TWI344755B - Over-temperature protection circuit and method thereof - Google Patents

Over-temperature protection circuit and method thereof Download PDF

Info

Publication number
TWI344755B
TWI344755B TW97107305A TW97107305A TWI344755B TW I344755 B TWI344755 B TW I344755B TW 97107305 A TW97107305 A TW 97107305A TW 97107305 A TW97107305 A TW 97107305A TW I344755 B TWI344755 B TW I344755B
Authority
TW
Taiwan
Prior art keywords
transistor
circuit
temperature
voltage
reinforced
Prior art date
Application number
TW97107305A
Other languages
Chinese (zh)
Other versions
TW200939625A (en
Original Assignee
Holtek Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holtek Semiconductor Inc filed Critical Holtek Semiconductor Inc
Priority to TW97107305A priority Critical patent/TWI344755B/en
Publication of TW200939625A publication Critical patent/TW200939625A/en
Application granted granted Critical
Publication of TWI344755B publication Critical patent/TWI344755B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

九、發明說明: 【發明所屬之技術領域】Nine, invention description: [Technical field to which the invention belongs]

本發明係涉及—種@、、ra P 用於積體電路中的過度保“隻電路,特別係指一種應 【先前技術】 度保護電路及其方法。 計有===:設計之部分,,設 否過高。因為+右1A、在於價測積體電路内部溫度是 時,都有可1、1的輸入電壓或是輸出負載電流產生 本身。此日广積組電路内部溫度過熱而損壞積體電路 气料i方是過溫度保護電路啟動,將會送出寸制 -------- 保言第一圖’為習知技術應用於積體電路之過温度 源总:,示思圖。該過溫度保護電路是例如應用於一電 之積體電路中,其包含:一溫度感測器90及—比較 r 1其中,透過溫度感測器90來感測積體電路中的溫 ^以刀別產生一負溫度係數電壓〜一及一正、溫度係數電 、田:)’進而利用比較器91來接收負溫度係數電壓與正 7度仏ί電壓,並且進行比較以輸出一輸出電壓V(3UT來控 制f源管理之積體電路中的功率電晶體,以達到過溫度的 保護。 其中,在設計溫度感測器90時,往往會去考慮非理 心效應所造成的溫度誤差,其中非理想效應包括電路中元 件不匹配、製程參數的絕對值變異及運算放大器或是比較 益的偏移電壓(Offset Voltage)。而這些非理想效應對溫 1344755 3::上°的精確度都有顯著的影響’所以也就足以決定 路的運作準確與否之情形。㈣是要獲得高 ==㈣度感測器90,則大部分的技術會利用類比數位 如:—itaADC) ’以先將誤差類比訊號轉換 ,數< 然後再利用數位訊號處理的方式去做自動校 是’利用數位化的處理確實可以讓溫度感測器9〇The present invention relates to a type of @,, ra P for use in an integrated circuit in an over-protected "only circuit, in particular, a [prior art] degree protection circuit and method thereof. Having ===: part of the design, If it is too high, because the +1A, the internal temperature of the measuring circuit is the time, there are input voltages of 1, 1 or the output load current itself. The internal temperature of the wide-group circuit is overheated and damaged. The integrated circuit of the air material i is the over temperature protection circuit to start, will send out the inch system -------- The first picture of the word 'for the conventional technology applied to the integrated circuit of the temperature source total:, show The over temperature protection circuit is, for example, applied to an electrical integrated circuit, comprising: a temperature sensor 90 and a comparison r 1 , wherein the temperature sensor 90 is used to sense the integrated circuit The temperature does not generate a negative temperature coefficient voltage ~ one and one positive, temperature coefficient electric, Tian:) 'and then use the comparator 91 to receive the negative temperature coefficient voltage and the positive 7 degree 仏ί voltage, and compare to output a Output voltage V (3UT to control the power transistor in the integrated circuit of the f source management Body, in order to achieve over-temperature protection. Among them, when designing the temperature sensor 90, the temperature error caused by the non-sense effect is often considered. The non-ideal effect includes the component mismatch in the circuit and the absolute value variation of the process parameters. And the op amp is either an offset voltage (Offset Voltage). These non-ideal effects have a significant effect on the accuracy of the temperature 1344755 3::°° so it is enough to determine whether the road is operating accurately or not. In the case of (4) to obtain a high == (four) degree sensor 90, most of the techniques will use analog numbers such as: -itaADC) 'to convert the error analog signal first, the number < and then use the digital signal processing To do automatic school is 'using digital processing can really let the temperature sensor 9〇

^加0. 1 C的高精確度,不過相對的也就必獅用相當 大的面積並且耗費較大的功率。 —但是若是在精確度的要求較不嚴苛的應用上(如電源 官,之積體電路),其便是只需藉由電路佈局或電路設計技 卜P+低非理想效應。也就如第一圖中的溫度感測器90 之^計方法,即是利用類似帶隙(band_gap)電路之架構, j讓正溫度係數電壓VPTC可以由電路圖中的丨打一R2來求 得’·,負溫度係數電壓V咖則是由BJT電晶體(Q3、Q4)運 作之後所提供,進而進行正、負溫度係數電壓的比較而來 控制電源管理之積體電路中的功率電晶體。但是,如此〆^ Adding a high accuracy of 0.1 C, but the relative lion will use a considerable area and consume a lot of power. — However, if it is used in less demanding applications (such as power supply systems), it is only by circuit layout or circuit design techniques that P+ low non-ideal effects. For example, the method of the temperature sensor 90 in the first figure is to use a structure similar to a bandgap circuit, so that the positive temperature coefficient voltage VPTC can be obtained by beating a R2 in the circuit diagram. '·, the negative temperature coefficient voltage V is provided by the BJT transistor (Q3, Q4), and then the positive and negative temperature coefficient voltages are compared to control the power transistor in the integrated circuit of the power management. But, so

來也就必/員要使用到大里的電晶體,除了增加在電路設計 上的困擾,同樣也會佔用較大的積體電路之面積,且耗費 幸乂大的功率。 因此,要如何設計出電晶體數量少以降低積體電路的 面積’並且相對能減少功率的耗損的過溫度保護電路,便 是目前值得進一步研究的地方。 【發明内容】 有鑑於此,本發明所要解決的技術問題在於,在過溫 度保護電路中’利用空乏型電晶體(Deple1;i〇nM〇s)及加強 型電晶體(Enhancement MOS)在製程變異中具有相同的趨In addition, the transistor must be used in Dali, in addition to increasing the circuit design, it also takes up a large area of the integrated circuit, and consumes a lot of power. Therefore, how to design an over-temperature protection circuit in which the number of transistors is small to reduce the area of the integrated circuit and relatively reduce the power consumption is a place worthy of further study. SUMMARY OF THE INVENTION In view of the above, the technical problem to be solved by the present invention is to use the depletion type transistor (Deple1; i〇nM〇s) and the enhancement type transistor (Enhancement MOS) in the process variation in the over temperature protection circuit. Have the same trend

7 1344755 來紗成為溫度感測器,以控制過溫度保護電路 :用來判斷過溫度與否的臨界值能夠較精確而不產生偏 且能減少電晶體的使用數量而節省過溫度保護電路 =體電路中所佔用之面積,以及降低整體功率的耗費。 2 ’·本發明更設計有_磁滯機㈣⑽咖⑹ ,==),以避免過溫度保護電路的輸出訊號在相同溫 度下發生咼低電壓位準切換的重複動作。 ^了達到上述目的,根據本發明所提出之—方案,提 3:度=路,係應用於—積體電路,以控制該 稷虹电路的一功率雪晶體发 如哭。甘ώ 其包括.—溫度感測器及一比 二數ίί感測器係用以產生—正溫度係數電壓及 比比較器係連接該溫度感測器’用來 雪壓二;壓及該負溫度係數電壓而輸出-輸出 進二步包‘二此外,該溫度感測器 係包含一第-空乏型電曰邱^田一路。其中’第一電路 生該正π声a料带κ、日日及一弟—加強型電晶體,以產 強型電晶H為it 5亥第一空乏型電晶體與該第一加 型電曰曰型電晶體沒極端,並且該第一加強 而=二電路係包含-第二空乏 以吝 、 強電日日體及~第三加強型雷曰許, 產生該負溫度係數電璧 介 a曰 加強型電晶體型電晶體與該第二 源極端共Γ端的連接’該第二空乏型電晶體 強型广強型電晶_極端,並且該第二加 ^日日肢源極端係連接該第三加強 L加強”晶體源極端係接地。 $ 13447557 1344755 The yarn becomes a temperature sensor to control the over temperature protection circuit: the threshold value used to judge whether the temperature is over or not can be more accurate without bias and can reduce the number of transistors used and save over temperature protection circuit = body The area occupied by the circuit and the cost of reducing the overall power. 2 ′· The present invention is further designed with a hysteresis machine (4) (10) coffee (6), ==) to avoid the repeated action of the low voltage level switching at the same temperature of the output signal of the over temperature protection circuit. In order to achieve the above object, according to the proposal of the present invention, a 3: degree = path is applied to the integrated circuit to control a power snow crystal of the neon circuit. Ganzi It includes: - temperature sensor and one to two ίί sensor for generating - positive temperature coefficient voltage and ratio comparator connected to the temperature sensor 'for snow pressure two; pressure and the negative Temperature coefficient voltage and output-output into the two-step package 'In addition, the temperature sensor includes a first-depleted type of electric power Qiu ^ Tian all the way. Among them, 'the first circuit produces the positive π sound a material belt κ, the Japanese and the younger brother-reinforced crystal, the strong-type electric crystal H is the first 5 vacant transistor and the first type of electric The 曰曰-type transistor is not extreme, and the first reinforced and = two circuit system includes - the second vacancy is 吝, the strong electric day body and the ~ third reinforced type thunder, the negative temperature coefficient is generated. a connection between the reinforced transistor type transistor and the second source terminal conjugate terminal 'the second vacant type transistor strong type strong galvanotype _ extreme, and the second plus day ji limb extremity line connects the first Three-enhanced L-enhanced crystal source is extremely grounded. $ 1344755

為了達到上述目的,根據本發明所提出之另一方案, 提供一種過温度保護方法,係應用於一積體電 用 制該積體電路的-功率電晶體之啟閉,其步 提供一溫度感測裔,以產生一正溫度係數電壓及一負溫度 係數電壓,接著若該溫度感測該積體電路之内部^ 度高於-臨界值時,輸出-高電壓位準之輸出電壓來關閉 該功率電晶體。進而進行啟動一磁滯電路,以 係數電壓產生平移下降,並且#由該積體電路之㈣= 的下降,使紅溫度係數電_低至得以㈣平移下降後 之負溫度係數電壓進行比較1後,輪出―低㈣位準之 輸出電壓來開啟該功率電晶體。 為了達到上述目的 不發明所提出之再一方系, 提供-種過溫度保護方法,係應用於1體電路,用以控 制該積體電路的-功率電晶體之啟閉,其步驟包括:首先, 提供-溫度感,,以產生-正溫度係數電負溫度In order to achieve the above object, according to another aspect of the present invention, an over temperature protection method is provided, which is applied to the opening and closing of a power transistor for forming an integrated circuit for an integrated circuit, and the step of providing a sense of temperature Measuring the source to generate a positive temperature coefficient voltage and a negative temperature coefficient voltage, and then if the temperature senses that the internal circuit of the integrated circuit is higher than the -threshold value, the output-high voltage level output voltage is turned off. Power transistor. Further, a hysteresis circuit is started to generate a translational drop with a coefficient voltage, and # is decreased by the (4)= of the integrated circuit, so that the red temperature coefficient is lower than the negative temperature coefficient voltage after the (four) translational drop is compared. Turn on the low (four) level output voltage to turn on the power transistor. In order to achieve the above object, the present invention provides a method for over-temperature protection, which is applied to a 1-body circuit for controlling the opening and closing of the power transistor of the integrated circuit. The steps include: Provide - temperature sense to generate - positive temperature coefficient electrical negative temperature

k數電壓,接著若該溫度感測H偵測該積體電路之内部溫 夺’輸出一高電壓位準之輪出電壓來關閉 遠功率^體。進而進行啟動—磁滞電路 係數電壓產生平移上升,並且!3正Μ度 的下咚μΓ 積體1路之内部溫度 的下降’㈣貞溫度錄電贿升至如與解移上升後 =正溫度絲電壓進行比較。最後,輪出— 輸出電壓來開啟該功率電晶體。 _ 旱之 少的設:出的過1度保護電路及方法在使用較 得以陪:積-:之'月況下’遇能維持-定的猜確度,並且 卜低積植电路的面積’以及相對減少整體功率的耗損。 以上之概述與接下來的詳細說明及附圖,皆是為了能 (S > 9 1344755 進一步說明本發明為達成預定目的所採取之方式、手段及 功效。而有關本發明的其他目的及優點,將在後續的說明 及圖式中加以闡述。 【實施方式】 本發明主要是利用空乏型電晶體(Depletion MOS)及 加強型電晶體(Enhancement M0S)的特性來設計出溫度感 測器,並且應用在過溫度保護電路。此外,更進一步在過 溫度保護電路中設計了 一個磁滞機制(Hysteresis Mechanism),用以避免過溫度保護電路的輸出訊號,在相 同溫度下發生高、低位準切換的重複動作。於是,本發明 也就能使用較少的電晶體數目,以達到減小面積與功耗的 目的。 請參考第二圖,為本發明過溫度保護電路之第一實施 例電路示意圖。本實施例所提供的一種過溫度保護電路, 係應用於一積體電路(如:電源管理IC)(圖未示),用以控 制積體電路中的一功率電晶體(圖未示),以當積體電路之 内部溫度過高時,過溫度保護電路會進行啟動而關閉功率 電晶體,以強迫中止積體電路之運作,進而達到保護積體 電路本身與應用電路的功效。 本實施例之過溫度保護電路包括:一溫度感測器11、 一比較器12及一磁滯電路13。其中,溫度感測器11是用 以產生一正溫度係數電壓Vpk及一負溫度係數電壓Vntc,並 且進一步包含:一第一電路ill及一第二電路112。 第一電路111的設計是包含一第一空乏型電晶體Mdnm 及一第一加強型電晶體Mm,用以產生該正溫度係數電壓 VPTC。其中,第一空乏型電晶體Mdh與第一加強型電晶體Mm 10 1344755 是為共閘極端(Gate)的連接,而第一空乏型電晶體Mm源 極端(Source)是連接第一加強型電晶體Mem没極端 (Drain),並且第一加強型電晶體Meni源極端是接地。 第二電路112的設計則是包含一第二空乏型電晶體 •N2、一第二加強型電晶體MEN2及一第三加強型電晶體Mm, 用以產生負溫度係數電壓Vnk。其中,第二空乏型電晶體 Mdn2與第二加強型電晶體MEN2是屬於共閘極端的連接,而第 二空乏型電晶體MdU源極端是連接第二加強型電晶體MEN2 汲極端,並且第二加強型電晶體Mm源極端是進一步連接 第三加強型電晶體Mm汲極端,而第三加強型電晶體Mm 源極端是接地。 此外,在本實施例中,第一電路111及第二電路112 是分別依據電晶體之寬長比(W/L)來進行搭配設計,以產生 該正溫度係數電壓Vptc.及該負溫度係數電壓Vm。並且,其 中的第一空乏型電晶體、第二空乏型電晶體MDK2、第一 加強型電晶體Mm、第二加強型電晶體Mm及第三加強型電 晶體Mm在設計上皆是採用N通道金屬氧化半導體場效電 晶體(N-Channel M0SFET)。 接著,由以上所述可以了解到第一電路111及第二電 路112中是分別由空乏型電晶體及加強型電晶體來搭配連 接設計,而關於其中的設計原理請再參考以下的公式之說 明: 首先,若以一對空乏型電晶體與加強型電晶體所構成 的溫度感測電路來舉例說明,其所能產生的電壓(Vtc)之數 學表示式為: 1344755The k-number voltage is then turned off if the temperature sensing H detects the internal temperature of the integrated circuit to output a high voltage level. In turn, the start-up hysteresis circuit produces a shift in the voltage of the voltage, and! 3 Μ 的 咚 Γ Γ 积 积 积 积 积 积 积 积 ( ( ( ( ( ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ Finally, the output voltage is turned on to turn on the power transistor. _ The setting of the less drought: the 1 degree protection circuit and method are used in the use of: - - in the 'month condition', the ability to maintain - the accuracy of the determination, and the area of the low accumulation circuit 'and Relatively reduce the loss of overall power. The above summary, the following detailed description and the accompanying drawings are intended to provide a further understanding of the embodiments of the present invention. The invention will be described in the following description and drawings. [Embodiment] The present invention mainly utilizes the characteristics of Depletion MOS and Enhancement MOS to design a temperature sensor, and the application thereof In the over temperature protection circuit. In addition, a hysteresis mechanism is designed in the over temperature protection circuit to avoid the output signal of the over temperature protection circuit, and the repetition of high and low level switching occurs at the same temperature. Therefore, the present invention can also use a smaller number of transistors to achieve the purpose of reducing the area and power consumption. Please refer to the second figure, which is a circuit diagram of the first embodiment of the over temperature protection circuit of the present invention. An over temperature protection circuit provided by the embodiment is applied to an integrated circuit (such as a power management IC) (not shown) For controlling a power transistor (not shown) in the integrated circuit, when the internal temperature of the integrated circuit is too high, the over temperature protection circuit starts to turn off the power transistor to force the suspension of the integrated circuit. The operation further protects the integrated circuit itself and the application circuit. The over temperature protection circuit of the embodiment includes a temperature sensor 11, a comparator 12 and a hysteresis circuit 13. Among them, the temperature sensor 11 is for generating a positive temperature coefficient voltage Vpk and a negative temperature coefficient voltage Vntc, and further comprising: a first circuit ill and a second circuit 112. The first circuit 111 is designed to include a first depleted transistor Mdnm and a first reinforced transistor Mm for generating the positive temperature coefficient voltage VPTC, wherein the first vacant transistor Mdh and the first reinforced transistor Mm 10 1344755 are connected to a common gate (Gate) The first vacant transistor Mm source is connected to the first reinforced transistor Mem and is not grounded, and the first reinforced transistor Meni source is grounded. The second circuit 112 The method includes a second depletion transistor, N2, a second enhancement type transistor MEN2, and a third enhancement type transistor Mm for generating a negative temperature coefficient voltage Vnk. wherein the second depletion transistor Mdn2 The second reinforced type transistor MEN2 is connected to the common gate terminal, and the second depleted transistor MdU source terminal is connected to the second reinforced type transistor MEN2 汲 terminal, and the second reinforced type transistor Mm source terminal is further Connecting the third reinforced transistor Mm 汲 terminal, and the third reinforced transistor Mm source terminal is grounded. Further, in the embodiment, the first circuit 111 and the second circuit 112 are respectively according to the width to length ratio of the transistor. (W/L) is used to perform the matching design to generate the positive temperature coefficient voltage Vptc. and the negative temperature coefficient voltage Vm. Moreover, the first depleted transistor, the second depleted transistor MDK2, the first reinforced transistor Mm, the second reinforced transistor Mm, and the third reinforced transistor Mm are all designed to adopt an N channel. Metal oxide semiconductor field effect transistor (N-Channel MOSFET). Then, it can be understood from the above that the first circuit 111 and the second circuit 112 are respectively connected by a depleted transistor and a reinforced transistor, and the design principle of the first circuit 111 and the second circuit 112 are referred to the following formula. First, if a temperature sensing circuit composed of a pair of depleted transistors and reinforced transistors is used as an example, the mathematical expression of the voltage (Vtc) that can be generated is: 1344755

Vrc - VtH EN + I(}^^)en x Vth.dn 其中,VmEN及VmDK是分別表示加強型電晶體及空乏型 電晶體的導通臨界電壓;而(W/L)EN及(W/LV則是分別表示 所使用的加強型電晶體及空乏型電晶體在規格上之寬長 比。進而,要計算所產生的電壓(V〇之溫度係數時,則加 入溫度變異來計算,可得以下公式:Vrc - VtH EN + I(}^^)en x Vth.dn where VmEN and VmDK represent the conduction threshold voltages of the reinforced and depleted transistors, respectively; and (W/L)EN and (W/LV The ratio of the aspect ratio of the reinforced transistor and the depleted transistor used is determined separately. Further, to calculate the voltage generated (when the temperature coefficient of V , is added, the temperature variation is added to calculate the following formula:

dJ’rc dTdJ’rc dT

dVrH.EN dTdVrH.EN dT

dVw.DN dT 於是,當產生之電壓(Vtg)的溫度係數大於零時,表示 溫度感測電路所產生的電壓為正溫度係數電壓Vpk;而若 產生之電壓(Vk)的溫度係數小於零時,則表示溫度感測電 路所產生的電壓為負溫度係數電壓νκπ。而在第二電路112 中,即是增加第三加強型電晶體Mm的設計來使第二電路 112所產生之電壓的溫度係數是小於零,於是第二電路112 即是用以產生負溫度係數電壓Wtc。dVw.DN dT Then, when the temperature coefficient of the generated voltage (Vtg) is greater than zero, it means that the voltage generated by the temperature sensing circuit is the positive temperature coefficient voltage Vpk; and if the temperature coefficient of the generated voltage (Vk) is less than zero , it means that the voltage generated by the temperature sensing circuit is the negative temperature coefficient voltage νκπ. In the second circuit 112, the design of the third enhancement type transistor Mm is increased such that the temperature coefficient of the voltage generated by the second circuit 112 is less than zero, so that the second circuit 112 is used to generate a negative temperature coefficient. Voltage Wtc.

再者,本實施例中的比較器12是連接溫度感測器11, 其中第一電路111所產生的正溫度係數電壓Vnx是連接至 比較器12的一正向輸入端( + ),而第二電路112所產生的 負溫度係數電壓Vm是連接至比較器12的一反向輸入端 (-)。使得比較器12是用以比較正溫度係數電壓Vph:及負 溫度係數電壓VNTC而輸出一輸出電壓V〇UT,以控制功率電晶 體之啟閉。 而在設計上,比較器12是在比較正溫度係數電壓Vpk 及負溫度係數電壓Vktc之後,進一步先決定出一臨界值, 進而基於該臨界值來控制輸出該輸出電壓Vmrr。也就是當 12 ,體電路之内部溫度高於該臨界值時,比較器12是輸出一 吟電壓位準之輸出電壓VmiT ’以關閉功率電晶體;而當積 趨t路之内部溫度低於該臨界值時’比較器12是輸出一低 電髮位準之輸出電壓Voirr,以開啟功率電晶體。 當然’本實施例中的功率電晶體是例如以p通道電晶 ^來設計’於是比較器12所輸出的高低電壓位準之輸出電 屢V()UT是可以順利進行控制功率電晶體之啟閉。而熟悉該 唄枝藝者應可了解功率電晶體亦可為N通道電晶體或其他 毛式的電路之設計’於是比較器12便會依據該功率電晶體 的不同’而隨之設計不同的輸出電壓丨/咖之電壓位準來因 應控制需求,在此並無加以限制。 戶^在设計過溫度保護電路時,都必須考慮非理想效應 譜^成的溫度誤差,因為這些溫度誤差將會決定過溫度保 声< ^的制確度。於是請同時參考第三圖,為本發明過溫 係,路對溫度變異之示意圖。如圖中所示,當正溫度 聍,t :氬VpTC及負溫度係數電壓γΝΤε受到非理想效應影響 ^ ^界值(Ts舰〇將會產生△ t的溫度誤差。 然而,由於本發明所搭配設計的空乏型電晶體及加強 數體㈣程參數變異趨勢是相同的,因此在正溫度係 改VpTC及負溫度係數電壓Vh'TC的變異將會有同方向的 V 1換句話說,正溫度係數電壓vpTC及負溫度係數電壓 同時向上或向下平移ΔνΡ與ZUn(如:圖令所示的VpTc. 來),所以在設計時只要藉由選擇電晶體的寬長比, ^所需要的正、負溫度係數電壓的溫度係數,臨界值 度决差將會因此而縮小。 接下來,關於本實施例之磁滯電路13的部分,其主 13 1344755 要的目的在於避免過溫度保護電路的輸出訊號,在相同温 , 度下發生高低位準切換的重複動作。在設計上是為一開關 之設计,連接於比較器12的一輪出端及第二電路n2之 間,並且,磁滯電路丨3本身是依據該輸出電壓來執行 啟閉開關,以進一步控制第二電路112所產生的負溫度係 數電壓Vnc 〇 磁滯電路13進一步包含:一第四加強型電晶體MeN4 及一第五加強型電晶體Mens。其中第四加強型電晶體Mm 是共接於第二加強型電晶體Μ⑽與第三加強型電晶體祕⑽ 之接點,並且第四加強型電晶體Men4源極端是接地。而第 五加如型電晶體Meu閘極端是連接比較器丨2的輸出端,並 . 且第五加強型電晶體源極端是連接第四加強型電晶體 . Μ阳汲極端,藉此以形成磁滯電路13。此外,由於第五加 強型電晶體Men5是操作在三汲區,因此可以視為所謂的開 關設計。 於是,在積體電路之内部溫度高於臨界值時,過溫度 鲁 4呆護電路會啟動,也就是比較器12是會輸出高電壓位準之 輸出電壓V_,此時第五加強型電晶體Mens會導通,使得磁 滯電路13啟動;反之若積體電路之内部溫度在臨界值内 時,則過溫度保護電路不會啟動,比較器12則是輸出低電 壓位準之輸出電壓Volt,此時第五加強型電晶體不會導 通’使磁滯電路13是處於關閉狀態。 曰 對此,請再同時參考第四圖,為本發明過溫度保護電 路在磁坪電路啟動%之輸出電壓模擬示意圖。如圖所示, 當積體電路之内部溫度逐漸升高至超過臨界值(Ts_)時, 過溫度保護電路會啟動,也就如圖中曲線丨之路徑所示, 14 1344755 比較器12是立即輸出高電壓位準之輸出電壓vm,使得磁 ^ 滯電路13亦啟動時,會控制第二電路112讓負溫度係數電 壓Vktc產生平移下降’也就是圖中所示的平移下降後之負 溫度係數電壓Vktc.IIYS。於是’當積體電路之内部溫度因為 過溫度保護電路的啟動而開始下降時,正溫度係數電壓VpTC 也會隨溫度下降而降低’直到與平移下降後之負溫度係數 電壓VfJTC. HYS得以由比較器1 2進行比較時,即會如圖中曲線 2之路徑所示,比較器12恢復成為輸出低電壓位準之輸出 鲁 電壓V·。 而第四圖中由曲線1以及曲線2所圍成的區域(THYS) "T 稱為 >皿度磁 1¾ 口(Temperature HysteresisFurthermore, the comparator 12 in this embodiment is connected to the temperature sensor 11, wherein the positive temperature coefficient voltage Vnx generated by the first circuit 111 is connected to a forward input terminal (+) of the comparator 12, and The negative temperature coefficient voltage Vm generated by the two circuits 112 is connected to an inverting input terminal (-) of the comparator 12. The comparator 12 is configured to compare the positive temperature coefficient voltage Vph and the negative temperature coefficient voltage VNTC to output an output voltage V〇UT to control the opening and closing of the power transistor. In the design, the comparator 12 further determines a threshold value after comparing the positive temperature coefficient voltage Vpk and the negative temperature coefficient voltage Vktc, and further controls the output of the output voltage Vmrr based on the threshold value. That is, when the internal temperature of the body circuit is higher than the threshold value, the comparator 12 outputs an output voltage VmiT ' at a voltage level to turn off the power transistor; and when the internal temperature of the integrated circuit is lower than the At the threshold value, the comparator 12 outputs an output voltage Voirr of a low power level to turn on the power transistor. Of course, the power transistor in this embodiment is designed, for example, by a p-channel transistor. Thus, the output voltage of the high-low voltage level outputted by the comparator 12 is repeatedly controlled by the power transistor. close. Those familiar with the lychee should understand that the power transistor can also be designed for N-channel transistors or other hair-type circuits. So the comparator 12 will design different outputs depending on the power transistor. The voltage level of the voltage/coffee is used to control the demand and is not limited here. When designing a temperature protection circuit, the temperature error of the non-ideal effect spectrum must be considered, because these temperature errors will determine the temperature assurance sound. Therefore, please refer to the third figure at the same time, which is a schematic diagram of the over temperature system and the road-to-temperature variation of the present invention. As shown in the figure, when the positive temperature 聍, t: argon VpTC and the negative temperature coefficient voltage γ ΝΤ ε are affected by the non-ideal effect ^ ^ boundary value (Ts ship will produce a temperature error of Δ t. However, due to the present invention The design of the depleted transistor and the enhanced digital (four) parameter variation trend are the same, so the variation of the VpTC and the negative temperature coefficient voltage Vh'TC in the positive temperature system will have the same direction of V 1 in other words, the positive temperature The coefficient voltage vpTC and the negative temperature coefficient voltage simultaneously shift ΔνΡ and ZUn upwards or downwards (for example, VpTc. shown in the figure), so by designing the width-to-length ratio of the transistor, ^ is required The temperature coefficient of the negative temperature coefficient voltage, the threshold value will be reduced accordingly. Next, with respect to the portion of the hysteresis circuit 13 of the present embodiment, the main purpose of the main 13 1344755 is to avoid the output of the over temperature protection circuit. The signal repeats the high and low level switching at the same temperature and degree. It is designed as a switch, connected to one round of the output of the comparator 12 and the second circuit n2, and the hysteresis circuit 3 itself is to perform an open-close switch according to the output voltage to further control the negative temperature coefficient voltage Vnc generated by the second circuit 112. The hysteresis circuit 13 further includes: a fourth enhancement type transistor MeN4 and a fifth enhancement type The transistor Mens, wherein the fourth reinforced transistor Mm is commonly connected to the junction of the second reinforced transistor 10 (10) and the third reinforced transistor plexus (10), and the source terminal of the fourth reinforced transistor Men4 is grounded. The fifth plus-type transistor Meu gate terminal is connected to the output terminal of the comparator 丨2, and the fifth reinforced transistor source terminal is connected to the fourth reinforced type transistor. The hysteresis circuit 13. In addition, since the fifth reinforced type transistor Men5 is operated in the three-turn region, it can be regarded as a so-called switch design. Thus, when the internal temperature of the integrated circuit is higher than the critical value, the over temperature is 4 The protection circuit will start, that is, the comparator 12 outputs the output voltage V_ of the high voltage level, and the fifth reinforced transistor Mens is turned on, so that the hysteresis circuit 13 is activated; otherwise, if the internal temperature of the integrated circuit is When the degree is within the critical value, the over temperature protection circuit will not start, and the comparator 12 outputs the output voltage Volt of the low voltage level, at which time the fifth reinforced transistor will not conduct 'the hysteresis circuit 13 is at In this case, please refer to the fourth figure at the same time, which is a schematic diagram of the output voltage simulation of the over temperature protection circuit in the start of the magnetic circuit of the present invention. As shown in the figure, when the internal temperature of the integrated circuit is gradually increased to When the threshold value (Ts_) is exceeded, the over temperature protection circuit will start, as shown by the path of the curve in the figure. 14 1344755 Comparator 12 is the output voltage vm that immediately outputs the high voltage level, so that the magnetic hysteresis circuit 13 Also when activated, the second circuit 112 is controlled to cause the negative temperature coefficient voltage Vktc to produce a translational drop', that is, the negative temperature coefficient voltage Vktc.IIYS after the translational fall shown in the figure. Then, when the internal temperature of the integrated circuit begins to drop due to the start of the over temperature protection circuit, the positive temperature coefficient voltage VpTC also decreases with the temperature drop' until the negative temperature coefficient voltage VfJTC. HYS after the translational fall is compared. When the comparator 12 compares, as shown by the path of the curve 2 in the figure, the comparator 12 returns to the output low voltage V· which is the output low voltage level. In the fourth figure, the area enclosed by curve 1 and curve 2 (THYS) "T is called > the magnetic degree of the mouth (Temperature Hysteresis)

Windows)。而本實施例之磁滯機制的作法會使得磁滯窗口 . 較為固疋’因為磁滞窗口的大小是由第三加強型電晶體mEN3 及第四加強型電晶體Μ™的尺寸比例規格所決定。所以當 第一空乏型電晶體Mdn2的電流受非理想效應改變時,彼此 匹配的第二加強型電晶體Men’3及第四加強型電晶體MEN4會讓 • 磁滯窗口不受影響。 清再參考第五圖,為本發明過溫度保護電路之第二實 施例電路示意圖。本實施例在溫度感測器丨丨與比較器12 的設計上是與第一實施例電路圖相同,而與第一實施例電 路圖最大的不同是在於磁滯電路13的設計。本實施例的磁 滞電路13是連接於比較器12的輸出端與第一電路ln之 間’用來控制提升第一電路所產生的正溫度係數電壓 VpTC。而藉由正溫度係數電壓Vptc的提升也能夠達成與第一 實施例電路圖相同的磁滯效果。 如第五圖所示,本實施例之磁滯電路13包含:—第 15 1344755 工之3L %曰曰體Mm及一第四空乏型電晶體M_。其中,第 —空乏型電晶體Mm閘極端是直接連接第三空乏型電晶體 ^3源極端’並且第三空乏型電晶體Μ,汲極端係連接電壓 源VDD。而第四加強型電晶體閘極端是連接比較器 f輪出端’並且第四加強型電晶體MEN4源極端是連接於第 力曰口強型電晶體I閘極端’而第四加強型電晶體u及極 柒疋連接第三空乏型電晶體極端。 於是’藉由此—磁滞電路13的設相能提供一個類 歧電路控來提升第-魏lu職生的正溫度係數電壓 tΓΓΐ體過溫度保護電路來看也就是說,當過溫度保 ϊί^Ι’第四加強型電晶體I並不會導通,所以磁 ;=13也就不會啟動;而當過溫度保護啟動時,比較哭 k爾出向電塵位準之輸出電壓ν,此 兩:。 體Μη:4也就會導通,並且藉由第三处 兩曰σ 书日日 加強型電晶體I來形成充電路X 第四 產生正溫度係數電壓-提升,而完成:二111所 接著以下兩個流程實施例之說 3 程如!六圖為本f過溫二= 度保護方法,其同樣是積:::例提供-種過溫 電路的功率電晶體之啟閉。過溫度俾;方:用以控制積體 首先,提供-溫度感測μ⑽法之步驟包括: 正溫度係數電壓Vptc及一負溫度 上用以設計產生- 偵測積體電路之内部溫度是否高於y,,接著’進行 若步驟⑽3)的偵測結果為否二值⑽3)。 部溫度在正常範圍内,而過溫度1j表示積體電路之内 定苞路不需啟動, 16 1344755 =:低電f位準之輸出電壓V-,以功率電晶體 ::卿3^績進行偵測積體電路之内部溫度。反之, :=:測:心表示溫度過高_啟 作而造成損毁。 明免雜電路繼續運 進而Windows). However, the hysteresis mechanism of the present embodiment makes the hysteresis window relatively solid. Because the size of the hysteresis window is determined by the size ratio specifications of the third reinforced transistor mEN3 and the fourth reinforced transistor ΜTM. . Therefore, when the current of the first depleted transistor Mdn2 is changed by the non-ideal effect, the second reinforced type transistor Men'3 and the fourth reinforced type transistor MEN4 which match each other cause the hysteresis window to be unaffected. Referring again to the fifth figure, a circuit diagram of a second embodiment of the over temperature protection circuit of the present invention is shown. This embodiment is identical to the circuit diagram of the first embodiment in the design of the temperature sensor 丨丨 and the comparator 12, and the greatest difference from the circuit diagram of the first embodiment is the design of the hysteresis circuit 13. The hysteresis circuit 13 of the present embodiment is connected between the output terminal of the comparator 12 and the first circuit ln to control the positive temperature coefficient voltage VpTC generated by the boosting of the first circuit. On the other hand, the same hysteresis effect as that of the circuit diagram of the first embodiment can be achieved by the improvement of the positive temperature coefficient voltage Vptc. As shown in the fifth figure, the hysteresis circuit 13 of the present embodiment includes: - a 3L % body Mm of the 15th 1344755 and a fourth depletion type transistor M_. Wherein, the first-deficient transistor Mm gate terminal is directly connected to the third depletion transistor ^3 source terminal' and the third depletion transistor Μ, and the 汲 terminal is connected to the voltage source VDD. The fourth reinforced transistor gate terminal is connected to the comparator f wheel terminal 'and the fourth reinforced transistor MEN4 source terminal is connected to the tensor force port type transistor I gate terminal' and the fourth reinforced transistor u and the poles are connected to the third depleted transistor extreme. Therefore, by virtue of this, the phase of the hysteresis circuit 13 can provide a class of circuit control to improve the positive temperature coefficient voltage of the first-weilu occupational t-body over-temperature protection circuit, that is, when the temperature is over-protected ^Ι'The fourth enhanced transistor I will not turn on, so the magnetic;=13 will not start; and when the temperature protection starts, it will compare the output voltage ν of the electric dust level to the electric dust level. :. The body Μ:4 will also be turned on, and the charging path X is formed by the third 曰 书 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日The process example is as follows: Figure 6 is a f-temperature two-degree protection method, which is also a product::: provides an opening and closing of a power transistor of an over-temperature circuit. Over temperature 俾; square: to control the integrated body First, the step of providing - temperature sensing μ (10) method includes: positive temperature coefficient voltage Vptc and a negative temperature for design generation - detecting whether the internal temperature of the integrated circuit is higher than y, then the result of the detection of step (10) 3 is no two (10) 3). The temperature of the part is within the normal range, and the over temperature of 1j means that the internal circuit of the integrated circuit does not need to be started. 16 1344755 =: The output voltage V- of the low-power f-level is detected by the power transistor: The internal temperature of the quadrature circuit. Conversely, :=: test: the heart indicates that the temperature is too high _ start and cause damage. Ming-free circuit continues to operate

V.吝士㈣ 動一磁滞電路13 ’以讓負溫度係數電壓 降(S6G7)’並且由於過溫度保護電路的啟動 VPTC^^ =部溫度下降而降低至得以與該平移下降後 θ 、/JELW包壓^篇進行比較(S611)。若判斷結果為 1 =〜匈出低電壓位準之輸出電壓V,.,以開啟功 以晶脸咖3)。相反的,若步驟(S6⑴的判斷結果為否, ^表示正·度仏數電壓Vnx尚未降低到特^的溫度點之電V. Gentleman (4) Move a hysteresis circuit 13 'to make the negative temperature coefficient voltage drop (S6G7)' and decrease due to the temperature drop of the startup VPTC^^ = part of the over temperature protection circuit to be able to decrease with the translation after θ, / The JELW package is compared (S611). If the judgment result is 1 = ~ Hung out the low voltage level of the output voltage V,., to open the function to face the face 3). Conversely, if the result of the step (S6(1) is no, ^ indicates that the positive-degree voltage Vnx has not been lowered to the temperature of the special temperature point.

壓,因而未能與該平移下降後之負溫度絲電壓v_s進 仃比較’於疋重複至步驟(S6G9),n續降储體電路之 内部溫度。 “藉此,藉由重複上述步驟,即可達到本實施例過溫度 保4方法的運作’而讓積體電路在過溫度狀泥產生時,具 有過溫度賴而進行關的仙,而在過溫度狀況解除後 自動恢復運作。 第七圖為本發明過溫度保護方法之第二實施例流程 圖。如圖所示,本實施例大致與第一實施例流程圖相同, 而隶大的不同點在於磁滞電路1 3的運作設計上之不同,本 實施例是針對正溫度係數電壓Vptx來作平移上升之調整, (S > 17 1344755 而弟一貫施例是針對負溫度係數電壓Vntc來做平移下降之 調整。 而詳細流程說明如下:首先’提供一溫度感測器 11CS701),並且用以設計產生一正溫度係數電壓vPTC及一 負溫度係數電壓Vktc,接著,進行偵測積體電路之内部溫 度是否高於一臨界值(S703)。The pressure is thus not compared with the negative temperature wire voltage v_s after the translational fall, and is repeated to the step (S6G9), and the internal temperature of the memory circuit is continued. "By this, by repeating the above steps, the operation of the method of over-temperature protection 4 of the present embodiment can be achieved, and the integrated circuit is turned over when the over-temperature mud is generated. The seventh embodiment is a flow chart of the second embodiment of the over temperature protection method of the present invention. As shown in the figure, the embodiment is substantially the same as the flowchart of the first embodiment, and the different points of the large In the operation design of the hysteresis circuit 13 is different, this embodiment is for the positive temperature coefficient voltage Vptx to adjust the translational rise, (S > 17 1344755 and the consistent application is for the negative temperature coefficient voltage Vntc The adjustment of the translational decline is described as follows: The detailed flow is as follows: firstly, a temperature sensor 11CS701 is provided, and a positive temperature coefficient voltage vPTC and a negative temperature coefficient voltage Vktc are designed to be generated, and then the integrated circuit is detected. Whether the internal temperature is higher than a critical value (S703).

右步驟(S703)的偵測結果為否,則表示積體電路之内 部溫度在正常範圍内,而過溫度保護電路不需啟動,而持 績輪j出一低電壓位準之知出電壓V〇UT,以開啟功率雪晶體 持續運作,並且繼續進行偵測積體電路之内部溫度。反之, 若步驟(S703)的偵測結不為是,則表示溫度過高而必須啟 動過溫度保護電路,於是進行輸出一高雷壓位淮屮+ 壓V,來關閉功率電晶體(S7Q5),以避免積體^路^續】 作而造成損毀。 退仃啟動磁滯電路; v立&τ _“〜.从曦止溫度係數電壓If the detection result of the right step (S703) is NO, it means that the internal temperature of the integrated circuit is within the normal range, and the over temperature protection circuit does not need to be activated, and the performance wheel j generates a low voltage level to know the voltage V. 〇UT, to turn on the power snow crystal continues to operate, and continue to detect the internal temperature of the integrated circuit. On the other hand, if the detection result of the step (S703) is not YES, it means that the temperature is too high and the temperature protection circuit must be activated, so that a high lightning pressure level is applied and the voltage V is turned off to turn off the power transistor (S7Q5). In order to avoid the accumulation of the body ^ road ^ continued to cause damage.仃 仃 start hysteresis circuit; v 立 & τ _ "~. from the temperature coefficient voltage

),並"'由於過溫度保護電路的啟動 已關閉功率电晶體,於是便可降低積體電路之内呷, 二’便進行判斷負溫度係數電壓心; 因積體電路之内料度下㈣提升 之正溫度係數電壓進行比較4 /、/十私上升後 可恢復輸出低電壓位準之輸出。右判斷結果為是’則 體陶,恢復積體電路:二r 的判斷結果為否,則表示負=」目反的4步驟(_ 特定的溫度點之電壓,因而壓'w尚未提升到 係數電壓進行比較H重平移上升後之正溫度 積體電路之㈣溫度。最彳t /_7Q9)’以繼續降低 孤度讀’错由重複上述步驟,即可達 < S > 18 1344755 到本實施例過溫度保護方法的運作。 附帶一提的是,在前述降低祚理想效應所造成的溫度 誤差之解決方案中,更可進一步藉由增加正溫度係數電壓 Vptc或負溫度係數電壓νΝπ的斜率來達成縮小非理想效應對 溫度造成的誤差。如第八圖所示,即為不同負溫度係數電 塵的斜率對溫度變異之示意圖。從圖中可以看到,當正溫 度係數電壓VPTC受非理想效應的影響,使得正溫度係數電 壓Vptc向上平移△ Vp而變成Vptc,。而不同的負溫度係數電 壓Vntci及Vito( Vmtci斜率大於VkTC2斜率)將會有不同的溫度誤 差結果’其中,負溫度係數電壓Vktci產生的溫度誤差(△ 11 ) 將會小於負溫度係數電壓ν>(:2所產生的溫度誤差(△〇。 進而月b減少電晶體的使用數量而節省過溫度保護 體電路中所佔用夕而Λ M k .七.,Λ 紅上所述’本發明之過溫度保護電路’是利用空乏别 電晶體及加強型電晶體在製程變異中具有相同的趕勢之特 點來設計成為溫度感測器,以控制過溫度保護電路所用來 判斷過溫度與否的臨界值錐夠較精確而不產生偏移,並且), and " 'Because the start of the temperature protection circuit has turned off the power transistor, so you can reduce the internal circuit of the integrated circuit, the second 'will judge the negative temperature coefficient voltage core; due to the internal mass of the integrated circuit (4) The positive temperature coefficient voltage of the boost is compared and the output of the output low voltage level can be restored after the 4/, /10 private rise. The result of the right judgment is 'then pottery, restore the integrated circuit: if the judgment result of the second r is no, it means the negative step = "the reverse of the 4 steps (the voltage of the specific temperature point, so the pressure 'w has not been raised to the coefficient The voltage is compared with the (four) temperature of the positive temperature integrated circuit after the H-translational rise. Finally 彳t /_7Q9) 'to continue to reduce the degree of readability' by repeating the above steps, you can reach < S > 18 1344755 to this The embodiment operates over the temperature protection method. Incidentally, in the foregoing solution for reducing the temperature error caused by the ideal effect, it is further possible to reduce the non-ideal effect on the temperature by increasing the slope of the positive temperature coefficient voltage Vptc or the negative temperature coefficient voltage ν Ν π. Error. As shown in the eighth figure, it is a schematic diagram of the slope versus temperature variation of different negative temperature coefficient dusts. It can be seen from the figure that when the positive temperature coefficient voltage VPTC is affected by the non-ideal effect, the positive temperature coefficient voltage Vptc is shifted upward by ΔVp to become Vptc. Different negative temperature coefficient voltages Vntci and Vito (Vmtci slope is greater than VkTC2 slope) will have different temperature error results 'where the temperature error (Δ 11 ) generated by the negative temperature coefficient voltage Vktci will be less than the negative temperature coefficient voltage ν > (: 2 temperature error generated (△ 〇. In turn, the monthly b reduces the number of transistors used and saves the occupancy of the temperature protection circuit Λ M k . 七., Λ red on the 'the invention' The temperature protection circuit is designed to be a temperature sensor by utilizing the characteristics of the vacant transistor and the reinforced transistor in the process variation to control the critical value of the over temperature protection circuit. The cone is more accurate without offset, and

’可輕易思及之變化或修飾皆可涵蓋 在以下本 案所界疋之專利範圍。 【圖式簡單說明】 之過溫度,電路的示 第一圖係習知技術應用於積體電路 1344755 意圖; 第二圖係本發明過溫度保護電路之第一實施例電路示意 圖; 第三圖係本發明過溫度保護電路對溫度變異之示意圖; 第四圖係本發明過溫度保護電路在磁滯電路啟動時之輸出 電壓模擬示意圖; 弟五圖係本發明過溫度保護電路之弟二貫施例電路不意 圖; 第六圖係本發明過溫度保護方法之第一實施例流程圖; 第七圖係本發明過溫度保護方法之第二實施例流程圖;及 第八圖係不同負溫度係數電壓的斜率對溫度變異之示意 圖。 【主要元件符號說明】 [習知技術] 溫度感測器90 比較器91 放大器OP 正溫度係數電壓Vptc 負溫度係數電壓Vntc 輸出電壓V〇UT BJT電晶體Q3,Q4 [本發明] 溫度感測器11 20 1344755 第一電路111 第二電路112 比較器12 磁滯電路13 第一空乏型電晶體Mdnm 第二空乏型電晶體Mm2 第三空乏型電晶體MDN3 第一加強型電晶體Menm 第二加強型電晶體Mm 第三加強型電晶體Mm 弟四加強型電晶體Menm 第五加強型電晶體Meig 電壓源Vdd 正溫度係數電壓Vptc 負溫度係數電壓VnTC,VnTCI,Vh’TC2'Changes or modifications that can be easily considered can cover the scope of patents that are within the scope of this book. [Simplified description of the drawing] The temperature of the circuit is shown in the first figure of the circuit is applied to the integrated circuit 1344755. The second figure is the circuit diagram of the first embodiment of the over temperature protection circuit of the present invention; The fourth embodiment is a schematic diagram of the output voltage simulation of the over temperature protection circuit of the present invention when the hysteresis circuit is started; the fifth figure is the second embodiment of the over temperature protection circuit of the present invention. The sixth embodiment is a flow chart of the first embodiment of the over temperature protection method of the present invention; the seventh figure is a flow chart of the second embodiment of the over temperature protection method of the present invention; and the eighth figure is a different negative temperature coefficient voltage. A schematic diagram of the slope versus temperature variation. [Main component symbol description] [Prior art] Temperature sensor 90 Comparator 91 Amplifier OP Positive temperature coefficient voltage Vptc Negative temperature coefficient voltage Vntc Output voltage V〇UT BJT transistor Q3, Q4 [Invention] Temperature sensor 11 20 1344755 First circuit 111 Second circuit 112 Comparator 12 Hysteresis circuit 13 First depleted transistor Mdnm Second depletion transistor Mm2 Third depletion transistor MDN3 First enhancement transistor Menm Second enhancement Transistor Mm Third reinforced transistor Mm Di reinforced transistor Menm Fifth reinforced transistor Meig Voltage source Vdd Positive temperature coefficient voltage Vptc Negative temperature coefficient voltage VnTC, VnTCI, Vh'TC2

平移下降後之負溫度係數電麼Vn'TC. HYS 輸出電壓Vm (S ) 21Negative temperature coefficient after translation down. Vn'TC. HYS Output voltage Vm (S ) 21

Claims (1)

1344755 十、申請專利範圍: 1、一種過溫度保護電路’係應用於一積體電路,用以控 制該積體電路的一功率電晶體,其包括: 一溫度感測器’係用以產生一正溫度係數電壓及一負 溫度係數電壓’並且該溫度感測器進一步包含: 一第一電路,係包含一第一空乏型電晶體 (Depletion MOS)及一第一加強型電晶體 (Enhancement M0S) ’用以產生該正溫度係數雷 壓’其中該第一空乏型電晶體與該第—加強型雷 晶體係為共閘極端的連接,而該第—空乏型雷日3 體源極端係連接該第一加強型電晶體的汲極 端,並且該第一加強型電晶體源極端係接地;及 一第一電路’係包含一第二空乏型電晶體、一第二 加強型電晶體及一第三加強型電晶體,闬以彦生 該負溫度係數電壓,其中該第二空乏型電晶體與 該第二加強型電晶體係為共閘極端的連接,而該 第一空乏型電晶體源極端係連接該第二加強型 電晶體汲極端,並且該第二加強型電晶體源極端 係連接該第三加強型電晶體汲極端,而該第三加 強型電晶體源極端係接地;以及 一比較器,係連接該溫度感測器,用來比較該正溫度 係數電壓及該負溫度係數電壓而輸出一輸出電 壓,以控制該功率電晶體之啟閉。 2、如=請專利範圍第}項所述之過溫度保護電路,其中 該第-電路所產生的該正溫度係數電壓係提供至該 22 比較為的一正向輸入端,而該第二帝 溫度;f電f係提供至該比較器;;二 乾圍第1項所述之過溫度保護電路,其中 心一 ¥路及該第二電路係分 比(W/L)來進行搭配設計,^_之見長 及該負溫度係數電壓。 生叙溫度係數電壓 二:凊=範圍第1項所述之過溫度保護電路,其中 该弟一工乏型電晶體、該第二空乏型奮日辟 加強型電晶體、該第二加強型電晶體及;;: (N-Channel MOSFET)^ + ^ ^ f ^ =請專利範圍第1項所述之過溫度保護雪路,豆中 ;=?:較該正溫度係數電壓及該議係數 出4界值,進而基於該臨界值來輸出該 如申請專利範圍第5項所述巧溫度 sr!;r部溫度高於該臨界值時,該比較器 準之輸出電壓,以關閉該功率電晶 電路之内部溫度低於該臨界值時,該 低電壓位準之輸出電壓,以開啟該功 圍第5項所述之過溫度保護電路,其中 :妗:::·$内部溫度高於該臨界值時,該比較器 ^#^位準之輸出電壓’以關閉該功率電晶 二電路之内部溫度低於該臨界值時,該 乂輸出一向電壓位準之輸出電壓,以開啟該功 1344755 率電晶體。 8、 如申請專利範圍第5項所述之過溫度保護電路,進一 步包含: 一磁滯電路,係為一開關之設計,連接於該比較器的 一輸出端及該第二電路,用以依據該輸出電壓來執 行啟閉開關,以控制該第二電路所產生的該負溫度 係數電壓; 藉此,當該比較器係輸出該高電壓位準之輸出電壓 時,該磁滯電路會啟動,以讓該負溫度係數電壓產 生平移下降,並且在該正溫度係數電壓隨著該積體 電路之内部溫度下降,而降低到與該平移下降後之 負溫度係數電壓得以由該比較器進行比較時,該比 較器係恢復成輸出該低電壓位準之輸出電壓。 9、 如申請專利範圍第8項所述之過溫度保護電路,其中 該磁滞電路係包含. 一第四加強型電晶體,該第四加強型電晶體閘極端係 共接於該第二加強型電晶體與該第三加強型電晶 體之接點,並且該第四加強型電晶體源極端係接 地;及 一第五加強型電晶體,該第五加強型電晶體閘極端係 連接該比較器的輸出端,並且該第五加強型電晶體 源極端係連接該第四加強型電晶體汲極端。 10、 如申請專利範圍第5項所述之過溫度保護電路,進一 步包含: 一磁滯電路,係為一開關之設計,連接於該比較器的 241344755 X. Patent application scope: 1. An over temperature protection circuit is applied to an integrated circuit for controlling a power transistor of the integrated circuit, comprising: a temperature sensor for generating a a positive temperature coefficient voltage and a negative temperature coefficient voltage 'and the temperature sensor further comprises: a first circuit comprising a first depletion transistor (Depletion MOS) and a first enhancement transistor (Enhancement MOS) 'to generate the positive temperature coefficient lightning pressure', wherein the first depleted transistor and the first-enhanced thunder crystal system are connected to a common gate extreme, and the first-empty-type Thunder 3 source-source extreme system is connected to the a first reinforced transistor, the first reinforced transistor, a second reinforced transistor, and a third The reinforced transistor has a negative temperature coefficient voltage, wherein the second depleted transistor and the second reinforced electromorph system are connected to a common gate terminal, and the first depleted transistor source is Connecting the second reinforced transistor 汲 terminal, and the second reinforced transistor source is connected to the third reinforced transistor 汲 terminal, and the third reinforced transistor source is grounded; and a comparison The temperature sensor is connected to the positive temperature coefficient voltage and the negative temperature coefficient voltage to output an output voltage to control the opening and closing of the power transistor. 2. The over temperature protection circuit according to the invention of claim 1, wherein the positive temperature coefficient voltage generated by the first circuit is provided to a positive input terminal of the 22 comparison, and the second emperor Temperature; f electric f is provided to the comparator;; the over temperature protection circuit described in item 1 of the second dry circumference, the center of the road and the second circuit system ratio (W/L) are matched and designed. ^_ See the length and the negative temperature coefficient voltage. The temperature coefficient of the voltage is two: 凊 = range of the over temperature protection circuit described in Item 1, wherein the younger type of spent transistor, the second depleted type of Rising reinforced type of transistor, the second reinforced type of electricity Crystal and;;: (N-Channel MOSFET)^ + ^ ^ f ^ = Please consult the over-temperature protection snow path described in item 1 of the patent scope, beans; =?: Compared with the positive temperature coefficient voltage and the coefficient of the coefficient a threshold value of 4, and based on the threshold value, outputting the temperature sr! as described in item 5 of the patent application scope; when the temperature of the r portion is higher than the threshold value, the comparator outputs an output voltage to turn off the power transistor When the internal temperature of the circuit is lower than the critical value, the output voltage of the low voltage level is used to turn on the over temperature protection circuit described in item 5 of the power range, wherein: 妗:::·$ internal temperature is higher than the critical value When the value is, the output voltage of the comparator ^#^ level is turned off. When the internal temperature of the power transistor 2 circuit is turned off, the output voltage of the voltage level is turned on to turn on the work 1344755 rate. Transistor. 8. The over temperature protection circuit according to claim 5, further comprising: a hysteresis circuit, which is a switch design, connected to an output end of the comparator and the second circuit, for The output voltage is used to execute an open-close switch to control the negative temperature coefficient voltage generated by the second circuit; thereby, when the comparator outputs the output voltage of the high voltage level, the hysteresis circuit starts, To cause the negative temperature coefficient voltage to produce a translational decrease, and when the positive temperature coefficient voltage decreases with the internal temperature of the integrated circuit, and the negative temperature coefficient voltage after the translational fall is compared by the comparator The comparator is restored to output the output voltage of the low voltage level. 9. The over temperature protection circuit of claim 8, wherein the hysteresis circuit comprises: a fourth reinforced type transistor, the fourth reinforced type gate terminal is connected to the second reinforced a junction of the transistor and the third reinforced transistor, and the fourth reinforced transistor source is grounded; and a fifth reinforced transistor, the fifth reinforced transistor gate is connected to the comparison The output of the device, and the fifth reinforced transistor source is connected to the fourth reinforced transistor 汲 terminal. 10. The over temperature protection circuit of claim 5, further comprising: a hysteresis circuit designed to be a switch connected to the comparator 24
TW97107305A 2008-03-03 2008-03-03 Over-temperature protection circuit and method thereof TWI344755B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97107305A TWI344755B (en) 2008-03-03 2008-03-03 Over-temperature protection circuit and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97107305A TWI344755B (en) 2008-03-03 2008-03-03 Over-temperature protection circuit and method thereof

Publications (2)

Publication Number Publication Date
TW200939625A TW200939625A (en) 2009-09-16
TWI344755B true TWI344755B (en) 2011-07-01

Family

ID=44867769

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97107305A TWI344755B (en) 2008-03-03 2008-03-03 Over-temperature protection circuit and method thereof

Country Status (1)

Country Link
TW (1) TWI344755B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9317647B2 (en) 2014-03-31 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of designing a circuit and system for implementing the method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422132B (en) * 2010-11-08 2014-01-01 System General Corp Controllers, power converters and method for providing over-temperature protection
US10833668B2 (en) * 2019-03-07 2020-11-10 Analog Devices International Unlimited Company Integrated and distributed over temperature protection for power management switches
CN112486224B (en) * 2020-12-10 2022-03-18 安徽环瑞电热器材有限公司 Bathroom equipment temperature control system and temperature control method thereof
TWI831194B (en) * 2022-04-28 2024-02-01 大陸商北京集創北方科技股份有限公司 Over-temperature protection circuits, integrated circuit chips and information processing devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9317647B2 (en) 2014-03-31 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of designing a circuit and system for implementing the method

Also Published As

Publication number Publication date
TW200939625A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
TWI352890B (en) Device, method and apparatus for detecting current
TWI430549B (en) Gate driver topology for maximum load efficiency and method thereof
TWI344755B (en) Over-temperature protection circuit and method thereof
JP2006260030A (en) Constant voltage power supply circuit and method for inspecting same
TWI503647B (en) Reference voltage circuit
US10862469B2 (en) Nano power under-voltage lockout circuits (UVLO) using flipped-gate MOS
TWI672883B (en) Short circuit protection circuit, semiconductor device and electronic machine
TWI548184B (en) Protection device and method for electronic device
CN107870259B (en) HV voltage comparator with low sensitivity to process/temperature and supply variations
TW200952306A (en) Charge-controlling semiconductor integrated circuit
US20180231997A1 (en) Voltage reference generator and a method for controlling a magnitude of a variation of an output voltage of a voltage reference generator
TWI428610B (en) Overcurrent detecting circuit and overcurrent detecting method
US7215145B2 (en) Comparator circuit and power supply circuit
CN110726938A (en) Current sensing system, implementation method thereof and integrated circuit
CN108270402A (en) Voltage detecting and control circuit
TW201409216A (en) Power-on reset circuit
TW200403925A (en) Semiconductor device
JP6785705B2 (en) Overcurrent protection circuit and voltage regulator
CN108092498A (en) Over-temperature protection device and method and switching power supply
CN201846321U (en) Segmented temperature compensation reference circuit
CN110176853A (en) Current sense device and associated method
CN109560690A (en) Circuit based on III/V race semiconductor and the method for running the circuit
TWI540405B (en) Voltage regulator
JP4365875B2 (en) DC-DC converter having temperature compensation circuit
TW201015811A (en) Over-voltage protection circuit of PWM regulator and method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees