刷法、料印製法、靜電錢法、電泳法、光刻鍍膜 法或者紫外光固化法等方法形成於所述基板12的表面,還 可以通過在所述基板12表面塗覆_導電膠(圖未示)將所述 第一電極14和第二電極16固定於所述基板12。 本技術方案實施例優^通過絲網印刷法在所述基板 12表面形成一第一電極14和—第二電極16,其具體包括 以下步驟: 首先’提供一導電聚料。 所述導電裝料包括導電材料、枯結劑、有機溶劑和有 機助劑。其中所述導電材料為金、銀、銅等導電金屬。所 述枯結劑為選自無機粘結劑、有機#結劑和低熔點金屬甲 的-種或者多種。無機枯結劑可以包括玻璃粉、石夕烧和水 玻璃。有機枯結劑可以包括纖維樹脂如乙基纖維素和甲基 纖維素;丙賴樹脂如聚s旨丙烯_、環氧丙烯酸和氨基 9 1360830 .甲酸乙酯丙烯酸酯;和乙烯基樹脂。所述粘結劑具有一— 的粘度,能使導電材料的顆粒粘結在一起,並使導電漿= 粘附在所述基板12表面。所述導電材料與粘結劑的重=比 為0.1:10〜10:1。如果所述導電材料與粘結劑的重量比=於 0.1:10 ’由於應力作用容易產生裂縫脫落等現象。如 述導電材料與钻結劑的重量比大於10:1’則會影 電子源10的發射性能, # 進一步地,導電⑽中可以添加多種有機溶劑和有機 助劑,包括增枯劑、分散劑、增塑劑或者表面活性劑 以調節所述導電聚料的枯度、流動性、乾燥速度等ς理性 質’以便於塗覆。所用的有機溶劑和助劑沒有特別的限制, 除了一般的有機溶劑如乙醇、乙二醇、乙丙醇、碳氯化合 物、水及其混合溶劑,還可以適當選擇其他經常添加的成 刀’如草酸二乙酯、低玻粉、乙鍵丁醋等增塑劑,它們係 揮發性較慢的溶劑,加入後能增強所述導L㈣性。 籲所述有機溶劑和助劑的添加量主要根據印刷工藝而確定。 將上述導電㈣配好後’放人—授拌裝置中將所述導 •電:料混合均勻。本技術方案實施例優選的導電漿料中含 f量百分比為75%的銀、重量百分比為廳的钻結劑、重 量百分比為3⑽低玻粉和重量百分比為2%的乙醇。其中 U係乙基纖維素在松油醇裏所形成的溶液。將按一定 =配好的導電漿料放人三輥碼軋機中研磨,使該導電漿 料中的各個成分混合均勻。 …人’將上述導電榮料按照預定圖案塗覆於所述基板 !360830 12表面。 法塗覆於1360830. EMBODIMENT DESCRIPTION: TECHNICAL FIELD The present invention relates to a method for preparing a hot electron source, and more particularly to a method for preparing a hot electron source based on a carbon nanotube. [Prior Art] Since the first discovery of the carbon nanotubes by the Japanese scientist Iijima in 1991 (see Helical microtubules of graphitic carbon, Nature, 10 Sumio Iijima, vol 354, P56 (1991)), represented by carbon nanotubes. Nanomaterials have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to their applications in electron-emitting devices, sensors, new optical materials, and soft ferromagnetic materials have been Report. Tongwei, the electron-emitting device uses a thermal electron emitter or a cold electron emitter as an electron emission source. The phenomenon of emitting electrons from an electron-emitting device using a thermal electron emitter is called a phenomenon of thermal electron emission. The thermal electron emission system uses heating to increase the kinetic energy of electrons in the emitter so that the kinetic energy of a part of the electrons is large enough to escape the surface of the emitter surface and escape the body. The electrons emitted from the surface of the emitter may be referred to as hot electrons, and the emitter emitting the hot electrons may be referred to as a thermal electron emitter. * A prior art command, a source of thermal electrons generally includes a thermal electron emitter, a t electrode, and a second electrode. The thermal electron emitter is disposed between the first electrode and the second electrode and electrically connected to the first electrode and the second electrode. A metal, boride material or oxide material is usually used as the thermoelectron emitter material. The source of thermal electrons is generally divided into two types: direct heat and heat. The direct heating type uses metal as a thermal electron emitter material, and the metal is formed into a strip or a very fine filament, and the metal is fixed between the first electrode and the second electrode by a technique such as welding. An I voltage is applied between the first electrode and the second electrode, and a current flowing through the metal generates heat to cause electrons inside the metal to escape from the outside of the body. Inter-heating, that is, using a boride material or an oxide material as a thermal electron emitter material's direct coating or plasma spraying of a conductive paste on a heater by means of vacuum deposition, sputtering or other suitable technique; The technique fixes a heater between the first electrode and the second electrode. A voltage is applied between the first electrode and the second electrode, and a current flowing through the heater generates heat to heat the boride material or the oxide material, and the electrons inside the boride material or the oxide material escape outside the body. However, the size of the thermal electron emitter prepared by using a metal, a boride material or an alkaline earth metal carbonate material is limited, thereby limiting its application to micro devices. Moreover, by directly coating or plasma spraying a metal-containing, boride or alkaline earth metal carbonate material, the resulting coating has a relatively high electrical resistivity, and the power generated by the prepared hot electron source when heated and emitted Larger, limiting its response to fast switching, it is not suitable for high current male and xenon brightness applications. In view of the above, it is necessary to provide a method for preparing a hot electron source having excellent thermal emission performance and using a plurality of fields such as flat panel display and logic circuits which can be used for high current density and high luminance. SUMMARY OF THE INVENTION [7] A method for preparing a slab n, which specifically includes the following steps: forming a first electrode and a second surface: 亟' forming a carbon nanotube film structure Covering the first electrode through heat: a sub-emitter, the carbon nanotube film structure is at least partially: a hot electrode and a second electrode are spaced apart from the substrate to obtain a thermal electron source as compared with the prior art The preparation method uses a stretching tool to extract from the carbon nanotube array, and the method is simple, and the preparation method of the hot electron source is applied; the electron source can be at a lower heat power. The realization of the emission of hot electrons reduces the power consumption caused by heating during heat emission, and can be used in various fields such as large current density and high-degree flat panel display and logic circuits. [Embodiment] Hereinafter, a hot electron source and a preparation method of the present technical solution will be described in detail with reference to the accompanying drawings. < Referring to Fig. 1, a hot electron source 10 prepared in an embodiment of the present technical solution includes a substrate 12, a -electrode 14, a second electrode 16, and a thermoelectric emitter 18. The first electrode 14 and the second electrode 16 are disposed on the surface of the substrate 12 and are in contact with the surface of the substrate 12. The hot electron emitter 18 is in electrical contact with the surfaces of the first electrode 14 and the second electrode (four). The thermal electron emitter 18 is a thin film structure 18, at least (four) the first electrode 14 and the second secret == substrate 12 are spaced apart. Referring to FIG. 2 , an embodiment of the present invention provides a method for preparing a hot electron 1360830. The source includes the following steps: Step 1: providing a substrate 12, and forming a first electrode 14 at intervals on the surface of the substrate 12 And a second electrode 16. The substrate 12 may be made of H glass, resin, quartz or the like using an insulating material. The shape of the substrate 12 is not limited, and may be changed according to actual needs. The substrate 12 in the embodiment of the technical solution is preferably a glass substrate. The thickness of the first electrode U and the second electrode 16 is 1 〇 micrometer to 1 micrometer. The distance between the first electrode 14 and the second electrode 16 is from 150 micrometers to 450 micrometers. The first electrode U and the second electrode are formed on the surface of the substrate 12 by a screen printing method, a material printing method, a static electricity method, an electrophoresis method, a photolithography method, or an ultraviolet curing method, and can also pass A surface of the substrate 12 is coated with a conductive paste (not shown) to fix the first electrode 14 and the second electrode 16 to the substrate 12. The embodiment of the present invention preferably forms a first electrode 14 and a second electrode 16 on the surface of the substrate 12 by screen printing, which specifically includes the following steps: First, providing a conductive polymer. The electrically conductive charge includes a conductive material, a binder, an organic solvent, and an organic auxiliary. The conductive material is a conductive metal such as gold, silver or copper. The binder is selected from the group consisting of inorganic binders, organic binders, and low-melting metal nails. Inorganic dry binders may include glass powder, zealand and water glass. The organic binder may include a fiber resin such as ethyl cellulose and methyl cellulose; a polypropylene resin such as poly propylene, epoxy acrylate, and amino group 9 1360830. ethyl formate acrylate; and a vinyl resin. The binder has a viscosity such that the particles of the conductive material are bonded together and the conductive paste = adheres to the surface of the substrate 12. The weight ratio of the conductive material to the binder is 0.1:10 to 10:1. If the weight ratio of the conductive material to the binder = 0.1:10 Å, cracks are likely to occur due to stress. If the weight ratio of the conductive material to the binder is greater than 10:1', the emission properties of the electron source 10 may be affected. # Further, a plurality of organic solvents and organic additives may be added to the conductive (10), including a scumming agent and a dispersing agent. a plasticizer or a surfactant to adjust the texture, such as dryness, fluidity, drying speed, etc. of the conductive polymer, to facilitate coating. The organic solvent and the auxiliary agent to be used are not particularly limited, and in addition to general organic solvents such as ethanol, ethylene glycol, ethyl propanol, chlorocarbon, water, and a mixed solvent thereof, other frequently added forming tools can be appropriately selected. Plasticizers such as diethyl oxalate, low glass powder, and ethyl acetonate, which are slow-reacting solvents, can enhance the L (tetra) property after addition. The amount of the organic solvent and the auxiliary agent added is mainly determined according to the printing process. After the above-mentioned conductive (four) is prepared, the conductive and electric materials are uniformly mixed. A preferred conductive paste of the embodiment of the present invention contains silver in an amount of 75% by weight, a cementing agent in a percentage by weight, a percentage by weight of 3 (10) low glass powder, and 2% by weight of ethanol. A solution in which U-based ethyl cellulose is formed in terpineol. The conductive paste prepared according to a certain = is placed in a three-roll mill to be ground to uniformly mix the components in the conductive paste. The person's conductive material is applied to the surface of the substrate !360830 12 in a predetermined pattern. Applied to

對上述塗覆有導電漿料的棊板12 進行熱處理, 將上述導電漿料按照預定圖案通過絲網印刷 所述基板12 發射體圖案, 再次, 從而在該基板12表面形成相互間隔的一第一電極和— 第二電極16。 熱處理的方式通常採用在大氣或者含氧化性氣體的環 境中對所述塗覆有導電漿料的基板12進行加熱。所述熱處 理的加熱溫度根據所述導體漿料的成分來確定。所述熱處 理的目的係去除導電漿料中的有機成分,使所述導電聚$ _不含有不揮發或不能分解的成分,並使所述第一電極W #第一電極16和所述基板12之間形成良好的機械連接和 電接觸。通常,熱處理的加熱溫度不要高於6〇〇°c。因為 當熱處理的加熱溫度高於60(TC時,奈米碳管可能被破壞。 本技術方案實施例優選對所述導電漿料進行熱處理的 過程包括以下步驟:首先從2(TC開始將所述導電漿料升溫 W分鐘後達到12〇。(:,在12(TC下保溫10分鐘,以去除導 電漿料中的松油醇和乙醇;其次,將所述導電漿料繼續升 溫30分鐘直至35〇。〇,在35(TC下保溫30分鐘,以去除導 電聚料中的乙基纖維素;再次,將所述導電漿料繼續升溫 30分鐘直至515。(:,在515。(:下保溫30分鐘,以使所述導 電漿料與所述基板12緊密結合’最後自然冷卻所述導電毁 料’從而在該基板12表面形成間隔的一第一電極14和一 11 1360830 •第二電極W。以使所述熱電子源10應用時接入―― 值避免短路現象的產生,並使所述第一電極14和第2的阻 • 16和所述基fe12之間形成良好的機械連接和電接^電極 • 步驟广:形成一奈米碳管薄膜結構18覆蓋所述第—兩 極14和第二電極16作為熱電子發射體,該奈米碳: 結構18至少部分通過所述第一電極14和第二電極與所 述基板12間隔,從而得到一熱電子源1 〇。 φ 所述形成一奈米碳管薄膜結構18覆蓋所述第—電極 14和第一電極16作為熱電子發射體的方法包括以下步驟: (1)製備至少一奈米碳管薄膜。 y 該奈米碳管薄膜的製備方法包括以下步驟: 首先,提供一奈米碳管陣列形成於一基底,優選地, 該陣列為超順排奈米碳管陣列。 本實施例令,超順排奈米碳管陣列的製備方法採用化 學氣相沈積法,其具體步驟包括:(a)提供一平整基底, 籲該基底可選用P型或N型石夕基底,或選用形成有氧化層的 矽基底,本實施例優選為採用4英寸的矽基底;(b )在基 底表面均勻形成一催化劑層,該催化劑層材料可選用鐵 (Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在7〇〇。〇〜9〇〇它的空氣中退 火約30分鐘〜9〇分鐘;(d)將處理過的基底置於反應爐中’ 在保護氣體環境下加熱到5〇(rc〜74(rc,然後通入碳源氣 體反應約5分鐘〜3〇分鐘,生長得到超順排奈米碳管陣列, 其问度為200微米〜4〇〇微米。該超順排奈米碳管陣列為至 12 1360830 夕兩個彼此平行且垂直於基底生長的奈米碳管形成的純奈 米碳管陣列。通過上述控制生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬 顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾 力緊密接觸形成陣列。該奈米碳管陣列的面積與上述基底 面積基本相同。 _ 上述碳源氣可選用乙炔、乙烯、甲烷等化學性質較活 籲潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣 體為i氣或惰性氣體,本實施例優選的保護氣體為氮氣。 ,可以理解,本實施例提供的奈米碳管陣列不限於上述 衣備方法,也可為石墨電極恒流電弧放電沈積法 發沈積法等。 …' C*列_,該奈米碳管陣列的尺寸可根據 Γ。本實施例中採用4英寸的基底生長超順排奈米= 陣列,該奈米碳管陣列的直徑可為0.5奈米〜⑽微米,^ ^度不限。其$,奈米碳管陣列中的奈米碳 _ 奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一 ^多土 米Γ的直徑為°.5奈米〜50奈米;該雙壁 :二奈二=米〜5〇奈米;該多壁奈米碳管的 得一=膜拉伸工具拉取上述奈米碳管陣列從而獲 從而择…-太11知用拉伸工具拉取上述奈米碳管陣列 從而獲仔一奈米碳管薄膜的方法包括以下步驟:(a):: 136.0830 述奈米碳管陣列中選定一定寬度的多個奈米碳管束片斷; (b )沿基本垂直于奈米碳管陣列生長方向拉伸該多個奈米 碳官束片斷’獲得一連續的奈米碳管薄膜,該奈米碳管薄 膜中的奈米碳管的排列方向平行于奈米碳管薄膜的拉伸方 向。 在上述拉伸過程中,該多個奈米碳管束片斷在拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 鲁用,該選定的多個奈米碳管束片斷分別與其他奈米碳管束 片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄 膜。該奈米碳管薄膜為擇優取向排列的多個奈米碳管束首 尾相連形成的具有一定寬度的奈米碳管薄膜。 可以理解,所述奈米碳管薄膜中的奈米碳管均沿同一 f向擇優取向排列。當採用較大的基底生長超順排奈米碳 管陣列時,可以得到更寬的奈米碳管薄膜。本技術方案實 施例中’由於採用CVD法在4英寸的基底上生長超順排 •奈米碳管陣列,並進行進一步地處理得到一奈米碳管薄 膜,故該奈米碳管薄膜的寬度為〇.〇1厘米〜1〇厘米,厚度 為10奈米~100微米。所述奈米碳管薄膜可根據實際需要 切割成具有預定尺寸和形狀的奈米碳管薄膜。由於本實施 例超順排奈米碳管陣列中的奈米碳管非常純淨,且由於奈 米碳管本身的比表面積非常大,故該奈米碳管薄膜本身: 有較強的黏性。 採用直接拉伸獲得的定向排列的奈米碳管薄膜具有較 好的均勻性,即具有均勻的厚度及均勻的導電性能。同時 1360830 該直接拉伸獲得奈米碳管薄膜的 .工業化應用。 ㈣速,適宜進行 ―⑺將至少-奈米碳管薄膜鋪設覆蓋所述第一電極14 和弟二電極16,形成一奈米碳管薄膜結構18。 可以通過藏射、真空蒸鍍等方法在所述 的表面上形成一逸出功層,該逸出功 實鋇或者处,從而使所述熱電子源10在較 低的1度下實現熱電子的發射。 所述將至少一奈米碳管薄膜鋪設 Η和第二電極16的方法包括以下步 :匕:極 膜沿從所述第-電極14向所述第二電極官缚 覆=所述第—電極14和第二電極=== 依據奈米碳管的排列方向以:=;二兩=米破管薄膜 述第-電極:u和第-電極1fi=角度α®豐鋪設覆蓋所 々昂—電極16的表面,〇〇 ·==構I所述奈米碳管薄—= ^的黏性直接固定於所述第一電極Μ和第二電極^ ::理解,所述至少-奈米碳管薄膜鋪設覆蓋所述第 -電極14和苐二電極16的方法還可以包括以== 供一支樓體,將至少兩個奈米碳管薄膜依據山 列方向以一交又角度α重疊鋪設 :撐::面卜 0oQS90。,得到一奈半 k文杈體表面, 外多餘的奈米碳总智” ^ & , 、、’’口構18 ;去除所述支撐體 、〃 s’膜’採用有機溶劑處理所述奈米碳管 15 1360830 薄膜結構18,將使用有機溶劑處理後的奈米碳管薄膜 18從所述^二取下,形成—自支撐的奈米 構18;將該自支撐的奈米碳管薄膜結構18鋪設在所述; 一電極14和第二電極16的矣 禾 的表面。所述奈米碳管薄膜可刹 用其本身的黏性直接固定於支撐體。 本實施例中,上述支擋鲈沾 叉棕體的大小可依據實際需求破 定。可以理解,通過在所述第—電極u和第二電極16 = 表面塗覆-導電膠,可將上述奈米碳管薄膜結才請固定於 所述第一電極14和第二電極16的表面。 另外,本實施例還可進一步在將至少一奈米碳 直接鋪設覆蓋所述第-電極14和第二電極Μ形成所述太 ^炭㈣膜結# 18的步驟之後採財機溶劑處理該奈米 碳官溥膜結構18。所述使时機溶劑處理所述奈米碳管薄 用 =構18的過程包括:通過試管將有機溶劑滴落在奈米碳 官薄膜結構18表面浸潤整個奈米碳管薄膜,或者將整個夺 米碳管薄膜結構18浸人盛有有機溶劑的容器中浸潤。該有 ::劑為揮發性有機溶劑,…、f醇、丙綱、二氣乙 =乳仿’本技術方案實施例中採用乙醇。所述的奈米石炭 二專膜結構18經有機溶劑浸潤處理後,在揮發性有機溶劑 面張力的作用下’奈米碳管薄臈結構18中平行的夺米 =片斷會部分聚集成奈米碳管束。因此,處理後該奈米 反吕相結構18機械強度及拿刃性增強,黏性減弱,方便應 進一步地,還可以通過絲網印刷法、膠印印製法、靜 16 1360830 方法 固定 -電 電嘴塗法、電泳法、光刻賴法或者紫外光固化法等 在所述第-電極心i電極16的表㈣成至= 凡件’該奈米碳管薄膜結構18兩端分定於所述第 極14和第二電極16與所述固定元件之間。The ruthenium plate 12 coated with the conductive paste is subjected to heat treatment, and the conductive paste is screen printed on the substrate 12 emitter pattern in a predetermined pattern, and again, a first space is formed on the surface of the substrate 12 Electrode and - second electrode 16. The heat treatment is usually carried out by heating the substrate 12 coated with the conductive paste in an atmosphere or an oxidizing gas-containing environment. The heat treatment temperature is determined according to the composition of the conductor paste. The purpose of the heat treatment is to remove the organic component in the conductive paste such that the conductive polymer does not contain a non-volatile or non-decomposable component, and the first electrode W #first electrode 16 and the substrate 12 are Good mechanical and electrical contact is formed between them. Generally, the heating temperature of the heat treatment is not higher than 6 ° C. Since the carbon nanotube may be destroyed when the heating temperature of the heat treatment is higher than 60 (TC), the process of preferably heat-treating the conductive paste in the embodiment of the technical solution includes the following steps: first starting from 2 (TC) The conductive paste was heated for 12 minutes and reached 12 〇. (:, 10 minutes at TC for 10 minutes to remove terpineol and ethanol in the conductive paste; secondly, the conductive paste was further heated for 30 minutes until 35 〇 〇, kept at 35 (TC for 30 minutes to remove ethyl cellulose in the conductive polymer; again, continue to heat the conductive paste for 30 minutes until 515. (:, at 515. (: under insulation 30 In a minute, the conductive paste is tightly bonded to the substrate 12, and finally the conductive slag is naturally cooled to form a first electrode 14 and an 11 1360830 • second electrode W spaced apart on the surface of the substrate 12. In order to enable the application of the thermoelectron source 10 when the value is applied - the value avoids the occurrence of a short circuit phenomenon and forms a good mechanical connection and electrical connection between the first electrode 14 and the second resistor 16 and the base fe12 Connect the electrode • Steps wide: form a nano carbon The thin film structure 18 covers the first and second electrodes 14 and 16 as a thermal electron emitter, and the nanocarbon: structure 18 is at least partially separated from the substrate 12 by the first electrode 14 and the second electrode, thereby obtaining A hot electron source 1 〇 φ The method of forming a carbon nanotube film structure 18 covering the first electrode 14 and the first electrode 16 as a thermal electron emitter comprises the following steps: (1) preparing at least one nanometer The carbon nanotube film y The preparation method of the carbon nanotube film comprises the following steps: First, an array of carbon nanotubes is provided on a substrate, and preferably, the array is a super-sequential carbon nanotube array. The preparation method of the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, and calling the substrate to select a P-type or N-type Shi Xi substrate, or selecting to form The ruthenium substrate having an oxide layer is preferably a 4-inch ruthenium substrate in this embodiment; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from iron (Fe), cobalt (Co), and nickel (Ni). ) or any combination thereof One of the alloys; (c) the substrate on which the catalyst layer is formed is annealed in air for 7 minutes to 9 minutes; (d) the treated substrate is placed in a reaction furnace In the protective gas atmosphere heated to 5 〇 (rc ~ 74 (rc, then passed into the carbon source gas reaction for about 5 minutes ~ 3 〇 minutes, growth to obtain a super-sequential carbon nanotube array, the degree of question is 200 microns ~ 4 〇〇 micron. The super-sequential carbon nanotube array is an array of pure carbon nanotubes formed by two carbon nanotubes parallel to each other and perpendicular to the substrate to 12 1360830. By controlling the growth conditions described above, The super-sequential carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals forces. The area of the carbon nanotube array is substantially the same as the above-mentioned substrate area. _ The above carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is i gas or inert gas, and the preferred protection of this embodiment The gas is nitrogen. It is to be understood that the carbon nanotube array provided in the present embodiment is not limited to the above-described method of dressing, and may be a graphite electrode constant current arc discharge deposition method or the like. ...' C* column_, the size of the carbon nanotube array can be based on Γ. In this embodiment, a 4-inch substrate is used to grow a super-sequential nanometer=array, and the diameter of the carbon nanotube array can be 0.5 nm to (10) micrometers, and the degree of ^^ is not limited. The diameter of the nano carbon nanotubes, the double-walled carbon nanotubes, and the multi-walled nanotubes in the nano carbon nanotube array is 0.55 nm~50. Nano; the double wall: two nai two = m ~ 5 〇 nano; the multi-walled carbon nanotubes get a = film stretching tool to pull the above array of carbon nanotubes to obtain the choice... - too 11 The method for drawing the carbon nanotube array by using a stretching tool to obtain a carbon nanotube film comprises the following steps: (a):: 136.0830 A plurality of carbon nanotube bundles of a certain width selected in the carbon nanotube array a segment; (b) stretching the plurality of nanocarbon official beam segments substantially perpendicular to the growth direction of the carbon nanotube array to obtain a continuous carbon nanotube film, the carbon nanotubes in the carbon nanotube film The alignment direction is parallel to the stretching direction of the carbon nanotube film. In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively combined with the others due to the use of the van der Waals force. The carbon nanotube bundle segments are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferred orientation. It can be understood that the carbon nanotubes in the carbon nanotube film are all aligned along the same f-direction. When a super-sequential nanotube array is grown with a larger substrate, a wider carbon nanotube film can be obtained. In the embodiment of the technical solution, the width of the carbon nanotube film is obtained by growing a super-aligned carbon nanotube array on a 4-inch substrate by CVD and further processing to obtain a carbon nanotube film. It is 1 cm to 1 cm and has a thickness of 10 nm to 100 μm. The carbon nanotube film can be cut into a carbon nanotube film having a predetermined size and shape according to actual needs. Since the carbon nanotube in the super-sequential carbon nanotube array of the present embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has a strong viscosity. The aligned carbon nanotube film obtained by direct stretching has a good uniformity, that is, a uniform thickness and uniform electrical conductivity. At the same time, 1360830, the direct stretching obtained the industrial application of the carbon nanotube film. (4) Speed, suitable for proceeding - (7) laying at least the carbon nanotube film covering the first electrode 14 and the second electrode 16 to form a carbon nanotube film structure 18. A work function layer may be formed on the surface by means of storage, vacuum evaporation or the like, and the work function is performed or so that the hot electron source 10 realizes hot electrons at a lower degree of 1 degree. Launch. The method of laying at least one carbon nanotube film and the second electrode 16 includes the following steps: 极: the electrode film is bound from the first electrode 14 to the second electrode = the first electrode 14 and the second electrode === according to the arrangement direction of the carbon nanotubes: :=; two two = meters broken film said the first electrode: u and the first electrode 1fi = angle α® richly covered cover - electrode 16 The surface, 〇〇·== The carbon nanotubes of the structure I is thin—the viscosity of ^ is directly fixed to the first electrode and the second electrode. :: Understanding, the at least-carbon nanotube film The method of laying the first electrode 14 and the second electrode 16 may further include: providing a building with ==, and laying at least two carbon nanotube films at an overlap angle α according to the direction of the mountain row: :: Face 0oQS90. , obtaining a surface of a half-k 杈 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Carbon tube 15 1360830 film structure 18, the carbon nanotube film 18 treated with the organic solvent is removed from the second to form a self-supporting nanostructure 18; the self-supporting carbon nanotube film structure 18 is laid on the surface of the electrode 14 and the second electrode 16. The carbon nanotube film can be directly fixed to the support by its own adhesiveness. In the embodiment, the support 鲈The size of the dip-brown body can be determined according to actual needs. It can be understood that by coating the surface of the first electrode u and the second electrode 16 with a conductive paste, the above-mentioned carbon nanotube film can be fixed to the film. The surface of the first electrode 14 and the second electrode 16. In addition, in this embodiment, the at least one nanocarbon is directly laid over the first electrode 14 and the second electrode to form the carbon (four) After the step of the film #18, the solvent is treated with the solvent to treat the nano-carbon bureaucratic film structure 18 The process of treating the carbon nanotube thinner with the timing of the solvent comprises: dropping the organic solvent on the surface of the nano carbon official film structure 18 through the test tube to infiltrate the entire carbon nanotube film, or The carbon nanotube film structure 18 is impregnated with a container containing an organic solvent. The:: the agent is a volatile organic solvent, ..., f alcohol, propyl, hexahydrate = milk imitation' is adopted in the embodiment of the technical solution Ethanol. The nano-carbon membrane structure of the nano-carbonaceous carbon is treated by the organic solvent infiltration, and the parallel rice-like segments in the nano-carbon tube thin crucible structure 18 are partially aggregated under the action of the surface tension of the volatile organic solvent. The carbon nanotube bundle. Therefore, after the treatment, the nano-anti-Lu-phase structure 18 has enhanced mechanical strength and sharpness, and the viscosity is weakened, which is convenient to be further, and can also be processed by screen printing, offset printing, and static 16 1360830. A fixed-electric nozzle coating method, an electrophoresis method, a photolithography method, or an ultraviolet curing method, etc., in the surface of the first electrode i-electrode 16 (four) into a = part of the carbon nanotube film structure 18 Set at the first pole 14 and the second electrode 16 is between the fixing element.

所述的熱電子源的製備方法中採用—拉 碳管陣财拉取獲得一奈米碳管薄膜,製備方法簡= =奈米碳管薄膜所製備的熱電子源在較低的熱功率下即 。實現熱電子的發射’降低了熱發射時加熱產生的功耗, 於大電流密度和高亮度的平板顯示和邏輯電路等多個 領域。 接屮If 發明確已符合發明專利之要件,遂依法 =出專财請。惟,U所述者僅為切明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技蔽 =人士援依本發狀精神所作之等效修飾或變化,皆應涵 盖於以下申請專利範圍内。In the preparation method of the hot electron source, a carbon nanotube film is obtained by pulling a carbon tube, and the preparation method is simple == the hot electron source prepared by the carbon nanotube film is at a lower heat power. which is. Achieving the emission of hot electrons reduces the power consumption caused by heating during thermal emission, in the fields of large current density and high brightness flat panel display and logic circuits. It is clear that it has met the requirements of the invention patent, and is legally qualified. However, the above-mentioned U is only a preferred embodiment, and it is not possible to limit the scope of the patent application in this case. Anyone familiar with the technical limitations of this case = the equivalent modifications or changes made by the person in accordance with the spirit of this issue shall be covered by the following patent application.

17 1360830 【圖式簡單說明】 圖1係本技術方案實施例的熱電子源的結構示意圖。 圖2係本技術方案實施例的熱電子源的製備方法的流 程示意圖。 【主要元件符號說明】 熱電子源 10 基板 12 第一電極 14 第二電極 16 熱電子發射體 1817 1360830 [Simplified description of the drawings] Fig. 1 is a schematic structural view of a hot electron source according to an embodiment of the present technical solution. 2 is a schematic flow chart of a method for preparing a hot electron source according to an embodiment of the present technical solution. [Main component symbol description] Hot electron source 10 Substrate 12 First electrode 14 Second electrode 16 Thermal electron emitter 18

1818

Claims (1)

十、申請專利範圍 電子源的製傷方法,其包括以下步驟: t供:基板,在該基板的表㈣隔地形成 和一第二電極; 电蚀 米碳管薄膜結構覆蓋所述第-電極和第二- :為熱電子發射體,該奈米碳管薄膜結構至少部二 =所述第f極和第二電極與所述基板間隔 .件到—熱電子源。 处而 2· Π請專利範圍第1項所述的熱電子源的製備方法, 二所述形成一奈米碳管薄膜結構覆蓋所述第 第,電極作為熱電子發射體的步驟具體包括以卞 V…製備至少一奈米碳管薄膜;將該至少一太 管薄膜鋪設於所述第一電拣 不未袄 奈米碳管薄膜結構。弟二電極,從而形成、 請專利範圍第1項所述的熱電子源的製備方法, -中,所述在基板表面間隔地形成—第—電極和 2極的方法包括絲網印刷法、膠印印製法、 ”法、m光刻㈣法或者紫外光固化法。.、 •^申請專利範圍第!項所述的熱電子源的製備 其中,所述在基板表面間隔地形成—第—電極和一繁 一電極的方法具體包括以下步驟: 第 提供一導電漿料; 2上述導錢料按照預定㈣塗覆於所述基板表面; 19 1360830 .對上述塗覆有導電漿料的 ^基板表面形成相互間隔的—土^^熱處理,從而在該 U 5·如申請專利範圍第4項所、+. 電極和一第二電極。 其中,所述導電聚料包括^ ^熱電子源的製備方法, 劑和有機助齊卜 導电材料、枯結劑、有機溶 6·如申請專利範圍第5項 . 其中,所述導電材料為金、=‘,、、電子源的製備方法, # t的一種或者多種,所述導:::結劑和低溶點金屬 為0.1:10〜10:1。 电;斗與粘結劑的重量比 7. 如申請專利範圍第5項所 盆中,、 熱電子源的製備方法, 兵宁,所述有機溶劑為乙醇、 化合物和水中的-種或者多種^一醇、乙丙醇、碳氫 8. 如申請專利範圍第5項 i中,斛、+、古地 項所述的熱電子源的製備方法, 者表面活性劑。 y /刀散劑、增塑劑或 9. 如申請專利範圍第4項所 盆巾,π、f劫+ 边的熱電子源的製備方法, ,、中,所㈣處理的步驟具體包括町步驟· 加熱塗覆有導電漿料的基板, 有機成分;及 去除所逑導電漿料中的 然冷卻所述導電渡料,攸 第一電極和一第二電極 間隔的一第一雷=,攸而在該基板表面形成相互 10.如申請專利範圍第 其中,所隸: 熱電子源的製備方法 '、,、處理的溫度低於或等於00〇。(:。 20 1360830 圍第2項所述的熱電子源的製備方法, 所述至少—奈米碳管薄獏的製備方法包括以下 提供一奈米碳管陣列形成於一基底; 炎上述奈米碳管陣列中選定卞 束片斷;及 ”以--度的多個奈米碳管 採用一拉伸工具沿垂直于太总 所述多個奈米碳管束片斷了獲生長方向拉伸 膜’該奈米碳管薄膜中的夺二二 的奈米碳管薄 12.如申請專利範圍第心:::::::排列。 去,其中,所述將至少—奈米碳 ,備^ 一電極和第二電極的步驟具 、·’ °又;所述第 米碳管薄膜沿從所述第—電極二M下步驟:將-奈 方向直接鋪設於所述I;=,電極延伸的 米碳管薄膜結構。 電極和第二電極,形成—奈 Hr範圍第11項所述的熱電子源的势備方 -電極和第二電極的方法膜鋪設於所述第 奈米破管薄膜重疊舖段於所述第-電m:個 形成一奈米碳管薄膜結構。 第一電極, 14. 如申請專利範圍第1項 其中,進-步包括使用c的製備方法, 膜結構的步驟。 機“處理所述奈米碳管薄 15. 如申請專利範圍帛11⑼ 21 ri6〇83〇 去’其中,所述將至少一奈米碳管薄膜鋪設於所述第 電極和第二電極的方法包括以下步驟: 提供一支撐體; 將至少兩個奈米碳管薄膜重疊鋪設於所述支撐體表 面’得到一奈米碳管薄膜結構; 去除所述支撐體外多餘的奈米碳管薄膜; 使用有機溶劑處理所述奈米碳管薄膜結構; 將使用有機溶劑處理後的奈米碳管薄膜結構從所述支 °體上取T 自支撐的奈米碳管薄膜結構;及 將,自支撐的奈米石炭管薄膜結構鋪設於所述第一電極 和第二電極。 16.如申請專利範圍第14項或第15涵糾★ 1 截借方土甘士 飞弟15項所述的熱電子源的 I備方法’其中,上述使用有機溶 膜結構的方法為通過試管將右嬙不木反s屬 策膜社播车〇 機溶劑滴落在奈米碳管 薄膜、.·。構表面七潤整個奈米碳管薄膜結構 奈米碳管薄膜結構浸到盛有有/ •王 …請專利範圍“二 法,其中,所述有機溶劑為乙醇…衣備, 乙烷和氣仿中的一種或幾種的混合。…丙嗣、二氯 18. 如中請專利範圍第i項所述的敎口 其中,進-步包括在所述第—電極和第、=面 第-電極和第二電極的表面的步驟。…構固定於所述 19. 如申請專利範圍第上項所述的 …、蛋子源的製備方法, 22 1360830 其t,進-步包括在所述第—電極 _ 通過絲網印刷法、膠印印製法、靜電嘴塗;電極的表面 光刻鍍膜法或者紫外光固化法形成5小 ^法 驭至少—固定元件, 將所述奈米碳管薄膜結構固定於所述第一電極和第二 電極的表面的步驟。X. A method for injuring an electron source of a patent application range, comprising the steps of: t: a substrate formed on the surface of the substrate (4) and a second electrode; the electrically etched carbon nanotube film structure covering the first electrode and The second-: is a thermal electron emitter, the carbon nanotube film structure is at least two parts = the f-th pole and the second electrode are spaced apart from the substrate. 2) The method for preparing a hot electron source according to claim 1, wherein the step of forming a carbon nanotube film structure covers the first portion, and the step of using the electrode as a thermal electron emitter specifically includes V: preparing at least one carbon nanotube film; laying the at least one nanotube film on the first electric pick-up carbon nanotube film structure. The second electrode, thereby forming, the method for preparing a hot electron source according to the first aspect of the patent, wherein the method of forming the first electrode and the two electrodes at intervals on the surface of the substrate comprises screen printing, offset printing The printing method, the "method, the m lithography (four) method or the ultraviolet curing method., the application of the thermoelectron source described in the scope of the patent application, wherein the surface of the substrate is formed at intervals - the first electrode and The method for forming a plurality of electrodes specifically includes the following steps: providing a conductive paste; 2 applying the above-mentioned money guide to the surface of the substrate according to a predetermined (four); 19 1360830. forming a surface of the substrate coated with the conductive paste The mutually spaced-a-heat treatment, such that in the U 5 · the fourth aspect of the patent application, the +. electrode and a second electrode, wherein the conductive polymer comprises a method of preparing a hot electron source, The agent and the organic assisted conductive material, the dry agent, and the organic solvent are as described in claim 5, wherein the conductive material is gold, = ',,, a method for preparing an electron source, and a type of #t Or a variety of The conductivity::: the binder and the low melting point metal are 0.1:10~10:1. The weight ratio of the bucket to the binder is 7. The preparation method of the hot electron source in the basin of the fifth scope of the patent application , 兵宁, the organic solvent is ethanol, a compound and a species of water or a plurality of monohydric alcohols, ethylene propanol, hydrocarbons. 8. In the scope of claim 5, in the 斛, +, paleo a method for preparing a hot electron source, a surfactant, a y/knife powder, a plasticizer or 9. a method for preparing a hot electron source of π, f robbing + side, as in the scope of claim 4, And (4) the steps of the processing specifically include: the step of heating the substrate coated with the conductive paste, the organic component; and removing the conductive conductive material in the conductive paste, the first electrode and the first electrode A first ray of the two electrodes is spaced apart to form a mutual 10 on the surface of the substrate. As in the scope of the patent application, the method for preparing the hot electron source is, and the temperature of the treatment is lower than or equal to 00 。. (: 20 1360830 Preparation method of the hot electron source described in item 2 The preparation method of the at least-nanocarbon tube thin crucible comprises the following step of providing a carbon nanotube array formed on a substrate; inflaming the selected bundle segment in the carbon nanotube array; and "multiple degrees in degrees" The carbon nanotubes are stretched by a stretching tool along a section perpendicular to the plurality of carbon nanotube bundles of the total length of the nanotubes. The thin carbon nanotubes in the carbon nanotube film are thin. The scope of the patent application is: :::::: Arranged, wherein, the step of at least - nanocarbon, preparing an electrode and the second electrode, and the step of the second electrode; The film is placed along the step from the first electrode to the second electrode M. The film is directly laid on the I; =, the carbon nanotube film structure extending from the electrode. Electrode and second electrode, forming a method for preparing a surface of the thermoelectron source according to Item 11 of the No. Hr range and an electrode of the second electrode, wherein the film is laid on the first layer of the tube - Electricity m: forming a carbon nanotube film structure. The first electrode, 14. As in the scope of claim 1, wherein the step further comprises the step of using the preparation method of c, the membrane structure. The process of treating the carbon nanotubes is as follows: as claimed in the scope of 帛11(9) 21 ri6〇83〇', wherein the method of laying at least one carbon nanotube film on the first electrode and the second electrode includes The following steps: providing a support; overlaying at least two carbon nanotube films on the surface of the support to obtain a carbon nanotube film structure; removing excess carbon nanotube film outside the support; using organic Solvent processing the carbon nanotube film structure; taking a carbon nanotube film structure treated with an organic solvent from the support body to take a T self-supporting carbon nanotube film structure; and, will be self-supporting The carboniferous tube film structure is laid on the first electrode and the second electrode. 16. The method for preparing a hot electron source as described in claim 14 of the patent application scope 14 or 15 'The above method using the organic dissolved film structure is to drop the solvent of the right-handed sputum by the test tube on the carbon nanotube film, and the surface of the nano-carbon Tube film junction Dipped filled with carbon nanotube film structure have / • patenting king ... "and two methods, wherein the organic solvent is ethanol ... coating equipment, mixing one or more imitation of ethane gas.嗣 嗣 二 二 二 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中The structure is fixed as described in the above paragraph 19. The method for preparing an egg source, 22 1360830, wherein the step is further included in the first electrode _ by screen printing, offset printing Method, electrostatic nozzle coating; electrode surface lithography coating method or ultraviolet curing method to form 5 small methods, at least - fixing elements, fixing the carbon nanotube film structure to the first electrode and the second electrode Surface steps. 23twenty three
TW96151305A 2007-12-31 2007-12-31 Method for making thermionic electron source TWI360830B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151305A TWI360830B (en) 2007-12-31 2007-12-31 Method for making thermionic electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151305A TWI360830B (en) 2007-12-31 2007-12-31 Method for making thermionic electron source

Publications (2)

Publication Number Publication Date
TW200929314A TW200929314A (en) 2009-07-01
TWI360830B true TWI360830B (en) 2012-03-21

Family

ID=44864451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151305A TWI360830B (en) 2007-12-31 2007-12-31 Method for making thermionic electron source

Country Status (1)

Country Link
TW (1) TWI360830B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613499B (en) * 2020-04-27 2023-03-14 北京大学(天津滨海)新一代信息技术研究院 Preparation method of micro thermal electron source on wafer level

Also Published As

Publication number Publication date
TW200929314A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
CN101471215B (en) Production method of thermoelectron source
CN101471211B (en) Thermal emission electronic component
TWI312165B (en)
US9771267B2 (en) Method for making carbon nanotube needle
CN101471212B (en) Thermal emission electronic component
US20090160306A1 (en) Thermal electron emission source having carbon nanotubes and method for making the same
CN101471210B (en) Thermoelectron source
CN103730302B (en) Field emitting electronic source and field emission apparatus
TWI343591B (en) Field emission componet and method for making same
TWI360830B (en) Method for making thermionic electron source
TWI362684B (en) Method of making field emission electron source
Yang et al. Observation of field emission from carbon nanoparticles film coating on top of vertically aligned carbon nanotubes on silicon substrate
TWI330858B (en) Thermionic emission device
TWI362677B (en) Method for making field emission electron source
TWI353616B (en) Thermionic source
TWI401209B (en) Field emission componet and method for making same
Li et al. Light emission from vertically aligned carbon nanotube field emitters during Joule heating enhanced field emission
JP2008226734A (en) Composition for forming thin film type electron emission material, thin film type electron emission material, its manufacturing method, and field emission type element
TW200933687A (en) Thermionic emission device and method for making the same
CN103730304B (en) The preparation method of field emission electron source array
TWI383425B (en) Hot emission electron source and method of making the same
TW200932665A (en) Thermionic emission device
TW201230139A (en) Method for making carbon nantoube wire tip and method for making field emission structure
Yoshikuni et al. Preparation of Carbon Nanofiber Emitters for Field Emission Display using Organic Thin Films
Soldano et al. Electro-mechanically robust, flexible carbon nanotube-PDMS composite for high performance field emission