JP2003021703A - Transparent substrate with multilayered antireflection film having conductivity - Google Patents

Transparent substrate with multilayered antireflection film having conductivity

Info

Publication number
JP2003021703A
JP2003021703A JP2002129068A JP2002129068A JP2003021703A JP 2003021703 A JP2003021703 A JP 2003021703A JP 2002129068 A JP2002129068 A JP 2002129068A JP 2002129068 A JP2002129068 A JP 2002129068A JP 2003021703 A JP2003021703 A JP 2003021703A
Authority
JP
Japan
Prior art keywords
thin film
film layer
layer
transparent
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002129068A
Other languages
Japanese (ja)
Other versions
JP4162425B2 (en
Inventor
Jun Katsuragawa
潤 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2002129068A priority Critical patent/JP4162425B2/en
Publication of JP2003021703A publication Critical patent/JP2003021703A/en
Application granted granted Critical
Publication of JP4162425B2 publication Critical patent/JP4162425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent substrate with a multilayered antireflection film having conductivity in which a high transmittance can be obtained although a transparent conductive film having a low resistance is used. SOLUTION: The transparent substrate with a multilayered antireflection film having conductivity by laminating a transparent dielectric thin film and a transparent conductive thin film on a transparent substrate, is characterized in that the substrate has, in the order from the transparent substrate side, a first thin film layer of a transparent dielectric material having the refractive index lower than that of the transparent substrate, a second thin film layer of a transparent dielectric material having the refractive index higher than that of the first thin film layer, and a third thin film layer of a transparent conductive material as the outermost layer. These layers are formed on the transparent substrate by determining the optical film thickness of the third thin film layer so as to obtain the desired surface resistance and by determining the optical film thickness of the second thin film layer in such a manner that the sum film thickness with that of the third thin film layer is about λ/2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高透過率が得られ
る導電性を有する多層反射防止膜付透明基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent, multi-layered antireflection film-coated transparent substrate having a high transmittance.

【0002】[0002]

【従来技術】従来、ガラス板等の透明基板にインジウム
錫酸化物(ITO)やSnO2等の透明導電膜を形成し
て、太陽電池などの光電変換素子の電極や液晶等の表示
装置またはタッチパネルの電極として利用するものが知
られている。特にタッチパネルや液晶で使用される場
合、可視領域での高透過率や最適な抵抗値を確保するこ
とが必要となってくる。さらに液晶パネルの製造に於い
ては100Ω/□以下、好ましくは50Ω/□以下の低
抵抗値を有する透明導電膜が望まれている。
2. Description of the Related Art Conventionally, a transparent conductive film such as indium tin oxide (ITO) or SnO 2 is formed on a transparent substrate such as a glass plate to form electrodes of photoelectric conversion elements such as solar cells or display devices such as liquid crystals or touch panels. What is utilized as an electrode of is known. Especially when used in a touch panel or a liquid crystal, it is necessary to secure a high transmittance in the visible region and an optimum resistance value. Further, in the production of liquid crystal panels, a transparent conductive film having a low resistance value of 100Ω / □ or less, preferably 50Ω / □ or less is desired.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、低抵抗
値の透明導電膜を作製しようとする場合、導電膜の膜厚
をより厚くする必要があり、導電膜の膜厚が厚くなれば
なるほど、透過率は下がり、高透過率を得ることが難し
くなってしまう。
However, in order to manufacture a transparent conductive film having a low resistance value, it is necessary to increase the film thickness of the conductive film. The rate decreases, and it becomes difficult to obtain high transmittance.

【0004】本発明では上記従来技術の問題点に鑑み、
低抵抗値の透明導電膜でありながら、高透過率を得るこ
とができる導電性を有する多層反射防止膜付透明基板を
提供することを技術課題とする。
In view of the above problems of the prior art, the present invention
It is a technical object to provide a transparent substrate with a multilayer antireflection film having conductivity, which is a transparent conductive film having a low resistance value and can obtain high transmittance.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のような構成を備えることを特徴とす
る。 (1) 透明基板上に透明誘電体の薄膜と透明導電体の
薄膜とを積層する導電性を有する多層反射防止膜付透明
基板において、前記透明基板側から順に、前記透明基板
の屈折率より低い屈折率である透明誘電体の第1薄膜層
と、該第1薄膜層の屈折率より高い屈折率である透明誘
電体の第2薄膜層と、最外層に透明導電体の第3薄膜層
との3層を有し、該第3薄膜層の光学膜厚は所望する表
面抵抗値が得られる膜厚にて決定され、第2薄膜層の光
学膜厚は前記第3薄膜層の光学膜厚との和が略λ/2と
なるように決定され、前記透明基板上に各々積層してな
ることを特徴とする。 (2) (1)の多層反射防止膜付透明基板において、
前記第1薄膜層の光学膜厚は略λ/4となることを特徴
とする。 (3) (1)の多層反射防止膜付透明基板において、
前記第3層の表面抵抗値は略50Ω/□以下であること
を特徴とする。
In order to solve the above problems, the present invention is characterized by having the following configuration. (1) In a transparent transparent substrate with a multilayer antireflection film having conductivity, in which a thin film of a transparent dielectric and a thin film of a transparent conductor are laminated on a transparent substrate, the refractive index is lower than the refractive index of the transparent substrate in order from the transparent substrate side. A first thin film layer of a transparent dielectric having a refractive index, a second thin film layer of a transparent dielectric having a refractive index higher than that of the first thin film layer, and a third thin film layer of a transparent conductor as an outermost layer. And the optical film thickness of the third thin film layer is determined by a film thickness that gives a desired surface resistance value, and the optical film thickness of the second thin film layer is the optical film thickness of the third thin film layer. Is determined to be approximately λ / 2, and each is laminated on the transparent substrate. (2) In the transparent substrate with a multilayer antireflection film according to (1),
The optical film thickness of the first thin film layer is approximately λ / 4. (3) In the transparent substrate with the multilayer antireflection film according to (1),
The surface resistance value of the third layer is about 50Ω / □ or less.

【発明の実施の形態】以下に図面を参照しながら説明す
る。図1は本発明の実施形態である導電性を有する多層
反射防止膜の積層構成を示す概念図である。1は透明の
基板である。使用する基板の屈折率は1.48〜1.7
0程度のものを使用する。具体的に、基板材料としては
ガラス、プラスチック(ポリカーボネイト、ポリエチレ
ンテレフタラート等)が用いられ、光学的に透明であれ
ば特に限定されない。
DETAILED DESCRIPTION OF THE INVENTION A description will be given below with reference to the drawings. FIG. 1 is a conceptual diagram showing a laminated structure of a multilayer antireflection film having conductivity, which is an embodiment of the present invention. 1 is a transparent substrate. The refractive index of the substrate used is 1.48 to 1.7.
Use 0 or so. Specifically, glass or plastic (polycarbonate, polyethylene terephthalate, etc.) is used as the substrate material, and is not particularly limited as long as it is optically transparent.

【0006】2は基板1上に積層され、基板1の屈折率
よりも低い屈折率をもつ透明誘電体の第1薄膜層であ
る。第1薄膜層2に使用される透明誘電体は、使用する
基板1に応じて適宜選択されるが、屈折率1.35〜
1.60程度の範囲のものが使用される。具体的には、
第1薄膜層2の主成分にはSiO2(屈折率1.46)
やMgF2が挙げられる。また、第1薄膜層2の光学的
膜厚(以後、単に膜厚と記す)は略λ/4の膜厚となる
ように形成される。
Reference numeral 2 is a first thin film layer of a transparent dielectric material, which is laminated on the substrate 1 and has a refractive index lower than that of the substrate 1. The transparent dielectric used for the first thin film layer 2 is appropriately selected according to the substrate 1 used, but has a refractive index of 1.35 to
The range of about 1.60 is used. In particular,
The main component of the first thin film layer 2 is SiO 2 (refractive index 1.46).
And MgF 2 . The optical film thickness of the first thin film layer 2 (hereinafter, simply referred to as film thickness) is formed to be about λ / 4.

【0007】また、基板1と多層膜との間の密着力を上
げるために基板1と第1薄膜層2との間にアンダーコー
ト層を設けてもよい。このアンダーコート層は基板1の
表面を保護するとともに、基板1と多層膜との間の密着
力を上げることが可能なハードコートがよく利用され
る。また、アンダーコート層の膜厚は光学的な阻害が起
こらない程度の膜厚であることが好ましい。
Further, an undercoat layer may be provided between the substrate 1 and the first thin film layer 2 in order to increase the adhesion between the substrate 1 and the multilayer film. This undercoat layer protects the surface of the substrate 1 and often uses a hard coat capable of increasing the adhesion between the substrate 1 and the multilayer film. Further, the thickness of the undercoat layer is preferably such that optical inhibition does not occur.

