TWI356942B - Liquid crystal display screen - Google Patents

Liquid crystal display screen Download PDF

Info

Publication number
TWI356942B
TWI356942B TW97117201A TW97117201A TWI356942B TW I356942 B TWI356942 B TW I356942B TW 97117201 A TW97117201 A TW 97117201A TW 97117201 A TW97117201 A TW 97117201A TW I356942 B TWI356942 B TW I356942B
Authority
TW
Taiwan
Prior art keywords
layer
liquid crystal
crystal display
carbon nanotube
substrate
Prior art date
Application number
TW97117201A
Other languages
Chinese (zh)
Other versions
TW200947072A (en
Inventor
Liang Liu
Kai-Li Jiang
Wei-Qi Fu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97117201A priority Critical patent/TWI356942B/en
Publication of TW200947072A publication Critical patent/TW200947072A/en
Application granted granted Critical
Publication of TWI356942B publication Critical patent/TWI356942B/en

Links

Description

1356942 九、發明說明: •【發明所屬之技術領域】 / 本發明涉及一種液晶顯示屏,尤其涉及一種可在低溫 " 下工作的液晶顯示屏。 【先前技術】 液晶顯示因爲低功耗、小型化及高質量的顯示效果, 成爲最佳的顯示方式之一。液晶顯示因爲低功耗、小型化 及高質量的顯示效果,成爲了最佳的顯示方式(請參見 “ Atomic-beam alignment of inorganic materials for liquid-crystal displays”,P. Chaudhari, et al.,Nature, vol 411, p56 (2001))。目前較爲常用的液晶顯示屏爲TN (扭曲 向列相)模式的液晶顯示屏(TN-LCD)。對於TN-LCD ’當電 極上未施加電壓時,液晶顯示屏處於“ OFF”狀態,光能透 過液晶顯示屏呈通光狀態;當在電極上施加一定電壓時, 液晶顯示屏處於“ ON”態,液晶分子長軸方向沿電場方向 排列,光不能透過液晶顯示屏,故呈遮光狀態。有選擇地 ® 在電極上施加電壓,可以顯示出不同的圖案。 然*先前技術中的液晶顯不屏的低溫工作特性比車父 差,從而極大地妨礙了液晶顯示屏在低溫環境中的使用。 造成液晶顯示屏低溫下不能正常工作的原因主要有以下兩 點:第一,液晶顯示屏的域值電壓係溫度的函數,隨著溫 度的下降,域值電壓要升高,所以,域值電壓的變化會造 成對比度的劣化。第二,液晶顯示屏係基於液晶分子狀態 的改變,而實現顯示功能的。在室溫時,所述液晶分子改 變的過程爲一種分子過程,其響應速度要比原子過程、電 子過程慢得多,無論上升或下降過程,都係―個由動力克 :阻力:二液B曰分子狀態變化的過程。隨著環境溫度下 降,液晶分子的枯度加大,使得液晶分子狀態改變的阻力 =之加大’響應速度就變得m,怎樣使液晶顯示 屏在低溫下正常工作成爲—個研究熱點。 先前技術採用在液晶顯示屏基板的内侧或外侧設置一 ,熱f對液晶顯示屏進行溫度補償,從而使得液晶顯示屏 明,所述加熱層的材料通常採用銦錫氧化物透 、,、、:而,由於銦錫氧化物透明導電臈串聯電阻較 够理想,因此採用上述加熱層的液晶顯示 屏無法有效改善低溫顯示效果。 =鐾於此’ 4有必要提供—種可在低溫下王作的液晶 顯不屏。 【發明内容】 宜脑一第Γ基體;—第二基體,所述第—基體與所述第二 二基體之於所述第一基體與所述第 括多個平行的第一溝ΓΓΓ:Γ液晶層的表面包 ί:=二晶層的表面,且第二導電配向層靠近液 声二第1二夕個平仃的第二溝槽’所述第二導電配向 列方向與第一導電配向層的第一溝槽排列 明;^埶#,兮遠,所述液晶顯示屏進一步包括至少一個透 …、曰明加熱層設置於第一基體或/和第二基體遠 1356942 離液晶層的表面,且所述透明加熱層包括多個奈米碳管。 I 與先前技術相比較,所述液晶顯示屏具有以下優點: 其一,可通過設置至少一透明加熱層對第一基板或/和第二 基板進行加熱,從而使得液晶顯示屏可在低溫下進行工 作。其二,由於所述透明加熱層設置於第一基板或/和第二 基板的外側,無需改變原有的液晶顯示屏的内部結構和光 學通路,即可實現液晶顯示屏可在低溫下進行工作。 【實施方式】 > 以下將結合附圖對本技術方案作進一步的詳細說明。 請參閱圖1,本技術方案第一實施例所提供一種液晶 顯示屏200,其包括一第一基體202、一第一導電配向層 204、一液晶層238、一第二導電配向層224、一第二基體 222。所述第一基體202與所述第二基體222相對設置;所 述液晶層238設置於所述第一基體202與所述第二基體 222之間。第一導電配向層204設置於所述第一基體202 > 的靠近液晶層238的表面,且第一導電配向層204靠近液 晶層238的表面包括多個平行的第一溝槽208 ;第二導電 配向層224設置於所述第二基體222的靠近液晶層238的 表面,且第二導電配向層224靠近液晶層238的表面包括 多個平行的第二溝槽228,所述第二導電配向層224的第 二溝槽228排列方向與第一導電配向層204的第一溝槽 208排列方向垂直。 所述第一基體202與第二基體222應選用硬性或柔性 的透明材料,如玻璃、石英、金剛石或塑料等。本實施例 1356942 -1去二述第一基體逝和第二基體222的材料爲三乙酸纖 :=(cellul()se THaeetate,CTA)等柔性材料。優選地,第一 /基體202和第二基體222的材 ^ 岣爲CTA材料形成。可以 理解’所述第一基體2〇2與第_ 也可以不同。 -弟一基體222的材料可以相同, 曰述液晶層238包括多個長棒狀的液晶分子。所述液 j 238的液晶材料爲先前技術中常用的液晶材料。進一 • 第一導電配向層204與第二導電配向層224 多個支撑體(未標示),用以支撑液晶分子,防止 。配向層204和第二導電配向層22 所述支撑體爲聚乙烯(polvethvl外、,+ 扪· 古r g iyethylene)小球,該聚乙烯小球的 直么爲1 -1 〇微米。本實施例中 5微米。 只匕灼τ,所述聚乙烯小球的直徑爲 八-導電配向層204或/和第二導電配向層224可 刀別包括一透明導雷声;σ __ * , 23〇 » 曰 配向層,該配向層靠近液晶層 的斤述透明導電層設置於配向層遠離液晶層⑽ ^面。本實施例中,所述第—導電配向層施包括一第 声 第配向層204b,·第二導電配向 &括一第二透明導電層224a和-第-配向片 224b。所述第一透明導 第一配向層 萆層204a和弟二透明導電層224a Π二軋化物透明導電膜。所述第一配向層獅、 =酉己向層224b由高分子材料聚醯亞胺形成,經磨捧法, 傾斜4鍍Si〇x膜法和對膜 ’、 後,在所述第4㈣料方法處理 曰川4b、第二配向層22朴的表面上 10 < S> 1356942 形成多個溝槽,該溝槽可組成第一溝槽施 % 228,用於使液晶分子定向排列。 … 力述液晶顯示屏200進一步包括至少一透明加轨層, -該透明加熱層設置於第一基體肅或/和第二基體^^離 液晶層238的表面。本實施例令,所述液晶顯示屏鳩包 括一第一透明加熱層207,該第一透明加熱層2〇 太 米碳管層。所述奈米碳管層包括多個無序排列的太米碳: •或多個定向排列的奈米碳管。可以理解,上述的 加熱層207還可包括奈米碳管複合材料層,該複合材料層 可以爲奈米碳管、枯合劑、穩定化合物等材料組成的 明薄膜層。所述複合材料層具有較好的透明度和熱效率即 可。另,所述第-透明加熱層2〇7的方塊電阻需確保大於 所述透明導電層204a或224a的方塊電阻。 優選地,所述奈米碳管層中的奈米碳管有序排列且均 2分布。進—步地,所述奈米碳管層包括至少-層奈米碳 #管薄膜,該奈米碳管薄膜係從奈米碳管陣列中直^取^ 广進-步地,該奈米碳管薄膜包括沿同—方向擇優取向又 排列的多個奈米碳管。當所述奈米碳管層包括至少兩声太 米碳管薄膜時,所述至少兩層奈米碳管薄膜重叠設置^目 鄰的兩層奈米碳管薄膜中的奈米碳管的排 ^ 叉角度《,0如90。,具體可依據實際需求製傷°。具體地二 所述奈米碳管薄膜進-步包括多個通過凡德瓦爾力首 連的奈米碳管束片段’每個奈米碳管束片段具有相等的長 度且由多個相互平行的奈米碳管束構成。所述相鄰的奈米 11 1356942 碳管束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括 L多個長度相等且平行排列的奈米碳管,所述相鄰的奈米碳 /管之間通過凡德瓦爾力緊密結合。 所述奈米碳管層還可爲由多個奈米碳管長線緊密平行 排列組成的薄膜層。所述奈米碳管長線包括由多個通過凡 德瓦爾力首尾相連的奈米碳管束平行排列組成的束狀結 構’其中,每一奈米碳管束包括多個長度相等且平行排列 的奈米碳管。另外’所述奈米碳管長線還可包括由多個通 >過凡德瓦爾力首尾相連的奈米碳管束相互扭轉組成的絞線 結構’其中’每一奈米碳管束包括多個長度相等且扭轉了 的奈米碳管。 上迷的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及 多壁奈米碳管_的一種或幾種。所述單壁奈米碳管的直徑 爲0.5奈求〜10奈米,雙壁奈米碳管的直徑爲1〇奈米〜 奈米,多壁奈米碳管的直徑爲1.5奈米〜5〇奈米。 所述第一透明加熱層207可覆蓋第一基體2〇2遠離液 晶層238的整個表面。另還可將所述第一透明加熱層2们 設計成一方波或鋸齒波等形狀的加熱層。所述圖形化的第 一透明加熱層207覆蓋在第一基體2〇2遠離液晶層238的 表面。請參_ 2,爲所述的方波形狀的第—透明加執層 2〇7覆蓋於第__基體逝的表面。所述第—透明加熱層^ =加熱部分207a和用於接入外部電壓的電極引線 。以理解’可將第—透明加熱層2〇7的各加敎部分 通過引線串聯或並聯起來,從而使得第一透明加熱層1356942 IX. Description of the invention: • [Technical field to which the invention pertains] / The present invention relates to a liquid crystal display, and more particularly to a liquid crystal display that can operate at a low temperature. [Prior Art] Liquid crystal display is one of the best display modes because of low power consumption, miniaturization, and high-quality display. LCD display is the best display method due to low power consumption, miniaturization and high quality display (see "Atomic-beam alignment of inorganic materials for liquid-crystal displays", P. Chaudhari, et al., Nature , vol 411, p56 (2001)). At present, the more commonly used liquid crystal display is a TN (Twisted Nematic) mode liquid crystal display (TN-LCD). For TN-LCD 'When no voltage is applied to the electrode, the liquid crystal display is in the "OFF" state, and the light energy is transmitted through the liquid crystal display; when a certain voltage is applied to the electrode, the liquid crystal display is in the "ON" state. The long axis direction of the liquid crystal molecules is arranged in the direction of the electric field, and the light cannot pass through the liquid crystal display, so that the light is blocked. Selectively ® Apply a voltage to the electrodes to show different patterns. However, the low-temperature operation characteristics of the liquid crystal display screen in the prior art are inferior to those of the vehicle, which greatly hinders the use of the liquid crystal display in a low temperature environment. The main reasons for the LCD screen not working properly at low temperature are as follows: First, the value of the liquid crystal display's domain voltage is a function of the temperature. As the temperature decreases, the domain voltage rises. Therefore, the domain voltage The change will cause the contrast to deteriorate. Second, the liquid crystal display is based on the change in the state of the liquid crystal molecules to realize the display function. At room temperature, the process of changing the liquid crystal molecules is a molecular process, and its response speed is much slower than the atomic process and the electronic process. Whether it is a rising or falling process, it is a power gram: resistance: two liquid B The process of 曰 molecular state changes. As the ambient temperature drops, the dryness of the liquid crystal molecules increases, so that the resistance of the liquid crystal molecules changes, and the response speed becomes m. How to make the liquid crystal display screen work at a low temperature becomes a research hotspot. The prior art adopts one on the inner side or the outer side of the liquid crystal display substrate, and the heat f compensates the temperature of the liquid crystal display, so that the liquid crystal display shows that the material of the heating layer is usually made of indium tin oxide, and: However, since the indium tin oxide transparent conductive tantalum series resistor is more ideal, the liquid crystal display panel using the above heating layer cannot effectively improve the low temperature display effect. = 鐾 ’ ’ 4 It is necessary to provide - a kind of liquid crystal display that can be used at low temperatures. SUMMARY OF THE INVENTION A second base, a second base, the second base and the second base are opposite to the first base and the first plurality of parallel first gullies: Γ The surface of the liquid crystal layer includes: ???the surface of the two-layered layer, and the second conductive alignment layer is adjacent to the second trench of the second acoustic occlusion of the second acoustic eccentricity; the second conductive alignment direction and the first conductive alignment The first trench of the layer is arranged in a clear manner; the liquid crystal display further comprises at least one transparent layer, the heating layer is disposed on the first substrate or/and the second substrate is away from the surface of the liquid crystal layer And the transparent heating layer comprises a plurality of carbon nanotubes. Compared with the prior art, the liquid crystal display has the following advantages: First, the first substrate or/and the second substrate can be heated by providing at least one transparent heating layer, so that the liquid crystal display can be performed at a low temperature. jobs. Secondly, since the transparent heating layer is disposed on the outer side of the first substrate or/and the second substrate, the liquid crystal display can be operated at a low temperature without changing the internal structure and the optical path of the original liquid crystal display. . [Embodiment] > The present technical solution will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1 , a first embodiment of the present invention provides a liquid crystal display 200 including a first substrate 202 , a first conductive alignment layer 204 , a liquid crystal layer 238 , and a second conductive alignment layer 224 . Second substrate 222. The first substrate 202 is disposed opposite to the second substrate 222; the liquid crystal layer 238 is disposed between the first substrate 202 and the second substrate 222. The first conductive alignment layer 204 is disposed on the surface of the first substrate 202 > near the liquid crystal layer 238 , and the surface of the first conductive alignment layer 204 adjacent to the liquid crystal layer 238 includes a plurality of parallel first trenches 208 ; The conductive alignment layer 224 is disposed on a surface of the second substrate 222 adjacent to the liquid crystal layer 238, and the surface of the second conductive alignment layer 224 adjacent to the liquid crystal layer 238 includes a plurality of parallel second trenches 228, the second conductive alignment The second trenches 228 of the layer 224 are arranged in a direction perpendicular to the direction in which the first trenches 208 of the first conductive alignment layer 204 are arranged. The first substrate 202 and the second substrate 222 should be made of a rigid or flexible transparent material such as glass, quartz, diamond or plastic. The material of the first substrate 1 and the second substrate 222 is a flexible material such as triacetate: = (cellul()se THaeetate, CTA). Preferably, the material of the first/substrate 202 and the second substrate 222 is formed of a CTA material. It can be understood that the first substrate 2 〇 2 and the _ may also be different. The material of the substrate 222 may be the same, and the liquid crystal layer 238 includes a plurality of long rod-shaped liquid crystal molecules. The liquid crystal material of the liquid j 238 is a liquid crystal material commonly used in the prior art. Further, the first conductive alignment layer 204 and the second conductive alignment layer 224 have a plurality of supports (not labeled) for supporting the liquid crystal molecules to prevent them. The alignment layer 204 and the second conductive alignment layer 22 are polyethylene (polvethvl, + 扪·古·r g iyethylene) pellets, and the polyethylene pellets are 1-1 μm. In the present embodiment, 5 μm.匕 τ, the diameter of the polyethylene pellets is eight-conducting alignment layer 204 or / and the second conductive alignment layer 224 can include a transparent thunder sound; σ __ *, 23 〇» 曰 alignment layer, The alignment layer is adjacent to the liquid crystal layer, and the transparent conductive layer is disposed on the alignment layer away from the liquid crystal layer (10). In this embodiment, the first conductive alignment layer includes a first alignment layer 204b, and the second conductive alignment includes a second transparent conductive layer 224a and a first alignment sheet 224b. The first transparent conductive first alignment layer 204 layer 204a and the second transparent conductive layer 224a Π a rolled transparent conductive film. The first alignment layer lion, the 酉 酉 layer 224b is formed of a polymer material polyimine, and is subjected to a grind method, a tilt 4 plating Si〇x film method and a film ', and after the fourth (four) material The method of treating the surface of the Sasakawa 4b and the second alignment layer 22, 10 <S> 1356942, forms a plurality of trenches, which may constitute a first trench application 228 for aligning the liquid crystal molecules. The liquid crystal display panel 200 further includes at least one transparent rail layer disposed on the surface of the first substrate or/and the second substrate away from the liquid crystal layer 238. In this embodiment, the liquid crystal display panel includes a first transparent heating layer 207, and the first transparent heating layer 2 is a carbon nanotube layer. The carbon nanotube layer comprises a plurality of randomly arranged carbon nanotubes: • or a plurality of aligned carbon nanotubes. It can be understood that the above heating layer 207 may further comprise a carbon nanotube composite layer, which may be a thin film layer composed of a material such as a carbon nanotube, a dry agent, a stabilizing compound or the like. The composite layer has good transparency and thermal efficiency. Further, the sheet resistance of the first transparent heating layer 2〇7 is required to be larger than the sheet resistance of the transparent conductive layer 204a or 224a. Preferably, the carbon nanotubes in the carbon nanotube layer are ordered and uniformly distributed. Further, the carbon nanotube layer comprises at least a layer of nanocarbon film, the carbon nanotube film is taken from the array of carbon nanotubes, and the nanometer The carbon tube film comprises a plurality of carbon nanotubes arranged in a preferred orientation along the same direction. When the carbon nanotube layer comprises at least two carbon nanotube films, the at least two carbon nanotube films overlap each other with a row of carbon nanotubes in a two-layer carbon nanotube film ^ Fork angle ", 0 such as 90. Specifically, it can be wounded according to actual needs. Specifically, the carbon nanotube film further comprises a plurality of carbon nanotube bundle segments first connected by van der Waals force. Each nano carbon nanotube bundle segment has an equal length and is composed of a plurality of mutually parallel nanometers. Carbon tube bundle. The adjacent nano 11 1356942 carbon tube bundles are tightly coupled by van der Waals force, and the carbon nanotube bundle comprises L plurality of carbon nanotubes of equal length and parallel arrangement, the adjacent nano carbon/ The tubes are tightly coupled by Van der Valle. The carbon nanotube layer may also be a thin film layer composed of a plurality of carbon nanotube long lines closely arranged in parallel. The long carbon nanotube line comprises a bundle structure consisting of a plurality of carbon nanotube bundles connected end to end by a van der Waals force, wherein each nano carbon nanotube bundle comprises a plurality of nanometers of equal length and parallel arrangement. Carbon tube. In addition, the long carbon nanotube line may further comprise a twisted wire structure composed of a plurality of carbon nanotube bundles connected end to end by a van der Waals force, wherein each of the carbon nanotube bundles comprises a plurality of lengths. Equal and twisted carbon nanotubes. The above-mentioned carbon nanotubes include one or more of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The diameter of the single-walled carbon nanotube is 0.5 to 10 nm, the diameter of the double-walled carbon nanotube is 1 〇 nanometer ~ nanometer, and the diameter of the multi-walled carbon nanotube is 1.5 nanometer ~ 5 〇 Nano. The first transparent heating layer 207 may cover the entire surface of the first substrate 2〇2 away from the liquid crystal layer 238. Further, the first transparent heating layer 2 may be designed as a heating layer having a shape such as a square wave or a sawtooth wave. The patterned first transparent heating layer 207 covers the surface of the first substrate 2〇2 away from the liquid crystal layer 238. Referring to _ 2, the first transparent bonding layer 2〇7 of the square wave shape covers the surface of the __ base body. The first transparent heating layer is a heating portion 207a and an electrode lead for connecting an external voltage. It is understood that the respective twisted portions of the first transparent heating layer 2〇7 may be connected in series or in parallel through the leads, thereby making the first transparent heating layer

12 < S 1356942 斯具有較好的熱效率,以及使得所述液晶顯示屏細具 •:有較好的透明特性’進而達到了良好的顯示效果。 進而爲了更好地實現對液晶顯示屏200進行加熱, 所述液晶顯示屏200還包括一第二透明加熱層227,該第 =透明加熱層227設置於第二基體222遠離液晶層238的 表面。所述第二透明加熱層227的材料及形狀可與第一透 =熱層207相同。可以理解’第一透明加熱層術或/ 透明加熱層227的設置方式’可根據實際需要進行 ^置’只需確保能對第-基板搬或/和第二基板222加熱 βρ可。 所,曰曰顯示屏200進一步包括至少一個偏振片(未 =出),該偏振片可設置於第一透明加熱層207和/或第二 _液晶層238的表面。當然,所述偏振 和第二二與第·'透明加熱層2〇7之間或/ .〇苐一透明加熱層227之間。具體設置方 式,可根據實際需要進行選擇。 力埶Μ 爲了保°蔓所述的第一透明加熱層2〇7、第二透明 明力:Γ員壞’還可分別在第-透明加熱層謝、 所述透明保護層可由保護層(未標示)。 I丁艾危J田鼠化矽、氧化12 < S 1356942 has a better thermal efficiency, and makes the liquid crystal display finer:: has better transparency characteristics' and thus achieves a good display effect. Further, in order to better heat the liquid crystal display 200, the liquid crystal display 200 further includes a second transparent heating layer 227 disposed on the surface of the second substrate 222 away from the liquid crystal layer 238. The material and shape of the second transparent heating layer 227 may be the same as that of the first transparent layer 207. It is to be understood that the arrangement of the first transparent heating layer or the transparent heating layer 227 can be performed as needed to ensure that the first substrate can be moved or/and the second substrate 222 can be heated. The display screen 200 further includes at least one polarizing plate (not = out) which may be disposed on the surface of the first transparent heating layer 207 and/or the second liquid crystal layer 238. Of course, the polarization is between the second and the 'transparent heating layer 2'7 or between the transparent heating layer 227. The specific setting method can be selected according to actual needs. In order to protect the first transparent heating layer 2〇7, the second transparent brightness: the employee is bad, the heat can also be respectively in the first transparent heating layer, and the transparent protective layer can be protected by a protective layer (not Mark). I Ding Aiwei J.

:醋膜或丙烯酸樹脂等形成,且具有一定的硬度,對第J 明和第二透明加熱層227起保護作用。 I第二透明加熱層227通 / 皿又工制系統控制其加熱的溫度。溫度控制系統的示意 < £· 13 1356942 圖如圖3所示,其包括溫度感測器10、信號處理單元20、 \數模轉換模塊30、微處理器40、繼電器50及電源60。其 中,溫度感測器10與信號處理單元20電連接,信號處理 / 單元20與數模轉換模塊30電連接,數模轉換模塊30與微 處理器40電連接,微處理器40與繼電器50電連接。第一 透明加熱層207或/和第二透明加熱層227與繼電器50電 連接,數模轉換模塊30、微處理器40及繼電器50分別與 一電源60電連接。進一步地,數模轉換模塊30還與一參 > 考電壓70電連接。其中,微處理器40爲一單片機系統。 以下將介紹用第一透明加熱層207或/和第二透明加 熱層227對液晶顯示屏200加熱的工作原理。 溫度感測器10設置於所述液晶顯示屏200的内部,對 液晶顯示屏200的内部溫度進行採樣,採樣後的模擬信號 在信號處理單元20進行信號放大和濾波;然後傳輸給模數 轉換模塊30進行模數轉換,轉換後得數字信號經微處理器 > 40處理後,輸出一脉衝信號給繼電器50,繼電器50的開 關觸點處於吸合狀態,因而電源60與第一透明加熱層207 或/和第二透明加熱層227接通,開始對液晶顯示屏200進 行溫度補償。當加熱到一定溫度時,溫度感測器採樣的溫 度信號大於參考電壓70時,微處理器40控制繼電器50, 使透明加熱層207或227斷電,以防止液晶顯示屏200過 熱。 在接入電源後,包含有奈米碳管的第一透明加熱層 207或/和第二透明加熱層227可輻射出一定波長範圍的電 ζ £ > 14 1356942 • t :具體地,當所述透明加熱層的面積大小(長度*寬度) 定,可以通過調節電源電壓大小和透明加熱層的厚 從而ϋ射出不同波長範圍的電磁波。當電源電麼的大 定時’所述透明加熱層的厚度和所述透明加熱層辕射 的電磁波的波長成反比。即#電源電Μ大小—定時所 述透明加熱層的厚度越厚,其輻射出電磁波的波長越短, =、發出可見光並產生—普通熱輻射;所述透明加熱層的 _ 度越薄,其輕射出電磁波的波長越長,可以産生一紅外 熱輻射。透明加熱層的厚度一定時,電源電壓的大小和該 透明加熱層輻射出電磁波的波長成反比。即當所述透明加 …、層的厚度-疋時’電源電壓越大,所述透明加熱層輕射 出電磁波的波長越短,可以發出可見光並產生一普通熱輕 射;電源電壓越小,所述透明加熱層輕射出電磁波的波長 越長’可以産生一紅外熱輻射。 奈米碳管作爲-理想的黑體結構,具有良好的導電性 _能以及熱穩定性,且具有比較高的熱輕射效率。奈米碳管 的表面積大,可以很方便地製成大面積的奈米碳管薄膜。 所述奈米碳管薄膜即可作爲透明加熱層。本技術方案實施 例中的奈米碳管薄膜的面積爲900平方厘米,其中該奈米 碳管薄膜的長度爲30厘米’寬度爲3〇厘米。該奈米碳管 薄膜包括多個奈米碳管。將該奈米碳管薄膜連接導線接入 電源後,施加10伏〜30伏的電壓,該透明加熱層即可輻射 出波長較長的電磁波。通過溫度測量儀發現該透明加执層 的溫度爲5(TC~50(TC。對於具有黑體結構的物體來說…, 15 (S ) 1356942 所對應的溫度爲20CTC〜450°C時就能發出人眼看不見的熱 。輻射(紅外線),此時的熱輻射最穩定、效率最高,所産生 /的熱輻射熱量最大。 « 4參閱圖4、圖5及圖6,本技術方案第二實施例提供 的一種液晶顯示屏300包括一第一基體3〇2、一第一導電 配向層304、-液晶層338、一第二導電配向層、一第 二基體322。所述第—導電配向層綱靠近液晶層338的 > f面包括多個平行的第—溝槽遍;且第二導電配向層324 罪近液晶層338的表面包括多個平行的第二溝槽似,所 述第二導電配向層324的第二溝槽328排列方向应第一導 電配向層304的第一溝槽3〇8排列方向垂直。進一步地, 所述液日日顯不屏3〇〇包括至少一读明‘為a: 择甘 透明加熱層’該透明加熱 ί 3〇2或/和第二基體322遠離液晶層338 本實施例中,所述液晶顯示屏300包括一第一透 明加熱層贿和-第二透明加熱層327,二透 基體302和第二義俨、食施V b a "又置;第 不乐一暴體3U退離液晶層338的表面。 所述液晶顯示屏3〇〇盘第一眚妙 結構大體相同,均設置透明加熱::=τ。。 之處在於,所述第一導電配向層304或、加=同 324可包括一奈米 $-導電配向層: a vinegar film or an acrylic resin or the like is formed and has a certain hardness to protect the J-th insulating layer and the second transparent heating layer 227. The second transparent heating layer 227 is controlled by the system to control the temperature at which it is heated. Schematic of the temperature control system < £13 13356942 is shown in FIG. 3, which includes a temperature sensor 10, a signal processing unit 20, a digital-to-analog conversion module 30, a microprocessor 40, a relay 50, and a power supply 60. The temperature sensor 10 is electrically connected to the signal processing unit 20, the signal processing/unit 20 is electrically connected to the digital-to-analog conversion module 30, the digital-to-analog conversion module 30 is electrically connected to the microprocessor 40, and the microprocessor 40 and the relay 50 are electrically connected. connection. The first transparent heating layer 207 or/and the second transparent heating layer 227 are electrically connected to the relay 50, and the digital to analog conversion module 30, the microprocessor 40 and the relay 50 are electrically connected to a power source 60, respectively. Further, the digital to analog conversion module 30 is also electrically coupled to a reference voltage 70. The microprocessor 40 is a single chip microcomputer system. The operation of heating the liquid crystal display panel 200 with the first transparent heating layer 207 or/and the second transparent heating layer 227 will be described below. The temperature sensor 10 is disposed inside the liquid crystal display 200, samples the internal temperature of the liquid crystal display 200, and the sampled analog signal is amplified and filtered by the signal processing unit 20; and then transmitted to the analog to digital conversion module. 30 performs analog-to-digital conversion, and the converted digital signal is processed by the microprocessor > 40, and outputs a pulse signal to the relay 50, and the switch contact of the relay 50 is in a pull-in state, so the power source 60 and the first transparent heating layer 207 or / and the second transparent heating layer 227 are turned on to start temperature compensation of the liquid crystal display 200. When heated to a certain temperature, when the temperature signal sampled by the temperature sensor is greater than the reference voltage 70, the microprocessor 40 controls the relay 50 to de-energize the transparent heating layer 207 or 227 to prevent the liquid crystal display panel 200 from overheating. After the power source is connected, the first transparent heating layer 207 or/and the second transparent heating layer 227 containing the carbon nanotubes can radiate electricity of a certain wavelength range. > 14 1356942 • t : specifically, The area size (length * width) of the transparent heating layer can be determined by adjusting the power supply voltage and the thickness of the transparent heating layer to emit electromagnetic waves of different wavelength ranges. When the power source is at a large timing, the thickness of the transparent heating layer is inversely proportional to the wavelength of the electromagnetic wave emitted by the transparent heating layer. That is, the size of the power supply is large. The thicker the thickness of the transparent heating layer is, the shorter the wavelength of the electromagnetic wave is radiated, the light is emitted, and the ordinary heat radiation is generated; the thinner the _ degree of the transparent heating layer is, The longer the wavelength of the electromagnetic wave is lightly emitted, an infrared heat radiation can be generated. When the thickness of the transparent heating layer is constant, the magnitude of the power supply voltage is inversely proportional to the wavelength of the electromagnetic wave radiated by the transparent heating layer. That is, when the thickness of the layer is increased, the thickness of the layer is greater than the power supply voltage, the shorter the wavelength of the transparent heating layer is, the shorter the wavelength of the electromagnetic wave is, the more visible light can be emitted and the ordinary heat is emitted; the smaller the power supply voltage is, the smaller the power supply voltage is. The longer the wavelength of the transparent heating layer that emits the electromagnetic wave, the more the infrared radiation can be generated. As an ideal black body structure, the carbon nanotubes have good electrical conductivity and thermal stability, and have relatively high heat and light efficiency. The carbon nanotube has a large surface area and can be easily fabricated into a large-area carbon nanotube film. The carbon nanotube film can be used as a transparent heating layer. The area of the carbon nanotube film in the embodiment of the present technical solution is 900 cm 2 , and the length of the carbon nanotube film is 30 cm' width of 3 cm. The carbon nanotube film comprises a plurality of carbon nanotubes. After the carbon nanotube film connecting wire is connected to the power source, a voltage of 10 volts to 30 volts is applied, and the transparent heating layer can radiate electromagnetic waves having a long wavelength. The temperature of the transparent additive layer was found to be 5 (TC~50 (TC for a body with a black body structure..., when the temperature corresponding to 15 (S) 1356942 is 20 CTC to 450 °C). The heat that is invisible to the human eye. Radiation (infrared), the heat radiation at this time is the most stable and efficient, and the heat radiation generated is the largest. « 4 Referring to FIG. 4, FIG. 5 and FIG. 6, the second embodiment of the present technical solution A liquid crystal display panel 300 includes a first substrate 3〇2, a first conductive alignment layer 304, a liquid crystal layer 338, a second conductive alignment layer, and a second substrate 322. The first conductive alignment layer The > f plane adjacent to the liquid crystal layer 338 includes a plurality of parallel first trenches; and the second conductive alignment layer 324 is adjacent to the surface of the liquid crystal layer 338 including a plurality of parallel second trenches, the second conductive The second trenches 328 of the alignment layer 324 are arranged in a direction perpendicular to the arrangement direction of the first trenches 3〇8 of the first conductive alignment layer 304. Further, the liquid surface display screen includes at least one readout. For a: choose a transparent heating layer 'this transparent heating ί 3〇2 or / and second The body 322 is away from the liquid crystal layer 338. In this embodiment, the liquid crystal display panel 300 includes a first transparent heating layer bridging layer and a second transparent heating layer 327, a second transparent substrate 302 and a second substrate, and a food application V ba " Further, the first violent body 3U retreats from the surface of the liquid crystal layer 338. The liquid crystal display screen 3 has the same structure, and is provided with transparent heating::=τ. The first conductive alignment layer 304 or the addition = the same 324 may include a nanometer $-conductive alignment layer

At τ反e增由於所达奈米碳管芦且古道 性能,可同時起到對液晶分子 反S層具有導電 設置-透明導電芦ΐ : 和導電的作用,故無需 逐月導電層’可以簡化液晶顯 小液晶顯示屏3〇〇的厚度。 的…構和减 所述奈米碳管層中的奈米碳管有序排列且均句分布。 < 5 ) 16 1356942 進一步地,所述奈米碳管層包括至少一層奈米碳管薄膜, •-該奈求碳管薄膜係從奈米碳管陣列中直接拉取獲得。進一 (步地,該奈米碳管薄膜包括沿同一方向擇優取向排列的多 _個奈米碳管。當所述奈米碳管層包括至少兩層奈米碳管薄 膜時所述至少兩層奈米碳管薄膜重叠設置,相鄰的兩層 奈米碳管薄膜中的奈米碳管的排列方向具有一交又角度 α,且OagO。’具體可依據實際需求製備。具體地,所述 #奈米碳管薄膜進一步包括多個通過凡德瓦爾力首尾相連的 奈米碳管束片段,每個奈米碳管束片段具有相等的長度且 由多個相互平行的奈米碳管束構成。所述相鄰的奈米碳管 束之間通過凡德瓦爾力緊密結合,該奈米碳管束包括多個 長度相等且平行排列的奈米碳管,所述相鄰的奈米碳管之 間通過凡德瓦爾力緊密結合。所述奈米碳管薄膜中的多個 $米碳管束和多個奈米碳管之間存在間隙’故上述奈米碳 ^層具有多個平行且均勻分布的間隙。可以理解奈米碳 φ官層上的間隙可組成第一溝槽3〇8或第二溝槽328。 所述奈米碳管層還可爲由多個奈米碳管長線緊密平行 排列組成的薄膜層。所述奈米碳管長線包括由多個通過凡 德瓦爾力首尾相連的奈米碳管束平行排列組成的束狀结構 或由多個通過凡德瓦爾力首尾相連的奈米礙管束相互扭轉 組成的絞線結構。每一奈米碳管束包括多個長度相等且平 行排列的奈米碳管。所述奈米碳管層中的多個奈米碳管束 之間、多個奈未碳管之間或/和多個奈米碳管長線之間且有 平行且均勾分布的間隙。所述間隙可用作第-溝槽308和 17 (s> 1356942 第二溝槽328,從而對液晶分子進行配向。所述第一導電 配向層304和第二導電配向層324的厚度範園分別在2〇 奈米〜5微米之間。 上述的奈米碳管包括單壁奈米碳管、雙壁奈米碳管及 多壁奈米碳管尹的—種或幾種。所述單壁奈米碳管的直徑 爲、〇·5奈米〜1〇奈米,雙壁奈米碳管的直徑4 1.0奈米〜15 奈米’多壁奈米碳管的直徑爲15奈米〜5〇奈米。 進一步地,當第一導電配向層304或/和第二導電配向 層324爲-奈米碳管層時,爲防止奈米碳管層脫落,還可 在奈米碳管層的表面設置一固定層。 j實施例中,所述第一導電配向層304包括一第一奈 米厌s層304a和-第—固定層綱b,所述第二導電配向 層324包括-第二奈米碳管層伽和一第二固定層 324b。所述第一固定層3〇4b和第二固定層现分別設置 於第導電配向層304和第二導電配向層324靠近液晶層 的表面。由於第—導電配向層綱中的第一奈米碳管 ^ a和第一導電配向層324中的第二奈米碳管層gw 罪近液晶層338的表面分別具有多個平行且均勻分布的間 ::文所述第固定層3〇4b和第二固定層324b分別覆 盍在第-奈米碳管層綱a和第二奈来碳管層魏靠近液 晶層338的表面時,會在第一固定層3_和第二固定層 :的表面形成多個平行且均句分布的溝槽;該溝槽可分 成第導電配向層304的第一溝槽3〇8和第二導電配 向層324的第二溝槽328。At τ anti-e increase due to the performance of the nanocarbon tube and the ancient channel, it can simultaneously have a conductive setting for the anti-S layer of liquid crystal molecules - transparent conductive reed : and conductive effect, so no need for monthly conductivity layer can be simplified The LCD has a small liquid crystal display with a thickness of 3 inches. The carbon nanotubes in the carbon nanotube layer are ordered and evenly distributed. < 5 ) 16 1356942 Further, the carbon nanotube layer comprises at least one layer of carbon nanotube film, and the carbon nanotube film is directly drawn from the carbon nanotube array. Further, the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction. When the carbon nanotube layer comprises at least two layers of carbon nanotube film, the at least two layers The carbon nanotube film is arranged in an overlapping manner, and the arrangement direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film has an intersection angle α and OagO. 'Specifically, it can be prepared according to actual needs. Specifically, the The nanocarbon film further comprises a plurality of carbon nanotube bundle segments connected end to end by van der Waals force, each of the carbon nanotube bundle segments having equal lengths and consisting of a plurality of mutually parallel carbon nanotube bundles. The adjacent carbon nanotube bundles are tightly coupled by van der Waals force, and the carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and parallel arrangement, and the adjacent carbon nanotubes pass through the van der Waals Valli is closely combined. There is a gap between the plurality of carbon nanotube bundles and the plurality of carbon nanotubes in the carbon nanotube film. Therefore, the above nanocarbon layer has a plurality of parallel and evenly distributed gaps. Understand the gap on the nano-carbon φ layer The first trench 3〇8 or the second trench 328 may be formed. The carbon nanotube layer may also be a thin film layer composed of a plurality of carbon nanotube long lines closely arranged in parallel. The carbon nanotube long line includes A bundle structure consisting of a plurality of rows of carbon nanotubes connected end to end by Van der Valli force or a twisted wire structure consisting of a plurality of twisted nanotube bundles connected end to end by Van der Waals force. The carbon tube bundle comprises a plurality of carbon nanotubes of equal length and arranged in parallel. The plurality of carbon nanotube bundles in the carbon nanotube layer, between the plurality of nai carbon tubes or/and the plurality of carbon nanotubes There are parallel and evenly spaced gaps between the lines. The gaps can be used as the first trenches 308 and 17 (s> 1356942 second trenches 328 to align liquid crystal molecules. The first conductive alignment layer The thickness of 304 and the second conductive alignment layer 324 are between 2 nm and 5 μm, respectively. The above carbon nanotubes include single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled nanocarbons. One or several types of Guan Yin. The diameter of the single-walled carbon nanotube is 〇·5 nm~1〇 Nano, double-walled carbon nanotubes with a diameter of 4 1.0 nm ~ 15 nm 'multi-walled carbon nanotubes with a diameter of 15 nm ~ 5 〇 nanometer. Further, when the first conductive alignment layer 304 or / When the second conductive alignment layer 324 is a carbon nanotube layer, a fixing layer may be disposed on the surface of the carbon nanotube layer to prevent the carbon nanotube layer from falling off. In the embodiment, the first conductive layer The alignment layer 304 includes a first nano-optical layer 304a and a -first-fixed layer b, and the second conductive alignment layer 324 includes a second carbon nanotube layer gamma and a second fixed layer 324b. The first fixed layer 3〇4b and the second fixed layer are respectively disposed on the surface of the first conductive alignment layer 304 and the second conductive alignment layer 324 near the liquid crystal layer. The first carbon nanotube in the first conductive alignment layer is ^ a and the second carbon nanotube layer gw in the first conductive alignment layer 324 have a plurality of parallel and evenly distributed surfaces on the surface of the liquid crystal layer 338: the first fixed layer 3〇4b and the second fixed The layer 324b is respectively covered when the first-carbon nanotube layer a and the second carbon nanotube layer are close to the surface of the liquid crystal layer 338. The surface of the 3_ and the second fixed layer: forms a plurality of parallel and uniformly distributed grooves; the groove may be divided into the first trench 3〇8 of the first conductive alignment layer 304 and the second of the second conductive alignment layer 324 Trench 328.

18 < S 1356942 當所述固定層的材料爲類金剛石的氫化物、氮化矽、 定型”氫化物、碳化石夕、二氧化石夕、氧化紹、氧化飾、 γ氧化錫、鈦酸鋅或鈦酸銦時,可採用蒸發、濺射或者等離 -子增强化學氣相沉積(PECVD)生長的方法附著於第一奈米 碳管層304a和第二奈米碳管層32如的表面。當所述^ 層的材料爲聚乙晞醇、聚醯亞胺、聚甲基丙稀酸甲醋或聚 碳酸醋可採用甩膠法附著於第—奈米碳管層綱a和第 一奈米奴官層324a的表面。所述固定層的厚度爲2〇 〜2微米。 ’、 ★本實施财,所述第一奈米碳管層304a和第二奈米碳 管層324a分別爲一個奈米碳管薄膜,且第一奈米碳管層 304a的奈米碳管的排列方向與所述第二奈米碳管層%鈍 的奈米碳管的排列方向垂直,從而使得第—導電配向層 304的第-溝槽308與第二導電配向们24的第二溝槽3二 的排列方向垂直,以便於對液晶層338中的液晶分子進行 配向。具體地,第一導電配向層3〇4中的第一溝槽罵沿 X軸方向平行且定向排列;第二導電配向層324中的第二 溝槽328沿Z輛方向平行且定向排列。所述的第—導電配 向層304和第二導電配向層324的厚度範圍分別在丄微米 〜50微米之間。 另,所述配向層中的多個奈米碳管係定向排列的,故 所述不米碳s層具有對自然光的偏振作用,從而可以代替 先前技術中的偏振片起到偏振作用。當然,爲使得液晶顯 示屏300具有更好的偏振效果,所述液晶顯示屏進一 19 (S ). 1356942 :透明加埶二 片(未不出),該偏振片可設置於第一 ,·的表®ΓΙ 307和/或第二透明加熱層327遠離液晶層338 (.一 。^然’所述偏振片也可設置於第一基體搬虚第 一透明加熱層307之間或 /、 層327之間。 和第一基體322與第二透明加熱 細1^理解本技術方案實_所提供的液晶顯示屏 爲單像素的液晶顯示屏。進—步,還可以將多 二的早像素液晶顯示屏鳩,按照—狀規律設 参點陣設置,用於多像素的液晶顯示器中。該多個單 ^的n屏可以㈣共用基板的方式設置,即採用 目同的大面積的第一基板、第二基板。另,還可直接將上 这的多個液晶顯示屏組裝在—起,用於多像素顯示。 本技術方案實施例所述的液晶顯示屏具有以下優點: 其:,可通過設置一透明加熱層對第一基體或/和第二基體 進仃加熱,從而使得液晶顯示屏可在低溫下進行工作。其 二,由於透明加熱層設置於第一基體或/和第二基體的外 側,無需改變原有的液晶顯示屏的内部結構和光學通路, =可實現液晶顯示屏在低溫下進行工作。其三,由於所述 奈米碳管層具有良好的導電性能,故本實施例中的液晶顯 示屏採用合有奈米碳管層的配向層時,無需額外增加透明 電極層,從而可使得液晶顯示屏具有較薄的厚度,簡化液 晶顯示屏的結構。其四,覆蓋一固定層於所述奈米碳管層 的表面可使件所述用作配向層的奈米碳管層在與液晶材 料長時間接觸時,不脫落,從而使得所述液晶顯示屏具有 20 較好的配向品質。 ^ θ '综上所述’本發明確已符合發明專利之要件,遂依法 提出專射4。惟’以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案第一實施例的液晶顯示屏的立體結 攀構示意圖。 一圖2為本技術方案第一實施例的透明加熱層的俯視結 構示意圖。 〇 圖3為本技術方案第一實施例的對液晶顯示屏的進行 溫度補償的工作電路示意圖。 圖4為本技術方案第二實施例的液晶顯示屏的立體結 構示意圖。 鲁 圖5為沿圖4所示的線V-V的剖視圖。 圖6為沿圖4所示的線VI-VI的剖視圖。 【主要元件符號說明】 溫度感測器 10 信號處理單元 20 數模轉換模塊 30 微處理 40 繼電器 50 電源 60 21 ζ &). 70 1356942 參考電壓 '液晶顯不屏 ;:第一基體 - 第一導電配向層 第一透明導電層 第一配向層 第一透明加熱層 加熱部分 @電極引線 第一溝槽 第二基體 第二導電配向層 第二透明導電層 第二配向層 第二透明加熱層 I 第二溝槽 液晶層 第一奈米碳管層 第一固定層 第二奈米碳管層 第二固定層 200, 300 202, 302 204, 304 204a 204b 207, 307 207a 207b 208, 308 222, 322 224, 324 224a 224b 227, 327 228, 328 238, 338 304a 304b 324a 324b 2218 < S 1356942 When the material of the fixed layer is diamond-like hydride, tantalum nitride, styling "hydride", carbon carbide, sulphur dioxide, oxidized, oxidized, gamma tin oxide, zinc titanate Or indium titanate, which may be attached to the surface of the first carbon nanotube layer 304a and the second carbon nanotube layer 32 by evaporation, sputtering or plasma enhanced chemical vapor deposition (PECVD) growth. When the material of the layer is polyacetate, polyimine, polymethyl methacrylate or polycarbonate, it can be attached to the first carbon nanotube layer a and first by a silicone method. The surface of the nanolayer layer 324a. The thickness of the pinned layer is 2 〇 2 2 μm. ', ★ In this implementation, the first carbon nanotube layer 304a and the second carbon nanotube layer 324a are respectively a carbon nanotube film, and the arrangement direction of the carbon nanotubes of the first carbon nanotube layer 304a is perpendicular to the arrangement direction of the blunt carbon nanotubes of the second carbon nanotube layer, thereby making the first The first trench 308 of the conductive alignment layer 304 and the second trench 3 of the second conductive alignment 24 are arranged perpendicular to each other so as to be The liquid crystal molecules in the crystal layer 338 are aligned. Specifically, the first trenches in the first conductive alignment layer 3〇4 are parallel and oriented in the X-axis direction; the second trenches 328 in the second conductive alignment layer 324. Parallel and oriented in the Z direction. The thickness of the first conductive alignment layer 304 and the second conductive alignment layer 324 are respectively between 丄 micrometers and 50 micrometers. In addition, a plurality of nanometers in the alignment layer The carbon tube system is aligned, so the non-carbon s layer has a polarizing effect on natural light, so that it can be used as a polarizing effect instead of the polarizing plate in the prior art. Of course, in order to make the liquid crystal display panel 300 have better polarization effect. The liquid crystal display enters a 19 (S). 1356942: transparently twisted two pieces (not shown), the polarizing plate can be disposed on the first table · 307 and/or the second transparent heating layer 327 The liquid crystal layer 338 (..) may also be disposed between the first substrate and the first transparent heating layer 307 or between the layers 327. And the first substrate 322 and the second transparent heating 1^Understand the technical solution provided by the technical solution It is a single-pixel liquid crystal display. In the step, you can also set up two or more early-pixel LCD screens, set the dot matrix according to the law, and use it in multi-pixel liquid crystal displays. The n-screen can be arranged in the manner of sharing the substrate, that is, the first substrate and the second substrate having the same large area are used. Alternatively, the plurality of liquid crystal displays of the above can be directly assembled for multi-pixel display. The liquid crystal display according to the embodiment of the present technical solution has the following advantages: It can heat the first substrate or/and the second substrate by providing a transparent heating layer, so that the liquid crystal display can be performed at a low temperature. Secondly, since the transparent heating layer is disposed on the outer side of the first substrate or/and the second substrate, it is not necessary to change the internal structure and optical path of the original liquid crystal display, and the liquid crystal display can be operated at a low temperature. Thirdly, since the carbon nanotube layer has good electrical conductivity, when the liquid crystal display panel of the embodiment adopts an alignment layer with a carbon nanotube layer, it is not necessary to additionally add a transparent electrode layer, thereby making the liquid crystal The display has a thinner thickness that simplifies the structure of the LCD. Fourthly, covering a surface of the fixing layer on the surface of the carbon nanotube layer, the carbon nanotube layer used as the alignment layer does not fall off when it is in contact with the liquid crystal material for a long time, so that the liquid crystal display The screen has 20 better alignment qualities. ^ θ 'Overview' The invention has indeed met the requirements of the invention patent, and has proposed a special shot 4 according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a three-dimensional structure of a liquid crystal display panel according to a first embodiment of the present technical solution. Figure 2 is a schematic plan view showing the transparent heating layer of the first embodiment of the present technical solution. 3 is a schematic diagram of a working circuit for temperature compensation of a liquid crystal display according to a first embodiment of the present technical solution. Fig. 4 is a perspective view showing the structure of a liquid crystal display according to a second embodiment of the present invention. Lutu 5 is a cross-sectional view taken along line V-V shown in Fig. 4. Figure 6 is a cross-sectional view taken along line VI-VI of Figure 4 . [Description of main component symbols] Temperature sensor 10 Signal processing unit 20 Digital-to-analog conversion module 30 Micro processing 40 Relay 50 Power supply 60 21 ζ &). 70 1356942 Reference voltage 'LCD display no screen;: First substrate - First Conductive alignment layer first transparent conductive layer first alignment layer first transparent heating layer heating portion @electrode lead first trench second substrate second conductive alignment layer second transparent conductive layer second alignment layer second transparent heating layer I Two-trenched liquid crystal layer first carbon nanotube layer first fixed layer second carbon nanotube layer second fixed layer 200, 300 202, 302 204, 304 204a 204b 207, 307 207a 207b 208, 308 222, 322 224 , 324 224a 224b 227, 327 228, 328 238, 338 304a 304b 324a 324b 22

Claims (1)

1356942 十、申請專利範圍 1. 一種液晶顯示屏,其包括: 一第一基體; :第二基體,所述第一基體與所述第二基體相對設置; :液晶層,設置於所述第一基體與所述第二基體之間; 導電配向層5又置於所述第一基體的靠近液晶層 的表面,且第一導電配向層靠近液晶層的表面包括多 個平行的第一溝槽;及 一第二導電配向層設置於所述第二基體的靠近液晶層 的表面,且第二導電配向層靠近液晶層的表面包括多 個平行的第二溝槽,所述第二導電配向層的第二溝槽 排列方向與第一導電配向層的第一溝槽排列方向垂 直; 其改良在於,所述液晶顯示屏進一步包括至少一個透 明t熱層,該透明加熱層設置於第一基體或/和第二基 體遠離液晶層的表面,且所述透明加熱層包括多個卉 未碳管。 2. 如申請專利範圍第i項所述的液晶顯示屏,其中,所 述透明加熱層包括一奈米碳管層,該奈米碳管層包括 多個有序排列或無序排列的奈米碳管。 3. 如申請專利範圍第2項所述的液晶顯示屏,其中,所 述奈米碳管層包括至少一層奈米碳管薄膜,該奈米碳 管薄膜包括多個沿同一方向擇優取向排列的奈米碳 23 (S > ⑶ 0942 .如申凊專利範圍第3項所述的液晶顯示屏,其中,所 述奈米碳管層包括至少兩層重叠設置的奈米碳管薄 膜,相鄰的兩層奈米碳管薄膜中的奈米碳管的排列方 向具有一交又角度α,且0$α$9〇〇。 5·如申請專利範圍第2項所述的液晶顯示屏,其中,所 述奈米碳管層包括多個緊密平行排列的奈米碳管長 線,該奈米碳管長線包括多個通過凡德瓦爾力首尾相 連的奈米碳管束平行排列組成的束狀結構或由多個通 過凡德瓦爾力首尾相連的奈米碳管束相互扭轉組成的 紋線結構。 6. 如申請專利範圍第1項所述的液晶顯示屏,其中,所 述透明加熱層包括奈求碳管複合材料層。 7. 如申請專利範圍第1項所述的液晶顯示屏,其中,所 述透明加熱層爲方波形狀或鋸齒波形狀。 8. 如申請專利範圍第1項所述的液晶顯示屏,其中,該 液晶顯示屏進一步包括至少一個透明保護層,該透明 保護層設置於所述透明加熱層遠離基板的表面。 9. 如申請專利範圍第1項所述的液晶顯示屏,其中,該 液晶顯示屏進一步包括一溫度控制系統,該溫度控制 系統包括溫度感測器、信號處理單元、數模轉換模塊、 微處理器、繼電器及電源,其中,溫度感測器與信號 處理單元電連接,信號處理單元與數模轉換模塊電連 接’數模轉換模塊與微處理器電連接,微處理器與繼 電器電連接,所述透明加熱層與繼電器電連接,數模 < s> 24 ⑶ 0942 ' 轉換模塊、微處理器及繼電器分別與電源電連接。 :1〇.如申請專利範圍第9項所述的液晶顯示屏,其中,所 V 述溫度感測器設置於所述液晶顯示屏内。 11·如申請專利範圍第2項所述的液晶顯示屏,其中,所 述第一導電配向層或/和第二導電配向層包括一透明導 電層和一配向層,該配向層靠近液晶層設置,該透明 導電層設置於配向層遠離液晶層的表面。 鲁12.如申請專利範圍第i項所述的液晶顯示屏,其中,所 ^第一導電配向層或/和第二導電配向層包括一奈米碳 官層,該奈米碳管層包括多個定向排列的奈米碳管, 該多個奈米碳管之間具有多個平行且均勻分布的間 隙。 13. 如申請專利範圍第12項所述的液晶顯示屏,其中,所 述第一導電配向層或/和第二導電配向層進一步包括一 固疋層,該固定層設置於所述奈米碳管層靠近液晶層 鲁 的表面。 14. 如申明專利範圍第13項所述的液晶顯示屏,其中,第 導電配向層t的奈米碳管排列方向與第二導電配向 層中的奈米碳管排列方向垂直。 15. 如申明專利範圍第13項所述的液晶顯示屏,其中,所 述固定層的材料爲類金剛石的氫化物、氮化石夕、不定 ?矽的氫化物、碳化矽、二氧化矽、氧化鋁、氧化鈽、 氧化錫#^鋅、鈦酸銦、聚乙稀醇、聚醯亞胺、聚 曱基丙烯酸甲鞄和聚碳酸酯中的一種或幾種。 < S 25 1356942 16.如申請專利範圍第13項所述的液晶顯示屏,其中,所 述固定層具有與奈米碳管層中的間隙相對應的溝槽, 該溝槽組成第一溝槽或/和第二溝槽。1356942 X. Patent Application Range 1. A liquid crystal display comprising: a first substrate; a second substrate, the first substrate being disposed opposite to the second substrate; a liquid crystal layer disposed on the first Between the substrate and the second substrate; the conductive alignment layer 5 is further disposed on the surface of the first substrate adjacent to the liquid crystal layer, and the surface of the first conductive alignment layer adjacent to the liquid crystal layer includes a plurality of parallel first trenches; And a second conductive alignment layer is disposed on the surface of the second substrate adjacent to the liquid crystal layer, and the surface of the second conductive alignment layer adjacent to the liquid crystal layer includes a plurality of parallel second trenches, and the second conductive alignment layer The second trench is arranged in a direction perpendicular to the first trench alignment direction of the first conductive alignment layer; and the improvement is that the liquid crystal display further comprises at least one transparent t thermal layer disposed on the first substrate or And the second substrate is away from the surface of the liquid crystal layer, and the transparent heating layer comprises a plurality of carbon tubes. 2. The liquid crystal display according to claim 1, wherein the transparent heating layer comprises a carbon nanotube layer comprising a plurality of ordered or disorderly arranged nanometers. Carbon tube. 3. The liquid crystal display of claim 2, wherein the carbon nanotube layer comprises at least one layer of carbon nanotube film, the carbon nanotube film comprising a plurality of preferred orientations arranged in the same direction The liquid crystal display of the third aspect of the invention, wherein the carbon nanotube layer comprises at least two layers of carbon nanotube films arranged in an overlapping manner, adjacent to each other. The arrangement direction of the carbon nanotubes in the two-layered carbon nanotube film has an intersection angle α and 0$α$9〇〇. 5. The liquid crystal display according to claim 2, wherein The carbon nanotube layer comprises a plurality of closely aligned carbon nanotube long lines, and the nano carbon tube long line comprises a plurality of bundle structures consisting of parallel rows of carbon nanotube bundles connected end to end by van der Waals force or A plurality of liquid crystal displays according to the first aspect of the invention, wherein the transparent heating layer comprises a carbon nanotube Composite layer. 7. If applying for a patent The liquid crystal display according to the above aspect, wherein the transparent heating layer is a square wave shape or a sawtooth wave shape. The liquid crystal display according to claim 1, wherein the liquid crystal display further The liquid crystal display according to claim 1, wherein the liquid crystal display further comprises a temperature control, wherein the transparent protective layer is disposed on the surface of the transparent heating layer away from the substrate. The temperature control system comprises a temperature sensor, a signal processing unit, a digital-to-analog conversion module, a microprocessor, a relay and a power supply, wherein the temperature sensor is electrically connected to the signal processing unit, the signal processing unit and the digital-to-analog conversion module The electrical connection 'digital-to-analog conversion module is electrically connected to the microprocessor, the microprocessor is electrically connected to the relay, the transparent heating layer is electrically connected with the relay, and the digital mode <s> 24 (3) 0942 'conversion module, microprocessor and relay The liquid crystal display according to claim 9, wherein the temperature sensing is performed as described in claim 9. The liquid crystal display panel of claim 2, wherein the first conductive alignment layer or/and the second conductive alignment layer comprises a transparent conductive layer and a alignment a liquid crystal display panel, wherein the alignment layer is disposed adjacent to the liquid crystal layer, wherein the transparent conductive layer is disposed on the surface of the alignment layer away from the liquid crystal layer. The liquid crystal display panel of claim 1, wherein the first conductive alignment layer Or / and the second electrically conductive alignment layer comprises a nano carbon layer comprising a plurality of aligned carbon nanotubes having a plurality of parallel and evenly distributed between the plurality of carbon nanotubes The liquid crystal display according to claim 12, wherein the first conductive alignment layer or/and the second conductive alignment layer further comprises a solid layer, the fixed layer being disposed on the nano layer The carbon nanotube layer is close to the surface of the liquid crystal layer. 14. The liquid crystal display according to claim 13, wherein the arrangement of the carbon nanotubes of the first conductive alignment layer t is perpendicular to the arrangement direction of the carbon nanotubes in the second conductive alignment layer. 15. The liquid crystal display according to claim 13, wherein the material of the fixing layer is a diamond-like hydride, a nitriding stone, an indefinite hydride, a lanthanum carbide, a cerium oxide, and an oxidation. One or more of aluminum, cerium oxide, tin oxide #^ zinc, indium titanate, polyethylene glycol, polyimine, polymethyl mercapto, and polycarbonate. The liquid crystal display panel of claim 13, wherein the fixed layer has a groove corresponding to a gap in the carbon nanotube layer, the groove forming the first groove Slot or / and second groove. 2626
TW97117201A 2008-05-09 2008-05-09 Liquid crystal display screen TWI356942B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97117201A TWI356942B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97117201A TWI356942B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Publications (2)

Publication Number Publication Date
TW200947072A TW200947072A (en) 2009-11-16
TWI356942B true TWI356942B (en) 2012-01-21

Family

ID=44870223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97117201A TWI356942B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Country Status (1)

Country Link
TW (1) TWI356942B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048540B2 (en) 2013-12-27 2018-08-14 Boe Technology Group Co., Ltd. Conductive alignment layer, manufacture method of the conductive alignment layer, display substrate comprising the conductive alignment layer, and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10048540B2 (en) 2013-12-27 2018-08-14 Boe Technology Group Co., Ltd. Conductive alignment layer, manufacture method of the conductive alignment layer, display substrate comprising the conductive alignment layer, and display device

Also Published As

Publication number Publication date
TW200947072A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
US8811633B2 (en) Thermoacoustic device
US8416351B2 (en) Liquid crystal display screen
JP5065326B2 (en) Liquid crystal display
US20110108545A1 (en) Heater and method for making the same
US8614849B2 (en) Thermochromatic device and thermochromatic display apparatus
US20150114951A1 (en) Wall mounted electric heater
CN101459019A (en) Thermal electron source
US20100243637A1 (en) Heater
JP5139365B2 (en) Liquid crystal display
JP2010049260A (en) Liquid crystal display
US20110056929A1 (en) Electric heater
TWI356942B (en) Liquid crystal display screen
JP2010015154A (en) Method for manufacturing liquid crystal display panel using touch panel
TWI356230B (en) Liquid crystal display screen
TWI356253B (en) Liquid crystal display screen
TWI356234B (en) Liquid crystal screen
TW201003200A (en) Liquid crystal display with touch panel
TWI400984B (en) Planar heater
TW201003500A (en) Liquid crystal display with touch panel
TWI462630B (en) Planar heating source
TWI400985B (en) Method for making planar heater
TWI400983B (en) Planar heater
TWI399120B (en) Planar heater
TWI380732B (en) Planar heating source
TWI380730B (en) Planar heating source