TWI358768B - - Google Patents

Download PDF

Info

Publication number
TWI358768B
TWI358768B TW096142478A TW96142478A TWI358768B TW I358768 B TWI358768 B TW I358768B TW 096142478 A TW096142478 A TW 096142478A TW 96142478 A TW96142478 A TW 96142478A TW I358768 B TWI358768 B TW I358768B
Authority
TW
Taiwan
Prior art keywords
gas
storage chamber
gas analysis
substrate
processing
Prior art date
Application number
TW096142478A
Other languages
Chinese (zh)
Other versions
TW200839869A (en
Inventor
Hideki Tanaka
Susumu Saito
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200839869A publication Critical patent/TW200839869A/en
Application granted granted Critical
Publication of TWI358768B publication Critical patent/TWI358768B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

1358768 ' 九、發明說明1358768 ' Nine, invention description

W 【發明所屬之技術領域】 ' 本發明是關於基板處理裝置及該裝置之分析方法,尤 其關於使用氣體分析裝置內之狀態等之基板處理裝置。 • 【先前技術】 ' 對半導體晶圓等之基板施予電漿處理之基板處理裝置 具備收容基板之收容室(腔室),藉由在該腔室內產生之電 ® 漿,對基板施予電漿處理。爲了對基板施予適當之電漿處 理,檢測出腔室內之狀態或電漿處理之終點爲重要事項。 作爲檢測出腔室內之狀態或電漿處理之終點的方法, 所知的有在腔室側壁嵌入由石英玻璃所構成之窗,以與該 窗對向之方式配置電漿分光分析器,藉由該分光分析器, 將腔室內之電漿發光予以分光分析的方法(例如,參照專 利文獻1)。 φ [專利文獻1]日本特開2004-3 1 9961號公報(段落 [0038]) 【發明內容】 [發明所欲解決之課題] 但是,腔室之窗隨著時間經過則有起霧之情形。再 者,隨著特定使用時間經過’亦必須更換分光分析器所具 有之受光感測器,更換前之感測器和更換後之感測器於受 光性能上存有個別差異。分光分析器執行分光分析之結果 -4- 1358768 含有該些腔室之窗霧化或感測器更換之影響。 再者,當更換腔室內之零件例如遮蔽環或聚焦環時, 即使使與更換前的處理程式(處理條件)相同,將更換前之 電漿發光狀態和更換後的電漿發光狀態也有不同之情形。 即是,電漿發光藉由腔室內零件之更換有受到影響之情 形。因此,分光分析器執行分光分析之結果,也包含腔室 內之零件更換的影響。 藉由上述,分光分析器執行分光分析之結果並非純粹 反映腔室內之狀態,因也反映其他變動要因(腔室之窗的 霧化、感測器之更換或腔室內之零件更換之影響),故無 法正確檢測腔室內之狀態。 本發明之目的是提供可以正確檢測收容室內之狀態之 基板處理裝置及該裝置之分析方法。 [用以解決課題之手段] 爲了達成上述目的,申請專利範圍第1項所記載之基 板處理裝置,具備收容基板之收容室,和將氣體導入至該 收容室之氣體導入裝置,上述收容室具有使用上述氣體對 上述基板施予特定處理之處理空間的基板處理裝置,其特 徵爲:具備分析上述收容室導入前之氣體的導入前氣體分 析裝置;分析上述處理空間通過後之氣體的通過後氣體分 析裝置:和根據上述收容室導入前之氣體分析結果及上述 處理空間通過後之氣體分析結果,檢測上述收容室內之狀 態的狀態檢測裝置,該狀態檢測裝置是算出在對多數上述 1358768 基板施予上述特定處理之前的上述處理空間通過後之氣體 分析結果對上述收容室導入前之氣體分析結果之比,並算 出在對上述多數之上述基板施予上述特定處理之後的上述 處理空間通過後之氣體分析結果對上述收容室導入前之氣 體分析結果之比,以在對上述多數之上述基板施予上述特 定處理之前的比及在對上述多數之上述基板施予上述特定 之處理之後的比成爲相同之方式,算出補正在對上述多數 之上述基板施予上述特定處理之後的上述處理空間通過後 之氣體分析結果之分析結果之補正値,使用該算出之分析 結果之補正値校正上述處理空間通過後之氣體分析結果》 申請專利範圍第2項所記載之基板處理裝置是申請專 利範圍第1項所記載之基板處理裝置中,上述狀態檢測裝 置是根據上述被校正之上述處理空間通過後之氣體分析結 果,檢測出上述特定之處理之終點。 申請專利範圍第3項所記載之基板處理裝置是申請專 利範圍第1或2項所記載之基板處理裝置中,具有將上述 收容室內進行排氣之排氣系統,上述通過後氣體分析裝置 配置在上述排氣系統。 申請專利範圍第4項所記載之基板處理裝置是申請專 利範圍第3項所記載之基板處理裝置中,上述收容室具有 防止上述處理空間之電漿朝下游流出的排氣板,上述排氣 系統具有高分子真空泵,上述通過後氣體分析裝置被配置 在上述排氣板及上述高分子真空泵之間。 申請專利範圍第5項所記載之基板處理裝置是申請專 -6- 1358768 述處理空間通過後之氣體分析結果。 申請專利範圍第14項所記載之基板處理裝置是申請 專利範圍第13項所記載之基板處理裝置中,上述收容室 之維修相當於零件更換、零件洗淨或是上述收容室內之乾 式清潔。 爲了達成上述目的,申請專利範圍第15項所記載之 基板處理裝置之分析方法,屬於具備收容基板之收容室, 和將氣體導入至該收容室之氣體導入裝置,上述收容室具 有使用上述氣體對上述基板施予特定處理之處理空間的基 板處理裝置之分析方法,其特徵爲:具備分析上述收容室 導入前之氣體的導入前氣體分析步驟;分析上述處理空間 通過後之氣體的通過後氣體分析步驟;根據上述收容室導 入前之氣體分析結果及上述處理空間通過後之氣體分析結 果,檢測上述收容室內之狀態的狀態檢測步驟,該狀態檢 測步驟是算出在對多數上述基板施予上述特定處理之前的 上述處理空間通過後之氣體分析結果對上述收容室導入前 之氣體分析結果之比,並算出在對上述多數之上述基板施 予上述特定處理之後的上述處理空間通過後之氣體分析結 果對上述收容室導入前之氣體分析結果之比,以在對上述 多數之上述基板施予上述特定處理之前的比及在對上述多 數之上述基板施予上述特定之處理之後的比成爲相同之方 式,算出補正在對上述多數之上述基板施予上述特定處理 之後的上述處理空間通過後之氣體分析結果之分析結果之 補正値,使用該算出之分析結果之補正値校正上述處理空 -9- 1358768 間通過後之氣體分析結果。 申請專利範圍第16項所記載之基板處理裝置之分析 方法是申請專利範圍第15項所記載之基板處理裝置之分 析方法中,上述狀態檢測步驟是根據上述經校正之上述處 理空間通過後之氣體分析結果,檢測出上述特定處理之終 點。 爲了達成上述目的,申請專利範圍第17項所記載之 基板處理裝置之分析方法,是屬於具備收容基板之收容 室,和將氣體導入至該收容室之氣體導入裝置,上述收容 室具有使用上述氣體對上述基板施予特定處理之處理空間 的基板處理裝置之分析方法,其特徵爲:具備分析上述收 容室導入前之氣體的導入前氣體分析步驟;分析上述處理 空間通過後之氣體的通過後氣體分析步驟;根據上述收容 室導入前之氣體分析結果及上述處理空間通過後之氣體分 析結果’檢測上述收容室內之狀態的狀態檢測步驟,該狀 態檢測步驟是於上述收容室之維修前後的上述收容室導入 前之氣體分析結果成爲相同之時,算出上述收容室之維修 前後間之上述處理空間通過後之氣體分析結果之變動量, 使用該算出之變動量校正上述處理空間通過後之氣體分析 結果。 申請專利範圍第18項所記載之基板處理裝置之分析 方法是申請專利範圍第17項所記載之基板處理裝置之分 析方法中’上述收容室之維修相當於零件更換、零件洗淨 或是上述收容室內之乾式清潔。 -10- 1358768 [發明效果] 若藉由申請專利範圍第1項所記載之基板處 申請專利範圍第15項所記載之基板處理裝置之 時,算出在對多數基板施予特定處理之前的處理 後之氣體分析結果對收容室導入前之氣體分析結 算出在對多數基板施予特定處理之後的處理空間 氣體分析結果對收容室導入前之氣體分析結果之 多數基板施予特定處理之前的比及對多數基板施 理之後之比成爲相同之方式,算出補正在對多數 特定處理之後的處理空間通過後之氣體分析結 値,使用該算出之分析結果之補正値校正處理空 之氣體分析結果,檢測收容室內之狀態。分析結 値對應於分析收容室導入前之氣體之導入前氣體 之惡化影響或所導入之氣體偏差影響。因此,可 空間通過後之氣體分析結果除去導入前氣體分析 化影響或氣體偏差影響.,可以將氣體分析結果設 收容室內之狀態者。其結果,可以正確檢測收容 態。 若藉由申請專利範圍第2項所記載之基板處 申請專利範圍第16項所記載之基板處理裝置之 時’根據所校正之處理空間通過後之氣體分析結 特定之處理之終點。被校正之處理空間通過後之 結果因僅反映收容室內的狀態,故可以正確檢測 理裝置及 分析方法 空間通過 果之比, 通過後之 比,以對 予特定處 基板施予 果之補正 間通過後 果之補正 分析裝置 以從處理 裝置之惡 爲僅反映 室內之狀 理裝置及 分析方法 果檢測出 氣體分析 出特定處 -11 - 1358768 理之終點。 若藉由申請專利範圍第3項所記載之基板處理裝置 時’通過後氣體分析裝置配置在將收容室內予以排氣之排 氣系統。依此,可以自收容室內隔離通過後氣體分析裝 置’並且可以防止在通過後氣體分析裝置中執行之分析處 理影響在收容室內執行之特定處理等。 若藉由申請專利範圍第4項所記載之基板處理裝置 時,通過後氣體分析裝置被配置在收容室中防止處理空間 之電漿朝向下游流出的排氣板,及排氣系統中之高分子真 空泵之間。高分子真空泵爲了執行排氣需要朝該泵之下游 •供給氮氣體,但是通過後氣體分析裝置因配置在高分子真 空泵之上游,故處理空間通過後之氣體分析結果不會反映 所供給之氮氣體之影響,再者,通過後氣體分析裝置因配 置在排氣板之下游,故處理空間通過後之氣體分析結果無 反映電漿影響。因此,可以更正確檢測收容室內之狀態。 若藉由申請專利範圍第5項所記載之基板處理裝置 時,通過後氣體分析裝置配置在收容室。依此,通過後氣 體分析裝置可以容易接收收容室之氣體,其結果,可以容 易檢測收容室內之狀態。 若藉由申請專利範圍第6項所記載之基板處理裝置, 使產生使氣體中之原子或是分子激發之電漿’藉由該電漿 所激發之氣體中之原子或分子之發光被分光而測量發光強 度。因此,可以自發光強度測量氣體之原子濃度或分子濃 度,並且可以正確執行氣體分析。 -12- 1358768 若藉由申請專利範圍第7項所記載之基板處理裝置 時,則可以使用質量分析器更正確執行氣體分析。 若藉由申請專利範圍第8項所記載之基板處理裝置 時,則可以使用傅立葉(Fourier)轉換紅外分光光度計更正 確執行氣體分析。 若藉由申請專利範圍第9項所記載之基板處理裝置 時,氣體管內比電漿產生中心部更下游之餘輝被分光而測 量發光強度。因此,因可以正確測量發光強度,並且不需 要接收氣體之接收室,故可以以便宜構成執行氣體分析。 若藉由申請專利範圍第10項所記載之基板處理裝置 時,因連接於基板處理裝置之基板搬運裝置內之氣體被分 析,故可以檢測基板搬運裝置內之狀態。 若藉由申請專利範圍第11項所記載之基板處理裝置 時,在將基板搬運裝置內之氣體予以排氣之第2排氣系統 配置氣體分析裝置。依此,可以自基板搬運裝置內隔離氣 體分析裝置,並且可以防止在氣體分析裝置中之分析處理 對基板搬運裝置內波及影響。 若藉由申請專利範圍第12項所記載之基板處理裝置 時,氣體分析裝置配置在基板搬運裝置之第2收容室。依 此,氣體分析裝置可以容易接收第2收容室內之氣體,其 結果,可以容易檢測第2收容室內之狀態。 若藉由申請專利範圍第13項所記載之基板處理裝置 及申請專利範圍第1 7項所記載之基板處理裝置之分析方 法時,於在收容室之維修前後的收容室導入前之氣體分析 -13- 1358768 結果成爲相同之時,算出收容室之維修前後間之處理空間 通過後之氣體分析結果之變動量,使用該算出之變動量校 正處理空間通過後之氣體分析結果,檢測收容室內之狀 態。在收容室之維修前後之收容室導入前的氣體分析結果 爲相同之時,在收容室之維修前後間之處理空間通過後之 氣體分析結果之變動量是對應於感測器之更換或收容室之 零件更換之影響。因此,藉由使用所算出之變動量校正處 理空間通過後之氣體分析結果,可以將氣體分析結果設爲 僅反映收容室內之狀態,其結果,可以正確檢測收容室內 之狀態。 【實施方式】 以下,針對本發明之實施形態參照圖面予以說明。 首先,針對適用本發明第1實施形態所涉及之基板處 理裝置之基板處理系統予以說明。 第1圖爲表示適用本實施形態所涉及之基板處理裝置 之基板處理系統之槪略構成之剖面圖。 在第1圖中,基板處理系統1具備··對每片當作基板 之半導體用晶圓w(以下單稱爲「晶圓W」)施予成膜處 理、擴散處理、蝕刻處理等之各種電漿處理的製程模組 2(基板處理裝置)、自儲存特定片數之晶圓w之晶圓卡匣 3取出晶圓W之裝載模組4 '被配置在該裝載模組4及製 程模組2之間,自裝載模組4將晶圓W搬入至製程模組2 或是自製程模組2將晶圓W搬入至裝載模組4之裝載鎖 -14- 1358768 定模組5(基板搬運裝置)。 製程模組2及裝載鎖定模組5之內部構成可抽真空, 裝載模組4之內部經常維持大氣壓。再者,製程模組2及 裝載鎖定模組5,以及裝載鎖定模組5及裝載模組4各經 閘閥6、7連接。再者,裝載鎖定模組5之內部及裝載模 組4之內部藉由途中配置有開關自如之閥8的連通管9而 連通。 製程模組2具有金屬製,例如鋁或不銹鋼製之圓筒型 腔室10 (收容室),在該腔室10內配置有當作載置例如直 徑爲3 00mm之晶圓W之載置台的圓柱狀之承載器11。 在腔室1 〇之側壁和承載器11之間,形成當作使後述 處理空間S之氣體排出至腔室10外之流路而發揮功能之 排氣路12。在該排氣路12之途中配置環狀之整流環 1 3 (排氣板),較排氣路1 2之整流環1 3下游之空間的多歧 管14,與屬於可變式蝶閥之自動壓力·控制閥(Automatic Pressure Control Valve)(以下稱爲「APC 閥」)15 連通。 APC閥15連接於屬於抽真空用之排氣泵之轉子分子泵(以 下稱爲「TMP」)16。在此,整流環13是防止在處理空間 S所發生之電漿流出至多歧管1 4。APC閥1 5是執行腔室 內10內之壓力控制,TMP16是將腔室10內減壓至幾乎 成爲真空狀態。多歧管14、APC閥15及TMP16構成製 程模組排氣系統。在該製程模組排氣系統中,多歧管1 4 連接後述處理空間通過後氣體分析單元34(通過後氣體分 析裝置)。 -15- 1358768 承載器11經整合器18連接高頻電源17,高頻電源 17是將高頻電力供給至承載器11。依此,承載器11當作 下部電極發揮功能。再者,整合器18是降低來自承載器 11之高頻電力之反射而使該高頻電力供給至承載器Π之 供給效率成爲最大。 在承載器11配置有用以藉由庫倫力或約翰遜拉別克 (Johnsen-Rahbek)力而吸附晶圓 W之電極板(無圖式)。·依 此,晶圓W吸附保持在承載器11上面。再者,在承載器 11之上部配置由矽(Si)等所構成之圓環狀之聚焦環19, 該聚焦環19使在承載器11及後述之噴淋頭20之間之處 理空間S中所產生之電漿朝向晶圓W收斂。 再者’在承載器11之內部設置有環狀冷媒室(無圖 式)。該冷媒室循環供給特定溫度之冷媒,例如冷卻水, 藉由該冷媒之溫度調整承載器11上之晶圓W之處理溫 度。並且,在晶圓W及承載器1 1之間供給氦氣,該氦氣 是將晶圓W之熱傳熱至承載器11。 腔室10之頂棚部配置有圓板狀之噴淋頭20。噴淋頭 20經整合器22連接有高頻電源21,高頻電源21是將高 頻電力供給至噴淋頭20。依此,噴淋頭20當作上部電極 發揮功能。並且’整合器22之功能是與整合器18之功能 相同。 再者’噴淋頭20連接供給處理氣體例如CF系之氣 體及其他種類之氣體之混合氣體之處理氣體導入管23, 噴淋頭20是將自處理氣體導入管20所供給之處理氣體導 -16- 1358768 入至處理空間S。該處理氣體導入管23連接後述導入前 氣體分析單元35(導入前氣體分析裝置)。 在該製程模組2之腔室10內之處理空間S,供給高 頻電力之承載器11及噴淋頭20施加高頻電力至處理空間 S,在處理空間S自處理氣體產生高密度之電漿。所產生 之電漿是藉由聚焦環19收斂至晶圓W之表面,例如物理 性或化學性蝕刻晶圓W之表面。 裝載模組4具有載置晶圓卡匣3之晶圓卡匣載置台 24及搬運室25。晶圓卡匣3以等間距多段載置收容25片 之晶圓W。再者’搬運室25爲長方體狀之箱狀物,在內 部具有搬運晶圓W之無向量型之搬運機械臂26。 搬運機械臂26具有構成可伸縮之多關節狀之搬運機 械臂腕部27’和安裝於該搬運機械臂腕部27之前端的摘 取器28’該摘取器28是構成直接性載置晶圓W。搬運機 械臂26構成旋轉自如,並且因藉由搬運機械臂腕部27而 彎曲自如,故可以將載置在摘取器2 8之晶圓W在晶圓卡 匣3及裝載鎖定模組5之間搬運自如。 裝載鎖定模組5具有配置構成伸縮及旋轉自如之移載 機械臂29的腔室30(第2收容室)、將氮氣體供給至該腔 室30內之氮氣體供給系統31,和將腔室30內予以排氣 之裝載鎖定模組排氣系統3 2。該裝載鎖定模組排氣系統 32連接有後述之裝載鎖定模組氣體分析單元36(氣體分析 裝置)。在此’移載機械臂29爲由多數腕部所構成之無向 量型之搬運機械臂’具有安裝於其前端之摘取器33。該 -17- 1358768 摘取器33構成直接性載置晶圓W。 於晶圓W從裝載模組4被搬入至製程模組2之時, 當開放閘閥7之時,移載機械臂29從搬運室25內之搬運 機械臂26接收晶圓W,當開放閘閥6之時,移載機械臂 29進入至製程模組2之腔室10內,在承載器11上載置 晶圓W。再者,於晶圓W從製程模組2被搬入至裝載模 組4之時,開放閘閥6之時,移載機械臂29進入至製程 模組2之腔室10內,自承載器1 1接受晶圓W,當開放閘 閥7之時,移載機械臂29將晶圓W交給搬運室25內之 搬運機械臂26。 構成基板處理系統1之製程模組2、裝載模組4及裝 載鎖定模組5之各構成要素之動作是藉由當作基板處理系 統1所具備之控制裝置的電腦(狀態檢測裝置)(無圖式), 或當作連接於基板處理系統1之控制裝置之外部伺服器 (狀態檢測裝置)(無圖式)等而被控制。再者,處理空間通 過後氣體分析單元34、導入前氣體分析單元35及載置鎖 定模組氣體分析單元36連接於上述電腦或外部伺服器。 第2圖爲表示第1圖中之處理空間通過後氣體分析單 元等之槪略構成之模式圖。並且,處理空間通過後氣體分 析單元34、導入前氣體分析單元35及裝載鎖定模組氣體 分析單元36因具有相同構成’故以下針對導入前氣體分 析單元35之構成予以說明。 在第2圖中,導入前氣體分析單元35具備接收於處 理氣體導入管23流動之處理氣體之副腔室37(氣體接收 -18- 1358768 室)、捲繞於該副腔室37周圍之線圏38、連接於線圈38 之高頻電源39(電漿產生裝置)、嵌入副腔室37之壁面之 由石英玻璃所構成之觀測窗40、與該觀測窗40對向而配 置之分光分析器41 (分光測量裝置),和將氬氣體供給至副 腔室37內之氣體供給裝置(無圖式),和將副腔室37內予 以排氣之排氣裝置(無圖式)。 導入前氣體分析單元35中,高頻電源39在副腔室 37內爲了產生電漿而在線圈38流通高頻電流,自副腔室 37內之氬氣產生電漿。該產生之電漿激發副腔室37內之 處理氣體中之原子或分子而使原子或分子發光。分光分析 器41經觀測窗40而接受原子或分子之發光,將該發光予 以分光而測量原子或分子之發光強度,根據該所測量之發 光強度測量處理氣體之原子濃度或分子濃度。即是,導入 前氣體分析單元35測量流動於處理氣體導入管23之處理 氣體(收容室導入前之氣體)中之原子濃度或分子濃度。 再者,處理空間通過後氣體分析單元34及裝載鎖定 模組氣體分析單元36因具有與導入前氣體分析單元35相 同之構成,故測量各通過處理空間S流動於多歧管14之 處理氣體(處理空間通過後之氣體)中之原子濃度或分子濃 度,測量流動於裝載鎖定模組排氣系統3 2之氣體(基板搬 運裝置內之氣體)中之原子濃度或分子濃度。 在此,在製程模組2中已通過處理空間S之處理氣體 是因應處理空間S之狀態,接著因應腔室1 〇內之狀態, 某特定氣體(例如CF系之氣體)予以電漿化而被消耗等, -19- 1358768 構成該處理氣體之各種氣體之質量比等則改變。其結果, 在已通過處理空間s之處理氣體中構成各種氣體之原子濃 度或分子濃度也改變。因此,藉由分析通過處理空間s之 處理氣體而測量該處理氣體之濃度,可以檢測腔室10內 之狀態。 但是,當更換配置在腔室10內之零件(以下稱爲「腔 室內零件」)時,即使爲相同電槳處理條件,亦有處理空 間S中之電漿狀態變化成零件更換前之電漿狀態,並且各 種氣體之消耗形態改變之情形。因此,即使爲相同電漿處 理條件,腔室內零件更換前和更換後,亦有通過處理空間 S之處理氣體之原子濃度或分子濃度變化之情形。換言 之,通過處理空間S之處理氣體之原子濃度或分子濃度因 更換腔室內零件而受到影響。其結果,處理空間通過後氣 體分析單元34通過處理空間S之處理氣體之發光強度含 有更換腔室內零件之影響。 再者,處理空間通過後氣體分析單元34爲了檢測電 漿處理之終點等,測量在腔室10中之電漿處理中通過處 理空間S之處理氣體之原子或分子之發光強度。即是’因 必須長時間在副腔室3 7內產生電漿,故多少由於電漿等 而在觀測窗40產生霧。再者,分光分析器4 1之感測器經 過特定使用時間也必須更換。因此,處理空間通過後氣體 分析單元3 4所測量之發光強度含有觀測窗40之霧化或感 測器更換之影響。 然後,爲了正確檢測腔室1 0內之狀態’必須自分光 -20- 1358768 分析器41所測量之發光強度除去上述腔室內零件之更 換、觀測窗40之霧或感測器更換之影響。 另外,導入前氣體分析單元35因只不過檢測被導入 至處理空間S之處理氣體之成分等,故只執行短時間之發 光強度之測量。即是,副腔室3 7內產生電漿之時間爲短 時間,故長期間不會在觀測窗40產生霧,不需要也更換 分光分析器41之感測器》因此,導入前氣體分析單元35 所測量之發光強度幾乎不包含觀測窗40之霧化或感測器 更換之影響,可以長期間當作基準値使用。 本實施形態所涉及之基板處理裝置是對應於此,導入 前氣體分析單元35使用流通於處理氣體導入管23之處理 氣體之發光強度,處理空間通過後氣體分析單元34校正 通過處理空間S之處理氣體之發光強度。 首先,針對假設在腔室10對多數晶圓W連續施予電 漿處理之狀態,該狀態下之本實施形態所涉及之基板處理 裝置之處理氣體之發光強度之校正方法予以說明。 本實施形態是在連續之多數晶圓W之電漿處理中, 處理空間通過後氣體分析單元34測量通過處理空間S之 處理氣體之原子或分子之發光強度之結果,假設在觀測窗 4〇產生霧之狀況。 上述般之狀況中,因隨著時間經過在觀測窗40產生 霧,故處理空間通過後分析單元34所測量之發光強度(以 下稱爲「處理空間通過後發光強度」),確實含有觀測窗 之霧的影響。 -21 - 1358768 再者,處理空間通過後氣體分析單元34之觀測窗40 產生霧之長期間,多少有由於被導入至處理空間S之處理 氣體之成分或導入量偏差而產生變化之情形,處理空間通 過後發光強度不僅影響觀測窗40之霧,有也含有被導入 至處理空間S之處理氣體之成分等之偏差(以下,稱爲 「處理氣體之偏差」)之影響的可能性。並且,處理氣體 之偏差影響是對應於在上述長期間之前後中導入前氣體分 析單元35所測量之發光強度(以下,稱爲「導入前發光強 度」)。 本實施形態爲了除去觀測窗40之霧影響或處理氣體 之偏差影響,故利用特定片數之晶圓W 電漿處理前後 的導入前發光強度及處理空間通過後發光強度。 具體而言,首先在某一片晶圓 W之電漿處理開始 時,測量對應於某波長之導入前發光強度及處理空間通過 後發光強度,將處理空間通過後發光強度對導入前發光強 度之比(以下,稱爲「初期強度比」)當作初期値予以設 定。 接著,多數片晶圓W之電漿處理後,測量對應於上 述某波長之導入前發光強度及處理空間通過後發光強度, 算出處理空間通過後發光強度對導入前發光強度之比(以 下稱爲「經時強度比」)。此時,在處理空間通過後氣體 分析單元34產生觀測窗40之霧,因具有導入至處理空間 S之處理氣體之成分等多少變化之可能性,故經時強度比 與初期強度比不同。在此,以初期強度比與經時強度比成 -22- 1358768 爲相同之方式,算出用以補正多數片之晶圓w之電漿處 理後之處理空間通過後發光強度之補正値(以下,稱爲 「處理空間通過後發光強度補正値」)。 經時強度比和初期強度比之差的要因雖然爲觀測窗 40之霧影響或處理氣體之偏差影響,但是因使用處理空 間通過後發光強度補正値,可以使經時強度比與初期強度 比相同,故處理空間通過後發光強度補正値對應於觀測窗 40之霧影響或處理氣體之偏差影響。然後,藉由以處理 空間通過後發光強度補正値補正處理空間通過後發光強 度,可以在以後之觀測中除去觀測窗40之霧影響或處理 氣體之偏差影響。 並且,上述初期強度比及經時強度比之比較以及處理 空間通過後發光強度補正値之算出是針對各波長而執行。 然後,在對應於執行檢測腔室10內之狀態之時的電 漿處理條件下,測量處理空間通過後發光強度。該處理空 間通過後發光強度雖然包含觀測窗40之霧影響或處理氣 體之偏差影響,但是藉由處理空間通過後發光強度補正値 補正處理室間通過後發光強度,可以除去觀測窗40之霧 影響或處理氣體之偏差影響,可以求出真實反映腔室10 內之狀態的發光強度。 並且,所知的有根據真實反映腔室10內之狀態之發 光強度’可執行以下之檢測推測。以下之檢測推測是由自 處理空間通過後氣體分析單元34或導入前氣體分析單元 35發送發光強度之電訊號的電腦或外部伺服器所實行。 -23- 1358768 •腔室ίο內之沈積成分之推測 ••腔室10內之沈積量之推測 •蝕刻處理終點之檢測 •時效(seasoning)處理終點之檢測 •大氣洩漏之檢測 •氦氣體洩漏之檢測 •腔室1 〇內之水分之檢測 •腔室1 〇內之污染之檢測 •製程參數之變化預測、異常檢測 •晶圓W之特性之預測、異常檢測 •腔室內零件之消耗量之推測 •腔室1 〇之個別差異或製程模組2之個別差異之診 斷 接著,針對作爲使用上述發光強度之校正方法的本胃 施形態所涉及之基板處理裝之分析方法的電漿處理終點檢 測方法予以說明。以下也在連續之多數晶圓 W之電漿處 理中,處理空間通過後氣體分析單元34測量通過處理空 間S之處理氣體之原子或分子之發光強度之結果,假設在 觀測窗40發生霧之狀況。 第3圖爲作爲本實施形態所涉及之基板處理裝置之分 析方法之電漿處理終點檢測方法之流程圖。 在第3圖中,首先,在某1片晶圓W之電漿處理開 始時,測量對應於各波長之導入前發光強度及處理空間通 過後發光強度,設定該些初期強度比(步驟S301)。 -24- 1358768 接著,電漿處理多數片之晶圓W(步驟S3 02),之後測 量對應於各波長之導入前發光強度及處理空間通過後發光 強度,算出該些經時強度比(步驟S3 03),並且針對各波長 執行初期強度比及經時強度比之比較以及處理空間通過後 發光強度補正値之算出(步驟S304)。 接著,在對應於執行腔室1 〇內之狀態之檢測時的電 漿處理條件下,開始電漿處理(步驟S3 05),測量對應於各 波長之處理空間通過後發光強度(步驟S3 06),藉由以所算 出之處理空間通過後發光強度補正値補正該處理空間通過 後發光強度(步驟S 307),針對各波長算出真實反映腔室 1 〇內之狀態的發光強度。 接著,根據該發光強度檢測電漿處理之終點(步驟 S308),結束本處理。 若藉由第3圖之處理,則在多數片之晶圓W之電漿 處理前後測量導入前發光強度及處理空間通過後發光強 度,算出處理空間通過後發光強度補正値,以所算出之處 理空間通過後發光強度補正値補正處理空間通過後發光強 度。處理空間通過後發光強度補正値是如上述般,因對應 於觀測窗40之霧影響或處理氣體之偏差影響,故藉此可 以自處理空間通過後發光強度除去觀測窗40之霧影響或 處理氣體之偏差影響,算出真實反映腔室10內之狀態的 發光強度。其結果,可以正確檢測腔室1 0內之狀態,可 以正確檢測出電漿處理之終點。 接著,針對本發明之第2實施形態所涉及之基板處理 -25- 1358768 裝置所適用之基板處理系統予以說明。 本實施形態之構成或作用在槪念上是與上述第1實施 形態相同,僅有所假設之狀況爲不同。因此,針對相同構 成,省略說明,以下僅針對與第1實施形態不同之構成或 作用予以說明。 本實施形態是僅假設腔室內零件之更換前、更換後的 狀況(收容室之維修前後),不假設觀測窗40之霧發生前 後或分光分析器40之感測器更換前後之狀態。以下,針 對上述狀況中本實施形態所涉及之基板處理裝置之處理氣 體之發光強度之校正方法予以說明。 第4圖係用以說明本實施形態所涉及之基板處理裝置 之處理氣體之發光強度之校正方法的圖式,第4圖(A)爲 表示通過處理空間之處理氣體之發光強度之因腔室內零件 更換所產生之變動部份的圖式,第4圖(B)爲表示使用第 4圖(A)中之變動部份所取得之校正後之處理氣體之發光 強度的圖式。 如第4圖(A)所示般,首先,於腔室內零件之更換前 後使處理空間S產生電漿,藉由導入前氣體分析單元35 測量流動於處理氣體導入管23之處理氣體之發光強度 42,並且藉由處理空間通過後氣體分析單元34測量通過 處理空間S之處理氣體之發光強度43。 接著,於腔室內零件之更換後立即藉由導入前氣體分 析單元35測量流動於處理氣體導入管23之處理氣體之發 光強度44,並且,藉由處理空間通過後氣體分析單元34 -26- 1358768 測量通過處理空間S之處理氣體之發光強度45。 在此,因流動於處理氣體導入管23之處理氣體並不 通過處理空間S,故流動於處理氣體導入管23之處理氣 體之原子濃度或分子濃度不受更換腔室內零件之影響。因 此,於發光強度44與發光強度42相同之時,僅成爲更換 腔室內零件後的電漿處理條件與更換腔室內零件前的電漿 處理條件一致之時。並且,發光強度44不與發光強度42 相同之時’相當於被導入至處理空間S之處理氣體之成分 或導入量產生異常之時,或是導入前氣體分析單元35中 之分光分析器41故障之時等。 發光強度44與發光強度42成爲相同之時,藉由處理 空間通過後氣體分析單元3 4所測量之腔室內零件更換後 的發光強度45和腔室內零件更換後的發光強度43之差 分’由於在腔室內零件之更換前、更換後幾乎不引起處理 空間通過後氣體分析單元34之經時惡化(觀測窗40之霧 的發生或分光分析器41之感測器更換),故爲對應於因更 換腔室內零件而產生影響之變動量47。即是,藉由導入 前氣體分析單元35所測量之發光強度44及發光強度42 成爲相同之時,可以求出對應於因更換腔室內零件而產生 影響之發光強度之變動量47。 然後,如第4圖(B)所示般,在對應於執行腔室1〇內 之狀態檢測之時的電漿處理條件下,藉由處理空間通過後 氣體分析單元34測量通過處理空間S之處理氣體之發光 強度48。該發光強度48因含有對應於因更換腔室內零件 -27- 1358768 而所產生之影響的發光強度之變動量47,故藉由 強度48除去上述發光強度之變動量47,可以求出 映腔室10內之狀態的發光強度40。 即使於執行分光分析器41之感測器更換時, 測量感測器更換前、之後之發光強度42、43、44 同樣可以求出對應於該些影響之發光強度之變動I ' 其結果,可以求出真實反映腔室1〇內之狀態的發 • 49 〇 接著,針對作爲使用上述發光強度之校正方法 施形態所涉及之基板處理裝置之分析方法的電漿處 檢測方法予以說明。以下,僅假設更換腔室內零件 之後的狀況,不假設觀測窗40之霧之發生前後或 光分析器41之感測器之前後的狀況。 第5圖爲當作本實施形態所涉及之基板處理裝 析方法的電漿處理終點檢測方法之流程圖。 φ 在第5圖中,首先於更換腔室內零件之前使處 S產生電漿,藉由導入前氣體分析單元35測量流 理氣體導入管23之處理氣體之發光強度42’並且 理空間通過後氣體分析單元3 4測量通過處理空間 理氣體之發光強度43(步驟S501)。 接著,更換腔室內零件(例如遮蔽環或聚焦環 驟S502),之後在處理空間S產生電漿,藉由導入 分析單元3 5測量流動於處理氣體導入管2 3之處理 發光強度44(步驟S503)。 自發光 真實反 也藉由 、45, Ϊ 47 » 光強度 的本實 理終點 之前、 更換分 置之分 理空間 動於處 藉由處 S之處 19)(步 前氣體 氣體之 -28- 1358768 接著’判斷在步驟S5 03所測量之發光強度44與在步 驟S501所測量之發光強度42是否一致(步驟S5〇4),爲不 —致之時’作爲與被導入至處理空間S之處理氣體有關之 異常或產生某分光分析器41之故障而結束本處理,爲一 致之時’藉由處理空間通過後氣體分析單元34測量通過 處理空間S之處理氣體之發光強度45(步驟S505),算出 該所測量之發光強度45和在步驟S501所測量之發光強度 43之差分(步驟S5 06)。如上述般,該差分爲對應於藉由 更換腔室內零件所產生之影響的變動量47。 接著,在腔室10內收容晶圓W以特定之電漿處理條 件開始對晶圓W執行電漿處理(步驟S507),藉由處理空 間通過後氣體分析單元3 4測量通過處理空間S之處理氣 體之發光強度48(步驟S 5 08 ),自該發光強度48除去上述 發光強度之變動量47(步驟S509),算出真實反映腔室10 內之狀態的發光強度49。 接著’根據該發光強度49檢測電漿處理之終點(步驟 S510),結束本處理。 若藉由第5圖之處理,更換腔室內零件之前、之後所 測量之流動於處理氣體導入管23之處理氣體之發光強度 42、44爲一致之時,算出更換腔室內零件之前、之後之 通過處理空間S之處理氣體之發光強度43、45之變動量 47,自晶圓W之電漿處理中通過處理空間S之處理氣體 之發光強度48除去上述變動量47算出真實反映腔室1〇 內之狀態之發光強度49。 -29- 1358768 在更換腔室內零件之前、之後所測量之發光強度 42、44爲一致之時’藉由處理空間通過後氣體分析單元 34所測量之腔室內零件更換之後之發光強度45 ’和腔室 內零件更換之前之發光強度43之變動量47係對應於腔室 內零件更換的影響。因此’藉由自晶圓W之電獎處理中 所測量之發光強度48除去上述變動量47 ’可以算出真實 反映腔室1〇內之狀態的發光強度49 ’其結果’可以正確 檢測腔室1 〇內之狀態’可以正確檢測出電漿處理之終 點。 並且,即使於執行分光分析器41之感測器更換時, 執行腔室內零件之洗淨時’或是執行腔室10內之乾式清 潔之時,亦可以藉由第5圖之處理求出真實反映腔室10 內之狀態之發光強度4 9,正確檢測腔室1 0內之狀態。 上述第1圖之基板處理系統1是於製程模組排氣系統 中之多歧管14連接處理空間通過後氣體分析單元34。依 此,可以自腔室10內隔離處理空間通過後氣體分析單元 34,並且可以防止處理空間通過後氣體分析單元34之分 析處理,例如電漿發生處理對腔室10內之電漿處理等造 成影響。 再者,連接處理空間通過後氣體分析單元34之多歧 管1 4是在製程模組排氣系統中,爲較整流環1 3下游之空 間’較TMP16上游之空間。TMP16爲了執行排氣,雖然 必須將氮氣體供給至該TMP 16之下游,但是處理空間通 過後氣體分析單元34因配置在TMP16之上游,故當作通 -30- 1358768 過處理空間s之處理氣體之原子濃度或分子濃度所測量之 發光強度48,並不反映所供給之氮氣體之影響,再者, 處理空間通過後氣體分析單元34因配置在整流環13之下 游,故於上述發光強度48不反映電漿之影響。因此,可 以更正確檢測腔室10內之狀態。 再者,處理空間通過後氣體分析單元34或導入前氣 體分析單元35是在副腔室37內產生電漿,該發生電漿激 發自多歧管14或處理氣體導入管23所取出之處理氣體中. 之原子或分子而使原子或分子發光,將該發光予以分光而 測量原子或分子之發光強度。因此,可以測量處理氣體之 原子濃度或分子濃度。 由於在處理空間通過後氣體分析單元34或導入前氣 體分析單元35產生電漿所需之高頻電力較弱,例如數瓦 特左右,故難以發生觀測窗40之霧化或惡化。因此,藉 由使用處理空間通過後氣體分析單元34等,可以正確測 量原子或是分子之發光強度。 再者,處理空間通過後氣體分析單元34或導入前氣 體分析單元35因藉由排氣裝置將副腔室37內予以排氣, 故可以防止經分光分析之處理氣體滯留於副腔室37內, 並且可以更正確測量處理氣體中之原子或分子之發光強 度。 並且,處理空間通過後氣體分析單元34等中之分光 分析所需之時間因不需要與腔室內中之電漿處理所需 之時間相同,故可以將在副腔室3 7內將產生電漿之時間 -31 - 1358768 抑制成所需最小限度,並也可以將對線圈3 8流動 流之時間抑制成所需最小限度。 再者,上述基板處理系統1是在裝載鎖定模組 載鎖定模組排氣系統32流動裝載鎖定模組5之腔| 之氣體’裝載鎖定模組氣體分析單元36接收流動 鎖定模組排氣系統32之氣體,根據該氣體中之原 分子之發光強度測量氣體之原子濃度或分子濃度 30內之氣體的原子濃度或分子濃度反映腔室30 態。因此,可以檢測裝載鎖定模組5之腔室3 0 態。 並且’所知的有根據腔室30內之氣體之發光 執行以下之檢測、推測。以下之檢測、推測是自裝 模組氣體分析單元36發送上述發光強度之電訊號 或外部伺服器所實行。 •檢測出自製程2流入至裝載鎖'定模組5之且 之處理氣體之成分或濃度 檢測出吸附於電漿處理前之晶圓W之吸著 分 •檢測出來自晶圓W之水分或處理氣體(例如 氣體)之沖洗之終點 •大氣洩漏等之檢測 再者,裝載鎖定模組氣體分析單元36連接於 定模組排氣系統3 2。依此,可以將裝載鎖定模組 析單元36自腔室30內隔離,並且可以防止裝載鎖 高頻電 5之裝 [30內 於裝載 子或是 。腔室 內之狀 內之狀 強度可 載鎖定 的電腦 爸室30 物之成 CF系 裝載鎖 氣體分 定模組 -32- 1358768 氣體分析單元36之分析處理對裝載鎖定模組5之腔室30 內波及影響。 上述基板處理系統1雖然是處理空間通過後分析單元 34連接於多歧管14,但是連接處理空通過後氣體分析單 元3 4之場所並不限制於此,即使爲製程模組排氣系統中 之任一處亦可,並且,即使連接於腔室10亦可。依此, 處理空間通過後氣體分析單元34可以容易接收通過處理 空間S之處理氣體,其結果,可以容易檢測腔室1〇內之 狀態。 再者,裝載鎖定模組氣體分析單元36雖然連接於裝 載鎖定模組排氣系統32,但是裝載鎖定模組分析單元36 即使連接於腔室30亦可。依此,裝載鎖定模組分析單元 36可以容易接收腔室30內之氣體,其結果,可以容易檢 測腔室3 0內之狀態。 上述處理空間通過後氣體分析單元34、導入前氣體 分析單元35及裝載鎖定模組氣體分析單元36雖然具有在 內部產生電漿之副腔室37,但是處理空間通過後氣體分 析單元34等之構成並不限定於此。即使使用氣體之質量 分析器或傅立葉轉換紅外分光光度計(FTIR)作爲處理空間 通過後氣體析單元3 4亦可,依此,可以精度更佳測量處 理氣體或腔室30內之氣體之原子濃度或分子濃度。 再者,處理空間通過後氣體分析單元34即使爲不具 有副腔室而產生電漿者亦可。具體而言,如第6圖所示 般,處理間通過後氣體分析單元34’具備流動處理氣體之 -33- 1358768 曲柄狀之曲管50(氣體管)(例如製程模組排氣系統之一部 份),和使在該曲管50內產生電漿之電漿產生裝置51, 和嵌入至曲管50之壁面的由石英玻璃所構成之觀測窗 52,和與該觀測窗52對向配置之分光分析器53(分光測 量裝置)。 在該處理空間通過後氣體分析單元34’中,分光分析 器53經觀測窗52接收曲管50中較電漿產生中心部50a 下游之餘輝,並且予以分光而測量發光強度。然後,根據 該所測量之結果測量氣體之原子濃度或分子濃度。 若藉由處理空間通過後氣體分析單元34’,將在曲管 50中較電漿產生中心部50a下游之餘輝予以分光而測量 發光強度。因此,可以正確測量發光強度,並且因不需要 設置取入處理氣體之副腔室,故可以由便宜構成執行處理 氣體分析。並且,導入前氣體分析單元35或裝載鎖定模 組氣體分析單元36即使也具有與處理空間通過後氣體分 析單元3 4 ’相同之構成亦可。 並且,具有與裝載鎖定模組氣體分析單元36相同構 成之氣體分析單元亦可以使用於裝載模組4或晶圓卡匣3 內之狀態之檢測。 使用上述發光強度之校正方法之本實施形態所涉及之 基板處理裝置之分析方法雖然適用於電漿處理之終點檢 測,但是所適用之終點檢測之對象並不限定於此,即使爲 COR(Chemical Oxide Remove).處理或 PHT(P〇st Heat Treatment)處理亦可。 -34- 1358768 再者,本發明之目的也藉由將記錄有實現上述實施形 態之功能之軟體之程式碼之記憶媒體供給至電腦或外部伺 服器,由電腦等之CPU讀出儲存於記億媒體之程式碼而 予以實行而達成。 此時,自記億媒體所讀出之程式碼本身實現上述實施 形態之功能,程式碼及記憶有該程式碼之記憶媒體構成本 發明。 再者,用以供給程式碼之記億媒體若爲例如RAM、 NV-R AM、軟碟(註冊商標)碟片、硬碟、光磁碟、CD· ROM、CD-R、CD-RW、DVD(DVD-ROM、DVD-RAM、 DVD-RW、DVD + RW)等之光碟、磁帶、非揮發性記憶卡、 其他ROM等可以記憶上述程式碼者即可。或是上述程式 碼即使藉由自連接於網際網路、商用網絡或是局域網路等 之無圖式之其他電腦或資料庫等下載,而供給至電腦等亦 可 ° 再者,藉由實行電腦等所讀出之程式碼,不僅實現上 述實施形態之功能,也含有根據該程式碼之指示,在CPU 上動作之 os(作業系統)等執行實際處理之一部份或全 部,藉由該處理實現上述實施形態之功能之情形。 並且,也含有自記憶媒體所讀出之程式碼於被寫入至 ***於電腦等之功能擴充板或連接於電腦等之功能擴充單 元所具有之記憶體後,根據該程式碼之指示,執行該功能 擴充板或功能擴充單元所具備之CPU等執行實際之處理 之一部份或全部,藉由該處理實現上述實施形態之功能之 -35- 1358768 情形。 上述程式碼之形態即使由目的碼、藉由編譯器所實行 之程式碼、被供給至os之原稿資料等之形態而構成亦 "5J 〇 【圖式簡單說明】 第1圖爲表示適用本發明之第1實施形態所涉及之基 板處理裝置之基板處理系統之槪略構成的剖面圖。 第2圖爲表示第1圖中之處理空間通過後氣體分析單 元等之槪略構成之模式圖。 第3圖爲當作本實施形態所涉及之基板處理裝置之分 析方法之電漿處理終點檢測方法之流程圖。 第4圖爲用以說明本發明之第2實施形態所涉及之基 板處理裝置之處理氣體之發光強度之校正方法之圖式,第 4圖(A)爲表示通過處理空間之處理氣體之發光強度之腔 室內零件更換所產生之變動部份的圖式,第4圖(B)爲表 示使用第4圖(A)中之變動部份而所取得之校正後之處理 氣體之發光強度的圖式。 第5圖爲當作本實施形態所涉及之基板處理裝置之分 析方法之電漿處理終點檢測方法之流程圖》 第6圖爲表示第2圖之處理空間通過後氣體分析單元 等之變形例之槪略構成之模式圖。 【主要元件符號說明】 -36- 1358768BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate processing apparatus and an analysis method therefor, and more particularly to a substrate processing apparatus using a state in a gas analysis apparatus or the like. • [Prior Art] The substrate processing apparatus that applies plasma treatment to a substrate such as a semiconductor wafer includes a storage chamber (chamber) in which the substrate is housed, and the substrate is electrically charged by the electric acid slurry generated in the chamber. Slurry treatment. In order to apply appropriate plasma treatment to the substrate, it is important to detect the state of the chamber or the end of the plasma treatment. As a method of detecting the state of the chamber or the end of the plasma treatment, it is known to embed a window made of quartz glass in the side wall of the chamber to arrange the plasma spectroscopic analyzer in such a manner as to face the window. This spectroscopic analyzer is a method of spectroscopic analysis of plasma luminescence in a chamber (for example, refer to Patent Document 1). [Patent Document 1] Japanese Laid-Open Patent Publication No. 2004-3 No. 1961 (paragraph [0038]) [Problems to be Solved by the Invention] However, the window of the chamber has fogging as time passes. . Furthermore, the sensor before the replacement and the sensor after the replacement have individual differences in the light-receiving performance as the specific use time passes and the light-receiving sensor of the spectroscopic analyzer must be replaced. The result of the spectroscopic analysis performed by the spectroscopic analyzer -4- 1358768 contains the effects of window atomization or sensor replacement for these chambers. Further, when the parts in the chamber, such as the shadow ring or the focus ring, are replaced, even if the processing program (processing condition) before the replacement is made, the plasma light-emitting state before the replacement and the plasma state after the replacement are different. situation. That is, the plasma luminescence is affected by the replacement of the parts in the chamber. Therefore, the results of the spectroscopic analysis performed by the spectroscopic analyzer also include the effects of part replacement in the chamber. By the above, the result of performing the spectroscopic analysis by the spectroscopic analyzer does not completely reflect the state of the chamber, and also reflects other factors of variation (atomization of the window of the chamber, replacement of the sensor, or replacement of parts in the chamber), Therefore, the state of the chamber cannot be correctly detected. SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate processing apparatus capable of accurately detecting a state in a storage chamber and an analysis method of the apparatus. In order to achieve the above object, the substrate processing apparatus according to the first aspect of the invention includes a storage chamber for accommodating a substrate, and a gas introduction device for introducing a gas into the storage chamber, wherein the storage chamber has A substrate processing apparatus that applies a processing space for a specific treatment to the substrate by using the gas, and includes a pre-introduction gas analysis device that analyzes a gas before introduction of the storage chamber, and analyzes a gas after passage of a gas after the processing space passes. An analysis device: a state detecting device that detects a state of the storage chamber based on a gas analysis result before introduction of the storage chamber and a gas analysis result after the processing space passes, wherein the state detecting device calculates that a plurality of the 1358768 substrates are administered a ratio of a gas analysis result after the passage of the processing space before the specific processing to the gas analysis result before the introduction of the storage chamber, and calculating a gas after the processing space is passed after the specific processing is performed on the plurality of substrates Analysis results for the above containment The ratio of the gas analysis results before the introduction is calculated in such a manner that the ratio before the above-described specific treatment is applied to the plurality of substrates, and the ratio after the above-described specific treatment is applied to the plurality of substrates is calculated. For the correction of the analysis result of the gas analysis result after the processing space in which the above-mentioned specific processing is applied to the plurality of substrates, the correction result of the calculated analysis result is used to correct the gas analysis result after the passage of the processing space" The substrate processing apparatus according to the first aspect of the invention, wherein the state detecting device detects the specificity based on a gas analysis result after the corrected processing space passes. The end of the treatment. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus according to claim 1 or 2 includes an exhaust system that exhausts the storage chamber, and the post-pass gas analysis device is disposed. The above exhaust system. The substrate processing apparatus according to claim 4, wherein the storage chamber has an exhaust plate that prevents the plasma of the processing space from flowing downstream, and the exhaust system A polymer vacuum pump is provided, and the gas analyzer after passing through is disposed between the exhaust plate and the polymer vacuum pump. The substrate processing apparatus described in claim 5 is the result of gas analysis after the passage of the processing space of the application -6- 1358768. The substrate processing apparatus according to claim 14 is the substrate processing apparatus according to claim 13, wherein the maintenance of the storage chamber corresponds to replacement of parts, cleaning of parts, or dry cleaning of the storage chamber. In order to achieve the above object, the analysis method of the substrate processing apparatus according to claim 15 is a storage chamber including a storage substrate, and a gas introduction device for introducing a gas into the storage chamber, wherein the storage chamber has the gas pair. The method for analyzing a substrate processing apparatus for applying a processing space for a specific processing includes a pre-introduction gas analysis step of analyzing a gas before introduction of the storage chamber, and analyzing a gas analysis after passing the gas through the processing space. a state detecting step of detecting a state of the inside of the storage chamber based on a gas analysis result before the introduction of the storage chamber and a gas analysis result after the passage of the processing space, wherein the state detecting step calculates that the specific processing is performed on a plurality of the substrates The ratio of the gas analysis result before the passage of the previous processing space to the gas analysis result before the introduction of the storage chamber, and the gas analysis result after the passage of the processing space after the specific processing of the plurality of substrates is calculated The above containment room The ratio of the gas analysis results before the injection is calculated in such a manner that the ratio before the above-described specific treatment is applied to the plurality of substrates and the ratio after the above-described specific treatment is applied to the plurality of substrates is calculated Correcting the analysis result of the gas analysis result after passing the processing space after the above-mentioned specific processing is performed on the plurality of substrates, and correcting the analysis result by using the calculated analysis result, and correcting the processing space after passing the processing - 9 - 1358768 Gas analysis results. The analysis method of the substrate processing apparatus according to claim 15 is the method of analyzing the substrate processing apparatus according to claim 15, wherein the state detecting step is a gas passing through the corrected processing space. The result of the analysis detects the end point of the above specific treatment. In order to achieve the above object, the analysis method of the substrate processing apparatus according to claim 17 is a storage chamber including a storage substrate, and a gas introduction device for introducing a gas into the storage chamber, wherein the storage chamber has the gas. An analysis method of a substrate processing apparatus that applies a processing space for a specific processing to the substrate, comprising: a gas analysis step before the introduction of the gas before the introduction of the storage chamber; and a gas after passing the gas after the processing space passes. An analysis step of detecting a state of the state in the storage chamber based on a gas analysis result before the introduction of the storage chamber and a gas analysis result after the passage of the treatment space, the state detection step being the accommodation before and after the maintenance of the storage chamber When the results of the gas analysis before the introduction of the chamber are the same, the amount of change in the gas analysis result after the passage of the processing space between the storage chambers before and after the maintenance is calculated, and the gas analysis result after the passage of the processing space is corrected using the calculated fluctuation amount. . In the analysis method of the substrate processing apparatus according to the seventeenth aspect of the invention, in the analysis method of the substrate processing apparatus of claim 17, the maintenance of the storage chamber corresponds to replacement of parts, cleaning of parts, or the above-described accommodation. Dry cleaning indoors. -10- 1358768 [Effect of the Invention] When the substrate processing apparatus described in claim 15 of the substrate of the first application of the patent application is applied, the processing before the application of the specific processing to the plurality of substrates is calculated. The gas analysis results are compared with the gas analysis before the introduction of the storage chamber, and the ratio of the processing space gas analysis result after the specific processing to the plurality of substrates is applied to the majority of the substrate before the introduction of the gas in the storage chamber. In the case where the ratio of the majority of the substrates after the treatment is the same, the gas analysis balance after the passage of the processing space after the majority of the specific processing is calculated, and the corrected gas analysis result of the calculated analysis result is used to correct the empty gas analysis result, and the detection is performed. The state of the room. The analysis of the knot corresponds to the influence of the gas before the introduction of the gas before the introduction of the containment chamber or the influence of the introduced gas deviation. Therefore, the gas analysis results after space can be removed to remove the influence of gas analysis or gas deviation before introduction. The gas analysis result can be set to the state of the chamber. As a result, the accommodation state can be correctly detected. When the substrate processing apparatus described in claim 16 of the Patent Application No. 2 is applied, the end point of the specific processing is determined based on the gas after the passage of the corrected processing space. Since the result of passing the corrected processing space reflects only the state in the storage chamber, it is possible to correctly detect the space-passing ratio of the processing device and the analysis method, and pass the ratio of the latter to pass the correction to the specific substrate. The consequence of the correction analysis device is to reflect the gas from the treatment device to reflect only the indoor condition device and the analysis method to detect the specific point of the gas -11 - 1358768. When the substrate processing apparatus described in the third paragraph of the patent application is applied, the after-gas analyzer is disposed in the exhaust system for exhausting the inside of the storage chamber. According to this, it is possible to isolate the passage of the post-gas analysis device from the inside of the accommodation chamber and to prevent the analysis process performed in the post-pass gas analysis device from affecting the specific treatment or the like performed in the accommodation chamber. When the substrate processing apparatus described in the fourth aspect of the patent application is applied, the post gas analysis apparatus is disposed in the storage chamber to prevent the plasma in the processing space from flowing downstream, and the polymer in the exhaust system. Between vacuum pumps. The polymer vacuum pump needs to supply the nitrogen gas downstream of the pump in order to perform the exhaust gas. However, since the post gas analysis device is disposed upstream of the polymer vacuum pump, the gas analysis result after the passage of the processing space does not reflect the supplied nitrogen gas. The influence, in addition, after the gas analysis device is disposed downstream of the exhaust plate, the gas analysis result after the passage of the treatment space does not reflect the influence of the plasma. Therefore, the state of the accommodation room can be detected more correctly. When the substrate processing apparatus described in claim 5 is applied, the post-gas analyzer is disposed in the storage chamber. According to this, the gas in the storage chamber can be easily received by the post-gas analyzer, and as a result, the state in the storage chamber can be easily detected. According to the substrate processing apparatus described in claim 6, the plasma which generates atoms or molecules excited in the gas is split by the light of atoms or molecules in the gas excited by the plasma. The luminous intensity is measured. Therefore, the atomic concentration or molecular concentration of the gas can be measured from the luminescence intensity, and the gas analysis can be performed correctly. -12- 1358768 By applying the substrate processing apparatus described in item 7 of the patent scope, the mass analyzer can be used to perform gas analysis more correctly. When the substrate processing apparatus described in claim 8 is applied, the Fourier-converted infrared spectrophotometer can be used to perform gas analysis more accurately. When the substrate processing apparatus described in claim 9 is applied, the afterglow in the gas tube further downstream than the center portion of the plasma generation is split to measure the luminous intensity. Therefore, since the luminous intensity can be measured correctly and the receiving chamber of the gas is not required, the gas analysis can be performed with an inexpensive configuration. When the substrate processing apparatus described in claim 10 is applied, the gas in the substrate transfer apparatus connected to the substrate processing apparatus is analyzed, so that the state in the substrate transfer apparatus can be detected. When the substrate processing apparatus described in claim 11 is applied, the gas analysis device is disposed in the second exhaust system that exhausts the gas in the substrate transfer device. Accordingly, the gas analysis device can be isolated from the substrate transfer device, and the influence of the analysis process in the gas analysis device on the substrate transfer device can be prevented. When the substrate processing apparatus described in claim 12 is applied, the gas analysis device is disposed in the second storage chamber of the substrate transfer device. Accordingly, the gas analyzer can easily receive the gas in the second storage chamber, and as a result, the state in the second storage chamber can be easily detected. When the substrate processing apparatus described in claim 13 and the analysis method of the substrate processing apparatus described in claim 17 are applied, the gas analysis before the introduction of the storage chamber before and after the maintenance of the storage chamber is performed - 13- 1358768 When the results are the same, the amount of change in the gas analysis result after the processing space before and after the maintenance of the storage chamber is calculated, and the gas analysis result after the calculation of the fluctuation amount in the processing space is used to detect the state of the storage chamber. . When the gas analysis results before the introduction of the containment chamber before and after the maintenance of the storage chamber are the same, the variation of the gas analysis result after the passage of the processing space before and after the maintenance of the storage chamber corresponds to the replacement or containment chamber of the sensor. The impact of parts replacement. Therefore, by correcting the gas analysis result after the passage of the processing space by using the calculated fluctuation amount, the gas analysis result can be made to reflect only the state in the storage chamber, and as a result, the state in the storage chamber can be accurately detected. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a substrate processing system to which the substrate processing apparatus according to the first embodiment of the present invention is applied will be described. Fig. 1 is a cross-sectional view showing a schematic configuration of a substrate processing system to which a substrate processing apparatus according to the present embodiment is applied. In the first embodiment, the substrate processing system 1 includes various plasmas such as a film formation process, a diffusion process, and an etching process for each semiconductor wafer w (hereinafter simply referred to as "wafer W") as a substrate. The processed process module 2 (substrate processing device), the wafer module 3 for storing the wafer W from a specific number of wafers, and the loading module 4' for taking out the wafer W are disposed in the loading module 4 and the process module 2 Between the loading module 4 loading the wafer W into the process module 2 or the self-made process module 2, the wafer W is carried into the loading module 4 loading lock 14-1358768 fixed module 5 (substrate handling device ). The internal structure of the process module 2 and the load lock module 5 can be evacuated, and the inside of the load module 4 is often maintained at atmospheric pressure. Furthermore, the process module 2 and the load lock module 5, as well as the load lock module 5 and the load module 4 are connected via gate valves 6, 7. Further, the inside of the load lock module 5 and the inside of the loading mold set 4 are communicated by a communication pipe 9 in which the valve 8 of the switch is disposed in the middle. The process module 2 has a cylindrical chamber 10 (housing chamber) made of metal, for example, aluminum or stainless steel, and a mounting table for mounting a wafer W having a diameter of, for example, 300 mm is disposed in the chamber 10. A cylindrical carrier 11. An exhaust passage 12 functioning as a flow path for discharging the gas of the processing space S to be described later to the outside of the chamber 10 is formed between the side wall of the chamber 1 and the carrier 11. An annular rectifying ring 13 (exhaust plate) is disposed on the way of the exhaust passage 12, and a multi-manifold 14 in a space downstream of the rectifying ring 13 of the exhaust path 12 and an automatic butterfly type variable valve The Pressure Control Valve (hereinafter referred to as "APC Valve") 15 is connected. The APC valve 15 is connected to a rotor molecular pump (hereinafter referred to as "TMP") 16 which is an exhaust pump for vacuuming. Here, the rectifying ring 13 prevents the plasma generated in the processing space S from flowing out to the manifold 14. The APC valve 15 is a pressure control within the chamber 10, and the TMP 16 decompresses the chamber 10 to a nearly vacuum state. Multi-manifold 14, APC valve 15, and TMP16 form the process module exhaust system. In the process module exhaust system, the manifold 14 is connected to a post-gas analysis unit 34 (through a post-gas analyzer). -15- 1358768 The carrier 11 is connected to the high-frequency power source 17 via the integrator 18, and the high-frequency power source 17 supplies high-frequency power to the carrier 11. Accordingly, the carrier 11 functions as a lower electrode. Further, the integrator 18 is configured to reduce the reflection of the high frequency power from the carrier 11 and supply the high frequency power to the carrier Π to maximize the supply efficiency. An electrode plate (not pattern) for adsorbing the wafer W by a Coulomb force or a Johnsen-Rahbek force is disposed on the carrier 11. - Accordingly, the wafer W is adsorbed and held on the carrier 11. Further, an annular focus ring 19 composed of neodymium (Si) or the like is disposed on the upper portion of the carrier 11, and the focus ring 19 is disposed in the processing space S between the carrier 11 and the shower head 20 to be described later. The generated plasma converges toward the wafer W. Further, an annular refrigerant chamber (not shown) is provided inside the carrier 11. The refrigerant chamber circulates a refrigerant of a specific temperature, such as cooling water, and adjusts the processing temperature of the wafer W on the carrier 11 by the temperature of the refrigerant. Further, helium gas is supplied between the wafer W and the carrier 11 to transfer the heat of the wafer W to the carrier 11. A dome-shaped shower head 20 is disposed in the ceiling portion of the chamber 10. The shower head 20 is connected to the high-frequency power source 21 via the integrator 22, and the high-frequency power source 21 supplies high-frequency power to the shower head 20. Accordingly, the shower head 20 functions as an upper electrode. And the function of the integrator 22 is the same as that of the integrator 18. Further, the shower head 20 is connected to a process gas introduction pipe 23 for supplying a mixed gas of a process gas such as a CF-based gas and another type of gas, and the shower head 20 is a process gas guide supplied from the process gas introduction pipe 20 - 16- 1358768 into the processing space S. The process gas introduction pipe 23 is connected to a pre-introduction gas analysis unit 35 (pre-introduction gas analysis device) which will be described later. In the processing space S in the chamber 10 of the process module 2, the carrier 11 and the shower head 20 for supplying high-frequency power apply high-frequency power to the processing space S, and high-density electricity is generated from the processing gas in the processing space S. Pulp. The resulting plasma converges to the surface of the wafer W by the focus ring 19, such as physically or chemically etching the surface of the wafer W. The loading module 4 has a wafer cassette mounting table 24 on which the wafer cassette 3 is placed, and a transfer chamber 25. The wafer cassette 3 mounts 25 wafers W in a plurality of stages at equal intervals. Further, the transfer chamber 25 is a rectangular parallelepiped box-shaped container, and has a vectorless transport robot arm 26 for transporting the wafer W therein. The transport robot arm 26 has a telescopic articulated arm portion 27' and a picker 28' attached to the front end of the transport arm arm portion 27. The picker 28 is a direct mount wafer. W. The transport robot arm 26 is rotatable and can be flexed by transporting the arm arm portion 27, so that the wafer W placed on the picker 28 can be placed in the wafer cassette 3 and the load lock module 5 Handling freely. The load lock module 5 has a chamber 30 (second storage chamber) in which the transfer robot 29 that is stretchable and rotatable, and a nitrogen gas supply system 31 that supplies a nitrogen gas into the chamber 30, and a chamber Load lock module exhaust system 3 2 for exhausting within 30. The load lock module exhaust system 32 is connected to a load lock module gas analysis unit 36 (gas analysis device) which will be described later. Here, the transfer robot 29 is a non-directional type transfer robot arm composed of a plurality of wrist portions, and has a picker 33 attached to the front end thereof. The -17-1358768 picker 33 constitutes a direct mount wafer W. When the wafer W is carried from the loading module 4 to the process module 2, when the gate valve 7 is opened, the transfer robot 29 receives the wafer W from the transfer robot 26 in the transfer chamber 25, and when the gate valve 6 is opened, At this time, the transfer robot 29 enters into the chamber 10 of the process module 2, and the wafer W is placed on the carrier 11. Moreover, when the wafer W is loaded from the process module 2 to the loading module 4, when the gate valve 6 is opened, the transfer robot 29 enters into the chamber 10 of the process module 2, and the self-carrier 1 1 The wafer W is received, and when the gate valve 7 is opened, the transfer robot 29 delivers the wafer W to the transfer robot 26 in the transfer chamber 25. The operation of each component of the process module 2, the loading module 4, and the load lock module 5 constituting the substrate processing system 1 is a computer (state detecting device) serving as a control device provided in the substrate processing system 1. The figure is controlled as an external server (state detecting means) (not shown) connected to the control means of the substrate processing system 1. Further, the processing space is connected to the computer or the external server via the post-gas analysis unit 34, the pre-introduction gas analysis unit 35, and the placement lock module gas analysis unit 36. Fig. 2 is a schematic view showing a schematic configuration of a gas analysis unit or the like after the processing space in Fig. 1 is passed. Further, since the processing space passing gas analysis unit 34, the pre-introduction gas analysis unit 35, and the load-locking module gas analysis unit 36 have the same configuration, the configuration of the pre-introduction gas analysis unit 35 will be described below. In the second drawing, the pre-introduction gas analysis unit 35 includes a sub-chamber 37 (gas receiving -18-1358768 chamber) that receives the processing gas flowing through the processing gas introduction pipe 23, and a wire wound around the sub-chamber 37.圏38, a high-frequency power source 39 (plasma generating device) connected to the coil 38, an observation window 40 made of quartz glass embedded in the wall surface of the sub-chamber 37, and a spectroscopic analyzer disposed opposite the observation window 40 41 (split measuring device), and a gas supply device (not shown) for supplying argon gas into the sub-chamber 37, and an exhaust device (not shown) for exhausting the sub-chamber 37. In the pre-introduction gas analysis unit 35, the high-frequency power source 39 flows a high-frequency current in the coil 38 in the sub-chamber 37 to generate plasma, and generates plasma from the argon gas in the sub-chamber 37. The resulting plasma excites atoms or molecules in the process gas within the subchamber 37 to cause the atoms or molecules to illuminate. The spectroscopic analyzer 41 receives the luminescence of atoms or molecules through the observation window 40, measures the luminescence intensity of the atoms or molecules by splitting the luminescence, and measures the atomic concentration or molecular concentration of the treatment gas based on the measured luminescence intensity. That is, the pre-introduction gas analysis unit 35 measures the atomic concentration or molecular concentration in the process gas flowing through the process gas introduction pipe 23 (the gas before the introduction of the storage chamber). Furthermore, since the processing space passing gas analysis unit 34 and the load lock module gas analysis unit 36 have the same configuration as the pre-introduction gas analysis unit 35, the processing gas flowing through the multi-manifold 14 through the processing space S is measured ( The atomic concentration or molecular concentration in the gas (the gas in the substrate carrying device) flowing through the lock-in module exhaust system 32 is measured by the atomic concentration or molecular concentration in the gas after the passage of the treatment space. Here, in the process module 2, the processing gas that has passed through the processing space S is in response to the state of the processing space S, and then a specific gas (for example, a CF-based gas) is plasma-treated in response to the state inside the chamber 1 . It is consumed, etc., -19- 1358768 The mass ratio of various gases constituting the processing gas is changed. As a result, the atomic concentration or molecular concentration of each of the gases constituting the process gas having passed through the treatment space s also changes. Therefore, the state inside the chamber 10 can be detected by analyzing the concentration of the processing gas by the processing gas in the processing space s. However, when the components disposed in the chamber 10 (hereinafter referred to as "chamber parts") are replaced, even if the same electric blade processing conditions are used, the plasma state in the processing space S changes to the plasma before the replacement of the parts. State, and the situation in which the consumption patterns of various gases change. Therefore, even under the same plasma processing conditions, the atomic concentration or the molecular concentration of the processing gas passing through the processing space S is changed before and after the replacement of the parts in the chamber. In other words, the atomic concentration or molecular concentration of the processing gas passing through the processing space S is affected by the replacement of the parts in the chamber. As a result, the processing space passes through the post-gas analysis unit 34. The luminous intensity of the processing gas passing through the processing space S contains the influence of the parts in the replacement chamber. Further, after the processing space passes, the gas analyzing unit 34 measures the luminous intensity of the atoms or molecules passing through the processing gas in the processing space S in the plasma processing in the chamber 10 in order to detect the end point of the plasma processing or the like. That is, since it is necessary to generate plasma in the sub-chamber 37 for a long time, fog is generated in the observation window 40 due to plasma or the like. Furthermore, the sensor of the spectroscopic analyzer 4 1 must also be replaced after a certain period of use. Therefore, the intensity of illumination measured by the post-gas analysis unit 34 by the processing space contains the effect of atomization or sensor replacement of the viewing window 40. Then, in order to correctly detect the state within the chamber 10, it is necessary to remove the influence of the replacement of the components in the chamber, the mist of the observation window 40, or the sensor replacement from the luminous intensity measured by the spectrometer -20- 1358768 analyzer 41. Further, since the pre-introduction gas analyzing unit 35 detects only the components of the processing gas introduced into the processing space S, etc., only the measurement of the luminous intensity in a short time is performed. That is, the time during which the plasma is generated in the sub-chamber 37 is short, so that no fog is generated in the observation window 40 for a long period of time, and the sensor of the spectroscopic analyzer 41 is not required to be replaced. Therefore, the gas analysis unit is introduced before introduction. 35 The measured luminous intensity contains almost no influence of atomization or sensor replacement of the observation window 40, and can be used as a reference for a long period of time. In the substrate processing apparatus according to the present embodiment, the pre-introduction gas analysis unit 35 uses the emission intensity of the processing gas flowing through the processing gas introduction pipe 23, and the processing space passes through the post-gas analysis unit 34 to correct the processing through the processing space S. The luminous intensity of the gas. First, a method of correcting the luminous intensity of the processing gas of the substrate processing apparatus according to the present embodiment in the state in which the plasma processing is continuously applied to the plurality of wafers W in the chamber 10 will be described. In the present embodiment, in the plasma processing of a plurality of consecutive wafers W, the processing space passes through the post-gas analysis unit 34 to measure the luminescence intensity of atoms or molecules of the processing gas passing through the processing space S, assuming that the observation window is generated. The condition of the fog. In the above-described general situation, since fog is generated in the observation window 40 as time passes, the processing space passes through the luminous intensity measured by the post-analysis unit 34 (hereinafter referred to as "the luminous intensity after the processing space passes"), and does contain the observation window. The effect of the fog. -21 - 1358768 Further, when the processing space passes through the observation window 40 of the gas analysis unit 34, the period of the mist is generated, and the processing space is changed due to the variation of the composition or the introduction amount of the processing gas introduced into the processing space S, and the processing is performed. The light emission intensity after the passage of the space affects not only the fog of the observation window 40 but also the influence of the variation of the component of the processing gas introduced into the processing space S (hereinafter referred to as "the variation of the processing gas"). Further, the influence of the deviation of the processing gas corresponds to the luminous intensity measured by the pre-introduction gas analysis unit 35 before and after the long period (hereinafter referred to as "pre-implantation luminous intensity"). In the present embodiment, in order to remove the influence of the mist of the observation window 40 or the influence of the deviation of the processing gas, the pre-introduction luminous intensity and the processing space before and after the plasma treatment using the specific number of wafers W pass the post-luminescence intensity. Specifically, first, at the beginning of the plasma treatment of a certain wafer W, the ratio of the pre-implanted luminous intensity corresponding to a certain wavelength and the post-illumination intensity of the processing space is measured, and the ratio of the post-illumination intensity to the pre-introduction intensity after passing the processing space is measured. (hereinafter, referred to as "initial intensity ratio") is set as the initial time. Next, after the plasma treatment of the plurality of wafers W, the pre-impression luminous intensity corresponding to the above-mentioned wavelength and the post-induction luminous intensity of the processing space are measured, and the ratio of the luminous intensity after the processing space passes to the luminous intensity before the introduction is calculated (hereinafter referred to as "Time-intensity ratio"). At this time, after the processing space passes, the gas analysis unit 34 generates the mist of the observation window 40, and since there is a possibility that the composition of the processing gas introduced into the processing space S changes somewhat, the temporal strength ratio is different from the initial intensity ratio. Here, the initial intensity ratio and the time-intensity ratio are -22 to 1358768, and the correction of the post-luminescence intensity after the plasma treatment of the wafer w for correcting a plurality of wafers is calculated (hereinafter, It is called “correction of luminous intensity after processing space passes”). Although the cause of the difference between the time-intensity ratio and the initial intensity ratio is the influence of the fog of the observation window 40 or the deviation of the processing gas, the time-dependent intensity ratio can be made the same as the initial intensity ratio by using the processing space to correct the post-luminescence intensity. Therefore, the correction of the illumination intensity after the passage of the processing space corresponds to the influence of the fog of the observation window 40 or the deviation of the processing gas. Then, by correcting the 通过 correction processing space by the post-illumination intensity in the processing space, the influence of the fog of the observation window 40 or the deviation of the processing gas can be removed in the subsequent observation. Further, the comparison between the initial intensity ratio and the temporal intensity ratio and the calculation of the post-luminescence intensity correction 处理 in the processing space are performed for each wavelength. Then, under the plasma processing conditions corresponding to the state in which the inside of the detection chamber 10 is performed, the post-illumination intensity of the processing space is measured. Although the post-emission intensity of the processing space includes the influence of the fog of the observation window 40 or the deviation of the processing gas, the influence of the fog of the observation window 40 can be removed by correcting the post-illumination intensity of the processing space and correcting the post-emission intensity between the processing chambers. Alternatively, the influence of the deviation of the processing gas can be used to determine the luminous intensity that truly reflects the state in the chamber 10. Further, it is known that the following detection can be performed based on the light intensity of the state in the true reflection chamber 10. The following detection is presumed to be carried out by a computer or an external server that transmits the electric signal of the luminous intensity from the post-processing gas passing unit 34 or the pre-introduction gas analyzing unit 35. -23- 1358768 • Predicting the deposition composition in the chamber ίο • Estimation of the deposition amount in the chamber 10 • Detection of the end point of the etching treatment • Detection of the seasoning treatment end point • Detection of atmospheric leakage • 氦 gas leakage Detection • Detection of moisture in chamber 1 • Detection of contamination in chamber 1 • Prediction of change in process parameters, abnormality detection • Prediction of characteristics of wafer W, abnormality detection • Estimation of consumption of parts in chamber • Diagnosis of individual differences of the chamber 1 或 or individual differences of the process module 2 Next, the plasma processing end point detection method for the analysis method of the substrate processing apparatus according to the present stomach application method using the above-described illuminating intensity correction method Explain. In the plasma processing of a plurality of wafers in a continuous manner, the processing space passes through the post-gas analyzing unit 34 to measure the luminescence intensity of atoms or molecules of the processing gas passing through the processing space S, assuming that fog occurs in the observation window 40. . Fig. 3 is a flow chart showing a method of detecting a plasma processing end point as an analysis method of the substrate processing apparatus according to the embodiment. In the third drawing, first, when the plasma processing of a single wafer W is started, the pre-implant luminous intensity corresponding to each wavelength and the post-illumination intensity of the processing space are measured, and the initial intensity ratios are set (step S301). . -24- 1358768 Next, the wafer is processed by a plurality of wafers W (step S3 02), and then the pre-impression luminous intensity corresponding to each wavelength and the post-illumination intensity of the processing space are measured, and the temporal strength ratios are calculated (step S3). 03), the initial intensity ratio and the temporal intensity ratio are compared for each wavelength, and the calculation of the post-luminescence intensity correction 处理 is performed (step S304). Next, under the plasma processing conditions corresponding to the detection of the state in the execution chamber 1 电, the plasma processing is started (step S3 05), and the post-emission intensity corresponding to the processing space of each wavelength is measured (step S306) The post-illumination intensity is corrected by the post-illumination intensity correction 以 in the calculated processing space (step S307), and the luminous intensity in the state of the true reflection chamber 1 is calculated for each wavelength. Next, the end point of the plasma processing is detected based on the luminous intensity (step S308), and the present processing is ended. According to the processing of FIG. 3, the pre-imported luminous intensity and the post-illumination intensity of the processing space are measured before and after the plasma treatment of the wafer W of a plurality of wafers, and the corrected luminous intensity is calculated after the processing space passes, and the calculated processing is performed. After the space passes, the luminous intensity is corrected to correct the space after passing through the luminous intensity. After the processing space passes, the illuminance intensity correction 値 is as described above, and is affected by the influence of the fog of the observation window 40 or the deviation of the processing gas, so that the fog effect or the processing gas of the observation window 40 can be removed from the processing space by the post illuminating intensity. The influence of the deviation is used to calculate the luminous intensity that truly reflects the state in the chamber 10. As a result, the state inside the chamber 10 can be correctly detected, and the end point of the plasma treatment can be correctly detected. Next, a substrate processing system to which the apparatus for the substrate processing of the second embodiment of the present invention is applied is described. The configuration or action of the present embodiment is similar to that of the above-described first embodiment, and only the assumed state is different. Therefore, the description of the same configuration will be omitted, and only the configuration or operation different from the first embodiment will be described below. In the present embodiment, only the state before and after the replacement of the components in the chamber (before and after the maintenance of the storage chamber) is assumed, and the state before and after the occurrence of the mist of the observation window 40 or before and after the replacement of the sensor of the spectroscopic analyzer 40 is not assumed. In the following, a method of correcting the luminous intensity of the processing gas of the substrate processing apparatus according to the present embodiment will be described. Fig. 4 is a view for explaining a method of correcting the luminous intensity of the processing gas of the substrate processing apparatus according to the embodiment, and Fig. 4(A) is a view showing the luminous intensity of the processing gas passing through the processing space. Fig. 4(B) is a diagram showing the illuminating intensity of the corrected processing gas obtained by using the variator in Fig. 4(A). As shown in Fig. 4(A), first, plasma is generated in the processing space S before and after replacement of the components in the chamber, and the luminous intensity of the processing gas flowing through the processing gas introduction pipe 23 is measured by the pre-introduction gas analyzing unit 35. 42. The luminous intensity 43 of the processing gas passing through the processing space S is measured by the processing space passing through the post-gas analysis unit 34. Then, the illuminating intensity 44 of the processing gas flowing through the processing gas introduction pipe 23 is measured by the pre-introduction gas analysis unit 35 immediately after the replacement of the components in the chamber, and the gas analysis unit 34 -26- 1358768 is passed through the processing space. The luminous intensity 45 of the processing gas passing through the processing space S is measured. Here, since the process gas flowing through the process gas introduction pipe 23 does not pass through the process space S, the atomic concentration or molecular concentration of the process gas flowing through the process gas introduction pipe 23 is not affected by the parts in the replacement chamber. Therefore, when the luminous intensity 44 and the luminous intensity 42 are the same, only the plasma processing conditions after the parts in the chamber are replaced are the same as the plasma processing conditions before the parts in the chamber are replaced. Further, when the luminous intensity 44 is not the same as the luminous intensity 42, 'when the component or the introduction amount of the processing gas introduced into the processing space S is abnormal, or the spectroscopic analyzer 41 in the pre-introduction gas analyzing unit 35 is malfunctioning. At the time. When the luminous intensity 44 and the luminous intensity 42 are the same, the difference between the luminous intensity 45 after the replacement of the parts in the chamber measured by the post-gas analysis unit 34 and the luminous intensity 43 after the replacement of the parts in the chamber is determined by Before the replacement of the parts in the chamber, after the replacement, the gas analysis unit 34 is deteriorated over time (the occurrence of the mist of the observation window 40 or the sensor replacement of the spectroscopic analyzer 41), so that it corresponds to replacement The amount of variation in the influence of the components in the chamber 47. In other words, when the luminous intensity 44 and the luminous intensity 42 measured by the introduction of the gas analysis unit 35 are the same, the amount of change 47 corresponding to the luminous intensity which is affected by the replacement of the components in the chamber can be obtained. Then, as shown in FIG. 4(B), under the plasma processing conditions corresponding to the state detection in the execution chamber 1〇, the processing space S is measured by the processing space passing through the post-gas analysis unit 34. The luminous intensity of the treatment gas is 48. Since the luminous intensity 48 includes the fluctuation amount 47 of the luminous intensity corresponding to the influence of the replacement of the intracavity component -27- 1358768, the fluctuation amount 47 of the luminous intensity is removed by the intensity 48, and the reflection chamber can be obtained. The luminous intensity of the state within 10 is 40. Even when the sensor replacement of the spectroscopic analyzer 41 is performed, the luminous intensities 42 , 43 , 44 before and after the measurement sensor replacement can also determine the variation I′ of the luminous intensity corresponding to the influences, and the result can be The method of detecting the state of the substrate in the inside of the chamber is described. The method of detecting the plasma portion as the analysis method of the substrate processing apparatus according to the method for correcting the above-described luminous intensity will be described. Hereinafter, only the situation after replacing the components in the chamber is assumed, and the situation before and after the occurrence of the fog of the observation window 40 or before and after the sensor of the optical analyzer 41 is not assumed. Fig. 5 is a flow chart showing a method of detecting a plasma processing end point as a substrate processing and analyzing method according to the present embodiment. φ In Fig. 5, the plasma is first generated in the chamber S before the parts in the chamber are replaced, and the luminous intensity 42' of the processing gas of the fluidizing gas introduction tube 23 is measured by the introduction of the pre-gas analyzing unit 35 and the space is passed through the gas. The analyzing unit 34 measures the luminous intensity 43 of the processing gas by the processing (step S501). Next, the parts in the chamber (for example, the shadow ring or the focus ring step S502) are replaced, and then the plasma is generated in the processing space S, and the processed luminous intensity 44 flowing in the processing gas introduction tube 23 is measured by the introduction analyzing unit 35 (step S503). ). The self-illumination is also reversed by 45, Ϊ 47 » before the end of the light intensity, the division of the divisional separation space is moved by the place S (19) (the gas gas before the step -28- 1358768 Then, it is judged whether or not the luminous intensity 44 measured in the step S105 is the same as the luminous intensity 42 measured in the step S501 (step S5〇4), and is not the same as the processing gas introduced into the processing space S. The processing is terminated with respect to the abnormality or the failure of the spectroscopic analyzer 41, and the luminous intensity 45 of the processing gas passing through the processing space S is measured by the processing space after passing through the processing space (step S505). The difference between the measured luminous intensity 45 and the luminous intensity 43 measured in step S501 (step S106). As described above, the difference corresponds to the amount of variation 47 corresponding to the influence produced by replacing the components in the chamber. The wafer W is housed in the chamber 10 to perform plasma processing on the wafer W under specific plasma processing conditions (step S507), and the processing space S is measured by the gas analysis unit 34 after passing through the processing space. The luminous intensity 48 of the processing gas is removed (step S508), and the fluctuation amount 47 of the luminous intensity is removed from the luminous intensity 48 (step S509), and the luminous intensity 49 of the state in the chamber 10 is calculated to be true. The intensity 49 detects the end of the plasma treatment (step S510), and ends the process. If the process of the fifth embodiment is used, the luminous intensity of the process gas flowing through the process gas introduction pipe 23 measured before and after the replacement of the chamber parts is 42. When 44 is the same, the variation amount 47 of the luminous intensity 43 and 45 of the processing gas passing through the processing space S before and after the replacement of the components in the chamber is calculated, and the processing gas passing through the processing space S from the plasma processing of the wafer W is calculated. The luminous intensity 48 is calculated by subtracting the above-mentioned variation 47 to calculate the luminous intensity 49 of the state in the chamber 1〇. -29- 1358768 When the luminous intensities 42 and 44 measured before and after the replacement of the parts in the chamber are the same, The variation of the luminous intensity 45' after replacement of the parts in the chamber measured by the gas analysis unit 34 after the processing space passes, and the luminous intensity 43 before the replacement of the parts in the chamber The 47 series corresponds to the influence of the replacement of the parts in the chamber. Therefore, the luminous intensity of the state within the chamber 1〇 can be calculated by removing the above-mentioned variation 47' from the luminous intensity 48 measured in the electric prize processing of the wafer W. 49 'The result 'can correctly detect the state in the chamber 1 '' can correctly detect the end point of the plasma treatment. Moreover, even when the sensor replacement of the spectroscopic analyzer 41 is performed, the cleaning of the parts in the chamber is performed. When the dry cleaning in the chamber 10 is performed, the state of the inside of the chamber 10 can be accurately detected by the processing of Fig. 5 to determine the luminous intensity 4 of the state in the chamber 10. The substrate processing system 1 of the above first embodiment is a gas analysis unit 34 that passes through the processing space of the manifold 14 in the process module exhaust system. Accordingly, the processing space can be isolated from the chamber 10 through the post-gas analysis unit 34, and the processing space can be prevented from passing through the analysis processing of the post-gas analysis unit 34, for example, the plasma generation processing causes plasma treatment in the chamber 10, etc. influences. Furthermore, the multi-manifold 14 of the post-processing gas passing unit after the gas analysis unit 34 is in the process module exhaust system, which is the space upstream of the rectification ring 13 than the upstream of the TMP 16. In order to perform the exhaust, the TMP 16 must supply the nitrogen gas downstream of the TMP 16, but the processing space passes through the post-gas analysis unit 34 because it is disposed upstream of the TMP 16, so it is treated as a processing gas for the -30- 1358768 over-treatment space s. The luminescence intensity 48 measured by the atomic concentration or the molecular concentration does not reflect the influence of the supplied nitrogen gas. Further, after the processing space passes, the gas analysis unit 34 is disposed downstream of the rectifying ring 13, so that the illuminating intensity is 48. Does not reflect the impact of plasma. Therefore, the state inside the chamber 10 can be detected more correctly. Further, the processing space passes through the post-gas analysis unit 34 or the pre-introduction gas analysis unit 35 to generate plasma in the sub-chamber 37, and the generated plasma excites the processing gas taken out from the multi-manifold 14 or the processing gas introduction tube 23. in.  An atom or a molecule emits an atom or a molecule, and the luminescence is split to measure the luminescence intensity of the atom or molecule. Therefore, the atomic concentration or molecular concentration of the processing gas can be measured. Since the high frequency power required to generate plasma in the gas analysis unit 34 or the pre-introduction gas analysis unit 35 after the passage of the treatment space is weak, for example, several watts or so, atomization or deterioration of the observation window 40 is hard to occur. Therefore, by using the processing space through the post-gas analyzing unit 34 or the like, the luminous intensity of an atom or a molecule can be accurately measured. Further, since the processing space passes through the after-gas analysis unit 34 or the pre-introduction gas analysis unit 35, the inside of the sub-chamber 37 is exhausted by the exhaust device, so that the processing gas subjected to the spectroscopic analysis can be prevented from staying in the sub-chamber 37. And can more accurately measure the luminous intensity of atoms or molecules in the processing gas. Moreover, the time required for the spectroscopic analysis in the post-gas analysis unit 34 or the like is not required to be the same as the time required for the plasma treatment in the chamber, so that plasma will be generated in the sub-chamber 37. The time -31 - 1358768 is suppressed to the required minimum, and the time for the flow of the coil 38 can also be suppressed to the required minimum. Furthermore, the substrate processing system 1 is in the cavity of the load lock module load lock module exhaust system 32 flow load lock module 5 | the gas 'load lock module gas analysis unit 36 receives the flow lock module exhaust system The gas of 32 reflects the atomic concentration or molecular concentration of the gas in the atomic concentration of the gas or the concentration of the molecule within the molecular concentration 30 according to the luminescence intensity of the original molecule in the gas. Therefore, the chamber 30 state of the load lock module 5 can be detected. Further, it is known that the following detection and estimation are performed based on the light emission of the gas in the chamber 30. The following detection and estimation are carried out by the self-installed module gas analyzing unit 36 transmitting the above-mentioned luminous intensity electric signal or an external server. • Detecting the composition or concentration of the process gas flowing into the load lock 'fixing module 5 of the self-made process 2, detecting the adsorption point of the wafer W adsorbed before the plasma treatment • detecting the moisture or treatment from the wafer W End of Flushing of Gas (e.g., Gas) • Detection of Atmospheric Leakage, etc. Further, the load lock module gas analysis unit 36 is connected to the fixed module exhaust system 32. Accordingly, the load lock module unit 36 can be isolated from the chamber 30, and the load lock can be prevented from being mounted on the load or the load. The strength of the shape in the chamber can be locked into the computer dad 30. The CF system is loaded with the lock gas distribution module - 32 - 1358768 The analysis of the gas analysis unit 36 is performed in the chamber 30 of the load lock module 5 Spread the impact. Although the substrate processing system 1 is connected to the manifold 14 by the analysis unit 34 after the processing space passes, the location of the gas analysis unit 34 after the connection processing is passed is not limited thereto, even in the process module exhaust system. It is also possible anywhere, and even if it is connected to the chamber 10. Accordingly, the processing gas passing through the processing space S can be easily received by the gas analyzing unit 34, and as a result, the state inside the chamber 1 can be easily detected. Further, although the load lock module gas analysis unit 36 is connected to the load lock module exhaust system 32, the load lock module analysis unit 36 may be connected to the chamber 30. Accordingly, the load lock module analyzing unit 36 can easily receive the gas in the chamber 30, and as a result, the state inside the chamber 30 can be easily detected. The processing space passes through the post-gas analysis unit 34, the pre-introduction gas analysis unit 35, and the load-locking module gas analysis unit 36. Although the sub-chamber 37 is internally generated with plasma, the processing space passes through the post-gas analysis unit 34 and the like. It is not limited to this. Even if a gas mass analyzer or a Fourier transform infrared spectrophotometer (FTIR) is used as the processing space after the gas phase decomposing unit 34, the atomic concentration of the gas in the processing gas or chamber 30 can be measured with higher precision. Or molecular concentration. Further, after the processing space passes, the gas analyzing unit 34 may generate a plasma even if it does not have a sub-chamber. Specifically, as shown in FIG. 6, the inter-process gas passing unit 34' is provided with a flow processing gas of -33-1358768 crank-shaped curved tube 50 (gas tube) (for example, one of the process module exhaust systems) a portion), a plasma generating device 51 for generating plasma in the curved tube 50, and an observation window 52 composed of quartz glass embedded in the wall surface of the curved tube 50, and facing the observation window 52. The spectroscopic analyzer 53 (spectroscopic measuring device). In the post-pass gas analysis unit 34' passing through the processing space, the spectroscopic analyzer 53 receives the afterglow of the curved tube 50 downstream of the plasma generating center portion 50a via the observation window 52, and splits the light to measure the luminous intensity. Then, the atomic concentration or molecular concentration of the gas is measured based on the measured result. If the processing space passes through the post-gas analyzing unit 34', the afterglow downstream of the plasma generating center portion 50a in the curved tube 50 is split to measure the luminous intensity. Therefore, the luminous intensity can be measured correctly, and since it is not necessary to provide the sub-chamber for taking in the processing gas, the processing gas analysis can be performed by an inexpensive configuration. Further, the pre-introduction gas analysis unit 35 or the load-locking module gas analysis unit 36 may have the same configuration as the post-treatment gas analysis unit 34'. Further, the gas analysis unit having the same configuration as the load lock module gas analysis unit 36 can also be used for detecting the state in the loading module 4 or the wafer cassette 3. The analysis method of the substrate processing apparatus according to the present embodiment using the above-described method for correcting the illuminance is applied to the end point detection of the plasma processing. However, the target of the end point detection to be applied is not limited thereto, and even COR (Chemical Oxide) Remove). Treatment or PHT (P〇st Heat Treatment) treatment is also possible. Further, the object of the present invention is to provide a memory medium on which a program code for realizing the function of the above-described embodiment is recorded to a computer or an external server, and read and store it in a computer by a CPU such as a computer. The code of the media is implemented and implemented. At this time, the code itself read by the self-reported media has realized the functions of the above-described embodiment, and the code and the memory medium in which the code is stored constitute the present invention. Furthermore, if the media is used to supply the code, for example, RAM, NV-R AM, floppy disk (registered trademark) disc, hard disk, optical disk, CD ROM, CD-R, CD-RW, CDs, tapes, non-volatile memory cards, other ROMs, etc., such as DVDs (DVD-ROM, DVD-RAM, DVD-RW, DVD + RW), can be used to memorize the above code. Or the above code can be supplied to a computer or the like even by downloading from a computer or a database connected to the Internet, a commercial network, or a local area network, etc. The program code read by the device not only realizes the functions of the above embodiment, but also includes some or all of the actual processing performed by the os (operation system) or the like operating on the CPU according to the instruction of the code. The case of realizing the functions of the above embodiments. Further, the program code read from the memory medium is written to a memory of a function expansion board inserted in a computer or the like, or connected to a computer, or the like, and executed according to the instruction of the code. The CPU or the like provided in the function expansion board or the function expansion unit performs part or all of the actual processing, and the processing of the above-described embodiment is realized in the case of -35-1358768. The form of the above code is formed by the object code, the code code executed by the compiler, and the document data supplied to the os, etc. "5J 〇 [Simple description of the drawing] Fig. 1 shows the application of the code A cross-sectional view showing a schematic configuration of a substrate processing system of a substrate processing apparatus according to a first embodiment of the present invention. Fig. 2 is a schematic view showing a schematic configuration of a gas analysis unit or the like after the processing space in Fig. 1 is passed. Fig. 3 is a flow chart showing a plasma processing end point detecting method which is an analysis method of the substrate processing apparatus according to the embodiment. Fig. 4 is a view for explaining a method of correcting the luminous intensity of the processing gas of the substrate processing apparatus according to the second embodiment of the present invention, and Fig. 4(A) is a view showing the luminous intensity of the processing gas passing through the processing space. FIG. 4(B) is a diagram showing the luminous intensity of the corrected processing gas obtained by using the variable portion in FIG. 4(A). FIG. . Fig. 5 is a flowchart showing a method of detecting a plasma processing end point as an analysis method of the substrate processing apparatus according to the embodiment. Fig. 6 is a view showing a modification of the gas analysis unit or the like after the processing space of Fig. 2 is passed. A schematic diagram of the composition of the strategy. [Main component symbol description] -36- 1358768

s:處理空間 w :晶圓 1 :基板處理系統 2 :製程模組s: processing space w : wafer 1 : substrate processing system 2 : process module

5 :裝載鎖定模組 1 3 :整流環 14 :多歧管 16 : TMP5: Load lock module 1 3 : Rectifier ring 14 : Multi-manifold 16 : TMP

23:處理氣體導入管 3 2 =裝載鎖定模組排氣系統 34:處理空間通過後氣體分析單元 35:導入前氣體分析單元 3 6 :裝載鎖定模組氣體分析單元 3 7 :副腔室 39 :高頻電源23: Process gas introduction pipe 3 2 = load lock module exhaust system 34: process space after gas analysis unit 35: pre-introduction gas analysis unit 3 6 : load lock module gas analysis unit 3 7 : sub-chamber 39: High frequency power supply

40 :觀測窗 4 1 :分光分析器 -37-40: Observation window 4 1 : Spectroscopic analyzer -37-

Claims (1)

1358768 第096142478號專利申請案中文申請專利範圍修正本 民國100年6月10日修正 十、申請專利範圍 1. 一種基板處理裝置,具備收容基板之收容室,和將 氣體導入至該收容室之氣體導入裝置,上述收容室具有使 用上述氣體對上述基板施予特定處理之處理空間,其特徵 爲:具備 分析上述收容室導入前之氣體的導入前氣體分析裝 置; 分析上述處理空間通過後之氣體的通過後氣體分析裝 置;和 根據上述收容室導入前之氣體分析結果及上述處理空 間通過後之氣體分析結果,檢測上述收容室內之狀態的狀 態檢測裝置, 該狀態檢測裝置是算出在對多數上述基板施予上述特 定處理之前的上述處理空間通過後之氣體分析結果對上述 收容室導入前之氣體分析結果之比,並算出在對上述多數 之上述基板施予上述特定處理之後的上述處理空間通過後 之氣體分析結果對上述收容室導入前之氣體分析結果之 比,以在對上述多數之上述基板施予上述特定處理之前的 比及在對上述多數之上述基板施予上述特定之處理之後的 比成爲相同之方式,算出捕正在對上述多數之上述基板施 予上述特定處理之後的上述處理空間通過後之氣體分析結 果之分析結果之補正値,使用該算出之分析結果之補正値 1358768 校正上述處理空間通過後之氣體分析結果。 2·如申請專利範圍第1項所記載之基板處理裝置,其 中,上述狀態檢測裝置是根據上述被校正之上述處理空間 通過後之氣體分析結果,檢測出上述特定之處理之終點。 3 .如申請專利範圍第1或2項所記載之基板處理裝 置,其中,具有將上述收容室內進行排氣之排氣系統,上 述通過後氣體分析裝置配置在上述排氣系統。 4·如申請專利範圍第3項所記載之基板處理裝置,其 中,上述收容室具有防止上述處理空間之電漿朝下游流出 的排氣板,上述排氣系統具有高分子真空泵,上述通過後 氣體分析裝置被配置在上述排氣板及上述高分子真空泵之 間。 5. 如申請專利範圍第1或2項所記載之基板處理裝 置,其中,上述通過後氣體分析裝置被配置在上述收容 室。 6. 如申請專利範圍第1或2項所記載之基板處理裝 置,其中,上述導入前氣體分析裝置及上述通過後氣體分 析裝置之至少一方具有接收氣體之氣體接收室;使該氣體 接收室內產生電漿之電漿產生裝置;和將藉由上述電漿而 激發之上述氣體中之原子或分子之發光予以分光而測量發 光強度之分光測量裝置。 7. 如申請專利範圍第1或2項所記載之基板處理裝 置,其中,上述導入前氣體分析裝置及上述通過後氣體分 析裝置之至少一方爲質量分析器。 -2- 1358768 8 .如申請專利範圍第1或2項所記載之基板處理裝 置,其中,上述導入前氣體分析裝置及上述通過後氣體分 析裝置之至少一方爲傅立葉(Fourier)轉換紅外分光光度 計。 9.如申請專利範圍第1或2項所記載之基板處理裝 置,其中,上述導入前氣體分析裝置及上述通過後氣體分 析裝置之至少一方具備上述氣體流動之氣體管:使該氣體 管內產生電漿之電漿產生裝置;和將上述氣體管內較電漿 產生中心部下游之餘輝予以分光而測量發光強度之分光測 量裝置。 10·如申請專利範圍第1或2項所記載之基板處理裝 置,其中,上述基板處理裝置連接有將上述基板搬出搬入 至該基板處理裝置之基板搬運裝置, 該基板搬運裝置具有分析該基板搬運裝置內之氣體的 氣體分析裝置。 1 1 ·如申請專利範圍第! 〇項所記載之基板處理裝置, 其中,上述基板搬運裝置具有將該基板搬運裝置內之氣體 進行排氣的第2排氣系統,上述氣體分析裝置被配置在該 第2排氣系統。 12. 如申請專利範圍第10項所記載之基板處理裝置, 其中’上述基板搬運裝置具有暫時收容上述基板之第2收 容室’上述氣體分析裝置被配置在上述第2收容室。 13. —種基板處理裝置,具備收容基板之收容室,和 將氣體導入至該收容室之氣體導入裝置,上述收容室具有 -3- 1358768 使用上述氣體對上述基板施予特定處理之處理空間,其特 徵爲:具備 分析上述收容室導入前之氣體的導入前氣體分析裝 置; 分析上述處理空間通過後之氣體的通過後氣體分析裝 置:和 根據上述收容室導入前之氣體分析結果及上述處理空 間通過後之氣體分析結果,檢測上述收容室內之狀態的狀 態檢測裝置, 該狀態檢測裝置是於在上述收容室之維修前後的上述 收容室導入前之氣體分析結果成爲相同之時,算出上述收 容室之維修前後間之上述處理空間通過後之氣體分析結果 之變動量,使用該算出之變動量校正上述處理空間通過後 之氣體分析結果。 1 4.如申請專利範圍第1 3項所記載之基板處理裝置, 其中’上述收容室之維修相當於零件更換、零件洗淨或是 上述收容室內之乾式清潔。 15.—種分析方法,屬於具備收容基板之收容室,和 將氣體導入至該收容室之氣體導入裝置,上述收容室具有 使用上述氣體對上述基板施予特定處理之處理空間的基板 處理裝置之分析方法,其特徵爲:具備 分析上述收容室導入前之氣體的導入前氣體分析步 驟; 分析上述處理空間通過後之氣體的通過後氣體分析步 -4- 1358768 ^ 驟: * 根據上述收容室導入前之氣體分析結果及上述處理空 * 間通過後之氣體分析結果,檢測上述收容室內之狀態的狀 態檢測步驟, 該狀態檢測步驟是算出在對多數上述基板施予上述特 定處理之前的上述處理空間通過後之氣體分析結果對上述 ' 收容室導入前之氣體分析結果之比,並算出在對上述多數 之上述基板施予上述特定處理之後的上述處理空間通過後 ® 之氣體分析結果對上述收容室導入前之氣體分析結果之 比,以在對上述多數之上述基板施予上述特定處理之前的 比及在對上述多數之上述基板施予上述特定之處理之後的 比成爲相同之方式,算出補正在對上述多數之上述基板施 予上述特定處理之後的上述處理空間通過後之氣體分析結 果之分析結果之補正値,使用該算出之分析結果之補正値 校正上述處理空間通過後之氣體分析結果》 φ 16.如申請專利範圍第15項所記載之基板處理裝置之 分析方法,其中,上述狀態檢測步驟是根據上述經校正之 上述處理空間通過後之氣體分析結果,檢測出上述特定處 理之終點。 17.—種分析方法,屬於具備收容基板之收容室,和 將氣體導入至該收容室之氣體導入裝置,上述收容室具有 使用上述氣體對上述基板施予特定處理之處理空間的基板 處理裝置之分析方法,其特徵爲:具備 分析上述收容室導入前之氣體的導入前氣體分析步 -5- 1358768 驟; 分析上述處理空間通過後之氣體的通過後氣體分析步 驟; 根據上述收容室導入前之氣體分析結果及上述處理$ 間通過後之氣體分析結果,檢測上述收容室內之狀態的狀 態檢測步驟, 該狀態檢測步驟是於上述收容室之維修前後的上述收 容室導入前之氣體分析結果成爲相同之時,算出上述收容 室之維修前後間之上述處理空間通過後之氣體分析結果之 變動量,使用該算出之變動量校正上述處理空間通過後之 氣體分析結果。 1 8 ·如申請專利範圍第1 7項所記載之基板處理裝置之 分析方法,其中,上述收容室之維修相當於零件更換、零 件洗淨或是上述收容室內之乾式清潔。1358768 Patent Application No. 096142478 Patent Application Revision of the Chinese Patent Application No. PCT, June 10, 100. Patent Application No. 1. A substrate processing apparatus having a housing chamber for housing a substrate and a gas for introducing a gas into the storage chamber In the introduction device, the storage chamber has a processing space for applying a specific treatment to the substrate by using the gas, and is characterized in that: a gas analysis device for introducing a gas before the introduction of the storage chamber is provided, and a gas after the passage of the processing space is analyzed. a post-gas analyzer; and a state detecting device that detects a state of the storage chamber based on a gas analysis result before the introduction of the storage chamber and a gas analysis result after the processing space passes, wherein the state detecting device calculates a plurality of the substrates a ratio of a gas analysis result after the passage of the processing space before the specific processing to the gas analysis result before the introduction of the storage chamber, and calculation of the processing space after the specific processing is performed on the plurality of substrates Gas fraction As a result, the ratio of the gas analysis results before the introduction of the storage chamber is the same as the ratio before the specific treatment is applied to the plurality of substrates, and the ratio after the specific treatment is applied to the plurality of substrates. In the method, the correction result of the analysis result of the gas analysis result after the processing space in which the above-described specific processing is applied to the plurality of substrates is calculated, and the correction result 値 1358768 of the calculated analysis result is used to correct the passage of the processing space. Gas analysis results. The substrate processing apparatus according to claim 1, wherein the state detecting means detects an end point of the specific processing based on a gas analysis result after the corrected processing space passes. The substrate processing apparatus according to claim 1 or 2, further comprising an exhaust system for exhausting the storage chamber, wherein the post-pass gas analysis device is disposed in the exhaust system. The substrate processing apparatus according to claim 3, wherein the storage chamber has an exhaust plate that prevents the plasma of the processing space from flowing downstream, and the exhaust system has a polymer vacuum pump, and the gas after the passage The analysis device is disposed between the exhaust plate and the polymer vacuum pump. 5. The substrate processing apparatus according to claim 1 or 2, wherein the post-pass gas analysis device is disposed in the storage chamber. 6. The substrate processing apparatus according to claim 1 or 2, wherein at least one of the pre-introduction gas analysis device and the post-pass gas analysis device has a gas receiving chamber that receives a gas; and the gas receiving chamber is generated. a plasma plasma generating device; and a spectroscopic measuring device that measures the luminescence intensity by splitting the luminescence of atoms or molecules in the gas excited by the plasma. 7. The substrate processing apparatus according to claim 1 or 2, wherein at least one of the pre-introduction gas analysis device and the post-pass gas analysis device is a mass analyzer. The substrate processing apparatus according to claim 1 or 2, wherein at least one of the pre-introduction gas analysis device and the post-pass gas analysis device is a Fourier-converted infrared spectrophotometer. . The substrate processing apparatus according to claim 1 or 2, wherein at least one of the pre-introduction gas analysis device and the post-pass gas analysis device includes a gas tube through which the gas flows: generating the gas tube a plasma plasma generating device; and a spectroscopic measuring device for measuring the luminous intensity by splitting the afterglow in the gas tube from the plasma generated downstream of the center portion. The substrate processing apparatus according to the first or second aspect of the invention, wherein the substrate processing apparatus is connected to a substrate transfer apparatus that carries the substrate into and out of the substrate processing apparatus, and the substrate conveyance apparatus analyzes the substrate conveyance A gas analysis device for the gas within the device. 1 1 · If you apply for a patent scope! The substrate processing apparatus according to the invention, wherein the substrate transfer device includes a second exhaust system that exhausts gas in the substrate transfer device, and the gas analysis device is disposed in the second exhaust system. 12. The substrate processing apparatus according to claim 10, wherein the substrate transfer device has a second storage chamber for temporarily storing the substrate. The gas analysis device is disposed in the second storage chamber. 13. A substrate processing apparatus comprising: a storage chamber for housing a substrate; and a gas introduction device for introducing a gas into the storage chamber, wherein the storage chamber has a processing space for performing a specific treatment on the substrate by using the gas -3- 1358768; A gas analysis device for introducing a gas before the introduction of the storage chamber, and a gas analysis device for analyzing the gas after the passage of the processing space: a gas analysis result before the introduction of the storage chamber and the processing space a state detecting device that detects the state of the inside of the storage chamber by the gas analysis result, and the state detecting device calculates the storage chamber when the gas analysis results before the introduction of the storage chamber before and after the maintenance of the storage chamber are the same The amount of change in the gas analysis result after the passage of the processing space before and after the maintenance is used, and the calculated variation amount is used to correct the gas analysis result after the passage of the processing space. 1 . The substrate processing apparatus according to claim 13 wherein the maintenance of the storage chamber corresponds to replacement of parts, cleaning of parts, or dry cleaning of the storage chamber. A method of analyzing a method, comprising: a storage chamber having a storage substrate; and a gas introduction device for introducing a gas into the storage chamber, wherein the storage chamber has a substrate processing device that applies a processing space for performing specific processing on the substrate using the gas. The analysis method is characterized in that: a gas analysis step before the introduction of the gas before the introduction of the storage chamber is analyzed; and a gas analysis step after the passage of the gas passing through the treatment space is analyzed. Step 4 - 1358768 ^: * Imported according to the storage chamber a state detecting step of detecting a state of the inside of the storage chamber, and a state of detecting the gas before the processing of the plurality of the substrates The ratio of the gas analysis result before the introduction of the gas chamber analysis results, and the gas analysis result of the passage of the processing space after the specific processing of the plurality of substrates is performed on the storage chamber The ratio of gas analysis results before introduction, The ratio before the application of the specific processing to the plurality of substrates is the same as the ratio after the specific processing is performed on the plurality of substrates, and the calculation is performed to apply the specificity to the plurality of substrates. The correction result of the analysis result of the gas analysis result after the processing space after the treatment is passed, and the gas analysis result after the passage of the processing space is corrected using the corrected correction result of the analysis result 》 16. As stated in claim 15 In the analysis method of the substrate processing apparatus described above, the state detecting step detects the end point of the specific processing based on the gas analysis result after the corrected processing space passes. 17. An analysis method comprising: a storage chamber having a storage substrate; and a gas introduction device for introducing a gas into the storage chamber, wherein the storage chamber includes a substrate processing device that applies a treatment space for the substrate to the substrate using the gas. The analysis method is characterized in that: the gas analysis step 5 - 1358768 is performed before the introduction of the gas before the introduction of the storage chamber; and the gas analysis step after the passage of the gas after the passage of the treatment space is analyzed; a gas analysis result and a gas analysis result after the passage of the treatment, and a state detecting step of detecting a state in the storage chamber, wherein the gas detection result before the introduction of the storage chamber before and after the maintenance of the storage chamber is the same At this time, the amount of change in the gas analysis result after the passage of the processing space between the storage chambers before and after the maintenance is calculated, and the gas analysis result after the passage of the processing space is corrected using the calculated fluctuation amount. The analysis method of the substrate processing apparatus according to claim 17, wherein the maintenance of the storage chamber corresponds to replacement of parts, cleaning of parts, or dry cleaning of the storage chamber.
TW096142478A 2006-11-10 2007-11-09 Substrate processing apparatus and analysis method therefor TW200839869A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305844A JP5016294B2 (en) 2006-11-10 2006-11-10 Substrate processing apparatus and analysis method of the apparatus

Publications (2)

Publication Number Publication Date
TW200839869A TW200839869A (en) 2008-10-01
TWI358768B true TWI358768B (en) 2012-02-21

Family

ID=39405199

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096142478A TW200839869A (en) 2006-11-10 2007-11-09 Substrate processing apparatus and analysis method therefor

Country Status (4)

Country Link
JP (1) JP5016294B2 (en)
KR (1) KR100938012B1 (en)
CN (1) CN100543932C (en)
TW (1) TW200839869A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338467B2 (en) * 2009-05-11 2013-11-13 コニカミノルタ株式会社 Plasma measuring device
KR101169764B1 (en) 2010-10-15 2012-07-30 (주)쎄미시스코 Real time monitoring system of process chamber
CN105405735B (en) * 2014-08-22 2017-07-25 中微半导体设备(上海)有限公司 The monitoring method of plasma processing apparatus and plasma-treating technology
KR101969276B1 (en) * 2016-06-30 2019-04-15 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing device, method for manufacturing semiconductor device, and recording medium
JP7254098B2 (en) * 2018-06-13 2023-04-07 サイマー リミテッド ライアビリティ カンパニー gas monitoring system
US11036202B2 (en) * 2018-12-13 2021-06-15 Lam Research Corporation Real-time health monitoring of semiconductor manufacturing equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353927A (en) * 1986-08-25 1988-03-08 Hitachi Ltd Plasma processing system
JPH02170981A (en) * 1988-12-21 1990-07-02 Fujitsu Ltd Cvd device
JPH11265878A (en) * 1998-01-27 1999-09-28 Internatl Business Mach Corp <Ibm> Method and device for providing detection of end point by analysis of residual gas
JP4387573B2 (en) * 1999-10-26 2009-12-16 東京エレクトロン株式会社 Process exhaust gas monitoring apparatus and method, semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus management system and method
JP2001250812A (en) 2000-03-08 2001-09-14 Sony Corp Method and device for detecting end point of plasma treatment
JP2001338967A (en) * 2000-05-29 2001-12-07 Hitachi Kokusai Electric Inc Board processing device
JP3634734B2 (en) * 2000-09-22 2005-03-30 株式会社日立製作所 Plasma processing apparatus and processing method
JP2002151467A (en) * 2000-11-15 2002-05-24 Nec Corp System and method for reusing exhaust gas
US6791692B2 (en) * 2000-11-29 2004-09-14 Lightwind Corporation Method and device utilizing plasma source for real-time gas sampling
JP2003179035A (en) * 2001-12-13 2003-06-27 Ulvac Japan Ltd End point-detecting method in plasma applied equipment
JP2004039952A (en) * 2002-07-05 2004-02-05 Tokyo Electron Ltd Plasma treatment apparatus and monitoring method thereof
JP4385086B2 (en) * 2003-03-14 2009-12-16 パナソニック株式会社 CVD apparatus cleaning apparatus and CVD apparatus cleaning method

Also Published As

Publication number Publication date
CN100543932C (en) 2009-09-23
KR20080042717A (en) 2008-05-15
JP5016294B2 (en) 2012-09-05
JP2008124216A (en) 2008-05-29
KR100938012B1 (en) 2010-01-21
CN101179008A (en) 2008-05-14
TW200839869A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
TWI358768B (en)
US8052376B2 (en) Turbo-molecular pump, substrate processing apparatus, and method for suppressing attachment of depositions to turbo-molecular pump
KR100789007B1 (en) Substrate processing device, substrate processing method and storage medium
US8257013B2 (en) Substrate treatment apparatus
JP2008243937A (en) Equipment and method for treating substrate
CN107039303B (en) Method and apparatus for estimating reduction efficiency of oxide layer on wafer by color sensing
JP2002057149A (en) Treatment device and its cleaning method
KR20040007738A (en) Processing device and processing method
US7231321B2 (en) Method of resetting substrate processing apparatus, storage medium storing program for implementing the method, and substrate processing apparatus
US8309421B2 (en) Dual-bulb lamphead control methodology
JP2020065079A (en) Plasma processing device and method for exposure to atmosphere
KR100737219B1 (en) Particle detecting method and storage medium storing program for implementing the method
JP2008235337A (en) Plasma treatment apparatus
JP2010093169A (en) Substrate transfer method, control program, and storage medium
TW202204687A (en) Plasma processing method and plasma processing apparatus
US7637143B2 (en) Substrate processing apparatus and analysis method therefor
TW202142858A (en) Inline measurement of process gas dissociation using infrared absorption
KR100819313B1 (en) Substrate processing apparatus, deposit monitoring apparatus, and deposit monitoring method
TW201913745A (en) Heat treatment apparatus and heat treatment method
JP4801547B2 (en) Mounting table, substrate processing apparatus, plasma processing apparatus, mounting table control method, plasma processing apparatus control method, control program, and storage medium
JP4972277B2 (en) Substrate processing apparatus recovery method, apparatus recovery program, and substrate processing apparatus
US20070074741A1 (en) Method for dry cleaning nickel deposits from a processing system
JP2010225847A (en) Vacuum processing apparatus, pressure reduction processing method, and substrate processing method
JP2008098514A (en) Substrate treatment equipment and end point detection method for substrate treatment
JP2016058361A (en) Plasma processing device and method for detecting light