【0008】3は第1薄膜層2上に積層され、第1薄膜
層2の屈折率よりも高い屈折率をもつ透明誘電体の第2
薄膜層である。第2薄膜層3に使用される透明誘電体
は、屈折率1.50〜2.50程度の範囲のものが使用
される。具体的には、第2薄膜層3の主成分にはZrO
2(屈折率1.9)や、TiO2(屈折率2.2)、Al
23(屈折率1.6)等が挙げられる。第2薄膜層3の
膜厚は第2薄膜層3上に載せられる導電性を有する薄膜
層の膜厚との合計の膜厚が略λ/2となるように決定さ
れる。
The first thin film 3 is laminated on the first thin film layer 2.
A second transparent dielectric having a refractive index higher than that of layer 2
It is a thin film layer. Transparent dielectric used for the second thin film layer 3
Has a refractive index in the range of 1.50 to 2.50.
To be done. Specifically, ZrO is used as the main component of the second thin film layer 3.
2(Refractive index 1.9) and TiO2(Refractive index 2.2), Al
2O3(Refractive index 1.6) and the like. Of the second thin film layer 3
A thin film having a conductive thickness, which is placed on the second thin film layer 3.
Determined so that the total film thickness with the layer film thickness is approximately λ / 2.
Be done.

【0009】4は第2薄膜層3上に積層され、最外層と
なる導電性を有する第3薄膜層である。第3薄膜層4の
主成分にはITOやSnO2等が挙げられる。第3薄膜
層4の膜厚により表面抵抗値が決定されるため、表面抵
抗値を低抵抗値に設定する場合には膜厚を厚く、高抵抗
値にする場合には膜厚を薄くすればよい。
Reference numeral 4 is a third thin film layer having a conductivity which is laminated on the second thin film layer 3 and serves as an outermost layer. The main component of the third thin film layer 4 may be ITO, SnO 2 or the like. Since the surface resistance value is determined by the film thickness of the third thin film layer 4, if the surface resistance value is set to a low resistance value, the film thickness should be increased, and if it is set to a high resistance value, the film thickness should be decreased. Good.

【0010】本実施の形態では、液晶ディスプレイ用に
使用するために表面抵抗値が10Ω/□〜100Ω/
□、好ましくは50Ω/□以下の間にて決定される。従
って、この表面抵抗値と対応する第3薄膜層4の膜厚は
80nm〜200nmの範囲で形成される。
In this embodiment, the surface resistance value is 10 Ω / □ to 100 Ω / for use in a liquid crystal display.
□, preferably 50 Ω / □ or less. Therefore, the film thickness of the third thin film layer 4 corresponding to this surface resistance value is formed in the range of 80 nm to 200 nm.

【0011】ここで、本明細書中では、後述するよう
に、多層反射防止膜付透明基板の評価をY値を用いて行
うことにした。Y値とは、分光光度計によって測定され
た試料の分光反射率とXYZ表色系の等色関数y(λ)
の積を可視域波長で積分した値である。そして、刺激値
Y(Y値)は、明るさを評価する際の指標とされてい
る。したがって、視感反射率としてY値を用いた場合に
は、Y値が高いほど高反射であることを意味し、Y値が
低いほど高透過であることを意味する。
Here, in the present specification, as will be described later, the evaluation of the transparent substrate with the multilayer antireflection film is carried out by using the Y value. The Y value is the spectral reflectance of the sample measured by a spectrophotometer and the color matching function y (λ) of the XYZ color system.
Is the value obtained by integrating the product of The stimulation value Y (Y value) is used as an index when evaluating the brightness. Therefore, when the Y value is used as the luminous reflectance, a higher Y value means higher reflection, and a lower Y value means higher transmission.

【0012】そして、本明細書中では、視感反射率とし
てY値を用いている。つまり、本明細書中のY値は、反
射率を測定して算出したものである。したがって、本明
細書では、Y値が低いほど低反射、言い換えると高透過
であることを意味する。そして、現在、このY値を
「0.1」単位で低減させるための研究開発が盛んに行
われている。このため、当業者間では、Y値が「0.
1」低くなれば非常に大きな成果が得られたと考えられ
ているのが実情である。
In this specification, the Y value is used as the luminous reflectance. That is, the Y value in this specification is calculated by measuring the reflectance. Therefore, in this specification, a lower Y value means lower reflection, in other words, higher transmission. At present, research and development for reducing the Y value in units of "0.1" are being actively conducted. Therefore, the Y value is "0.
In reality, it is believed that very low results would have been achieved if the value was lowered by 1 ”.

【0013】視感反射率としてのY値を低くするには、
波長550nmにおいて反射率を最小にすることが必要
である。そして、最外層となる導電性を有する薄膜層
(本実施の形態では第3薄膜層4)の膜厚を変化させれ
ば、最小反射率がシフトすることが知られている。具体
的には、導電性を有する薄膜層の膜厚を薄くすれば最小
反射率は短波長側にシフトし、導電性を有する薄膜層の
膜厚を厚くすれば最小反射率は長波長側にシフトする。
To lower the Y value as the luminous reflectance,
It is necessary to minimize the reflectance at the wavelength of 550 nm. It is known that the minimum reflectance is shifted by changing the film thickness of the conductive thin film layer (third thin film layer 4 in the present embodiment) which is the outermost layer. Specifically, if the film thickness of the conductive thin film layer is made thin, the minimum reflectance shifts to the short wavelength side, and if the film thickness of the conductive thin film layer is made thick, the minimum reflectance becomes the long wavelength side. shift.

【0014】しかしながら、第3薄膜層4の表面抵抗値
は要求値に固定する必要があるため、第3薄膜層4の膜
厚を変化させることができない。そこで、本願発明者
は、試行錯誤を重ねた結果、第3薄膜層4の膜厚を変化
させる代わりに、第2薄膜層3を第3薄膜層4と同等の
屈折率をもつ膜とし、第2薄膜層3の膜厚を変化させれ
ば、最小反射率がシフトすることを突き止めた。そのシ
ュミレーション結果を、図5に示す。このシュミレーシ
ョンでは、第2薄膜層3としてTiO2膜を形成させ、
第3薄膜層4としてITO膜を形成させて、ITO膜の
膜厚を150nm(表面抵抗30Ω/□)に固定して、
第2薄膜層3の膜厚を変化させた。このとき第1薄膜層
2(SiO2)の膜厚は波長550nmにて略λ/4と
なる膜厚(142.5nm)としている。
However, since the surface resistance value of the third thin film layer 4 must be fixed to the required value, the film thickness of the third thin film layer 4 cannot be changed. Therefore, as a result of repeated trial and error, the inventor of the present application made the second thin film layer 3 a film having a refractive index equivalent to that of the third thin film layer 4 instead of changing the film thickness of the third thin film layer 4. 2 It was found that the minimum reflectance shifts when the film thickness of the thin film layer 3 is changed. The simulation result is shown in FIG. In this simulation, a TiO 2 film is formed as the second thin film layer 3,
An ITO film is formed as the third thin film layer 4, and the thickness of the ITO film is fixed to 150 nm (surface resistance 30 Ω / □),
The film thickness of the second thin film layer 3 was changed. At this time, the film thickness of the first thin film layer 2 (SiO 2 ) is set to be a film thickness (142.5 nm) which becomes approximately λ / 4 at a wavelength of 550 nm.

【0015】図5に示すように、TiO2膜の膜厚を変
化させると、最小反射率がシフトすることがわかる。よ
り具体的には、TiO2膜の膜厚を厚くするにしたがっ
て、最小反射率が長波長側へとシフトすることがわか
る。そして、TiO2膜の膜厚を124nm(の場
合)にしたとき、すなわちTiO2膜の膜厚とITO膜
の膜厚との和が274nmのときに波長550nmで反
射率が最小となることが判った。
As shown in FIG. 5, it can be seen that the minimum reflectance shifts when the thickness of the TiO 2 film is changed. More specifically, it can be seen that the minimum reflectance shifts to the longer wavelength side as the thickness of the TiO 2 film is increased. Then, when the film thickness of the TiO 2 film is set to 124 nm (in that case), that is, when the sum of the film thickness of the TiO 2 film and the film thickness of the ITO film is 274 nm, the reflectance may be minimum at the wavelength of 550 nm. understood.

【0016】したがって、上記したように、第2薄膜層
3の膜厚を、第2薄膜層3上に載せられる第3薄膜層4
の膜厚との合計の膜厚が略λ/2となるようにしたこと
により、波長550nmで反射率が最小となるので、Y
値を低くすることができ、高い透過率を得ることができ
る。
Therefore, as described above, the film thickness of the second thin film layer 3 is set to the third thin film layer 4 which is placed on the second thin film layer 3.
By setting the total film thickness to the film thickness of λ / 2 to be approximately λ / 2, the reflectance becomes minimum at the wavelength of 550 nm.
The value can be lowered and a high transmittance can be obtained.

【0017】また、上記したような各薄膜層2〜4を透
明基板1上に形成する方法としては、物理的方法では熱
蒸着方法やスパッタ方法、イオンプレーティング方法等
が挙げられる。また、化学的方法ではめっき方法や化学
的気層成長方法等が挙げられる。これらの成膜方法は本
発明の実施の形態としてすべて使用可能であるが、特に
熱蒸着方法の一つである真空蒸着方法やスパッタ方法
は、膜厚制御が正確にできるため、好適に用いられる。
As a method for forming each of the above-mentioned thin film layers 2 to 4 on the transparent substrate 1, physical methods include a thermal vapor deposition method, a sputtering method, an ion plating method and the like. In addition, examples of the chemical method include a plating method and a chemical vapor deposition method. Although all of these film forming methods can be used as the embodiments of the present invention, the vacuum evaporation method and the sputtering method, which are one of the thermal evaporation methods, are preferably used because the film thickness can be accurately controlled. .

【0018】なお、本実施の形態は、単なる例示にすぎ
ず本発明を何ら限定するものではない。従って、本発明
は、その要旨を逸脱しない範囲内での種々の変形、改良
が可能である。
The present embodiment is merely an example and does not limit the present invention. Therefore, the present invention can be variously modified and improved within the scope of the invention.

【0019】以上のような構成を備える導電性を有する
多層反射防止膜付透明基板について実施例を挙げ、より
具体的に説明する。
The conductive transparent substrate with a multilayer antireflection film having the above-described structure will be described more specifically with reference to examples.

【0020】<実施例1>ハードコート付きポリカーボ
ネイト基板(屈折率1.58)を用意し、基板表面の汚
れをとるために超音波洗浄機で洗浄する。基材を乾燥さ
せた後、真空蒸着装置に基材を投入し、排気を行なう。
排気を始めてから基板への成膜完了後リークするまで、
装置内のマイクロヒーター、ハロゲンヒーターは130
℃で加熱を行なう。マイクロヒーター、ハロゲンヒータ
ーは共に基板の加熱を行なう。また、装置内には予め、
第1層から第3層までの成膜用の薬品を準備しておく。
<Example 1> A polycarbonate substrate with a hard coat (refractive index 1.58) is prepared and cleaned with an ultrasonic cleaner to remove stains on the substrate surface. After the base material is dried, the base material is put into a vacuum vapor deposition device and exhausted.
From the start of evacuation to the leak after the completion of film formation on the substrate,
Micro heater and halogen heater in the device are 130
Heat at ℃. Both the micro heater and the halogen heater heat the substrate. In addition, in the device in advance,
Chemicals for film formation of the first layer to the third layer are prepared.

【0021】加熱を始めてから約1時間後、成膜を開始
する。装置内に予め設置しておいた第1層蒸着用の薬品
(SiO2ザラメ)を使用し、基板上に第1薄膜層とし
てSiO2を主成分とする薄膜層を形成する。蒸着時間
は約5分、膜厚は142.5nm(波長550nmにて
略λ/4となる膜厚)とした。
The film formation is started about 1 hour after the heating is started. A thin film layer containing SiO 2 as a main component is formed as a first thin film layer on a substrate by using a chemical for first layer deposition (SiO 2 grain) that is installed in advance in the apparatus. The vapor deposition time was about 5 minutes, and the film thickness was 142.5 nm (film thickness of about λ / 4 at a wavelength of 550 nm).

【0022】次に第2薄膜層蒸着用の薬品(オプトロン
社製TiO2タブレット)を使用し、第1薄膜層上に第
2薄膜層としてTiO2を主成分とする薄膜層を形成す
る。蒸着時間は約5分、膜厚は124.0nmとした。
Next, a thin film layer containing TiO 2 as a main component is formed as a second thin film layer on the first thin film layer by using a chemical for vapor deposition of the second thin film layer (TiO 2 tablet manufactured by Optron). The vapor deposition time was about 5 minutes and the film thickness was 124.0 nm.

【0023】次に第3薄膜層蒸着用の薬品(オプトロン
社製ITOタブレット)を使用し、第3薄膜層としてI
TOを主成分とする薄膜層を形成する。第3薄膜層の薄
膜層を形成している間はプラズマ処理(RF処理)を行
なっておく。膜厚は表面抵抗値が30Ω/□が得られる
厚さである150.0nmとした。
Next, a chemical for vapor deposition of the third thin film layer (ITO tablet manufactured by Optron Co., Ltd.) is used to form I as the third thin film layer.
A thin film layer containing TO as a main component is formed. Plasma treatment (RF treatment) is performed while the thin film layer of the third thin film layer is formed. The film thickness was set to 150.0 nm, which is a thickness at which a surface resistance value of 30Ω / □ was obtained.

【0024】このようにして得られた導電性を有する多
層反射防止膜を徐冷し、試料とした。この試料の可視光
透過率を分光光度計により測定した。このときの視感度
透過率は91%であった。また、この膜構成、膜厚での
透過率及び反射率のシュミレーション結果を図2に示
す。シュミレーション結果では波長550nmにおいて
透過率98.9%、反射率1.0%となった。
The thus obtained conductive multi-layered antireflection film was gradually cooled to obtain a sample. The visible light transmittance of this sample was measured by a spectrophotometer. At this time, the luminous transmittance was 91%. In addition, FIG. 2 shows the simulation results of the transmittance and the reflectance with this film configuration and film thickness. The simulation result shows that the transmittance is 98.9% and the reflectance is 1.0% at a wavelength of 550 nm.

【0025】<比較例1>実施例1で使用する基板(ポ
リカーボネイト 屈折率1.58)の上にITO(屈折
率2.0)の薄膜層を膜厚150.0nmにて形成した
場合をシュミレーションした。このときのシュミレーシ
ョン結果を図3に示す。シュミレーション結果では波長
550nmにおいて透過率81.4%、反射率18.5
%となった。
<Comparative Example 1> A simulation in which a thin film layer of ITO (refractive index 2.0) having a film thickness of 150.0 nm is formed on the substrate (polycarbonate refractive index 1.58) used in Example 1 is simulated. did. The simulation result at this time is shown in FIG. The simulation result shows that the transmittance is 81.4% and the reflectance is 18.5 at a wavelength of 550 nm.
It became%.

【0026】<比較例2>実施例1で使用する基板(ポ
リカーボネイト 屈折率1.58)の上にSiO 2(屈
折率1.46)単層の反射防止膜(膜厚 138nm=
略1/4λ)を形成させ、その上にITO(屈折率2.
0)の薄膜層を膜厚150.0nmにて形成した場合を
シュミレーションした。このときのシュミレーション結
果を図4に示す。シュミレーション結果では波長550
nmにおいて透過率75.7%、反射率24.2%とな
った。
<Comparative Example 2> The substrate (podium used in Example 1)
SiO on top of the refractive index of 1.58) 2(Bent
Folding rate: 1.46) Single-layer antireflection film (film thickness 138 nm =
Almost 1/4 λ) is formed, and ITO (refractive index 2.
When the thin film layer of 0) is formed with a film thickness of 150.0 nm,
I simulated. Simulation result at this time
The results are shown in FIG. The simulation result shows a wavelength of 550
The transmittance is 75.7% and the reflectance is 24.2% in nm.
It was.

【0027】<比較例3>本実施の形態の膜構成にて導
電膜の膜厚を種々変化させたときの各膜厚とY値を表1
に示す。ここで実施例1の膜構成において基本的には第
1薄膜層の膜厚はλ/4、第2薄膜層と第3薄膜層との
合計の膜厚はλ/2であるが、できるだけ低いY値が得
られるように各膜厚とも若干量だけ修正してある。
<Comparative Example 3> Table 1 shows each film thickness and Y value when the film thickness of the conductive film was variously changed in the film structure of the present embodiment.
Shown in. Here, in the film configuration of Example 1, the film thickness of the first thin film layer is basically λ / 4, and the total film thickness of the second thin film layer and the third thin film layer is λ / 2, but it is as low as possible. Each film thickness is slightly modified so that the Y value can be obtained.

【0028】また、比較例2の膜構成(基板+SiO2
+ITO)にて導電膜の膜厚を種々変化させたときのS
iO2の膜厚とそのときのY値を表2示す。このときS
iO2の膜厚はY値ができるだけ低くなるような膜厚と
した。また、実施例1と同じ基板上に高屈折率の薄膜層
(TiO2)、低屈折率の薄膜層(SiO2)を順次形成
し、最外層に導電膜を形成する膜構成にて導電膜の膜厚
を種々変化させたときの各導電膜の膜厚とY値を表3に
示す。このときの各膜厚はY値ができるだけ低くなるよ
うな膜厚とした。
The film structure of Comparative Example 2 (substrate + SiO 2
+ S) when the film thickness of the conductive film is variously changed with
Table 2 shows the film thickness of iO 2 and the Y value at that time. At this time S
The film thickness of iO 2 was set so that the Y value was as low as possible. In addition, a high refractive index thin film layer (TiO 2 ) and a low refractive index thin film layer (SiO 2 ) are sequentially formed on the same substrate as in Example 1, and a conductive film is formed as the outermost layer. Table 3 shows the film thickness and Y value of each conductive film when the film thickness was variously changed. The respective film thicknesses at this time were set so that the Y value was as low as possible.

【0029】<結果>表1に示す本実施の形態での膜構
成によるY値は、表2に示す膜構成にて得られるY値に
対してすべて下回る値が得られた。また、表3に示す膜
構成との比較においては、IT0の膜厚が120nm以
上(表面抵抗値が略50Ω/□以下)のときに何れも下
回る値が得られた。
<Results> The Y values obtained by the film structure of the present embodiment shown in Table 1 were all lower than the Y values obtained by the film structure shown in Table 2. Further, in comparison with the film configuration shown in Table 3, when the film thickness of IT0 is 120 nm or more (surface resistance value is approximately 50 Ω / □ or less), values below all were obtained.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】以上のように本発明よれば、表面抵抗値
が低抵抗値を必要とする透明導電膜に場合において、最
表面層の導電性と必要な抵抗値を確保するとともに、高
透過率を得ることができる。
As described above, according to the present invention, in the case of a transparent conductive film which requires a low surface resistance value, the conductivity of the outermost surface layer and the necessary resistance value are ensured, and a high transmittance is obtained. You can get a rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の膜構成を示す模式図である。FIG. 1 is a schematic view showing a film structure of the present invention.

【図2】実施例1における膜構成、膜厚での透過率及び
反射率のシュミレーション結果を示した図である。
FIG. 2 is a diagram showing a simulation result of a film configuration, a transmittance and a reflectance at a film thickness in Example 1.

【図3】比較例1における膜構成、膜厚での透過率及び
反射率のシュミレーション結果を示した図である。
FIG. 3 is a diagram showing a simulation result of a film configuration, a transmittance and a reflectance at a film thickness in Comparative Example 1.

【図4】比較例2における膜構成、膜厚での透過率及び
反射率のシュミレーション結果を示した図である。
FIG. 4 is a diagram showing a simulation result of a film configuration, a transmittance and a reflectance at a film thickness in Comparative Example 2.

【図5】第2薄膜層の膜厚を変化させた時の最小反射率
のシフトの様子を示した図である。
FIG. 5 is a diagram showing how the minimum reflectance shifts when the film thickness of the second thin film layer is changed.

【符号の説明】[Explanation of symbols]

1 基板 2 第1薄膜層 3 第2薄膜層 4 第3薄膜層 1 substrate 2 First thin film layer 3 Second thin film layer 4 Third thin film layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に透明誘電体の薄膜と透明導
電体の薄膜とを積層する導電性を有する多層反射防止膜
付透明基板において、前記透明基板側から順に、前記透
明基板の屈折率より低い屈折率である透明誘電体の第1
薄膜層と、該第1薄膜層の屈折率より高い屈折率である
透明誘電体の第2薄膜層と、最外層に透明導電体の第3
薄膜層との3層を有し、該第3薄膜層の光学膜厚は所望
する表面抵抗値が得られる膜厚にて決定され、第2薄膜
層の光学膜厚は前記第3薄膜層の光学膜厚との和が略λ
/2となるように決定され、前記透明基板上に各々積層
してなることを特徴とする導電性を有する多層反射防止
膜付透明基板。
1. A transparent substrate with a multilayer antireflection film having conductivity, comprising a transparent dielectric thin film and a transparent conductive thin film laminated on a transparent substrate, wherein the transparent substrate has a refractive index in order from the transparent substrate side. First transparent dielectric with lower refractive index
A thin film layer, a second thin film layer of a transparent dielectric material having a refractive index higher than that of the first thin film layer, and a third transparent conductive material as an outermost layer.
The third thin film layer has three layers, the optical film thickness of the third thin film layer is determined by the film thickness at which a desired surface resistance value is obtained, and the optical film thickness of the second thin film layer is Sum of optical thickness is approximately λ
The transparent transparent substrate with a multilayer antireflection film, which is determined to have a thickness of 1/2 and is laminated on the transparent substrate.
【請求項2】 請求項1の多層反射防止膜付透明基板に
おいて、前記第1薄膜層の光学膜厚は略λ/4となるこ
とを特徴とする多層反射防止膜付透明基板。
2. The transparent substrate with a multilayer antireflection film according to claim 1, wherein the optical film thickness of the first thin film layer is approximately λ / 4.
【請求項3】 請求項1の多層反射防止膜付透明基板に
おいて、前記第3層の表面抵抗値は略50Ω/□以下で
あることを特徴とする多層反射防止膜付透明基板。
3. The transparent substrate with a multilayer antireflection film according to claim 1, wherein the surface resistance value of the third layer is about 50 Ω / □ or less.
JP2002129068A 2001-05-01 2002-04-30 Transparent substrate with conductive anti-reflection coating Expired - Fee Related JP4162425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129068A JP4162425B2 (en) 2001-05-01 2002-04-30 Transparent substrate with conductive anti-reflection coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001134416 2001-05-01
JP2001-134416 2001-05-01
JP2002129068A JP4162425B2 (en) 2001-05-01 2002-04-30 Transparent substrate with conductive anti-reflection coating

Publications (2)

Publication Number Publication Date
JP2003021703A true JP2003021703A (en) 2003-01-24
JP4162425B2 JP4162425B2 (en) 2008-10-08

Family

ID=26614600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129068A Expired - Fee Related JP4162425B2 (en) 2001-05-01 2002-04-30 Transparent substrate with conductive anti-reflection coating

Country Status (1)

Country Link
JP (1) JP4162425B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168488A (en) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd Reflection-proof electroconductive film
JP2012022460A (en) * 2010-07-13 2012-02-02 Kaneka Corp Substrate with transparent electrode
JP2012071422A (en) * 2010-09-27 2012-04-12 Toppan Printing Co Ltd Functional substrate and method for producing the same, and touch panel including the functional substrate
WO2022230754A1 (en) * 2021-04-27 2022-11-03 Jx金属株式会社 Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
JP2022169430A (en) * 2021-04-27 2022-11-09 Jx金属株式会社 Layered body having function as transparent electroconductive film and method for producing the same, and oxide sputtering target for that layered body production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168488A (en) * 2007-01-10 2008-07-24 Teijin Dupont Films Japan Ltd Reflection-proof electroconductive film
JP2012022460A (en) * 2010-07-13 2012-02-02 Kaneka Corp Substrate with transparent electrode
JP2012071422A (en) * 2010-09-27 2012-04-12 Toppan Printing Co Ltd Functional substrate and method for producing the same, and touch panel including the functional substrate
WO2022230754A1 (en) * 2021-04-27 2022-11-03 Jx金属株式会社 Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
JP2022169430A (en) * 2021-04-27 2022-11-09 Jx金属株式会社 Layered body having function as transparent electroconductive film and method for producing the same, and oxide sputtering target for that layered body production

Also Published As

Publication number Publication date
JP4162425B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
US6657271B2 (en) Transparent substrate with multilayer antireflection film having electrical conductivity
TWI606373B (en) Transparent body for use in a touch panel manufacturing method and system for manufacturing a transparent body for use in a touch screen panel
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
TWI395980B (en) Pdp filter having multi-layer thin film and method of manufacturing the same
WO2000063924A1 (en) Transparent substrate with conductive multilayer antireflection coating, touch panel using transparent substrate, and electronic device using touch panel
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP2010086684A (en) Optical thin film with transparent conductive wiring film
JPWO2002029830A1 (en) Transparent substrate with multilayer anti-reflection film having conductivity, transparent touch panel using this transparent substrate with multi-layer anti-reflection film, and electronic device using this transparent touch panel
KR101670040B1 (en) Touch Panel, Method for Producing Same, Optical Thin Film Substrate and Method for Producing Optical Thin Film Substrate
KR102214745B1 (en) Transparent conductive substrate and method for manufacturing transparent conductive substrate
TW201007777A (en) Conducting film or electrode with improved optical and electrical performance
CN105677071B (en) Touch screen and preparation method thereof
KR101407877B1 (en) Transparent conductivity film with excellent electric property and touch panel using the same
CN101681069B (en) Transparent electrode
CN104064257A (en) Low-resistance ITO transparent conductive film
US8173202B2 (en) Multi-layer coating structure with anti-reflection, anti-static and anti-smudge functions and method for manufacturing the same
JP4162425B2 (en) Transparent substrate with conductive anti-reflection coating
JP2004361662A (en) Conductive transparent layered body
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
US7655280B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
JPH07242442A (en) Glass with transparent conductive film and production of transparent conductive film
TW562736B (en) Multilayer antireflection coating with a transparent conductive layer
CN106165025A (en) Duplexer, conductive laminate and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees