TWI356184B - Low resistivity light attenuation anti-reflection - Google Patents

Low resistivity light attenuation anti-reflection Download PDF

Info

Publication number
TWI356184B
TWI356184B TW096124770A TW96124770A TWI356184B TW I356184 B TWI356184 B TW I356184B TW 096124770 A TW096124770 A TW 096124770A TW 96124770 A TW96124770 A TW 96124770A TW I356184 B TWI356184 B TW I356184B
Authority
TW
Taiwan
Prior art keywords
coating
coating layer
layer
reflection
thickness
Prior art date
Application number
TW096124770A
Other languages
Chinese (zh)
Other versions
TW200903020A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW096124770A priority Critical patent/TWI356184B/en
Publication of TW200903020A publication Critical patent/TW200903020A/en
Application granted granted Critical
Publication of TWI356184B publication Critical patent/TWI356184B/en

Links

Landscapes

  • Laminated Bodies (AREA)

Description

1356184 九、發明說明: v 【發明所屬之技術領域】 本發明係爲一種塗層結構及其製作方法,尤其係指一 種具有可穿透的表面導電層之低電阻光衰減抗反射塗層結 構(四)及其製作方法(四)。 【先前技術】 白知的机反射光學塗層的多層系統皆利用一通則,該 通則爲該光學塗層的表層的物質具有一低折射率,例如 Si〇2’折射率爲U6,或MgF2’折射率爲1.38。然而,當 將該抗反射塗層運用于顯示器工業時,例如具抗靜電效果 之電腦榮,或用於液晶顯示器或電装顯示器之低反射玻璃 時,在大置生産的過程中,存在一些瓶頸,其原因是該光 學塗層結構的導電層係由一絕緣層(例如以〇2或MgF2)所 燒製而成。 一抗反射塗層的基本設計規則爲,佈置於一基板表面 • 的第-層爲具高折射率之物質所構成(標示爲H),其後接 著一具低折射率之物質所構成(標示爲^的第二層,因 此’ g知的抗反射塗層的多層結構之規則爲HLhl或 HLHLHL ’以高折射率(H)之物質爲IT〇而低折射率 之物質爲Si〇2爲例子,該四層結構分別爲 • Glass/ITO/Si〇2/ITO/Si〇2。因爲ITO是一透明的導電物質, • 該多層結構的塗層的導電性低於每平方100歐姆(Ω),而 且當該導電塗層連結至地時,可用於電磁干擾(ΕΜΙ)頻障 5 1356184 或=電放電。然而,問題是該習知的 物質爲si〇2,且其厚度爲咖埃(A),# ^構的表面 性爲高密度、具有惰性和-良好之電絕緣層,=物質特 之抗反射塗層於顯示器工業的過程中,電性接=用傳統 Sl〇2層所隔離之該燒製的ITO層是困難的,f由外部之 觸該ITO層的接地過程中,需 一 使一金屬接 打破該Si〇2層,以確保錫球與該IT◦層^良=製程去 -製程爲大量生産抗反射塗層的瓶頸。、接觸’此 另方面,由於液態錫和超音波的曝露能晋的 該超音波焊接製程微細的污染物,此外,該超音二 程亦會於每—匯流線上産生非持久性的接觸阻抗,這= 爲超音波焊接製程無法保證能夠均勻的以相同的深度打破 5玄絕緣層而得到一均勻的接觸阻抗。 、上述之缺點會降低在運用習知的抗電磁干擾和抗反射 塗層的製程的良率和可靠度。 【發明内容】 本發明之主要目的是提供一種具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(四)’該低電阻 光衰減抗反射塗層可運用於半導體、光學頭、液晶顯示器、 陰極射線管、建築玻璃、觸控式感測器、螢幕濾波器、塑 膠網板塗層等工業。 本發明之另一目的是提供一種具有可穿透的表面導電 6 1356184 層之低電阻光哀減抗反射塗層結構.(1〇νν resistivity light attenuation anti-reflection coating structure)(四),該低電阻 光衰減抗反射塗層之表層的物質爲一可穿透的表面導電 層,而該可穿透的表面導電層的光反射率低於0.5%,該低 電阻光衰減抗反射塗層的阻抗介於每平方0.5Ω與0.7Ω之 間,而其穿透率爲55%至70%。 本發明之另一目的是提供一種具有可穿透的表面導電 廣之低電阻光衣減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)’本發明之 塗層結構其具有高導電性之特性,當其運用於電漿顯示器 之製造時’其具有電磁干擾屏障、光學視角低反射、高表 面硬度抗刮性、適度的光衰減效應等優點。例如,本發明 之塗層結構之表面阻抗介於每平方〇·5Ω與0.7Ω之間,以 及具有足夠硬度去通過軍事標準MIL-C-48497之耐刮測 試。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuatidn anti-reflection coating structure)(四)’於完成塗 層模組之製作後,首先,設置一遮板(shutter )於該塗層模 組之上表面,其中該遮板的尺寸係小於該塗層模組,以使 得該塗層模組的上表面之邊緣曝露出來;然後,塗佈—層 導電層(conductive layer)於該塗層模組的上表面之邊緣, 以供接地(ground),而達到良好的電性接觸。其中,該導 電層係可為銀黎(silver paste ) 〇 7 1356184 為了達成上述目的,本發明係提供一種具有可穿透的 表面導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四),其 包括有:一基板(substrate )及一塗層模組(coating module)。其中’該塗層模組係形成於該基板之一前表面 上,並且該塗層模組係由複數層含欽氧化物(Ti-based oxide)與碳(carbon)的混合物塗層(mixture coating layer) 與複數層金屬塗層(metal coating layer)交替相疊而組成。 為了達成上述目的,本發明係提供一種具有可穿透的 表面導電層之低電阻光衰減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)之製作方 法(四)’其步驟包括有:首先,提供一基板(substrate); 然後’形成一塗層模組(coating module )於該基板之一前 表面上’其中該塗層模組係由複數層含鈦氧化物(Ti-based oxide )與碳(carbon)的混合物塗層(mixture coating layer ) 與複數層金屬塗層(metal coating layer)交替相疊而組成。 在一實施例中’該具有可穿透的表面導電層之低電阻 光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)包括有 9層,第一塗 層、第二塗層、第三塗層、第四塗層、第五塗層、第六塗 層、第七塗層、第八塗層和第九塗層依序排列在基板上, 每一層將以物理厚度或光學厚度來描述,光學厚度係爲層 厚度與折射率之數學乘積,而爲設計波長的分數,在本發 明中,該設計波長爲520nm。 8 f塗層或稱爲表面層係為可穿透的含鈦氧化物 1 ase 〇xlde)與碳(carb〇n)的混合物塗層(mi血e Zng laye〇,該含欽氧化物係為二氧化鈦(TK)2),該混 ,物僅吸收些微的可見光,當波長爲別μ時,該表面層 之折射率係為2.45之間,而物理厚度爲3〇nm。 第二塗層係為-金屬塗層(metaleQatinglayer),該金 塗層為銀(Ag),其僅吸收些微的可見光,當波長爲52〇謹 時’其折射率介於Ο.1至〇.5之間,而物理厚度爲15nm。 第二塗層係為可穿透的含鈦氧化物(Ti_based 〇xide) ,碳 jCarb〇n)的混合物塗層(mixture coating. layer),該 含鈦氧化物係為二氧化鈦(Ti02),該混合物僅吸收些微的 可見光,當波長爲52〇nm時,該表面層之折射率係為2.45 之間,而物理厚度爲66nm。 第四塗層係為一金屬塗層(metal coating layer),該金 屬塗層為銀(Ag)’其僅吸收些微的可見光,當波長爲520nm 時’其折射率介於01至〇 5之間’而物理厚度爲i5nm。 第五塗層係為可穿透的含鈦氧化物(Ti-based oxide) 與礙(carbon)的混合物塗層(mixture coating layer),該 含鈦氧化物係為二氧化鈦(Ti02) ’該混合物僅吸收些微的 可見光’當波長爲520nm時’該表面層之折射率係為2.45 之間,而物理厚度爲6〇ηη1。 第六塗層係為一金屬塗層(metal coating layer)’該金 屬塗層為銀(Ag),其僅吸收些微的可見光’當波長爲520nm 時’其折射率介於〇丨至0.5之間’而物理厚度爲i5nm。 1J56184 第七:塗層係為可穿透的含I太氧化物(Ti-based oxide) - 入厌(carb〇n)的混合物塗層(mixture coating layer),該 含欽氧化物係為二氧化鈦(Ti〇2),該混合物僅吸收些微的 可見光,當波長爲520nm時,該表面層之折射率係為2.45 之間,而物理厚度爲7〇nm。 苐八塗層傳為一金屬塗層(metal。〇也叫),該金 1塗層為銀(Ag),其僅吸收些微的可見光,當波長爲52〇nm • 時,f折射率介於0.1至0.5之間,而物理厚度爲i5nm。 山第九塗層係為可穿透的含鈦氧化物(Ti-based oxide) 與石反 _(Carbon)的混合物塗層(mixture coating layer),該 含鈦氧化物係為二氧化鈦(Ti〇2),該混合物僅吸收些微的 "T見光^波長爲520nm時,該表面層之折射率係為2 45 之間,而物理厚度爲40mn。 因爲本發明之塗層結構的表層有良好的導電特性,該 具有可穿透的表面導電層之低電阻光衰減抗反射塗層結構 (low resistivity light attenuation anti-reflection coating # _ctUre )可以降低接地製程所f的工作負荷和增加大量生 產的良率和可靠度,其可運用於液晶顯示器或電毁顯示器 之玻璃基板或塑膠基板上。 為了能更進-步瞭解本發明為達成預定目的所採取之技 ,、手段及功效’請參閱以下有關本發明之詳細說明與附圖,相 —信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭 '解,然而所關式僅提供參考與說明用,並_來對本發明加以 1356184 【實施方式】 請參考第一圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光衣減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)(四)之結 構示意圖。由圖+可知,本發明所揭露之低電阻光衰減抗 反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)係包括有:一基板(substrate) s 及一塗層模組(coating module ) M。 其申’該基板S係可為一塑膠薄膜(plasticfilm)或一 玻璃(glass )。而該塗層模組Μ係可為電浆顯示器(plasma display)或液晶顯示器(liquid crystal display )之基本塗層。 再者’該塗層模組Μ係包括:一第一塗層(first coating layer) 1,其形成於該基板S之一前表面上;一第二塗層 (second coating layer) 2,其形成於該第一塗層1上;一 第三塗層(thirdcoatinglayer) 3,其形成於該第二塗層2 上;一第四塗層(fourth coating layer) 4,其形成於該第 三塗層3上;一第五塗層(fifthcoatinglayer) 5,其形成 於該第四塗層4上;一第六塗層(sixthcoatinglayer) 6, 其形成於該第五塗層5上;一第七塗層(seventh coating layer) 7,其形成於該第六塗層6上;一第八塗層(eighth coating layer) 8,其形成於該第七塗層7上;以及一第九 塗層(ninth coating layer) 9,其形成於該第八塗層8上。 此外,該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9皆為含鈦氧化物(Ti-based 1356184 〇以6 )與石反(carbon )的混合物塗層(mixture coating layer ), 並且該第二塗層2、該第四塗層4、該第六塗層6、及該 第八塗層8皆為金屬塗層(metai c〇atjng iayer)。其中,該 含欽氧化物係為二氧化鈦(Ti〇2),並且該等金屬塗層係為 銀(Ag ) ° 5亥專混合物塗層的折射率(refractive index )係 '向於5亥荨金屬塗層。 因此’該塗層模組Μ係形成於該基板S之一前表面 上’並且該塗層模組Μ係由複數層含鈦氧化物(Ti-based 0xide )與奴(carbon )的混合物塗層(mixture coating layer ) 與複數層金屬塗層(metal coating layer )交替相疊而組成。 再者’該第一塗層、該第三塗層、該第五塗層、該第 七塗層、及该第九塗層的折射率(refractive index )皆為 2.45 ’並且該第二塗層、該第四塗層、該第六塗層、及該第 八塗層的折射率(refractive index)皆介於〇 1〜〇 5之間。 另外’該第一塗層的厚度係為30nm ;該第二塗層的厚度係 介於15nm ;該第三塗層的厚度係為66nm ;該第四塗層的 厚度係介於15nm ;該第五塗層的厚度係為60nm ;該第六 塗層的厚度係介於15nm ;該第七塗層的厚度係為70nm ; 該第八塗層的厚度係介於15nm ;以及該第九塗層的厚度係 為 40nm。 此外’該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9之混合物塗層皆由直流或 脈衝直流》賤鍍法(DC or AC magnetron sputtering method) 所形成,並且該第二塗層2、該第四塗層4、該第六塗層 12 1356184 6、及該第八塗層8之金屬塗層皆由直流或脈衝直流濺鍍 法(DC or AC magnetron sputtering method )所升多成。並且, 該第一塗層1至該第九塗層9係由同軸或滾子對滾子真空 系統之蒸鍍或濺鑛製程(in-line or roll-to-roll vacuum evaporation/sputtering method)所形成。 請參閱第二圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光哀減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)之上 視示意圖。由圖中可知,本發明之低電阻光衰減抗反射塗 層結構更進一步包括:一設置於該基板S下表面之遮板 (shutter) B ’其中該遮板B的尺寸小於該基板S,以使得 該基板S下表面之邊緣曝露出來,並且該基板s下表面之 邊緣係塗佈一層導電層(conductive layer ) C以供接地 (ground)’而達到良好的電性接觸。最後,移除該遮板B。 其中,該導電層C係為銀聚(silver paste )。 請參閱第三圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作方法 (四)之流程圖。由流程圖可知,本發明之低電阻光衰減 抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)之製作方法,其步驟包括 有: S400 .提供一基板(substrate) S ; S402 :形成一第一塗層(first coating layer ) 1 於該基 13 1356184 板S之該前表面上,其中該第一塗層1係為含 鈦氡化物(Ti-based oxide)與碳(carbon )的混 合物塗層(mixture coating layer); S404:形成一第二塗層(second coating layer) 2 於該 第一塗層1上,其中該第二塗層2係為金屬塗 層(metal coating layer); S406:形成一第三塗層(third coating layer) 3於該第 二塗層2上,其中該第三塗層3係為含鈦氧化 ® 物(Ti-based oxide)與碳(carbon)的混合物塗 層(mixture coating layer); S408 :形成一第四塗層(fourth coating layer) 4 於該 第三塗層3上,其中該第四塗層4係為金屬塗 層(metal coating layer); S410:形成一第五塗層(fifth coating layer) 5於該第 四塗層4上,其中該第五塗層5係為含鈦氧化 物(Ti-based oxide)與碳(carbon)的混合物塗 鲁 層(mixture coating layer); S412:形成一第六塗層(sixth coating layer) 6於該第 五塗層5上,其中該第六塗層6係為金屬塗層 (metal coating layer); S414:形成一第七塗層(seventh coating layer) 7 於該 - 第六塗層6上,其中該第七塗層7係為含鈦氧 化物(Ti-based oxide)與碳(carbon)的混合物 塗層(mixture coating layer); 14 1356184 S416 :形成一第八塗層(eighth coating layer) 8 於該 第七塗層7上,其中該第八塗層8係為金屬塗 層(metal coating layer);以及 S418:形成一第九塗層(ninth coating layer) 9於該第 八塗層8上,其中該第九塗層9係為含鈦氧化 物(Ti-based oxide )與碳(carbon )的混合物塗 層(mixture coating layer) ° 综上所述’該低電阻光衰減抗反射塗層可運用於半導 體、光學頭、液晶顯示器、陰極射線管、建築玻璃、觸控 式感測器、螢幕濾波器、塑膠網板塗層等工業。 此外,該低電阻光衰減抗反射塗層之表層的物質爲一 可穿透的表面導電層,而該可穿透的表面導電層的光反射 率低於0.5%,該低電阻光衰減抗反射塗層的阻抗介於每平 方0.5Ω與0.7Ω之間,而其穿透率爲至70〇/〇。 再者,本發明之塗層結構其具有高導電性之特性,當 其運用於電漿顯不器之製造時,其具有電磁干擾屏障、光 學視角低反射、高表面硬度抗刮性、適度的光衰減效應等 優點。例如’本發明之塗層結構之表面阻抗介於每平方〇.犯 與0.7Ω之間,以及具有足夠硬度去通過軍事標準 MIL-C-48497之耐刮測試。 因爲本电明之塗層結構的表層有良好的導電特性,該 具有可穿透的表面導電狀低電阻絲減抗反射塗層結構 (low resistivity light attenuation anti-reflection coating s—可以降低接地製程所需的工作負荷和增加大量生 15 産的良率和可靠度,其可運用於 之玻璃基板或塑膠基板上。' 阳’’’、7^或電默顯示器 惟’以上所述’僅為本發 詳細說明與圖式’惟本發明之特徵;不:限;:實,之 圍為準,凡合於本發明,料,專利乾 ,例’皆應包含於本發明之範嘴中任何熟 ΐΐ在本發明之領域内’可輕易思及之變化或修飾皆可涵 盍在以下本案之專利範圍。 【圖式簡單說明】 第一圖係爲本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)之結構示意圖; 第二圖係為本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)之上視示意圖; 以及 第三圖係爲本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(i〇w resistivity Hght attenuation anti-reflection coating structure)之製作方法(四) 之流程圖。 【主要元件符號說明】 1356184 基板 塗層模組 第一塗層 第二塗層 第三塗層 第四塗層 第五塗層 第六塗層 第七塗層 第八塗層 第九塗層 遮板 導電層1356184 IX. Description of the invention: v Technical Field of the Invention The present invention relates to a coating structure and a manufacturing method thereof, and more particularly to a low-resistance light-attenuation anti-reflective coating structure having a transparent surface conductive layer ( 4) and its production method (4). [Prior Art] A multi-layer system of the optically reflective optical coating of Baizhi utilizes a general rule that the material of the surface layer of the optical coating has a low refractive index, for example, the Si〇2' refractive index is U6, or MgF2' The refractive index is 1.38. However, when the anti-reflective coating is applied to the display industry, such as a computer with an antistatic effect, or a low-reflection glass for a liquid crystal display or an electric display, there are some bottlenecks in the process of large-scale production. The reason for this is that the conductive layer of the optical coating structure is fired from an insulating layer (for example, 〇2 or MgF2). The basic design rule for an anti-reflective coating is that the first layer disposed on the surface of a substrate is composed of a substance having a high refractive index (labeled as H), followed by a substance having a low refractive index (marked) Is the second layer of ^, so the rule of the multilayer structure of the anti-reflective coating is HLhl or HLHLHL 'The material with high refractive index (H) is IT〇 and the material with low refractive index is Si〇2 as an example The four-layer structure is respectively • Glass/ITO/Si〇2/ITO/Si〇2. Since ITO is a transparent conductive material, • The conductivity of the multilayer structure coating is less than 100 ohms per square ohm (Ω) And when the conductive coating is bonded to the ground, it can be used for electromagnetic interference (ΕΜΙ) frequency barrier 5 1356184 or = electric discharge. However, the problem is that the conventional substance is si〇2, and its thickness is gaia (A The surface of the structure is high density, inert and good electrical insulation layer, = material anti-reflective coating in the display industry, electrical connection = isolated by the traditional S2 layer The fired ITO layer is difficult, and f is required to be grounded by the external touch of the ITO layer. A metal joint breaks the Si〇2 layer to ensure that the solder ball and the IT layer are good to the process--the process is a bottleneck for mass production of anti-reflective coatings. Contact this other aspect due to liquid tin and ultrasonic Exposure to the fine contaminants of the ultrasonic welding process, in addition, the supersonic two-pass will also produce non-persistent contact impedance on each-bus line, which is not guaranteed to be uniform at the same depth for the ultrasonic welding process Breaking the 5 sin insulation layer to obtain a uniform contact resistance. The above disadvantages reduce the yield and reliability of the process using conventional anti-electromagnetic interference and anti-reflective coatings. [Summary of the Invention] Providing a low resistivity light attenuation anti-reflection coating structure (four) having a penetrable surface conductive layer. The low resistance light attenuating anti-reflective coating can be applied to a semiconductor, Optical head, liquid crystal display, cathode ray tube, architectural glass, touch sensor, screen filter, plastic screen coating, etc. Another object is to provide a low resistance light attenuation anti-reflection coating structure (4) having a transparent surface conductive layer 6 1 356 184. The surface layer of the anti-reflective coating is a penetrable surface conductive layer, and the light transmissive surface conductive layer has a light reflectance of less than 0.5%, and the low-resistance light-attenuating anti-reflective coating has an impedance of between The square is between 0.5Ω and 0.7Ω, and its penetration is 55% to 70%. Another object of the present invention is to provide a low resistivity light attenuation anti-reflection coating structure (four) having a transparent surface conductive surface. It has the characteristics of high conductivity, when it is used in the manufacture of plasma display, it has the advantages of electromagnetic interference barrier, low optical reflection angle, high surface hardness scratch resistance, moderate light attenuation effect and so on. For example, the coating structure of the present invention has a surface impedance of between 5 ohms and 0.7 ohms per square inch and a sufficient hardness to pass the scratch resistance test of the military standard MIL-C-48497. Another object of the present invention is to provide a low resistivity light attenuated anti-reflection coating structure (IV) having a transparent surface conductive layer. First, a shutter is disposed on the upper surface of the coating module, wherein the size of the shutter is smaller than the coating module, so that the edge of the upper surface of the coating module is exposed; Then, a conductive layer is applied to the edge of the upper surface of the coating module for grounding to achieve good electrical contact. Wherein, the conductive layer can be a silver paste 〇7 1356184. To achieve the above object, the present invention provides a low-resistance light-attenuation anti-reflective coating structure having a permeable surface conductive layer (low resistivity light attenuation) An anti-reflection coating structure (4), comprising: a substrate and a coating module. Wherein the coating module is formed on a front surface of the substrate, and the coating module is composed of a plurality of layers of a coating containing a mixture of Ti-based oxide and carbon. Layer) is formed by alternately overlapping a plurality of metal coating layers. In order to achieve the above object, the present invention provides a method for fabricating a low-resistance light-sensitive anti-reflection coating structure having a transparent surface conductive layer (4). The method includes: firstly, providing a substrate; then forming a coating module on a front surface of the substrate, wherein the coating module is composed of a plurality of layers containing titanium oxide (Ti- The based oxide is formed by alternately overlapping a carbon (mixture coating layer) with a plurality of metal coating layers. In one embodiment, the low resistivity light attenuation anti-reflection coating structure (four) includes nine layers, a first coating layer, and a first The second coating, the third coating, the fourth coating, the fifth coating, the sixth coating, the seventh coating, the eighth coating, and the ninth coating are sequentially arranged on the substrate, and each layer will be physically Described as thickness or optical thickness, the optical thickness is the mathematical product of the layer thickness and the refractive index, and is the fraction of the design wavelength, which in the present invention is 520 nm. The 8 f coating or surface layer is a coating of a mixture of penetrable titanium oxide containing 1 ase 〇xlde) and carbon (carb〇n) (mi blood e Zng laye〇, which contains Titanium dioxide (TK) 2), the mixture absorbs only a small amount of visible light. When the wavelength is other than μ, the surface layer has a refractive index of 2.45 and a physical thickness of 3 〇 nm. The second coating is a metaleQating layer, which is silver (Ag), which absorbs only a small amount of visible light. When the wavelength is 52 〇, the refractive index is between Ο.1 and 〇. Between 5 and a physical thickness of 15 nm. The second coating is a mixture coating of a titanium-containing oxide (Ti_based 〇xide), carbon jCarb〇n), the titanium-containing oxide is titanium dioxide (Ti02), the mixture It absorbs only a small amount of visible light. When the wavelength is 52 〇 nm, the surface layer has a refractive index of 2.45 and a physical thickness of 66 nm. The fourth coating is a metal coating layer, which is silver (Ag), which absorbs only a small amount of visible light. When the wavelength is 520 nm, the refractive index is between 01 and 〇5. 'The physical thickness is i5nm. The fifth coating layer is a permeable titanium-containing oxide (Ti-based oxide) and a carbon-containing mixture coating layer, and the titanium-containing oxide is titanium dioxide (Ti02). Absorbing a slight amount of visible light 'when the wavelength is 520 nm', the surface layer has a refractive index of 2.45 and a physical thickness of 6 〇ηη1. The sixth coating is a metal coating layer. The metal coating is silver (Ag), which absorbs only a small amount of visible light. 'When the wavelength is 520 nm, the refractive index is between 〇丨 and 0.5. 'The physical thickness is i5nm. 1J56184 Seventh: The coating is a permeable Ti-based oxide-mixture coating layer, which is titanium dioxide ( Ti〇2), the mixture absorbs only a small amount of visible light. When the wavelength is 520 nm, the surface layer has a refractive index of 2.45 and a physical thickness of 7 〇 nm. The coating is transmitted as a metal coating (metal, also called )). The gold 1 coating is silver (Ag), which absorbs only a small amount of visible light. When the wavelength is 52 〇nm •, the refractive index of f is between Between 0.1 and 0.5, and the physical thickness is i5nm. The ninth coating of the mountain is a mixture of a titanium-containing oxide (Ti-based oxide) and a stone anti-(Carbon), which is titanium dioxide (Ti〇2). The mixture only absorbs a slight amount of "T seeing light" at a wavelength of 520 nm, the surface layer has a refractive index of between 2 and 45, and a physical thickness of 40 nm. Since the surface layer of the coating structure of the present invention has good electrical conductivity, the low resistivity light attenuation anti-reflection coating # _ctUre can reduce the grounding process. The workload of f and the increase in yield and reliability of mass production can be applied to glass substrates or plastic substrates of liquid crystal displays or electrosonic displays. In order to be able to further understand the techniques, means and functions of the present invention for achieving the intended purpose, please refer to the following detailed description of the invention and the accompanying drawings. This is an in-depth and specific solution. However, the reference is only for reference and explanation, and the invention is applied to 1356184. [Embodiment] Please refer to the first figure, which is transparent to the present invention. A schematic diagram of the structure of a low-resistance light-shielding anti-reflection coating structure (4) of a surface conductive layer. As can be seen from the figure, the low resistivity light attenuation anti-reflection coating structure (4) of the present invention includes: a substrate s and a coating module ( Coating module ) M. The substrate S can be a plastic film or a glass. The coating module can be a basic coating of a plasma display or a liquid crystal display. Furthermore, the coating module comprises: a first coating layer 1 formed on a front surface of the substrate S; and a second coating layer 2 formed. On the first coating layer 1; a third coating layer 3 formed on the second coating layer 2; a fourth coating layer 4 formed on the third coating layer 3; a fifth coating layer 5, which is formed on the fourth coating layer 4; a sixth coating layer 6, which is formed on the fifth coating layer 5; a seventh coating layer a seventh coating layer 7 formed on the sixth coating layer 6; an eighth coating layer 8 formed on the seventh coating layer 7; and a ninth coating layer Layer) 9, which is formed on the eighth coating layer 8. In addition, the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 are all titanium-containing oxides (Ti-based 1356184 6) a mixture coating layer with carbon, and the second coating layer 2, the fourth coating layer 4, the sixth coating layer 6, and the eighth coating layer 8 are all metal Coating (metai c〇atjng iayer). Wherein, the containing oxide is titanium dioxide (Ti〇2), and the metal coating is a refractive index of a silver (Ag) coating, which is a 5 荨 metal coating. Therefore, the coating module is formed on one of the front surfaces of the substrate S and the coating module is coated with a mixture of a plurality of layers of titanium oxide (Ti-based 0xide) and carbon. A (mixture coating layer) is formed by alternately overlapping a plurality of metal coating layers. Further, the first coating, the third coating, the fifth coating, the seventh coating, and the ninth coating have a refractive index of 2.45 ′ and the second coating The refractive index of the fourth coating layer, the sixth coating layer, and the eighth coating layer is between 〇1 and 〇5. In addition, the thickness of the first coating layer is 30 nm; the thickness of the second coating layer is 15 nm; the thickness of the third coating layer is 66 nm; the thickness of the fourth coating layer is 15 nm; The thickness of the five coating layer is 60 nm; the thickness of the sixth coating layer is 15 nm; the thickness of the seventh coating layer is 70 nm; the thickness of the eighth coating layer is 15 nm; and the ninth coating layer The thickness is 40 nm. In addition, the coating of the mixture of the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 is plated by direct current or pulsed direct current. Formed by DC or AC magnetron sputtering method, and the metal coating of the second coating layer 2, the fourth coating layer 4, the sixth coating layer 12 1356184 6 , and the eighth coating layer 8 are all made by direct current. Or the DC or AC magnetron sputtering method is increased. And, the first coating layer 1 to the ninth coating layer 9 are by an in-line or roll-to-roll vacuum evaporation/sputtering method. form. Referring to the second figure, it is a top view of a low resistivity light attenuation anti-reflection coating structure (4) having a transparent surface conductive layer of the present invention. . As shown in the figure, the low-resistance light-attenuation anti-reflective coating structure of the present invention further includes: a shutter B' disposed on a lower surface of the substrate S, wherein the size of the shutter B is smaller than the substrate S, The edge of the lower surface of the substrate S is exposed, and the edge of the lower surface of the substrate s is coated with a conductive layer C for grounding to achieve good electrical contact. Finally, the shutter B is removed. The conductive layer C is a silver paste. Please refer to the third figure, which is a process for fabricating a low resistivity light attenuation anti-reflection coating structure (4) having a transparent surface conductive layer of the present invention. Figure. The method for fabricating the low-resistance light-attenuation anti-reflection coating structure of the present invention includes the following steps: S400. Providing a substrate S; S402 Forming a first coating layer 1 on the front surface of the substrate 13 1356184, wherein the first coating 1 is a Ti-based oxide and a carbon a mixture coating layer; S404: forming a second coating layer 2 on the first coating layer 1, wherein the second coating layer 2 is a metal coating layer S406: forming a third coating layer 3 on the second coating layer 2, wherein the third coating layer 3 is Ti-based oxide and carbon a mixture coating layer; S408: forming a fourth coating layer 4 on the third coating layer 3, wherein the fourth coating layer 4 is a metal coating layer; S410: forming a fifth coating layer 5 On the fourth coating layer 4, wherein the fifth coating layer 5 is a mixture coating layer containing a mixture of Ti-based oxide and carbon; S412: forming a sixth coating layer a sixth coating layer 6 on the fifth coating layer 5, wherein the sixth coating layer 6 is a metal coating layer; S414: forming a seventh coating layer 7 a sixth coating layer 6, wherein the seventh coating layer 7 is a mixture coating layer containing Ti-based oxide and carbon; 14 1356184 S416: forming an eighth An eighth coating layer 8 on the seventh coating layer 7, wherein the eighth coating layer 8 is a metal coating layer; and S418: forming a ninth coating layer 9 On the eighth coating layer 8, wherein the ninth coating layer 9 is a mixture coating layer containing titanium oxide (Ti-based oxide) and carbon (the combination coating layer) Resistive light attenuating anti-reflective coating can be applied to semiconductors, optical heads, liquid crystal displays, cathode ray tubes, buildings Glass, touch sensor, a filter screen, plastic screen and other industrial coatings. In addition, the material of the surface layer of the low-resistance light-attenuating anti-reflective coating is a penetrable surface conductive layer, and the light-reflecting rate of the transparent surface conductive layer is less than 0.5%, and the low-resistance light attenuates anti-reflection The coating has an impedance between 0.5 Ω and 0.7 Ω per square and a penetration of 70 〇/〇. Furthermore, the coating structure of the present invention has high conductivity characteristics, and when it is used in the manufacture of a plasma display, it has an electromagnetic interference barrier, an optical viewing angle, low reflection, high surface hardness, scratch resistance, and moderate Light attenuation effect and other advantages. For example, the surface structure of the coating structure of the present invention has a surface resistance of between 0.7 and Ω, and has sufficient hardness to pass the scratch resistance test of the military standard MIL-C-48497. Because the surface layer of the coating structure of the present invention has good electrical conductivity, the low resistivity light attenuation anti-reflection coating s can reduce the grounding process. The workload and increase the yield and reliability of a large number of raw materials, which can be applied to the glass substrate or plastic substrate. 'Yang'', 7^ or electric display only 'the above' is only the hair The detailed description and the drawings are only the features of the present invention; no: limited; true, the bounds shall prevail, and all of the inventions, materials, patents, and examples shall be included in any of the well-known mouthpieces of the present invention. The variations or modifications that can be easily conceived in the field of the present invention are within the scope of the following patents. [Simplified Schematic] The first figure is a low resistance of the present invention having a transparent surface conductive layer. A schematic diagram of a structure of a low resistivity light attenuation anti-reflection coating structure (4); the second figure is a low-resistance light having a transparent surface conductive layer of the present invention Low resistivity light attenuation anti-reflection coating structure (4) top view; and third figure is a low resistance light attenuating anti-reflective coating having a penetrable surface conductive layer of the present invention Flow chart of the manufacturing method (4) of the structure (i〇w resistivity Hght attenuation anti-reflection coating structure) [Description of main component symbols] 1356184 Substrate coating module first coating second coating third coating fourth Coating fifth coating sixth coating seventh coating eighth coating ninth coating shutter conductive layer

Claims (1)

1356184 十、申請專利範圍: • 1、一種具有可穿透的表面導電層之低電阻光衰減抗反射 塗層結構(low resistivity light attenuation anti-reflection coating structure)(四),其包括有·· 一基板(substrate);以及 一塗層模組(coating module) ’其形成於該基板之一前 表面上,並且該塗層模組係由複數層含鈦氧化物 (Ti-based oxide )與碳(carbon )的混合物塗層 鲁 (mixture coating layer )與複數層金屬塗層(metal coating layer)交替相疊而組成。 2、 如申請專利範圍第1項所述之具有可穿透的表面導電 層之低電限光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure) ( © ) » 其中該基板係為一塑膠薄膜(plastic film) 0 3、 如申請專利範圍第1項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity 參 light attenuation anti-reflection coating structure)(四), 其中該基板係為一玻璃(glass)。 4、 如申請專利範圍第1項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四), • 其中s亥塗層模組係為電漿顯示器(plasma display )或 • 液晶顯示器(liquid crystal display )之基本塗層。 5、 如申請專利範圍第1項所述之具有可穿透的表面導電 18 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四)’ 其中該塗層模組係包括: 一第一塗層(first coating layer),其形成於該基板之一 前表面上; 一第二塗層(second coating layer ),其形成於該第一塗 層上; 一第三塗層(third coating layer),其形成於該第二塗 層上; 一第四塗層(fourth coating layer ),其形成於該第二塗 層上; 一第五塗層(fifth coating layer ),其形成於該第四塗層 上; 一第六塗層(sixth coating layer ),其形成於該第五塗 層上; 一第七塗層(seventh coating layer ),其形成於該第六 塗層上; 一第八塗層(eighth coating layer ),其形成於該第七塗 層上;以及 一第九塗層(ninth coating layer )’其形成於該第八塗 層上; 其中,該第一塗層、該第三塗層、該第五塗層、該第 七塗層、及該第九塗層皆為含鈦氧化物(Ti_based oxide)與碳(carbon )的混合物塗層(mixture coating 1356184 hyer),並且該第二塗層、該第四塗層、該第六塗層、 及°玄第八塗層皆為金屬塗層(metal coating layer )。 6、 如申請專利範圍第5項所述之具有可穿透的表面導電 層之低電阻光哀減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四), 其中該含鈦氧化物係為二氧化鈦(Ti〇2),並且該等金 屬塗層係為銀(Ag )。 7、 如申請專利範圍第5項所述之具有可穿透的表面導電 層之低電阻光衣減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四), 其中s亥專混合物塗層的折射率(refractiVe index )係高 於該等金屬塗層。 8、 如申請專利範圍第5項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(四), 其中該第一塗層、該第三塗層、該第五塗層、該第七 塗層、及該第九塗層的折射率(refractive index )皆為 2.45 ’並且該第二塗層、該第四塗層、該第六塗層、及 該第八塗層的折射率(refractive index)皆介於0.1〜0.5 之間。 9、 如申請專利範圍第5項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(四), 其中: 20 1356184 該第一塗層的厚度係為3〇nm ; 該弟二塗層的厚度係介於15nm ; §亥第二塗層的厚度係為66nm ; • 該第四塗層的厚度係介於15nm ; 該第五塗層的厚度係為6〇nm ; 該苐六塗層的厚度係介於15nm ; 該第七塗層的厚度係為70nm ; 該第八塗層的厚度係介於15nm ;以及 鲁 該第九塗層的厚度係為40nm。 1 〇、如申請專利範圍第1項所述之具有可穿透的表面導 電層之低電阻光衣減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(四), 更進一步包括:一塗佈於該塗層模組上表面的四周邊 緣之導電層(conductive jayer),以供接地(ground)。 1 1、一種具有可穿透的表面導電層之低電阻光衰減抗反 射塗層結構(low resistivity light attenuation Φ anti-reflection coating structure)之製作方法(四),其 步驟包括有. 提供一基板(substrate);以及 形成一塗層模組(coating module )於該基板之一前表 面上,其中該塗層模組係由複數層含鈦氧化物 . (Ti-based oxide )與碳(carbon )的混合物塗層 • ( mixture coating layer)與複數層金屬塗層(metal coating layer)交替相叠而組成。 21 1356184 1 2、如申請專利範圍第1 1項所述之具有可穿透的表面 • 導電層之低電阻光衰減抗反射塗層結構(low resistivity • light attenuation anti-reflection coating structure )之製作 方法(四)’其中該基板係為一塑膠薄膜(plastic film )。 1 3、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作 方法(四),其中該基板係為一玻璃(glass)。 ® 1 4、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)之製作 方法c四),其中該塗層模組係為電漿顯示器(plasrna display)或液晶顯示器(liquid crystal display)之基本 塗層。 1 5、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光哀減抗反射塗層結構(1〇λν resistivity 鲁 light attermation anti-reflection coating structure )之製作 方法(四)’其中該形成該塗層模組之步驟係包括: 形成一第了塗層(first coating layer)於該基板之該前 表面上’其中該第一塗層係為含鈦氧化物(Ti_based oxide)與奴(carbon )的混合物塗層(mixture coating . layer); - 形成一第二塗層(second coat丨ng layer)於該第一塗層 上’其中该弟二塗層係為金屬塗層(metai coating 22 1356184 layer); 形成一第二塗層(third coating layer )於該第二塗層 上’其中該第三塗層係為含鈦氧化物(Ti-based oxide )與碳(carb〇n )的混合物塗層(mixture coating layer); 形成一弟四塗層(fourth coating layer )於該第三塗層 上’其中該第四塗層係為金屬塗層(metal coating • layer); 形成一第异塗層(fifth coating layer )於該第四塗層上, 其中該第五塗層係為含鈦氧化物(Ti-based oxide) 與碳(carbon )的混合物塗層(mixture coating layer ); 形成一第六塗層(sixth coating layer)於該第五塗層 上’其中該第六塗層係為金屬塗層(metal coating layer); 形成一第七塗層(seventh coating layer )於該第六塗層 上,其中該第七塗層係為含鈦氧化物(Ti-based 鲁 oxide)與碳(carb〇n)的混合物塗層(mixture coating layer); 形成一第八塗層(eighth coating layer )於該第七塗層 上,其中該第八塗層係為金屬塗層(metal coating layer);以及 . 形成一第九塗層(ninth coating layer)於該第八塗層 . 上,其中該第九塗層係為含鈦氧化物(Ti-based oxide)與碳(carbon )的混合物塗層(mixture coating 23 1356184 layer)〇 • 16、如申請專利範圍第15項所述之具有可穿透的表面 導電層之低電阻光农減抗反射塗層結構(]〇\v resistivity light attenuation anti-reflection coating structure )之製作 方法(四)’其中該含鈦氧化物係為二氧化鈦(Ti〇2), 並且該等金屬塗層係為銀(Ag )。 1 7、如申請專利範圍第1 5項所述之具有可穿透的表面 導電層之低電阻光衷減抗反射塗層結構(low resistivity 鲁 light attenuation anti-reflection coating structure )之製作 方法(四)’其中該等混合物塗層的折射率(refractive index)係高於該等金屬塗層。 1 8、如申請專利範圍第1 5項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作 方法(四),其中該第一塗層、該第三塗層、該第五塗 層、該苐七塗層、及該第九塗層的折射率(refractive φ index)皆為2.45,並且該第二塗層、該第四塗層、該 第六塗層、及該第八塗層的折射率(refractive index ) 皆介於0.1〜0.5之間。 1 9、如申請專利範圍第1 5項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity . light attenuation anti-reflection coating structure )之製作 方法(四),其中: 該第一塗層的厚度係為30nm ; 24 1356184 該第二塗層的厚度係介於15nm ; 該第二塗層的厚度係為66ηπι, 該第四塗層的厚度係介於15nm ; 該第五塗層的厚度係為60nm ; 該第六塗層的厚度係介於15nm ; 該第七塗層的厚度係為70nm ; 該第八塗層的厚度係介於15nm ;以及 該第九塗層的厚度係為40nm。 2 0、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製4乍 .方法(四),更進一步包括·· 設置一遮板(shutter )於該塗層模組之上表面,其中該 遮板的尺寸係小於該塗層模組,以使得該塗層模組 的上表面之邊緣曝露出來;以及 塗佈一層導電層(conductive layer )於該塗層模組的上 表面之邊緣,以供接地(ground)。 251356184 X. Patent Application Range: • 1. A low resistivity light attenuation anti-reflection coating structure (4) having a transparent surface conductive layer, including a substrate; and a coating module formed on a front surface of the substrate, and the coating module is composed of a plurality of layers containing titanium oxide (Ti-based oxide) and carbon ( The carbon dioxide mixture coating layer is formed by alternately overlapping a plurality of metal coating layers. 2. A low resistivity light attenuation anti-reflection coating structure (© ) as described in claim 1 of the patent application, wherein the substrate is a plastic film 0 3, a low-resistance light-attenuation anti-reflection coating structure having a penetrable surface conductive layer as described in claim 1 (low resistivity) (4), wherein the substrate is a glass. 4. A low resistivity light attenuation anti-reflection coating structure (IV) as described in claim 1 of the patent application scope, wherein: The layer module is the basic coating of a plasma display or a liquid crystal display. 5. A low resistivity light attenuation anti-reflection coating structure (four) as described in claim 1 of the patent application scope, wherein the coating The module includes: a first coating layer formed on a front surface of the substrate; a second coating layer formed on the first coating; a third coating layer formed on the second coating layer; a fourth coating layer formed on the second coating layer; a fifth coating layer Formed on the fourth coating layer; a sixth coating layer formed on the fifth coating layer; a seventh coating layer formed on the sixth coating layer An eighth coating layer formed on the seventh coating layer; and a ninth coating layer formed on the eighth coating layer; wherein the first coating layer One coating, the third The layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer are both a coating of a titanium-containing oxide (Ti_based oxide) and a carbon (mixture coating 1356184 hyer), and the second The coating, the fourth coating, the sixth coating, and the eighth coating are all metal coating layers. 6. A low resistivity light attenuation anti-reflection coating structure (IV) according to claim 5, wherein the titanium-containing material has a penetrable surface conductive layer The oxide is titanium dioxide (Ti〇2), and the metal coating is silver (Ag). 7. A low resistivity light attenuation anti-reflection coating structure (IV) having a penetrable surface conductive layer as described in claim 5, wherein The refractive index of the mixture coating (refractiVe index) is higher than the metal coating. 8. A low resistivity light attenuation anti-reflection coating structure (4) according to claim 5, wherein the first coating The refractive index of the layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer are both 2.45 ′ and the second coating layer, the fourth coating layer, The sixth coating layer and the eighth coating have a refractive index of between 0.1 and 0.5. 9. A low resistivity light attenuation anti-reflection coating structure (4) according to claim 5, wherein: 20 1356184 The thickness of the first coating layer is 3 〇 nm; the thickness of the second coating layer is 15 nm; the thickness of the second coating layer is 66 nm; • the thickness of the fourth coating layer is 15 nm; The thickness of the fifth coating layer is 6 〇 nm; the thickness of the 苐6 coating layer is 15 nm; the thickness of the seventh coating layer is 70 nm; the thickness of the eighth coating layer is 15 nm; The thickness of the ninth coating layer was 40 nm. 1 〇, a low resistivity light attenuation anti-reflection coating structure (4) having a penetrable surface conductive layer as described in claim 1, further including : A conductive jayer applied to the peripheral edge of the upper surface of the coating module for grounding. 1 . A method for fabricating a low resistivity light attenuation Φ anti-reflection coating structure having a permeable surface conductive layer (4), the steps comprising: providing a substrate ( Substrate; and forming a coating module on a front surface of the substrate, wherein the coating module is composed of a plurality of layers containing titanium oxide (Ti-based oxide) and carbon (carbon) The mixture coating layer is formed by alternately overlapping a plurality of metal coating layers. 21 1356184 1 2, a low resistivity light attenuation anti-reflection coating structure having a penetrable surface and a conductive layer as described in claim 11 (4) 'The substrate is a plastic film. 1) a method for fabricating a low resistivity light attenuation anti-reflection coating structure (IV) having a permeable surface conductive layer as described in claim 11 Wherein the substrate is a glass. ® 1 4, a method for producing a resistive light attenuation anti-reflection coating structure having a permeable surface conductive layer as described in claim 11 4) wherein the coating module is a basic coating of a plasrna display or a liquid crystal display. The method for manufacturing a low-resistance anti-reflection coating structure having a penetrable surface conductive layer as described in claim 11 (d) wherein the step of forming the coating module comprises: forming a first coating layer on the front surface of the substrate, wherein the first coating is a titanium-containing oxide ( a mixture coating of a Ti_based oxide and a carbon; forming a second coat 丨ng layer on the first coating, wherein the second coating is a metal a coating (metai coating 22 1356184 layer); forming a third coating layer on the second coating 'where the third coating is Ti-based oxide and carbon ( a mixture coating layer of carb〇n; forming a fourth coating layer on the third coating, wherein the fourth coating is a metal coating layer Form a first a fifth coating layer on the fourth coating layer, wherein the fifth coating layer is a mixture coating layer containing a Ti-based oxide and a carbon; forming a a sixth coating layer on the fifth coating 'where the sixth coating is a metal coating layer; forming a seventh coating layer on the sixth coating On the layer, wherein the seventh coating layer is a mixture coating layer containing titanium oxide (Ti-based) and carbon (carb〇n); forming an eighth coating layer (eighth coating layer) On the seventh coating layer, wherein the eighth coating layer is a metal coating layer; and forming a ninth coating layer on the eighth coating layer, wherein the The nine-coating layer is a coating of a titanium-containing oxide (Ti-based oxide) and a carbon (mixture coating 23 1356184 layer) 16 16 , which is permeable as described in claim 15 Low-resistance photo-energy-reducing anti-reflective coating structure of surface conductive layer (4) The method for producing a (v) resistivity light attenuation anti-reflection coating structure is as follows: wherein the titanium-containing oxide is titanium dioxide (Ti〇2), and the metal coating is silver (Ag). 1 7 . A method for producing a low resistivity light-sensitive anti-reflection coating structure having a permeable surface conductive layer as described in claim 15 (4) Wherein the refractive index of the coating of the mixtures is higher than the metal coatings. 18. The method of fabricating a low resistivity light attenuation anti-reflection coating structure (IV) having a permeable surface conductive layer as described in claim 15 Wherein the first coating layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer have a refractive index (refractive φ index) of 2.45, and the second coating layer, The fourth coating layer, the sixth coating layer, and the eighth coating layer have a refractive index of between 0.1 and 0.5. [9] A method for producing a low resistivity light attenuation anti-reflection coating structure (IV) according to claim 15 of the patent application scope Wherein: the thickness of the first coating is 30 nm; 24 1356184 the thickness of the second coating is 15 nm; the thickness of the second coating is 66 ηπι, and the thickness of the fourth coating is 15 nm The thickness of the fifth coating layer is 60 nm; the thickness of the sixth coating layer is 15 nm; the thickness of the seventh coating layer is 70 nm; the thickness of the eighth coating layer is 15 nm; The thickness of the nine coatings was 40 nm. 20, a low resistivity light attenuation anti-reflection coating structure having a penetrable surface conductive layer as described in claim 1 of the patent application. 4) further comprising: providing a shutter on the upper surface of the coating module, wherein the size of the shutter is smaller than the coating module, so that the upper surface of the coating module The edge is exposed; and a conductive layer is applied to the edge of the upper surface of the coating module for grounding. 25
TW096124770A 2007-07-06 2007-07-06 Low resistivity light attenuation anti-reflection TWI356184B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096124770A TWI356184B (en) 2007-07-06 2007-07-06 Low resistivity light attenuation anti-reflection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096124770A TWI356184B (en) 2007-07-06 2007-07-06 Low resistivity light attenuation anti-reflection

Publications (2)

Publication Number Publication Date
TW200903020A TW200903020A (en) 2009-01-16
TWI356184B true TWI356184B (en) 2012-01-11

Family

ID=44722022

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096124770A TWI356184B (en) 2007-07-06 2007-07-06 Low resistivity light attenuation anti-reflection

Country Status (1)

Country Link
TW (1) TWI356184B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489493B (en) * 2012-09-07 2015-06-21 Wintek Corp Touch panel and touch display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI489493B (en) * 2012-09-07 2015-06-21 Wintek Corp Touch panel and touch display device

Also Published As

Publication number Publication date
TW200903020A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
TWI473147B (en) Touch panel comprising conducting pattern
KR102214745B1 (en) Transparent conductive substrate and method for manufacturing transparent conductive substrate
EP2148240B1 (en) Transparent electrode
WO2014064939A1 (en) Transparent conductor
TWI356184B (en) Low resistivity light attenuation anti-reflection
WO2015152184A1 (en) Optically transparent conductive film and touch panel comprising same
JP5777611B2 (en) Transparent conductive substrate
TW562736B (en) Multilayer antireflection coating with a transparent conductive layer
JP2009282256A (en) Coating layer structure of low resistance optical attenuation antireflection for making blue optical transmissivity improve, and manufacturing method therefor
TW200903019A (en) Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer
US7833628B2 (en) Coating structure with an anti-reflection function and an anti-electromagnetic wave function
JP3141513U (en) Coating layer structure with anti-reflection and anti-electromagnetic wave functions
JP2003021703A (en) Transparent substrate with multilayered antireflection film having conductivity
TW200903521A (en) Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer
JP2009045753A (en) Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
JP2009045752A (en) Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
US20090092808A1 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
WO2015011928A1 (en) Method for producing transparent conductive body
JP2009045754A (en) Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
TW200903017A (en) Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer
KR100862781B1 (en) Low resistance optical attenuating anti-reflecting cover layer having transmittable surface conducting layer
TWI322277B (en)
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees