TWI342591B - Compositions for the electroless deposition of ternary materials for the semiconductor industry - Google Patents

Compositions for the electroless deposition of ternary materials for the semiconductor industry Download PDF

Info

Publication number
TWI342591B
TWI342591B TW93112665A TW93112665A TWI342591B TW I342591 B TWI342591 B TW I342591B TW 93112665 A TW93112665 A TW 93112665A TW 93112665 A TW93112665 A TW 93112665A TW I342591 B TWI342591 B TW I342591B
Authority
TW
Taiwan
Prior art keywords
copper
deposition
metal
alloy
barrier
Prior art date
Application number
TW93112665A
Other languages
Chinese (zh)
Other versions
TW200512833A (en
Inventor
Alexandra Wirth
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Publication of TW200512833A publication Critical patent/TW200512833A/en
Application granted granted Critical
Publication of TWI342591B publication Critical patent/TWI342591B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

The invention relates to the use of currentlessly deposited ternary nickel-containing metal alloys of the type NiM-R (whereby M = Mo, W, Re, Cr and R = B, P) in semiconductor technology. The inventionparticularly relates to the use of these deposited ternary nickel-containing metal alloys as barrier material or as selective encapsulation material for preventing the diffusion and electromigrationofcopper in semiconductor components.

Description

13425911342591

. ... ... I ,.,:抑.纪+i iLaa..i2^3-u- 玖、發明說明 【發明所屬之技術領域】 . 本發明係關於由半導體技術之無電製程沈憤而成的. . . I , . , : : : + + i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i Made

NiMR 型(其中 M = Mo、W、Re 或 Cr、且 R = D • ΰ 或 p ) 三元含鏡金屬合金作爲阻障材料或選擇性封裝材料之用 途。特定言之’本發明係關於一種藉由在半導體組件上進 行無電沈積以產生三元’含鎳金屬合金層之方法,於該處 彼等係作爲阻障材料或選擇性封裝材料以防止CU之擴散 與電致遷移。 【先前技術】 持續增加微電子組件之互連密度及速度要求已導致導 體軌道互連材料由習用的鋁(合金)改變爲銅(CU )。銅 的使用造成在電致遷移期間有低電阻及較高的穩定性,但 其代價爲增加的互連密度會增加導體軌道之整體電阻„ 不過,使用銅作爲互連材料時因爲其對基板(砂)或 絕緣材料(例如S i〇2 )內的高度擴散活性而需要使用所 謂擴散阻障(d i f f u s i ο n b a r r i e r S )。該等擴散阻障係經用 於銅互連之下以保護絕緣材料及用於促進絕緣層與互連層 之間的黏著。 於此等組件的運作期間之高周期頻率會使電流密度增 加,其可能導致互連內電導體材料之材料分離。此一現 象,稱爲電致遷移(e 1 e c t r 〇 m i g r a t i ο η ),會導致組件報廢 率升高,而大幅削弱其效能。 -5- 1342591 1 ' ,年月日修正 IL99.12.3 1 相較於鋁’銅的較高熔點,可改善導體軌道之電流傳 導性質’此可導致對電致遷移敗壞增加的抗性。 使用壽命與電致遷移穩定性主要取決於在銅/絕緣材 料介面處可能的材料傳送與交換效應而不在於晶面的排列 及銅本身晶粒邊界之本質。因此諸介面之品質對材料交換 是很重要的。 已知者,摻入(合金化)其他高熔點金屬,例如耐火 φ 金屬’會進一步增加此穩定性。改善的電致遷移行爲可透 過使用薄金屬層與銅混合而實現。 該寺導電合金層问時也有作爲擴散阻障的功能,其可 防止銅物種與電荷載體之擴散。此阻障作用係首先透過摻 入非金屬成分,例如憐,所致三元合金之形態本質,其次 透過摻入異質原子阻斷合金內沿著晶粒邊界的較佳擴散路 徑而造成者。 —種用於製造有銅互連的組件之標準方法爲所謂的金 φ 屬鑲嵌法。於其中,首先在絕緣層內藉由光刻程序與隨後 之乾蝕刻程序形成諸結構,例如導體軌道溝與接觸孔。隨 後於導體軌道結構上經由濺鍍(PVD )或化學氣相沈積 (CVD )施加一擴散阻障與一電接觸層及經由銅電鍍予以 塡充。經常用來製造擴散阻障之材料爲鉬、鉬氮化物、 鈦、鈦氮化物、鎢和鎢氮化物等。用爲電接觸層者爲一薄 銅層。使用化學機械拋光來整平互連材料。 隨著逐增的長寬比(導體軌道結構之深度對寬度比), 於導體軌道溝與接觸孔上必須沈積甚至更薄的擴散阻障。 -6 - 1342591NiMR type (where M = Mo, W, Re or Cr, and R = D • ΰ or p) The use of ternary mirror-containing metal alloys as barrier materials or selective encapsulants. In particular, the present invention relates to a method for producing a ternary 'nickel-containing metal alloy layer by electroless deposition on a semiconductor component, where they are used as a barrier material or a selective encapsulation material to prevent CU Diffusion and electromigration. [Prior Art] Increasing the interconnect density and speed requirements of microelectronic components has resulted in the change of the conductor track interconnect material from conventional aluminum (alloy) to copper (CU). The use of copper results in low resistance and high stability during electromigration, but at the expense of increased interconnect density which increases the overall resistance of the conductor track. However, when copper is used as the interconnect material because of its Sand or insulating material (such as S i 〇 2 ) for high diffusion activity requires the use of so-called diffusion barriers (diffusi ο nbarrier S). These diffusion barriers are used under copper interconnects to protect insulating materials and Used to promote adhesion between the insulating layer and the interconnect layer. The high periodic frequency during operation of such components increases the current density, which may cause material separation of the electrical conductor material within the interconnect. This phenomenon is known as Electromigration (e 1 ectr 〇migrati ο η ) will lead to an increase in component rejection rate and a significant reduction in its effectiveness. -5- 1342591 1 ', year-and-month correction of IL99.12.3 1 compared to aluminum 'copper High melting point, which improves the current conduction properties of conductor tracks. This can lead to increased resistance to electromigration damage. Service life and electromigration stability are mainly determined by copper/insulation materials. The possible material transfer and exchange effects at the surface are not the arrangement of the crystal faces and the nature of the grain boundaries of the copper itself. Therefore, the quality of the interfaces is important for material exchange. It is known that the alloying is high. The melting point metal, such as refractory φ metal, further increases this stability. The improved electromigration behavior can be achieved by mixing a thin metal layer with copper. The conductive alloy layer also functions as a diffusion barrier. Preventing the diffusion of copper species and charge carriers. This barrier is firstly caused by the incorporation of non-metallic components, such as pity, resulting in the morphological nature of the ternary alloy, and secondly by the incorporation of heteroatoms to block the grain boundaries within the alloy. The preferred method for fabricating a copper interconnect is the so-called gold φ damascene method, in which a lithography process followed by a dry etch process is first performed in the insulating layer. Forming structures, such as conductor track grooves and contact holes, and subsequently applying a diffusion barrier via sputtering (PVD) or chemical vapor deposition (CVD) on the conductor track structure An electrical contact layer is filled with copper plating. Materials commonly used to make diffusion barriers are molybdenum, molybdenum nitride, titanium, titanium nitride, tungsten and tungsten nitride, etc. Copper layer. Chemical mechanical polishing is used to level the interconnect material. With increasing aspect ratio (depth to width ratio of the conductor track structure), even thinner diffusion barriers must be deposited on the conductor track trenches and contact holes. -6 - 1342591

因此更難以藉由ρ V D與c V D等方法實現均勻沈積之阻障 薄膜層。 此外,已知者,電致遷移效應主要發生在銅互連之表 面。此係由在c Μ P與氧化程序期間侵蝕造成銅之化學改 質表面結構所導致者。 銅互連通常堆疊在數層上。由於用於防止銅擴散之阻 障層不出現在銅表面上,所以有需要在隨後沈積互連層之 前形成一阻障層,通常係用不導電(介電性)材料,例如 碳化砂(SiC)或氮化砂(SiN)。 此等介電材料,例如SiC或SiN,具有高於Si02之 介電常數且係以現行程序施加在導體軌道結構之整個表面 卜。此最終會導致半導體組件所貝整體電阻之增加,因此 有利者爲可用CMP選擇性地塗覆銅互連材料之表面。 方法之比較 美國專利第4,〇1 9,910號述及用於沈積含鎳三元合金 之混合物與製造方法。美國專利第5,6 9 5,8 1 0號宣示一種 用於Co WP/金屬阻障層之無電沈積之方法,其可用於半導 體產業。美國專利申請案第2002/0 098681 A1號述及三元 擴散阻障與CoWB、CoMoB、CoWP或CoSnP封裝層之無 電沈積’用以改善有銅互連的新穎積體電路之電致遷移穩 定性。 美國專利申請案第2002/0036143 A1號中述及由鎳、 銘、鎢與鉬組成的類似三元合金之無電沈積與自催化性電 1342591 « * 售2日:修正替換頁丨 * 一 · ~~ · .. 鍍方法所用之裝置。 在美國專利第6,528,409 B1號中主張CoWB、CoMoB 與CoReB類型之非晶型三元合金及彼之含磷同系物以用 . 於密封與銅互連整合之特殊多孔型絕緣材料之孔隙。 JP - A 2002 - 9 3 747 述及一種由 CoWP、CoMoP、Therefore, it is more difficult to achieve a uniformly deposited barrier film layer by methods such as ρ V D and c V D . Furthermore, it is known that electromigration effects occur mainly on the surface of copper interconnects. This is caused by the chemically modified surface structure of copper caused by erosion during c Μ P and the oxidation process. Copper interconnects are typically stacked on several layers. Since the barrier layer for preventing copper diffusion does not appear on the copper surface, it is necessary to form a barrier layer before depositing the interconnect layer, usually using a non-conductive (dielectric) material such as carbonized sand (SiC). ) or silicon nitride (SiN). These dielectric materials, such as SiC or SiN, have a dielectric constant higher than that of SiO 2 and are applied to the entire surface of the conductor track structure by current procedures. This ultimately leads to an increase in the overall resistance of the semiconductor component, so it is advantageous to selectively coat the surface of the copper interconnect material with CMP. Method Comparison A mixture and a method for producing a nickel-containing ternary alloy are described in U.S. Patent No. 4,091,910. U.S. Patent No. 5,690,810 claims a method for electroless deposition of Co WP/metal barrier layers which can be used in the semiconductor industry. U.S. Patent Application Serial No. 2002/0 098,681 A1, the disclosure of which is incorporated herein by reference in its entirety, the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the entire disclosure of . U.S. Patent Application Serial No. 2002/0036143 A1 describes the electroless deposition and autocatalytic electricity of a similar ternary alloy consisting of nickel, m, tungsten and molybdenum. 1342591 « * sold 2 days: corrected replacement page 丨 * a ~ ~ · .. The device used in the plating method. In U.S. Patent No. 6,528,409 B1, an amorphous ternary alloy of the CoWB, CoMoB and CoReB type and a phosphorus-containing homologue are claimed for sealing the pores of a special porous insulating material integrated with a copper interconnect. JP - A 2002 - 9 3 747 describes a kind of CoWP, CoMoP,

NiWP或NiMoP組成且鉬含量在從0.2至2原子-%範圍 內的導電結構及其製法,一種組件及其製法。A conductive structure composed of NiWP or NiMoP and having a molybdenum content ranging from 0.2 to 2 atom%, and a process for producing the same, and a process for the same.

【發明內容】 目的 因此本發明之一項目的爲提供導電結構之無電沈積所 用組成物及製造此結構之方法,其包括清潔與活化步驟, 且其可於一簡單便宜製程中,在催化活化之後,促成結構 於介電質(例如Si02、SiOC、SiN或SiC )上或直接於銅 互連上之沈積,準確地成爲作爲阻障層之結構以用來防止 Φ 經施加上作爲互連材料的銅之擴散。 本發明之另一目的爲提供適當添加劑用於阻障之均勻 層成長,同時促成無電沈積浴的使用壽命之延長以防止因 水溶液中還原劑之存在所致自然化學分解。 該目標係藉由根據申請專利範圍第1項之方法以及藉 由其在根據申請專利範圍第2至1 0項之特定具體實例之 方法予以實現。該目的也藉由根據申請專利範圍第1項至 第1 0項之方法製造的以無電程序沈積成的NiMR型(其 中M = Mo、W、Re或Cr、且R = B或P)三元含線金屬 -8- 1342591 年f ,次胡w m,> -- 合金作爲阻障層或爲選擇性封裝材料以防止半導體組件上 銅之擴散與電致遷移予以實現。SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a composition for electroless deposition of a conductive structure and a method of fabricating the same, which includes a cleaning and activating step, and which can be used in a simple and inexpensive process after catalytic activation , facilitating the deposition of a structure on a dielectric (eg, SiO 2 , SiOC, SiN, or SiC) or directly on a copper interconnect, accurately forming a structure as a barrier layer to prevent Φ from being applied as an interconnect material The spread of copper. Another object of the present invention is to provide suitable additives for uniform layer growth of barriers while at the same time contributing to the prolongation of the life of the electroless deposition bath to prevent natural chemical decomposition due to the presence of reducing agents in the aqueous solution. This object is achieved by the method according to item 1 of the scope of the patent application and by its specific example according to items 2 to 10 of the scope of the patent application. This object is also achieved by a NiMR type (where M = Mo, W, Re or Cr, and R = B or P) deposited in an electroless process according to the method of claims 1 to 10 of the patent application. Wire-containing metal-8-1342591 f, sub-huw,> - The alloy is used as a barrier layer or as a selective encapsulating material to prevent copper diffusion and electromigration on the semiconductor component.

因此本發明也關於NiMR型(其中M = Mo、W、Re 或Cr、且R = B或p)三元含鎳金屬合金之無電沈積所用 之組成物,該組成物可用於根據申請專利範圍第1至1〇 項之方法且包括於水溶液中適當濃度的N i S Ο 4 X 6 Η 2 0、 Na2 W〇4、Na2Mo〇4、KRe04、NaH2P〇2 或 CoS 04 x 7 H20 與視需要的其他添加劑。本發明組成物具有,特別者,在 4.5 - 9.0範圍內之pH。於需要時,此等組成物可包括 由下列組成之群組中選出的添加劑:Na3C6H507x 2 H20、 C4H604、Na2C4H404 x 6 H20、2,2 —聯吡啶、硫代二乙 酸、二硫代二乙酸、Triton X — 114、Br丨j 58、二甲胺基 硼烷(DMAB) 、Na2C2H302、C3H603 (90%)、NH4S04 以 及 RE610 (RE610:聚(氧化乙烯)苯基醚磷酸鈉(sodium poly(oxyethylene) phenyl ether phosphate)) °The invention therefore also relates to a composition for the electroless deposition of a NiMR-type (where M = Mo, W, Re or Cr, and R = B or p) ternary nickel-containing metal alloys, which composition can be used according to the scope of the patent application The method of 1 to 1 includes and includes an appropriate concentration of N i S Ο 4 X 6 Η 2 0, Na2 W〇4, Na2Mo〇4, KRe04, NaH2P〇2 or CoS 04 x 7 H20 in an aqueous solution, as desired Other additives. The compositions of the invention have, in particular, a pH in the range of 4.5 - 9.0. When desired, such compositions may include additives selected from the group consisting of Na3C6H507x 2 H20, C4H604, Na2C4H404 x 6 H20, 2,2-bipyridine, thiodiacetic acid, dithiodiacetic acid, Triton X — 114, Br丨j 58, dimethylamino borane (DMAB), Na2C2H302, C3H603 (90%), NH4S04 and RE610 (RE610: sodium poly(oxyethylene)) Phenyl ether phosphate)) °

導體軌道互連替代材料與新穎程序步驟之引進代表達 成在晶片,甚至於在縮小尺寸的組件結構中,高信號傳輸 速度之重要條件。同時與多孔絕緣材料整合的銅多層互連 之製造方法中擴散阻障的無法避免之使用可促成許多基本 問題之解決。此係與阻障材料本身之選擇有關,不過也與 無電(自催化性的)沈積程序之選擇有關。 實現本發明目的之企圖已同時導致清潔與活化所用新 穎方法之發展’例如藉由鈀催化劑核者。經由已確定的銅 電鍍(電解)方法進行的銅導體軌道與接觸孔洞之傳統雙 -9 - 1342591 «*The introduction of conductor track interconnect replacement materials and novel procedural steps represents an important condition for achieving high signal transmission speeds in wafers, even in reduced size component structures. The unavoidable use of diffusion barriers in the fabrication of copper multilayer interconnects that are integrated with porous insulating materials can contribute to many fundamental problems. This is related to the choice of barrier material itself, but also to the choice of electroless (autocatalytic) deposition procedures. Attempts to achieve the objects of the present invention have at the same time led to the development of new methods for cleaning and activation, e.g. by the palladium catalyst core. Conventional double copper conductor track and contact hole via established copper electroplating (electrolysis) method -9 - 1342591 «*

鑲嵌構造化代表於此之邊界條件,限制選擇且從而將材料 與製造方法整合爲技術性製造方法。The mosaic structuring represents the boundary conditions herein, limiting the choice and thereby integrating the material and manufacturing method into a technical manufacturing method.

阻障層厚度小於1 〇奈米,如IT R S r 〇 a d m a p (International Technology Roadmap for Semiconductors 2002 Update, Interconnect, SIA San Jose, CA, 2002, pp. 74 — 78)所述用於下一階段小於或等於9〇奈米之CMOS 技術者’對關於以均勻層厚度沈積此等薄層於有高深寬比 0 之結構中而言’在阻障材料與製造技術上代表一項重大的 挑戰。 銅互連操作可靠性之重要因素爲擴散阻障之穩定性, 其係經預期用來防止銅物種擴散到鄰近的絕緣層及主動式 電晶體區內。 藉由組成物之特定最優化’使合金中達到高重量比例 之耐火金屬’也可以達到在必要厚度範園內,三元擴散阻 障薄層或諸上層之形態最優化。The barrier layer thickness is less than 1 〇 nanometer, as described in IT RS r 〇admap (International Technology Roadmap for Semiconductors 2002 Update, Interconnect, SIA San Jose, CA, 2002, pp. 74-78) for the next stage less than or A CMOS technician equal to 9 nanometers represents a major challenge in barrier materials and manufacturing techniques for the deposition of such thin layers in a uniform layer thickness in structures with a high aspect ratio of zero. An important factor in the operational reliability of copper interconnects is the stability of the diffusion barrier, which is intended to prevent copper species from diffusing into adjacent insulating layers and active transistor regions. The morphological optimization of the ternary diffusion barrier thin layer or the upper layers can also be achieved in the necessary thickness range by the specific optimization of the composition 'to achieve a high weight ratio of the refractory metal in the alloy'.

在此情形中’銅係作爲製造導體軌道結構用之電導體 且被沈積在另一材料上。爲使此材料不限定於銅,乃採用 三元導電N i M R金屬合金作爲所謂的擴散阻障。如果底下 的材料爲絕緣體,則進行催化活化以使N i M R可用無電程 序予以沈積。如果底下的材料具有催化活性且具導電性, 例如濺鍍C 〇金屬’則不用先行活化即可進行N i M R沈 積。隨後藉助於以此方式沈積而作爲陰極的NiMR阻障 層’電鍍施加C u互連所用之c u。此係直接在阻障材料上 不用額外活化或施加電接觸層或成核層之下進行的。 -10- 1342591 • ., . I.*·,*··-.·· · 9ft,i2J3ri_j 此類型含鎳合金材料之另一應用係在CMP平 乾蝕刻程序之後,在Cu導體軌道結構上選擇性無 NiMR阻障層以將暴露之Cu表面封裝用以防止氧 導薄膜應力及改善電致遷移穩定性。該Ni MR層之 用取代法啓動,其中Pd催化劑核(活化)係經沈 表面上。此類型之啓動對於用次磷酸鹽作爲還原劑 沈積是有必要的,係因爲銅之催化活性低於例如 Ni、Pd、Co或Pt之故。於習用的活化方法中(用 藉由錫離子之氧化將Pd離子還原),難以在銅互 擇性地產生催化劑層。Pd核係黏著於整個表面上 ^ 可能進行選擇性無電沈積。也可經由在先前清潔, 面去氧化之後,添加另一還原劑,例如,D M A B, 電沈積溶液而直接進行NiMR層成長之起始。 於兩種應用中,金屬擴散阻障層的使用會促成 膜與阻障材料之間經改善的黏著。 本發明提供組成物,其中包括用以將已發展的 積用混合物予以穩定化之添加劑,亦即穩定化熱力 態用之添加劑。此可促成沈積浴使用壽命之延長。 此等添加劑之添加可在具有漸增深寬比之積體組件 體軌道與接觸孔洞所具尺寸的減低之同時促進程序 且均勻的層成長。 因此本發明係有關一種新穎方法用以藉由在催 絕緣層,例如在以濺鍍鈷活化之S i 02上,無電沈 一導電結構作爲阻障層,用來於銅互連之下作爲所 面化或 電沈積 化、誘 生成係 積在銅 的無電 ,A u、 鈀溶膠 ◊击 L .'CB 運上进 ,且不 或銅表 修改無 銅互連 無電沈 學介穩 同時, 內的導 中固定 化活化 積製造 謂的組 -11 -In this case, the copper system is used as an electrical conductor for fabricating a conductor track structure and is deposited on another material. In order to make this material not limited to copper, a ternary conductive N i M R metal alloy is used as a so-called diffusion barrier. If the underlying material is an insulator, catalytic activation is performed to allow N i M R to be deposited by electroless programming. If the underlying material is catalytically active and electrically conductive, such as by sputtering C 〇 metal, then N i M R deposition can be performed without prior activation. The Cu used for the Cu interconnection is then electroplated by means of a NiMR barrier layer as a cathode deposited in this manner. This is done directly on the barrier material without additional activation or application of an electrical contact layer or nucleation layer. -10- 1342591 • ., . I.*·,*··-.·· · 9ft,i2J3ri_j Another application of this type of nickel-containing alloy material is selected on the Cu conductor track structure after the CMP flat dry etching process. The non-NiMR barrier layer encapsulates the exposed Cu surface to prevent oxygen-conducting film stress and improve electromigration stability. The Ni MR layer was initiated by a substitution process in which the Pd catalyst core (activation) was deposited on the surface. This type of initiation is necessary for the deposition with hypophosphite as a reducing agent because the catalytic activity of copper is lower than, for example, Ni, Pd, Co or Pt. In a conventional activation method (reducing Pd ions by oxidation of tin ions), it is difficult to alternately produce a catalyst layer in copper. The Pd core adheres to the entire surface ^ It is possible to perform selective electroless deposition. It is also possible to directly initiate the growth of the NiMR layer by adding another reducing agent, for example, D M A B, an electrodeposition solution after the previous cleaning, surface deoxidation. In both applications, the use of a metal diffusion barrier layer promotes improved adhesion between the film and the barrier material. The present invention provides a composition comprising an additive for stabilizing a developed buildup mixture, i.e., an additive for stabilizing the thermal state. This can contribute to the extension of the service life of the deposition bath. The addition of such additives promotes programmed and uniform layer growth while reducing the size of the integrated body track and contact holes having an increasing aspect ratio. Therefore, the present invention relates to a novel method for using an electroless-free-conducting structure as a barrier layer on a heat-insulating layer, such as Si 2 activated by sputtering of cobalt, for use as a barrier under copper interconnection. Surface or electrodeposition, induced formation of copper in the absence of electricity, A u, palladium sol slamming L. 'CB transported up, and no copper table modified copper-free interconnection without electricity sinking metastable simultaneously, the inner guide fixed Group of activated activated products called -11 -

1342591 合擴散阻障與成核層,且進一步用來作爲在銅 的封裝阻障。 特別者,此新穎方法的特徵在於使) NiMoP 、 NiWP 、 NiReB 、 NiMoB 、 NiWB 、1342591 combines a diffusion barrier with a nucleation layer and is further used as a barrier to copper encapsulation. In particular, this novel method is characterized by: NiMoP, NiWP, NiReB, NiMoB, NiWB,

NiMoPB或NiWPB合金作爲阻障層。 在該等合金中含有高原子%可增加阻障所 之耐火金屬部份,例如高達24原子%的鉬,高 %的Re及高達1 5原子%的鎢。 特別者,本發明係關於一種在由銅組成之 表面上無電沈積一薄金屬合金膜之方法,該方 諸步驟: 清潔(去氧化)銅互連表面,若必要時隨 連表面,及 加上一預製之自催化性性電鍍溶液,及 隨後以預製的化學電鍍溶液噴塗該基板 板。 特別者,此係一種薄金屬層之無電沈積方 薄金屬合金膜之金屬係包括一由下列組成之群 金屬:Ni ' Co、Pd、A g ' Rh、Ru、Re、P t Mo、W和Cr,較佳者係選自下列所組成之群 Ag' Co' Ni、Pd 和 Pt。 該方法較佳者係使用基本上沒有表面活性 化性電鍍溶液進行。 不過,所用的基礎溶液也可爲包括至少一 互連表面上 弓 NiReP 、 NiRePB 、 具熱穩定性 達2 3原子 金屬基板的 法包括下列 後活化該互 或浸泡該基 法,其中該 組中選出之 、S η、P b、 中者:Cu、 物質的自催 表面活性物 -12- 1342591 _. ——— · - ·- - .π ^ > 乂..,ι 9Θ.12.3 1 質之自催化性電鍍溶液。若必要時,可於該溶液中添加用 於延長電鍍溶液之浴所具使用壽命之添加劑,例如安定 • 劑。 也可將用於改善擴散阻障所具層性質與本質之添加劑 添加至本方法所用之溶液中。 無氨與無氫氟酸的混合物可有利地用於用以清潔及活 化銅互連表面的程序,例如藉由鈀催化劑核者之中。 與先前技術的分野(Delimitation from the prior art) 該水性、新配方的組成物可用於組合擴散阻障與成核 層之無電沈積。使用本發明組成物時,可在單一程序步驟 . 中進行該無電沈積。不過’該組成物也可用來沈積銅互連 上之封裝材料。 該無電沈積方法特別適用於使用所謂的多孔絕緣材料 之擴散阻障的選擇性沈積。已知者,傳統p V D法與C V D 先質會穿透該等材料之相對機械不穩定孔隙,該等可能在 沈積阻障之中被部份密封或關閉。 該三元合金材料可由本發明方法使用該新穎組成物由 無電電鍍法予以沈積爲膜厚小於200埃的非常細薄且有效 之阻障膜。相較於傳統技術,彼等因而可較大程度地符合 超大型積體電路(ULSI )對導體軌道尺度關於表面本 質’均勻步階覆蓋率(step coverage)及互連之側邊覆蓋 (flank coating)之要求。 此等導電合金材料作爲封裝層的特殊應用之特別優點 在於在作爲互連材料的銅上進行阻障層之選擇性沈積。 -13- »42591A NiMoPB or NiWPB alloy is used as the barrier layer. The inclusion of high atomic % in the alloys increases the refractory metal portion of the barrier, such as up to 24 at% molybdenum, high % Re and up to 15 at% tungsten. In particular, the present invention relates to a method of electrolessly depositing a thin metal alloy film on a surface composed of copper, the steps of: cleaning (deoxidizing) the surface of the copper interconnect, if necessary, following the surface, and adding A preformed autocatalytic plating solution, and subsequently spraying the substrate sheet with a preformed electroless plating solution. In particular, the metal system of the electrolessly deposited square thin metal alloy film of a thin metal layer comprises a group of metals consisting of Ni ' Co, Pd, A g ' Rh, Ru, Re, P t Mo, W and Cr, preferably selected from the group consisting of Ag' Co' Ni, Pd and Pt. Preferably, the method is carried out using a substantially non-surface active plating solution. However, the base solution used may also be a method comprising at least one interconnected surface on which NiReP, NiRePB, and a metal substrate having a thermal stability of up to 23 atoms include the following post-activation of the mutual or soaking base method, wherein the group is selected , S η, P b, the middle: Cu, the self-promoting surfactant of the substance-12-1342591 _. ——— · - ·- - .π ^ > 乂..,ι 9Θ.12.3 1 Autocatalytic plating solution. If necessary, an additive for extending the life of the bath of the plating solution, such as a stabilizer, may be added to the solution. Additives for improving the properties and nature of the layer of the diffusion barrier may also be added to the solution used in the process. Mixtures of ammonia-free and hydrofluoric acid-free can be advantageously used in procedures for cleaning and activating copper interconnect surfaces, such as by a palladium catalyst core. Delimitation from the prior art The aqueous, newly formulated composition can be used to combine the diffusion barrier with the electroless deposition of the nucleation layer. This electroless deposition can be carried out in a single procedure step when using the compositions of the invention. However, this composition can also be used to deposit packaging materials on copper interconnects. This electroless deposition method is particularly suitable for selective deposition using diffusion barriers of so-called porous insulating materials. It is known that conventional p V D and C V D precursors penetrate the relatively mechanically unstable pores of the materials, which may be partially sealed or closed during the deposition barrier. The ternary alloy material can be deposited by the method of the present invention from the novel composition by electroless plating to a very thin and effective barrier film having a film thickness of less than 200 angstroms. Compared with the conventional technology, they can thus conform to the large-scale integrated circuit (ULSI) to the conductor track scale with respect to the surface essence, uniform step coverage and flank coating of the interconnect. ) requirements. A particular advantage of these conductive alloy materials as a special application for the encapsulation layer is the selective deposition of the barrier layer on the copper as the interconnect material. -13- »42591

高含量耐火金屬,例如,高達2 4原子%的鉬,有利 於改善有關銅擴散之擴散阻障性質。High levels of refractory metals, for example, up to 24 atomic percent of molybdenum, are beneficial for improving the diffusion barrier properties associated with copper diffusion.

NiMoP合金爲在Cu上無電沈積所用之較佳材料,因 爲少量Mo會增加合金之熱穩定性且因而改善對銅的擴散 抗性。 此外,本發明所用三元阻障材料具有高導電率與小於 2 5 0 μΩ公分之低比電阻。此可造成因組件結構變成較小 φ 所致信號傳輸延遲("RC延遲")之減低。 相較於介電材料,例如SiC或SiN,或在某些情況即 使程序參數之適當選擇被壓抑,也藉由連續程序監視,因 組件運作期間電致遷移效果導體軌道之整體電阻與失效之 機率可被最小化。 使用本發明導電三元阻障造成改善關於銅/金屬擴散 阻障/絕緣矩陣介面之介面品質。銅物種擴散與電致遷移 現象在金屬/金屬介面處被增加的活性能量轉移阻障所壓 φ 抑。 同時,金屬相互強力鍵結會增加阻障層之黏著至銅互 連材料且更有利於較細互連之生產,與原始介電材料接 觸,例如SiC或SiN。 再者,經改質的組成物可確保本發明無電沈積浴之浴 使用壽命(穩定性)之延長。同時,沈積合金之形態與層 生長會相對於阻障作用而有正面影響。 沈積浴使用壽命之延長導致化學品消耗減少。此外’ 製造中所包括方法之工作也減少,且製造成本也因此隨之 -14- 1342591 替换頁The NiMoP alloy is a preferred material for electroless deposition on Cu because a small amount of Mo increases the thermal stability of the alloy and thus improves the diffusion resistance to copper. Further, the ternary barrier material used in the present invention has a high electrical conductivity and a low specific resistance of less than 250 μm. This can result in a reduction in signal transmission delay ("RC delay") due to the component structure becoming smaller φ. Compared to dielectric materials such as SiC or SiN, or in some cases even if the appropriate choice of program parameters is suppressed, continuous process monitoring, due to the overall resistance and failure probability of the electromigration conductor track during component operation Can be minimized. The use of the conductive ternary barrier of the present invention results in improved interface quality with respect to the copper/metal diffusion barrier/insulation matrix interface. Copper species diffusion and electromigration are suppressed by the active energy transfer barrier at the metal/metal interface. At the same time, the strong bonding of the metals to each other increases the adhesion of the barrier layer to the copper interconnect material and is more conducive to the production of finer interconnects, such as SiC or SiN. Further, the modified composition can ensure the extension of the service life (stability) of the electroless deposition bath of the present invention. At the same time, the morphology and layer growth of the deposited alloy will have a positive effect relative to the barrier effect. The prolonged service life of the deposition bath results in a reduction in chemical consumption. In addition, the work of the methods included in manufacturing is also reduced, and the manufacturing costs are also followed. -14- 1342591 Replacement page

Ms, 降低。再者,添加添加劑可促進一致、固定、均勻的層生 成同時減少持續增加深寬比之積體組件之導體軌道與接觸 孔洞之尺度。 本發明另一優點爲於單一程序步驟由水溶液無電沈積 三元合金以用於製造所謂組合擴散阻障積成核層之方法看 出。Ms, lower. Furthermore, the addition of additives promotes consistent, fixed, uniform layer formation while reducing the dimensions of the conductor tracks and contact holes of the integrated components that continuously increase the aspect ratio. Another advantage of the present invention is seen in the single process step of electroless deposition of a ternary alloy from an aqueous solution for the fabrication of a so-called combined diffusion barrier nucleation layer.

一所得之優點爲簡化程序順序,其中係藉由立即由水 溶液電鍍銅以排除個別程序步驟於半導體技術製造積體電 路所用(第1圖)。因此可以做到在濕化學集束沈積單元 中的完全濕化學法程序,如,一般用在半導體產業者(第 1圖)。An advantage obtained is that the sequence of the program is simplified by electroplating copper from an aqueous solution to eliminate the individual procedural steps used in the fabrication of integrated circuits by semiconductor technology (Fig. 1). Therefore, a complete wet chemical procedure in the wet chemical cluster deposition unit can be achieved, as is generally used in the semiconductor industry (Fig. 1).

銅係在三元金屬阻障層上的互連電鍍爲陰極接觸。在 將位於接觸洞孔與互連溝之上方過度電鍍沈積銅移除,例 如藉由化學/機械拋光(CMP ),即清潔銅表面。隨後在 銅表面上藉含鈀混合物以離子電鍍("黏結",藉由電荷交 換進行電化學沈積)沈積催化劑核。此類型之電化學電荷 交換係不可能在絕緣層上進行的。因此該催化劑核隨後可 促成只在銅互連上的,例如,NiMoP之選擇性無電沈積, 如在下面的實施例中所述者(第2圖)。 程序參數之變異範圍,包括較佳範圍與數値 較佳濃度範圍爲下面諸表中所列者。 -15- 1342591 W丨辦替甽The interconnect plating of the copper system on the ternary metal barrier layer is a cathode contact. The copper is removed by overplating deposits over the contact holes and interconnect trenches, for example by chemical/mechanical polishing (CMP). The catalyst core is then deposited on the copper surface by ion plating ("bonding", electrochemical deposition by charge exchange) on the copper surface. This type of electrochemical charge exchange system is not possible on the insulating layer. Thus the catalyst core can then be promoted only on the copper interconnect, for example, selective electroless deposition of NiMoP, as described in the examples below (Fig. 2). Range of variation of the program parameters, including preferred ranges and numbers, preferred ranges of concentrations are listed in the tables below. -15- 1342591 W丨做甽

表1 :無電電鍍溶液之組成與沈積三元 NiP合金所 用之程序參數 組成物 ’ 濃度[莫耳/升] 操作條件 NiWP NiMoP NiReP NiS04x6H20 0.02-0.1 0.02-0.1 0.03-0.1 Na2W04 0-0.14 一 — Na2Mo〇4 — 0-3xl0—2 — KRe04 — - O-lxlO-2 NaH2P02 0.1-0.5 0.1 -0.5 0.2-0.8 DMAB — 4xl〇·3-1.5x1 O'4 — Na3C6H507x2H20 0.07-0.22 0.1-0.3 — C4H6O4 — 0.03-0.3 0.03-0.2 Na2C4H4〇4x6H2〇 — - 0.1-0.5 2,2-聯吡啶 — —- 1-5 ppm 二硫代醋酸 一 0-20 ppm — Triton X-114 — — 0-200 ppm Brij 58 —- 0-100 ppm — pH 8.2 9.0 4.5 溫度[°C土 1] 60-80 60-80 60-65 -16- 1342591 :^;\2^V \ V - 表2 :無電電鍍溶液之組成及沈積三元含硼合金所用程序 參數 組成物 操作條件 濃度[莫耳/升] NiMoB CoReB NiS04 X 6 H20 0.03-0.1 一·----- C0SO4 x 7 H2O 一 0.06-0.1 KRe04 — 0-3 xl〇-2 Ν^2Μ〇〇4 3xl〇-2 __ dmab 0.05-0.2 0.05-0.2 Na2C4H4〇4 x 6 H20 0.05-0.15 〇〇5 — 0.15 0.1 - 0.3 0.1-0.3 C3H6〇3 (90%) 0.03 - 0.05 0.03-0.05 NH4SO4 0.3 — 0.5 0.3-0.5 2,2 —聯D比Π定 0 — 20 ppm 0—20 ppm RE610 0 — 200 ppm 〇 — 200 ppm pH 溫度丨°C±】l 5.4 60-65 6.0 70 - 80 重要限制 對於N i Μ ο P ’操作實施例中之溶液應具有9之ρ η値 且不應與此値相差超過± 1,否則會導致具有不同阻障性質 之β質合金組成物。 緩衝作用係藉由適當使用羧酸及其鹽作爲錯合齊彳而達 成。 沈積溫度應不超過最高90。(:之値,否則其結果爲自 催化性電鍍溶液之自發分解。一般來說,沈積溫度增加會 減少 '浴穩定性且因而縮減沈積溶液之浴使用壽命。 -17- 1342591Table 1: Composition of electroless plating solution and program parameter composition used for depositing ternary NiP alloy 'concentration [mol/liter] Operating conditions NiWP NiMoP NiReP NiS04x6H20 0.02-0.1 0.02-0.1 0.03-0.1 Na2W04 0-0.14 I—Na2Mo 〇4 — 0-3xl0—2 — KRe04 — - O-lxlO-2 NaH2P02 0.1-0.5 0.1 -0.5 0.2-0.8 DMAB — 4xl〇·3-1.5x1 O'4 — Na3C6H507x2H20 0.07-0.22 0.1-0.3 — C4H6O4 — 0.03-0.3 0.03-0.2 Na2C4H4〇4x6H2〇— - 0.1-0.5 2,2-bipyridine———— 1-5 ppm Dithioacetic acid- 0-20 ppm — Triton X-114 — — 0-200 ppm Brij 58 —- 0-100 ppm — pH 8.2 9.0 4.5 Temperature [°C soil 1] 60-80 60-80 60-65 -16- 1342591 :^;\2^V \ V - Table 2: Composition of electroless plating solution and Procedure parameter composition for deposition of ternary boron-containing alloys Operating conditions Concentration [mol/L] NiMoB CoReB NiS04 X 6 H20 0.03-0.1 I------ C0SO4 x 7 H2O A 0.06-0.1 KRe04 — 0-3 xl 〇-2 Ν^2Μ〇〇4 3xl〇-2 __ dmab 0.05-0.2 0.05-0.2 Na2C4H4〇4 x 6 H20 0.05-0.15 〇〇5 — 0.15 0.1 - 0.3 0.1-0.3 C3H6〇3 (90%) 0.03 - 0.05 0.03-0.05 NH4SO4 0.3 — 0.5 0.3-0.5 2,2 —Die ratio 0 — 20 ppm 0—20 ppm RE610 0 — 200 ppm 〇— 200 ppm pH Temperature 丨°C±】l 5.4 60-65 6.0 70 - 80 Important Limits For N i Μ ο P 'The solution in the working example should have 9 ρ η 値 and should not differ from this 超过 by more than ± 1, otherwise it will result in a β-alloy composition with different barrier properties. . The buffering action is achieved by the proper use of the carboxylic acid and its salt as a mismatch. The deposition temperature should not exceed a maximum of 90. (Then, otherwise, the result is spontaneous decomposition of the self-catalytic plating solution. In general, the increase in deposition temperature reduces the 'bath stability and thus reduces the bath life of the deposition solution. -17- 1342591

方法或程序之變化 本發明提供一種製造導電結構之方法,包括事先清潔 及活化之步驟。該清潔順序可視需要經由用醇,例如乙醇 或異丙醇,沖洗而延長,以期改善清潔作用。也可用機械 刷洗方法(”洗滌器")支援清潔。Variations of Methods or Procedures The present invention provides a method of making a conductive structure comprising the steps of prior cleaning and activation. The cleaning sequence may be extended by rinsing with an alcohol such as ethanol or isopropanol as needed to improve the cleaning action. It can also be cleaned by mechanical brushing ("scrubber").

Pd活化溶液可由鹽,例如氯化鈀或醋酸鈀製備。The Pd activation solution can be prepared from a salt such as palladium chloride or palladium acetate.

Pd活化溶液中可經由添加劑的添加予以變異,例如 添加錯合劑,如 EDTA或 Quadrol (Quadrol:乙二胺― N,N,N’,N’ —四—2 —丙醇)。The Pd activation solution may be mutated by the addition of an additive such as a conjugated agent such as EDTA or Quadrol (Quadrol: ethylenediamine - N, N, N', N' - tetra-2-propanol).

Pd活化溶液中可補充以添加劑,例如表面活化物 質,如 Re610 或 Triton X — 114,或聚乙二醇類(Triton X —114:聚(氧化乙烯)辛基苯基醚或單(1,1,3,3 -四甲基丁 基)苯基)醚。The Pd activation solution may be supplemented with an additive such as a surface activating substance such as Re610 or Triton X-114, or a polyethylene glycol (Triton X-114: poly(ethylene oxide) octylphenyl ether or a single (1,1) , 3,3-tetramethylbutyl)phenyl)ether.

Pd活化溶液可用於噴塗程序與浸泡程序之中。 本發明調製用於噴塗或沈浸程序中之無電沈積溶液, 其包括至少一第一金屬成分作爲主合金構成分,一錯合 劑’一還原劑以及一 pH調節劑(將pH設定在4至1 2範 圍內)。 於本發明一特定具體實例中,提供一無電沈積溶液, 其包括一第二金屬成分用以改善擴散阻障之阻障性質。除 了該第一錯合劑之外,還從羧酸與胺基酸所構成之群中選 出至少一另一錯合劑。 溶液之P Η係藉由添加氫氧化物鹼’例如氫氧化銨、 -18- 1342591The Pd activation solution can be used in the spraying process and the soaking procedure. The present invention modulates an electroless deposition solution for use in a spray or immersion procedure comprising at least a first metal component as a primary alloy component, a binder, a reducing agent, and a pH adjusting agent (setting the pH at 4 to 12) Within the scope). In a particular embodiment of the invention, an electroless deposition solution is provided that includes a second metal component to improve the barrier properties of the diffusion barrier. In addition to the first complexing agent, at least one other complexing agent is selected from the group consisting of a carboxylic acid and an amino acid. The P lanthanide of the solution is added by adding a hydroxide base such as ammonium hydroxide, -18-1342591

鲁换頁I 氫氧化鈉溶液、氫氧化鉀溶液或氫氧化四甲銨(分別爲 NH4〇H、NaOH、KOH或TMAH)而調定到在從7至9的範 圍之內的PH。 應用於半導體組件時,特別較佳者爲無鹼基金屬的 驗。 pH也可藉由添加礦酸而調定在4至7的範圍內之 pH 〇 可視需要使用界面活化劑作爲廣義之添加劑。此等可 爲陰離子(含官能基,例如羧酸根、硫酸根或磺酸根)與 非離子(例如聚醚鏈)界面活性劑。 可視需要使用的添加劑爲2,2 -聯吡啶、硫代二乙 酸、硫代二乙醇酸、二硫代二乙醇酸、硫代乳酸銨、硫代 乙醇酸銨、硫代硼酸鹽、硼酸、硫代硫酸鹽、二硫亞磺酸 鈉、硼砂、甘油以及苯之羥基與銨的衍生物(例如3,4,5 -三羥基苯甲酸、氫醌、對甲胺苯酚硫酸鹽、對苯二胺、 Rodinal與Phenidone),可作爲個別成分或彼此結合者。 若需要時,可以採用無機鹽,例如鎂化合物作爲添加 劑。 應用範圍及用途 本發明提供無電沈積浴用之組成物,該浴具有延長之 使用壽命(熱力學上介穩態之穩定性)。根據本發明,可 經由添加適當添加劑如上面列舉者,以改善性質。使用壽 命之延長導致化學品之消耗量減少且另外減少製造程序所 -19- 1342591 «· 年月日修正替換頁 QQ 1¾1 包括之工作因而減低所得產品之成本。隨著具有增加的深 寬比之積體組件中導體軌道與接觸洞孔之尺度的減少之同 時,此等添加劑也可促進一致且均勻的層生長。 爲硏究阻障材料(關於組成與微結構),乃在濺鍍 40埃鈷之Si02/Si晶圓上進行三元以鎳爲基底的合金之無 電沈積。用來沈積例如NiReP合金之酸性金屬沈積溶液係 包括 0.03 - 0.1 M NiS04 X 6 H20,0.001-0.01M 過銶酸Lu is changed to a pH in the range of from 7 to 9 by changing the sodium hydroxide solution, potassium hydroxide solution or tetramethylammonium hydroxide (NH4〇H, NaOH, KOH or TMAH, respectively). When applied to a semiconductor component, it is particularly preferred to have an abasic metal test. The pH can also be adjusted to a pH in the range of 4 to 7 by the addition of mineral acid. Depending on the need, an interfacial activator can be used as a generalized additive. These may be anionic (containing functional groups such as carboxylate, sulfate or sulfonate) and nonionic (e.g., polyether chain) surfactants. The additives that can be used as needed are 2,2-dipyridyl, thiodiacetic acid, thiodiglycolic acid, dithiodiglycolic acid, ammonium thiolactate, ammonium thioglycolate, thioborate, boric acid, sulfur Sulfate, sodium disulfoxide, borax, glycerol and derivatives of hydroxy and ammonium of benzene (eg 3,4,5-trihydroxybenzoic acid, hydroquinone, p-methylamine phenol sulfate, p-phenylenediamine) , Rodinal and Phenidone), can be used as individual ingredients or as a combination of each other. If necessary, an inorganic salt such as a magnesium compound may be used as an additive. Scope and Use of the Invention The present invention provides a composition for an electroless deposition bath having an extended service life (thermodynamically metastable stability). According to the present invention, properties can be improved by adding appropriate additives such as those enumerated above. The increase in service life leads to a reduction in the consumption of chemicals and a further reduction in the manufacturing process. -19- 1342591 «· Year-and-Day Correction Replacement Page QQ 13⁄41 Included work thus reduces the cost of the resulting product. These additives also promote consistent and uniform layer growth as the dimensions of the conductor tracks and contact holes in the integrated component with increased aspect ratio are reduced. For the study of barrier materials (for composition and microstructure), electroless deposition of a ternary nickel-based alloy was performed on a 40 angstrom cobalt-doped SiO 2 /Si wafer. The acidic metal deposition solution used to deposit, for example, a NiReP alloy includes 0.03 - 0.1 M NiS04 X 6 H20, 0.001-0.01 M perrhenic acid.

鹽(perrhenate),檸檬酸爲錯合劑,次磷酸鹽爲還原劑, 與添加劑。金屬沈積浴之操作溫度範圍爲50至80°C »阻 障層之厚度在10至30奈米之間變異。封裝合金膜用四點 探針層電阻測量法,Auger電子光譜術 (AES),原子力 顯微鏡與X -射線繞射(XRD )予以分析。薄膜之晶體結 構係用有掠入射之XRD進行。在銅阻障/Si02/Si系統之 矽表面上之阻障效用性首先藉由掃描電子顯微鏡(SEM ) 使用選擇性Secco蝕刻法予以鑑定。至於銅表面活性之分 析,係在矽晶圓上使用有銅(150奈米)/TiN ( 10奈米) /Si02 ( 500 - 1000奈米)層順序之基板。該銅表面首 先用Inoclean 20〇tm後CMP清潔溶液清潔,然後用鈀離 子溶液活化而製備。或者,使用此活化操作來促使自對準 NiMoP阻障成長(Inoclean 200™:稀羧酸酯與膦酸之混 合物)。直接無電金屬沈積係經由直接添加二甲胺基硼烷 (DMAB)至無電金屬-沈積浴中來達成。選擇率係用能量 分散X -射線測量法(E D X )予以評定。 水性沈積溶液係經設計以產生包括大量高熔點金屬成 -20- 1342591Perrhenate, citric acid is the wrong agent, hypophosphite is the reducing agent, and additives. The metal deposition bath operates at temperatures ranging from 50 to 80 ° C. The thickness of the barrier layer varies between 10 and 30 nm. The packaged alloy film was analyzed by four-point probe layer resistance measurement, Auger electron spectroscopy (AES), atomic force microscopy and X-ray diffraction (XRD). The crystal structure of the film is carried out by XRD with grazing incidence. The barrier properties on the tantalum surface of the copper barrier/SiO 2 /Si system were first identified by scanning electron microscopy (SEM) using a selective Secco etch. As for the analysis of copper surface activity, a substrate having a layer order of copper (150 nm) / TiN (10 nm) / SiO 2 (500 - 1000 nm) was used on the tantalum wafer. The copper surface was first cleaned with an Inoclean 20 〇 tm post CMP cleaning solution and then activated with a palladium ion solution. Alternatively, this activation operation is used to promote self-aligned NiMoP barrier growth (Inoclean 200TM: a mixture of a dilute carboxylic acid ester and a phosphonic acid). Direct electroless metal deposition is achieved by direct addition of dimethylaminoborane (DMAB) to an electroless metal-deposition bath. The selectivity was assessed by energy dispersive X-ray measurements (E D X ). The aqueous deposition solution is designed to produce a large amount of high melting point metal into -20- 1342591

分之三元合金。沈積成的以鎳爲基底之薄膜所具元素組成 係以AES縱深分布法檢查。 組合擴散阻障與接觸層之用途:A ternary alloy. The elemental composition of the deposited nickel-based film was examined by the AES depth distribution method. Combination diffusion barrier and contact layer use:

該等層之縱深分布指出鎳係經隨著深度而均勻地沈 積,而磷則傾向於集中在阻障/Si 02介面上表面層與高熔 點金屬之處。其中顯示出不同的合金所含鎳、磷與高熔點 金屬成分之標準化原子比例。比例保持相對不變於約60 一 7 〇原子%,而其餘成分,特別是磷,則測量到有較大變 異。所有此處所呈現出之三元合金都包括高比例之高熔點 金屬,例如達約23原子%之NiMoP薄膜(表3 )。 在從含有次磷酸鹽或胺基硼烷之金屬-沈積溶液無電 沈積多金屬合金之期間,會因還原劑之平行氧化反應而將 磷(或硼)同時沈積於膜層中[6]。The depth distribution of the layers indicates that the nickel system is uniformly deposited with depth, while the phosphorus tends to concentrate on the surface layer of the barrier/Si 02 interface and the high melting point metal. It shows the normalized atomic ratio of nickel, phosphorus and high melting point metal components in different alloys. The ratio remains relatively unchanged at about 60 to 7 〇 atom%, while the remaining components, especially phosphorus, are measured to vary greatly. All of the ternary alloys presented herein include a high proportion of high melting point metals, such as up to about 23 atom% NiMoP film (Table 3). During the electroless deposition of a multimetal alloy from a metal-deposited solution containing hypophosphite or amine borane, phosphorus (or boron) is simultaneously deposited in the film layer due to the parallel oxidation reaction of the reducing agent [6].

探討實驗條件對三元合金之組成之影響(第3圖)。 顯示出會影響薄膜組成之因素爲高熔點金屬之類型與所用 還原劑以及高熔點金屬與錯合劑之濃度。由結果可看出, 鉬之共沈積是消耗磷而發生的。將大量高熔點金屬摻加到 各三-成分合金膜中因此可藉由外部無電沈積浴溶液中諸 高熔點金屬離子的個別濃度之控制而達成。 經推測高熔點金屬的添加可經由阻斷沿著晶粒邊界的 擴散路徑改善沈積之熱穩定性與阻障性質[8]。在沈積期 間合金係非晶型者。事實上,許多合金膜在沈積期間是非 晶且呈介穩態者,在後熱處理後其結構會改變。 -21 - «42591 4 ‘ 在NiMoP的情況中,在調理後用XRD 非晶型基體內的微晶粒之多晶微結構。用匹 定厚度10至30奈米的薄NiMoP膜之電 70μΩ範圍內。如此低之電阻値是必要的以 互連導電電阻之貢獻達最小化。探討高熔點 應的共沈積還原劑成分與相關的薄膜微結構 所具性質的影響。用Secco蝕刻評估阻障的 φ 現有由無電程序沈積所得具有30奈米厚度 在高達450°C時可穩定1小時。 對於銅導體軌道結構的封裝之用途: 關於所開發之三元合金在嵌銅結構作爲 途,必需評估許多問題。最重要的方面爲在 完全選擇性沈積。所探討的以鎳爲基底之 Cu/自對準阻障介面的層分離之較佳材料, φ 銅形成強共價鍵,此對邊界層之黏著具有窄 外,銅表面的準備與無電金屬-沈積浴之_ 要的問題,係因爲後者呈現介穩熱力學平後 地分解。銅表面之準備因而在該等催化程 用。在無電合金沈積之前,要展開包括以 化物與鈀催化劑活化之濕程序。首先,用包 C Μ P清潔溶液進行酸清潔以選擇性地移除 下一步驟中,藉由非連續鈀成核層之沈積展 地活化,其可促成使用含次磷酸鹽之金屬- 描述於有埋在 ~& 丨點探針技術測 :阻係在60至 使阻障層至總 i金屬含量及對 ί對於擴散阻障 丨效用性。經發 之N i Mo Ρ薄層 ;金屬阻障之用 :Cu結構上的 合金爲可避免 因爲鎳傾向與 「利之影響。此 《定性都代表重 f且傾向於自然 序中起重要作 CMP移除銅氧 L含有機酸之後 銅氧化物。於 F銅表面催化性 •沈積溶液進行 -22- 1342591Explor the effect of experimental conditions on the composition of ternary alloys (Fig. 3). The factors which indicate the influence of the film composition are the type of the high melting point metal and the concentration of the reducing agent used and the high melting point metal and the complexing agent. It can be seen from the results that co-deposition of molybdenum occurs by consuming phosphorus. The incorporation of a large amount of high melting point metal into each of the three-component alloy films can be achieved by controlling the individual concentrations of the high melting point metal ions in the external electroless deposition bath solution. It is speculated that the addition of a high melting point metal can improve the thermal stability and barrier properties of the deposition by blocking the diffusion path along the grain boundaries [8]. The alloy is amorphous during the deposition period. In fact, many alloy films are amorphous and metastable during deposition, and their structure changes after post-heat treatment. -21 - «42591 4 ‘ In the case of NiMoP, the polycrystalline microstructure of microcrystallites in the XRD amorphous matrix after conditioning. A thin NiMoP film having a thickness of 10 to 30 nm was used in the range of 70 μΩ. Such a low resistance 値 is necessary to minimize the contribution of the interconnected conductive resistors. Explore the effects of the high melting point of the co-deposited reducing agent composition and the properties of the associated thin film microstructure. The φ evaluated by the Secco etch is currently 30 nm thick from the electroless deposition process and stable for up to 1 hour at 450 °C. Use of the package for the copper conductor track structure: Regarding the development of the ternary alloy in the copper-embedded structure, many problems must be evaluated. The most important aspect is the complete selective deposition. A preferred material for the layer separation of a nickel-based Cu/self-aligned barrier interface, φ copper forms a strong covalent bond, which has a narrow adhesion to the boundary layer, preparation of the copper surface and electroless metal - The problem of the deposition bath is because the latter exhibits metastable thermodynamics and is decomposed. The preparation of the copper surface is thus used in these catalytic processes. A wet process comprising activation of the compound with the palladium catalyst is carried out prior to the deposition of the electroless alloy. First, acid cleaning with a C Μ P cleaning solution to selectively remove the next step, by the depositional activation of the discontinuous palladium nucleation layer, which can facilitate the use of a metal containing hypophosphite - described in There are buried ~& point probe technology measurements: resistance is at 60 to the barrier layer to total i metal content and for ί for diffusion barrier 丨 utility. The thin layer of N i Mo 经 is used; the metal barrier is used: the alloy on the Cu structure can avoid the influence of nickel and the influence of profit. This qualitatively represents heavy f and tends to play an important role in CMP shift in the natural sequence. In addition to copper oxide L containing organic acid copper oxide. Catalytic deposition on F copper surface deposition solution -22- 1342591

的三元合金之無電沈積(第2圖)。 表3 ·以AES縱深分布分析測定薄膜三成分合金之組成 三成分合金 Ml原子% 1^2原子% R原子% NiReP -70 8-23 14-19 NiMoP -60 -24 6-10 NiWP 70-75 -15 7-19 NiMoB 65-70 7—13 13-17 針對表面形態、表面組成與沈積層之表面選擇性評估每一 活化程序所含每一步驟(表面之清潔、活化及沈積)之影 響。在清潔之前,觀察CMP殘留物(參考第4a圖)。在 後CMP清潔2分鐘之後,該等殘留物已被去除,而不會 減低銅表面之品質(第4b圖)。隨後之活化步驟對表面 清潔非常敏感,且可達到密實的鈀成核(第4c圖)。 清潔及活化之後對表面粗糙度之影響係用AFM予以 探討。一般傾向爲較長清潔處理可減低銅表面之粗糙度。 活化後此一特性也保留下來。鈀成核伴隨著表面粗糙化, 原因是孤立金屬小島在平滑Cu表面上之沈積。經發現, 於本硏究所測試之條件中,持續2分鐘的清潔處理可產生 滿意的結果。在所探討的無電金屬-沈積程序之初始階段 中’在1 0到60秒之間即發生沈積阻障膜之晶粒成長。沈 -23- 1342591 .1 * 年月日修正替換頁] —-ill' ^ * . *· * , 、 積物由細粒結構改變爲有點像花椰菜似的結構之形態 [9 ]。A F Μ測量法支持此觀察,顯示出在早期沈積階段的 30至60秒之後即發生表面粗糙化且無規律性發展(第5a 圖)。阻障厚度經發現對沈積時間具有線型相關性,且短 時間沈積(20秒)即足以到達合意要的厚度。短沈積時 間使外部無電程序用於需要高吞吐量之製造很具有吸引力 (第5b圖)。Electroless deposition of ternary alloys (Fig. 2). Table 3 · Determination of the composition of the three-component alloy of the film by AES depth distribution analysis Three-component alloy Ml atom% 1^2 atom% R atom% NiReP -70 8-23 14-19 NiMoP -60 -24 6-10 NiWP 70-75 -15 7-19 NiMoB 65-70 7-13 13-17 The surface selectivity, surface composition and surface selectivity of the deposited layer are evaluated for the effect of each step (cleaning, activation and deposition of the surface) in each activation procedure. Observe the CMP residue before cleaning (refer to Figure 4a). After 2 minutes of post-CMP cleaning, the residues have been removed without degrading the quality of the copper surface (Fig. 4b). Subsequent activation steps are very sensitive to surface cleaning and can achieve dense palladium nucleation (Fig. 4c). The effect on surface roughness after cleaning and activation is discussed using AFM. It is generally preferred that a longer cleaning process can reduce the roughness of the copper surface. This property is also retained after activation. Palladium nucleation is accompanied by surface roughening due to the deposition of isolated metal islands on the smooth Cu surface. It has been found that a 2 minute cleaning process can produce satisfactory results in the conditions tested by the Institute. The grain growth of the deposited barrier film occurs between 10 and 60 seconds in the initial stage of the electroless metal-deposition process in question. Shen -23- 1342591 .1 * Year Month Day Correction Replacement Page] —-ill' ^ * . *· * , , The accumulation of the grain changes from a fine grain structure to a shape similar to a broccoli-like structure [9]. The A F Μ measurement method supports this observation, showing surface roughening and irregular development after 30 to 60 seconds in the early deposition stage (Fig. 5a). The barrier thickness was found to have a linear correlation with the deposition time, and a short deposition (20 seconds) is sufficient to achieve the desired thickness. Short deposition times make external powerless procedures attractive for applications that require high throughput (Figure 5b).

於銅表面上的無電NiMoP沈積程序之選擇性係以 EDX針對多種不導電與阻障材料,例如Si〇2、SiC、The selectivity of the electroless NiMoP deposition process on copper surfaces is based on EDX for a variety of non-conductive and barrier materials, such as Si〇2, SiC,

SiOC、SiN、TiN以及TaN進行探討。如同從SEM與 EDX之測量値看出者,於覆蓋基板上可成功地達到選擇 性(實施例3 )。除了銅基板之外,在其他的材料上沒有 觀察到沈積,於該處以EDX偵檢到元素銅、鎳、鉬與 磷。於樣式基板上進行所發展的無電金屬-沈積程序之中 有偵檢到選擇性沈積。一般而言,最佳選擇性係用短清潔 φ, 與活化時間達成。第6 a圖顯示以N i Μ ο P合金選擇性地封 裝之銅鑲嵌結構之圖。 一般來說,需要藉由接種鈀催化劑之活化以在非催化 表面上起始無電金屬一沈積反應。此外,無論如何,該催 化劑可能爲無電金屬一沈積浴之潛在污染來源且使後者在 加工時因活化溶液之轉移而不穩定。在傳統使用次磷酸鹽 化合物作爲還原劑成分於Cu表面上進行無電金屬沈積的 情形中’沒有事先鈀活化是不可能達成無電金屬沈積的。 不管銅之催化性質,次磷酸鹽不會還原銅表面上之Ni2 +或 -24- 1342591SiOC, SiN, TiN and TaN are discussed. As can be seen from the measurement of SEM and EDX, the selectivity can be successfully achieved on the cover substrate (Example 3). Except for the copper substrate, no deposition was observed on other materials where the elements of copper, nickel, molybdenum and phosphorus were detected by EDX. Selective deposition was detected in the developed electroless metal-deposition process on the pattern substrate. In general, the optimum selectivity is achieved with a short cleaning φ, which is achieved with the activation time. Figure 6a shows a diagram of a copper damascene structure selectively encapsulated with a N i Μ ο P alloy. In general, activation by inoculation of a palladium catalyst is required to initiate an electroless metal-deposition reaction on a non-catalytic surface. Moreover, in any event, the catalyst may be a potential source of contamination of the electroless metal-deposition bath and render the latter unstable during processing due to transfer of the activation solution. In the case where conventional use of a hypophosphite compound as a reducing agent component for electroless metal deposition on a Cu surface, it is impossible to achieve electroless metal deposition without prior palladium activation. Regardless of the catalytic nature of copper, hypophosphite does not reduce Ni2 + or -24- 1342591 on the copper surface.

Co2 +離子。探討經由添加〇·〇2 — 〇·06莫耳/升之DMAB 至金屬一沈積浴而無鈀活化清潔過的基板之無電NiM〇p 沈積程序,且觀察銅導體軌道結構之選擇性封裝(參考第 6b 圖)〇Co2 + ion. Explore the electroless NiM〇p deposition procedure without the palladium-activated cleaned substrate by adding 〇·〇2 — 〇·06 Moer/L DMAB to the metal-deposition bath, and observe the selective encapsulation of the copper conductor track structure (Ref. Figure 6b))

所探討的該二成分合金膜’例如N i Μ ο P,產生明顯|氏 的電阻値且與銅黏著良好。用無電沈積程序達成超薄沈積 物。擴散阻障效用性業經證實可高達450。(:。無電程序之 高選擇性使得該等層用來作爲後CMP封裝上特別具吸引 力。使用該等膜作爲選擇性金屬封裝層可改善銅製積體電 路,相較於不導電封裝層,例如SiN或SiC,之電致遷移 可靠性。The two-component alloy film ', for example, N i Μ ο P, which is investigated, produces a remarkable resistance 値 and adheres well to copper. Ultra-thin deposits are achieved using an electroless deposition procedure. The diffusion barrier utility has been proven to be as high as 450. (: The high selectivity of the no-electricity program makes these layers particularly attractive as a post-CMP package. The use of these films as selective metal encapsulation layers improves the copper integrated circuit compared to a non-conductive encapsulation layer. For example, SiN or SiC, the electromigration reliability.

下面諸實施例,其係落在本發明所保護之範疇內,係 經給出以對本發明更加了解且係用以閩明本發明。不過, 由於所述本發明原理之一般正確性,彼等不適於用來將本 申請案之範疇縮減到只爲該等實施例。再者,所引述的專 利說明書之內容視爲本文所述說明部分的本發明揭示內容 之部份。 【實施方式】 實施例1 步驟1 (清潔): 使用後銅CMP清潔混合物,例如得自MerckThe following examples are intended to be within the scope of the present invention and are intended to be illustrative of the invention. However, due to the generality of the principles of the invention, it is not intended to limit the scope of the application to the embodiments. Further, the contents of the patent specification cited are considered to be part of the disclosure of the description section herein. [Embodiment] Example 1 Step 1 (Cleaning): The copper CMP cleaning mixture is used, for example, from Merck

CuPure™ Inoclean 200 (由 2— 4。/。之丙一酸一甲酿 ’ 2 4%之1—甲氧基—2 —丙醇,<〇·5%之乙酸甲酯和<0·5%之 -25- T342591 年月 磷酸所構成)進行從銅表面去除附著的銅氧化物與有機銅 化合物。在此清潔溶液可作爲80%溶液或用稀釋爲達1 0% 之溶液之形式以浸泡法或噴塗法使用。若必要時,可進行 另一乙醇或異丙醇之浸泡步驟來清潔。該醇也可直接添加 至清潔混合物中以簡省程序步驟。 實驗條件:CuPureTM Inoclean 200 (from 2 - 4% per propylene monohydrate - 2 4% 1-methoxy-2-propanol, < 〇 · 5% methyl acetate and <0· 5% of -25 - T342591 is composed of monthly phosphoric acid) to remove the adhered copper oxide and organic copper compound from the copper surface. Here, the cleaning solution can be used as an 80% solution or as a solution diluted to 10% by soaking or spraying. If necessary, perform another soaking step of ethanol or isopropanol for cleaning. The alcohol can also be added directly to the cleaning mixture to simplify the procedure. Experimental conditions:

浸入Inoclean 200清潔溶液(稀釋10%)內2分鐘, 用去離子水沖洗3 0秒且不予以吹乾。 用Inoclean 200清潔溶液(稀釋10%或50%)噴塗2 分鐘,用去離子水沖洗3 0秒且不予以吹乾。 用醇:浸入Inoclean 200清潔溶液(稀釋10% )內2 分鐘,用去離子水沖洗30秒,用異丙醇沖洗60秒,再用 去離子水沖洗1 〇秒且不予以吹乾。Immerse in Inoclean 200 cleaning solution (10% diluted) for 2 minutes, rinse with deionized water for 30 seconds and do not blow dry. Spray with Inoclean 200 cleaning solution (10% or 50% dilution) for 2 minutes, rinse with deionized water for 30 seconds and do not blow dry. Alcohol: Immerse in Inoclean 200 cleaning solution (10% diluted) for 2 minutes, rinse with deionized water for 30 seconds, rinse with isopropanol for 60 seconds, rinse with deionized water for 1 second and do not blow dry.

以此方式清潔過之銅表面,經由用含Pd2 +溶液進行電 化學電荷交換予以選擇性活化。 活化溶液之組成: a. ) 醋酸5.0莫耳/升 PdCl2,1 X 1 (Γ3 莫耳 /升 HC1 (3 7% > 1 χ1(Γ4 莫耳 / 升 b. ) 醋酸5.0莫耳/升 -26- 1342591The copper surface is cleaned in this manner and selectively activated by electrochemical charge exchange with a Pd2+-containing solution. Composition of the activation solution: a.) Acetic acid 5.0 mol/L PdCl2, 1 X 1 (Γ3 Mohr/L HC1 (3 7% > 1 χ1 (Γ4 Molar/L b.) Acetic acid 5.0 Moor/L - 26- 1342591

Pd(〇Ac)2,I x 丨 0·3 莫耳 /升 HC1 (37%),1 1 〇·3 莫耳 /升 實驗條件:Pd(〇Ac)2, I x 丨 0·3 Molar / liter HC1 (37%), 1 1 〇·3 Molar / liter Experimental conditions:

Ni MR之清潔、活化與沈積諸步驟應依序在很短的時 間間隔內完成。The steps of cleaning, activating and depositing the Ni MR should be completed in a short time interval.

首先將銅表面浸入稀釋清潔溶液(1 0 %或5 0 % )內, 用去離子水略爲沖洗,不用吹乾,浸在p d2 +溶液內1 0秒 或20秒,且在室溫中用去離子水略爲沖洗,不進行吹 乾。 步驟3 (自催化性的沈積結合鈀活化): 然後將三元金屬合金,例如N i Μ ο P,沈積在用p d核 活化過的銅互連表面上。 爲此目的,乃製備儲液作爲基礎電解液1。所用最終First immerse the copper surface in a dilute cleaning solution (10% or 50%), rinse it slightly with deionized water, do not blow dry, immerse in p d2 + solution for 10 or 20 seconds, and at room temperature Rinse slightly with deionized water and do not blow dry. Step 3 (autocatalytic deposition in combination with palladium activation): A ternary metal alloy, such as N i ο ο P, is then deposited on the copper interconnect surface activated with the p d core. For this purpose, a stock solution is prepared as the base electrolyte 1. The final used

沈積溶液體積爲2 5 0毫升。該儲液係以相應比例混合而 成0 基礎電解液1之組成: 2 6.29 克/升 NiS04x6H20 (〇·ι 莫耳/升) 26·47克/升 檸檬酸Na3 X 2Η2〇 (〇.〇9莫耳/升) 0.24 克/升 Na2Mo〇4x2H2〇 (0.001 莫耳/升) 23.62克/升號拍酸 (〇 2莫耳/升) 21.20 克/升 NaH2P〇2xH20 0.2 莫耳/升 -27- 1342591 4 對於個別成分’製備其儲液’其濃度係經選擇該等溶 液可以用相等的體積比相互混合且產生個別基礎電解液。 於此方面,係將該等物質溶解於裝在1升量瓶之去離子水 內。The volume of the deposition solution was 250 ml. The liquid storage system is mixed in a corresponding proportion to form the composition of the base electrolyte 1: 2 6.29 g/l NiS04x6H20 (〇·ι Moh/L) 26·47 g/L citric acid Na3 X 2Η2〇(〇.〇9 Molar / liter) 0.24 g / liter Na2Mo 〇 4x2H2 〇 (0.001 m / liter) 23.62 g / liter of acid (〇 2 Mo / liter) 21.20 g / liter NaH2P 〇 2xH20 0.2 Moer / liter -27- 1342591 4 For individual ingredients 'prepare their stock solutions' the concentration is selected such that the solutions can be mixed with each other in equal volume ratios to produce individual base electrolytes. In this regard, the materials are dissolved in deionized water contained in a 1 liter volumetric flask.

儲液 K1 = 131.5 克 / 升 NiS〇4 X 6 H2O 儲液 Κ2=132·4克/升檸檬酸Na3x2H20 儲液尺3 = 1.2克/升 Na2Mo04x2H20(用於基礎電 解液1 ) 儲液 K4 = 1 18.1克/升琥珀酸 儲液 1C5 = 106.0 克 / 升 NaH2P02x H20 爲了製備最終沈積溶液,首先將5 0毫升儲液K 1與 50毫升儲液Κ2混合。同時,50毫升之儲液Κ3與50毫 升儲液Κ4混合。隨後混合此兩混合物。用50% NaO Η溶 液以攪拌’使其PH値調整爲9.0。最後添加儲液Κ5。 -28- 基礎電解液 2之組成: 26.29克/升 NiS04x6H20 0.1莫耳/升 26.47克/升 檸檬酸Na3x2H20 0.09莫耳/升 0.24克/升 Na2Mo〇4x2H2〇 0.001莫耳/升 1.18克/升 琥珀酸 0.01莫耳/升 21.20 克/升 NaH2P02xH20 0.2莫耳/升 基礎電解液 3之組成: 26.29克/升 NiS04x6H20 (0.1莫耳/升) 26.47克/升 檸檬酸Na3x2H20 (0.09莫耳/升) 0.24克/升 Na2Mo〇4x2H2〇 (0.001莫耳/升) 1.18克/升 琥珀酸 (0.01莫耳/升) 31.8克/升 NaH2P02xH20 0.3莫耳/升 基礎電解液 4之組成: 26.29克/升 NiS04x6H20 (0.1莫耳/升) 26.47克/升 Na3檸檬酸鹽x2H20 (0.09莫耳/升) 0.24克/升 Na2Mo〇4x2H2〇 (0.001莫耳/升) 23.62克/升 琥珀酸 (0.2莫耳/升) 21.20克/升 NaH2P02xH20 0.2莫耳/升 添加劑之添加: 添加劑也可添加至所有基礎電解液1 - 4中。在此方 面,在pH被調整爲9.0之前,將3.75ppm之二硫代二乙 -29- ΓΪ42591 « 年月日修正替換頁 QQ 19 ^ f 醇酸(DTDGS)或75 ppm之Brij 58,個別地或兩者之混合 地添加。 實驗條件·‘Stock solution K1 = 131.5 g / liter NiS 〇 4 X 6 H2O stock solution = 2 = 132 · 4 g / liter of citric acid Na3x2H20 reservoir 3 = 1.2 g / liter of Na2Mo04x2H20 (for base electrolyte 1) stock solution K4 = 1 18.1 g/L succinic acid stock solution 1C5 = 106.0 g/L NaH2P02x H20 To prepare the final deposition solution, first 50 ml of the stock solution K 1 was mixed with 50 ml of the stock solution Κ2. At the same time, 50 ml of stock solution Κ3 was mixed with 50 ml of stock solution Κ4. The two mixtures are then mixed. The pH was adjusted to 9.0 with a 50% NaO Η solution. Finally add the stock solution Κ5. -28- Composition of base electrolyte 2: 26.29 g/L NiS04x6H20 0.1 mol/L 26.47 g/L citric acid Na3x2H20 0.09 mol/L 0.24 g/L Na2Mo〇4x2H2〇0.001 mol/L 1.18 g/L Acid 0.01 mol/L 21.20 g/L NaH2P02xH20 0.2 mol/L base electrolyte 3 Composition: 26.29 g/L NiS04x6H20 (0.1 mol/L) 26.47 g/L citric acid Na3x2H20 (0.09 mol/L) 0.24 g/L Na2Mo〇4x2H2〇 (0.001 mol/L) 1.18 g/L succinic acid (0.01 mol/L) 31.8 g/L NaH2P02xH20 0.3 mol/L base electrolyte 4 Composition: 26.29 g/L NiS04x6H20 ( 0.1 mol/l) 26.47 g/l Na3 citrate x2H20 (0.09 mol/l) 0.24 g/l Na2Mo〇4x2H2 〇 (0.001 mol/l) 23.62 g/l succinic acid (0.2 mol/l) Addition of 21.20 g/L NaH2P02xH20 0.2 mol/L additive: Additives may also be added to all base electrolytes 1-4. In this respect, before the pH is adjusted to 9.0, 3.75 ppm of dithiodiethyl -29- ΓΪ 42591 «year and month correction replacement page QQ 19 ^ f alkyd (DTDGS) or 75 ppm Brij 58, individually Or a mixture of the two. Experimental conditions·‘

在清潔與鈀活化之後,該基板浸入電鍍溶液中(攪拌 溶液)。將該混合液加熱至55°C。進行自催化性沈積2 分鐘。一旦NiMoP合金沈積於鈀核上,即可看到一有金 屬光澤的層。在合金沈積之後,用去離子水沖洗該基板且 用氮氣小心地吹乾。 添加3.75ppm DTDGS與75ppm Brij 58的基礎電解液 1所沈積NiMoP層所具組成如第7圖所示。 實施例2 步驟1如實施例1方式清潔 步驟2 (無鈀活化直接自催化性沈積): 爲在銅表面上直接無電沈積一金屬合金(NiMoP), 在此例中不實施透過鈀催化劑核之活化。取而代之,經由 添加D M A B作爲啓始劑改質該N i Μ ο P溶液且用於無電沈 積。爲了進行實驗,使用在〇,〇〇4至0.15莫耳/升範圍內 的不同硼烷濃度。 步驟3所述基礎電解液1之組成添加上: 二甲胺基硼烷=0.004與0.012莫耳/升 對於個別成分’製備其儲液,其濃度係選擇成使該等 溶液可以用相等體積比相互混合且產生個別基礎電解液。 -30- 1342591 年月曰 .99, --- 係將該等物質溶解於裝在1 -升量瓶中之法離子水內 儲液 Κ1 = 131.5 克 / 升 NiS04x6H2〇 儲液 Κ2 = 132.4克/升 Na3檸檬酸鹽 X 2 H2〇 儲液 Κ3 = 1.2 克 /升 Na2Mo〇4 X 2 H2〇 (用於基 1) 儲液 Κ4 = 1 1 8 . 1克/升琥珀酸 儲液 "Κ5 - 1" = 106.0 克 / 升 NaH2P〇2 X H2〇 + 礎電 克/升二甲胺基硼烷 儲液"K5 — 2” = 106.0 克/升 NaH2P02X η2〇 + ι 克/升二甲胺基硼烷 在製備K 1 一 K4之混合液(每一情形均爲由1 0 0 之ΚΙ、K2、K3與K4所構成且係根據實驗計畫予 備)之後’將1 6 0毫升此混合物與4 0毫升κ 5 - 1倒 燒杯之內。用溶液K 5 - 2的實驗,K 1 - 4之混合液係 鮮製備者。再者,取用120毫升之Kl — 1C4且添加3 升之K5 - 2。 實驗條件: 於清潔之後,用去離子水沖洗該基板30秒》隨 一在乙醇中之額外清潔步驟。用去離子水沖洗該基充 秒且隨後浸在電鍍溶液內(攪拌溶液)。於6〇。(:下 合液K5 - 1及於50°C下用K5 - 2進行沈積30秒。 NiMoP合金沈積在鈀核上,立即發生自催化性的沈積 以看見一金屬光澤層。在沈積合金之後,用去離子水 5.88 7.69 毫升 以製 入一 經新 0毫 後爲 ΐ 10 用混 —旦 ,可 沖洗 -31 - 1342591 .丄 該基板且用氮氣小心地吹乾。 實施例3 用不同絕緣材料相對於用鈀活化溶液的選擇性沈積之 Φ 測定: 溶液 基板 溫度 時間1 時間2 時間3 時間* 01 CuOl 55.4°C 120 30 10 120 02 Cu 02 55.4°C 120 30 10 120 03 SiO201 55.2°C 120 30 10 120 04 Si02 02 55.2°C 120 30 10 120 05 SiNOl 55.2°C 120 30 10 120 06 SiN 02 55.4°C 120 30 10 120 07 SiOCOl 55.3°C 120 30 10 130 08 SiOC 02 55.3°C 120 30 10 120 09 SiCOl 55.4°C 120 30 10 120 10 SiC 02 55.4°C 120 30 10 120 11 TiNOl 55.4°C 120 30 10 120 12 TiN 02 55.4°C 120 30 10 120 13 TaNOl 55.3°C 120 30 10 120 14 TaN 02 55.3°C 120 30 10 120 時間1: 時間2: 時間3: 時間4: PCC-350 去離子水 活化 沈積 -32- 1342591 99· 12.含、 基板順序係依時間前後排列而記載的 對銅基板Κ 1 一 Κ5 0 1與02,觀察到沈積’而對於其 他基板Κ1-Κ5 03至14,在NiMoP上無沈積發生。 實施例4 用不同的絕緣材料相對於用直接自催化性電鍍的選擇 性沈積之測定:After cleaning and palladium activation, the substrate was immersed in a plating solution (stirring solution). The mixture was heated to 55 °C. Autocatalytic deposition was carried out for 2 minutes. Once the NiMoP alloy is deposited on the palladium core, a layer of metallic luster can be seen. After the alloy was deposited, the substrate was rinsed with deionized water and carefully dried with nitrogen. Adding 3.75 ppm DTDGS and 75 ppm Brij 58 base electrolyte 1 The deposited NiMoP layer has the composition shown in Fig. 7. Example 2 Step 1 as in Example 1 cleaning step 2 (no auto-catalytic deposition without palladium activation): for the direct electroless deposition of a metal alloy (NiMoP) on the copper surface, in this case no palladium catalyst core is applied activation. Instead, the N i Μ ο P solution was modified via the addition of D M A B as a starter and used for electroless deposition. For the experiments, different borane concentrations in the range of 4 to 0.15 moles per liter were used. The composition of the base electrolyte 1 in step 3 is added: dimethylaminoborane = 0.004 and 0.012 mol/liter for the preparation of the liquid of the individual components, the concentration of which is selected such that the solutions can be used in equal volume ratios. Mix with each other and produce individual base electrolytes. -30- 1342591 年月曰.99, --- Dissolve these materials in a solution of Ionized water in a 1-liter flask. =1 = 131.5 g / liter NiS04x6H2 〇 stock solution Κ 2 = 132.4 g /升 Na3 citrate X 2 H2 〇 stock solution = 3 = 1.2 g / liter Na2Mo 〇 4 X 2 H2 〇 (for base 1) Stock Κ 4 = 1 1 8 . 1 gram / liter of succinic acid storage " Κ 5 - 1" = 106.0 g/L NaH2P〇2 X H2〇+ base gram/liter dimethylamine borane stock "K5 — 2” = 106.0 g/l NaH2P02X η2〇+ ι/L dimethylamino Borane in the preparation of a mixture of K 1 -K4 (in each case consisting of 100 ΚΙ, K2, K3 and K4 and prepared according to the experimental plan) then '160 ml of this mixture with 4 0 ml κ 5 - 1 was poured into the beaker. In the experiment with solution K 5 - 2, the mixture of K 1 - 4 was freshly prepared. Furthermore, 120 ml of Kl - 1 C4 was added and 3 liters of K5 - 2. Experimental conditions: After cleaning, the substrate was rinsed with deionized water for 30 seconds, followed by an additional cleaning step in ethanol. The base was rinsed with deionized water for a second and then immersed in the plating solution ( Mixing solution). 6 〇. (: Lower liquid K5 - 1 and deposition with K5 - 2 at 50 ° C for 30 seconds. NiMoP alloy deposited on the palladium core, immediate autocatalytic deposition to see a metal Gloss layer. After depositing the alloy, use 5.88 7.69 ml of deionized water to make a new 0 mA. After mixing, use -31 - 1342591. Rinse the substrate and carefully dry it with nitrogen. Example 3 Determination of Φ with different insulating materials relative to selective deposition with a palladium activation solution: Solution substrate temperature time 1 Time 2 Time 3 Time* 01 CuOl 55.4°C 120 30 10 120 02 Cu 02 55.4°C 120 30 10 120 03 SiO201 55.2°C 120 30 10 120 04 Si02 02 55.2°C 120 30 10 120 05 SiNOl 55.2°C 120 30 10 120 06 SiN 02 55.4°C 120 30 10 120 07 SiOCOl 55.3°C 120 30 10 130 08 SiOC 02 55.3°C 120 30 10 120 09 SiCOl 55.4°C 120 30 10 120 10 SiC 02 55.4°C 120 30 10 120 11 TiNOl 55.4°C 120 30 10 120 12 TiN 02 55.4°C 120 30 10 120 13 TaNOl 55.3°C 120 30 10 120 14 TaN 02 55.3°C 120 30 10 120 Time 1: Time 2: Time 3: Time 4: PCC-350 Deionized Water Activated Deposition - 32 - 1342591 99 · 12. Inclusion, the substrate sequence is based on the time sequence of the copper substrate Κ 1 Κ 5 0 1 and 02, and the deposition is observed. Substrate Κ1-Κ5 03 to 14, no deposition occurred on NiMoP. Example 4 Determination of selective deposition with different insulating materials versus direct autocatalytic plating:

溶液 基板 溫度 時間1時間2時間3_註.- K1-K4+ 25 TaNOl 59.3〇C 120 30 120 雖然達 120 秒的沈 K5-1 積時間也沒有成長 26 TaN02 59.6〇C 120 30 120 15 TiNOl 60.2〇C 120 30 30 16 TiN 02 60.2〇C 120 30 30 17 SiO201 74.6〇C 120 30 30 18 Si02 02 75.6〇C 120 30 30 19 SiCOl 75.3〇C 120 30 30 20 SiC 02 74.4〇C 120 30 30 21 SiNOl 73.5〇C 120 30 30 22 SiN 02 72.6〇C 120 30 30 23 SiOCOl 71.7〇C 120 30 30 24 SiOC 02 70.8〇C 120 30 30Solution substrate temperature time 1 time 2 time 3_Note.- K1-K4+ 25 TaNOl 59.3〇C 120 30 120 Although the sinking K5-1 accumulation time of 120 seconds does not grow 26 TaN02 59.6〇C 120 30 120 15 TiNOl 60.2〇 C 120 30 30 16 TiN 02 60.2〇C 120 30 30 17 SiO201 74.6〇C 120 30 30 18 Si02 02 75.6〇C 120 30 30 19 SiCOl 75.3〇C 120 30 30 20 SiC 02 74.4〇C 120 30 30 21 SiNOl 73.5 〇C 120 30 30 22 SiN 02 72.6〇C 120 30 30 23 SiOCOl 71.7〇C 120 30 30 24 SiOC 02 70.8〇C 120 30 30

時間 1·· PCC-350 時間2: 去離子水 -33- K42591 時間3: 沈積 年月日dl-’ 贫9.12.3".1. 基板順序係依時間前後而非依基板編號!! ! 於Kl-K4 + K5_l 15至16中任何一者都沒有觀察到沈 【圖式簡單說明】 第1圖:傳統Cu塗敷金屬法(a)與組合擴散阻障與成Time 1·· PCC-350 Time 2: Deionized water -33- K42591 Time 3: Deposition Year of the month dl-’ Poverty 9.12.3".1. The substrate sequence is based on time before and not on the substrate number! ! ! Nothing was observed in any of Kl-K4 + K5_l 15 to 16 [Simplified illustration of the drawing] Figure 1: Traditional Cu coating metal method (a) and combined diffusion barrier and formation

核層(b)之圖示。 第2圖:經由Pd核活化或藉由直接路徑而無包括表 面預處理的Pd核活化之直接途徑在Cu表面上進行選擇 性封裝程序之圖示。 第3圖:鉬酸鈉濃度對NiMoP三成分薄膜具元素組 成之影響。 第4圖:沒有進行後CMP清潔之Cu基板(a),清潔2 分鐘後之Cu基板(b)及清潔2分鐘與Pd活化10秒後之Graphic of the core layer (b). Figure 2: Graphical representation of a selective encapsulation procedure on the Cu surface by direct activation of Pd nuclei or by direct path without Pd nuclear activation including surface pretreatment. Figure 3: Effect of sodium molybdate concentration on the composition of NiMoP three-component film. Figure 4: Cu substrate (a) without post-CMP cleaning, Cu substrate (b) after 2 minutes of cleaning and cleaning for 2 minutes and Pd activation for 10 seconds

C u基板(c) 〇 第 5圖 粗糙度(a)與厚度(b)與沈積時間之關 係。 第6圖:有Pd活化(a)與無Pd活化(b )之經選擇 性封裝的Cu鑲嵌結構之SEM顯微相片。 第 7 圖:添加 3.75ppm DTDGS 與 75ppm Brij 58 的基 礎電解液1之沈積N i Μ ο P層所具組成。 -34-C u Substrate (c) 〇 Fig. 5 Relationship between roughness (a) and thickness (b) and deposition time. Figure 6: SEM micrograph of a Cu-inlaid structure with selectively encapsulated Pd activation (a) and no Pd activation (b). Figure 7: Addition of 3.75 ppm DTDGS and 75 ppm Brij 58 base electrolyte 1 deposition N i Μ ο P layer. -34-

Claims (1)

1342591 99.12-3 1 拾、申請專利範圍1342591 99.12-3 1 Pick up, apply for patent scope 1. 一種製造一導電結構作爲阻障層之方法,其特徵 是一由N i Μ ο P或N i Μ ο P B合金所組成的組合擴散阻障與 成核層是用無電沈積塗在金屬互連之下的催化活化絕緣層 上,及/或作爲該金屬互連表面上之封裝阻障,其中該金 屬互連由選自下列的金屬組成:Cu、Ag、Co、Ni、Pd和 Pt且其中在該阻障層中存在有數量爲3至24原子。/。的鉬 作爲耐火金屬。 2. 根據申請專利範圍第1項之方法,其中該金屬互 連係由銅所組成。 3. 根據申請專利範圍第1或2項之方法,其中以 NiReP、NiMoP、NiWP合金用來作爲阻障層。 4- 根據申請專利範圍第1項之方法,其中使用一大 體不含表面活化物質之自催化性電鍍溶液。A method of fabricating a conductive structure as a barrier layer, characterized in that a combined diffusion barrier composed of N i Μ ο P or N i Μ ο PB alloy and a nucleation layer are coated with metal by electroless deposition a catalytically activated insulating layer on and/or as a barrier to the metal interconnect surface, wherein the metal interconnect is comprised of a metal selected from the group consisting of Cu, Ag, Co, Ni, Pd, and Pt and There are 3 to 24 atoms in the barrier layer. /. Molybdenum as a refractory metal 2. The method of claim 1, wherein the metal interconnect is comprised of copper. 3. The method according to claim 1 or 2, wherein NiReP, NiMoP, NiWP alloy is used as the barrier layer. 4- The method of claim 1, wherein a substantially autocatalytic plating solution containing no surface active material is used. 5- 根據申請專利範圍第1項之方法,其中使用一包 括至少一陰離子性或非離子性表面活性劑之自催化性電鍍 溶液。 6 ·根據申請專利範圍第1項之方法,其中使用一包 括用於延長電鍍溶液之浴使用壽命的安定劑之自催化性電 鍍溶液。 7-根據申請專利範圍第1項之方法,其中使用不含 氨與氫氟酸的溶液進行銅互連表面之清潔與活化。 8 .根據申請專利範圍第1項之方法,其中該絕緣層 以Pd而催化活化。 -35- 1342591 • *· Sis? 9·—種NiMoP或NiMoPB合金之三元含鎳金屬合 金,係由一無電程序沈積爲阻障層或爲選擇性封裝材料用 於防止銅擴散及電致遷移於半導體組件上,且係根據申請 - 專利範圍第1至8項之方法製造的。 10.—種於銅互連上無電沈積NiMP型(其中 Μ = Mo )三元含鎳金屬合金之組成物,包括在水溶液中有適 當濃度之 NiS04 X 6 H20、NaH2P〇2 與、Na2Mo04 及視需 φ 要之其他添加劑,其中Na2M〇04的濃度爲3xl(T2莫耳/升 或以下。 11.根據申請專利範圍第10項之組成物,其中 NiS04x6H20的濃度爲0.02至0.1莫耳/升。 1 2.根據申請專利範圍第 1 0項之組成物,其中 NaH2P02的濃度爲0.1至0.5莫耳/升。 1 3 .根據申請專利範圍第1 0項之組成物,具有4.5 至9.0之pH。5- A method according to the first aspect of the invention, wherein an autocatalytic plating solution comprising at least one anionic or nonionic surfactant is used. 6. The method of claim 1, wherein an autocatalytic plating solution comprising a stabilizer for extending the bath life of the plating solution is used. 7- The method of claim 1, wherein the cleaning and activation of the copper interconnect surface is carried out using a solution containing no ammonia and hydrofluoric acid. 8. The method of claim 1, wherein the insulating layer is catalytically activated by Pd. -35- 1342591 • *· Sis? 9—a ternary nickel-containing metal alloy of NiMoP or NiMoPB alloy deposited as a barrier layer by an electroless process or as a selective encapsulation material to prevent copper diffusion and electromigration It is fabricated on a semiconductor component and is manufactured according to the method of the application-patent Nos. 1 to 8. 10.—Electroless deposition of a NiMP type (where Μ = Mo ) ternary nickel-containing metal alloy composition on a copper interconnect, including NiS04 X 6 H20, NaH2P〇2 and Na2Mo04 in an aqueous solution. Other additives of φ are required, wherein the concentration of Na2M〇04 is 3xl (T2 mol/liter or less. 11. The composition according to claim 10, wherein the concentration of NiS04x6H20 is 0.02 to 0.1 mol/liter. 1 2. The composition according to claim 10, wherein the concentration of NaH2P02 is 0.1 to 0.5 mol/l. The composition according to item 10 of the patent application has a pH of 4.5 to 9.0. 1 4 .根據申請專利範圍第1 0項之組成物,包括添加 劑,該添加劑由下列各物組成之群中選出:Na3C6H507 X 2 H2O、C4H6〇4、Na2C4H404 X 6 H20、2,2 - 聯吡啶、硫 代二乙酸、聚氧化乙烯辛基苯基醚、二甲胺基硼烷、 Na2C2H302、C3H6O3(90%)、NH4S04 以及聚氧化乙烯苯基 醚磷酸鈉。 -36-1 4. A composition according to item 10 of the scope of the patent application, including an additive selected from the group consisting of Na3C6H507 X 2 H2O, C4H6〇4, Na2C4H404 X 6 H20, 2,2-dipyridine , thiodiacetic acid, polyoxyethylene octyl phenyl ether, dimethylamine borane, Na2C2H302, C3H6O3 (90%), NH4S04 and sodium polyoxyethylene phenyl ether phosphate. -36-
TW93112665A 2003-05-09 2004-05-05 Compositions for the electroless deposition of ternary materials for the semiconductor industry TWI342591B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321113 2003-05-09
DE10347809A DE10347809A1 (en) 2003-05-09 2003-10-10 Compositions for electroless deposition of ternary materials for the semiconductor industry

Publications (2)

Publication Number Publication Date
TW200512833A TW200512833A (en) 2005-04-01
TWI342591B true TWI342591B (en) 2011-05-21

Family

ID=33394463

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93112665A TWI342591B (en) 2003-05-09 2004-05-05 Compositions for the electroless deposition of ternary materials for the semiconductor industry

Country Status (4)

Country Link
CN (1) CN1784507B (en)
DE (1) DE10347809A1 (en)
MY (1) MY141022A (en)
TW (1) TWI342591B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736057B2 (en) * 2007-12-17 2014-05-27 Nippon Mining & Metals Co., Ltd. Substrate and manufacturing method therefor
US20100310775A1 (en) 2009-06-09 2010-12-09 International Business Machines Corporation Spalling for a Semiconductor Substrate
TWI550643B (en) * 2012-03-30 2016-09-21 Taiyo Holdings Co Ltd Conductive paste and conductive circuit
CN102925861A (en) * 2012-11-20 2013-02-13 大连理工大学 Cu-Ni-Sn alloy film with high conductibility and high thermal stability and preparation technology thereof
EP3172761B1 (en) 2014-07-25 2021-09-22 Intel Corporation Tungsten alloys in semiconductor devices
CN104328392A (en) * 2014-10-30 2015-02-04 广东电网有限责任公司电力科学研究院 Coating type chemical plating method based on low-temperature plating liquid
CN107104076B (en) * 2016-09-18 2019-02-05 云南大学 A kind of method that chemically plating is routed diffusion barrier layer NiCoB film for ULSI-Cu
CN113026005B (en) * 2021-03-04 2022-02-01 珠海市创智成功科技有限公司 Chemical plating solution and process applied to chemical nickel-palladium-gold plating layer of flexible circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355074A (en) * 2000-04-10 2001-12-25 Sony Corp Electroless plating method, and apparatus thereof
US6528409B1 (en) * 2002-04-29 2003-03-04 Advanced Micro Devices, Inc. Interconnect structure formed in porous dielectric material with minimized degradation and electromigration

Also Published As

Publication number Publication date
CN1784507B (en) 2010-04-28
TW200512833A (en) 2005-04-01
CN1784507A (en) 2006-06-07
DE10347809A1 (en) 2004-11-25
MY141022A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US9062378B2 (en) Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
US7205233B2 (en) Method for forming CoWRe alloys by electroless deposition
Shacham-Diamand et al. Electroless processes for micro-and nanoelectronics
US6645567B2 (en) Electroless plating bath composition and method of using
KR101110447B1 (en) Plated article having metal thin film formed by electroless plating, and manufacturing method thereof
KR101110397B1 (en) Plated article having metal thin film formed by electroless plating, and manufacturing method thereof
TW200907104A (en) Self-initiated alkaline metal ion free electroless deposition composition for thin co-based and ni-based alloys
KR101542765B1 (en) Method of manufacturing semiconductor device, and semiconductor device
US20060280860A1 (en) Cobalt electroless plating in microelectronic devices
JP2008517154A (en) Electroless plating of cobalt and nickel in microelectronics
US7064065B2 (en) Silver under-layers for electroless cobalt alloys
TWI342591B (en) Compositions for the electroless deposition of ternary materials for the semiconductor industry
TWI332999B (en) Cobalt-based alloy electroless plating solution and electroless plating method using the same
EP3067439B1 (en) Electroless metal deposition on a Mn or MnNx barrier
TW201809354A (en) Method for depositing a copper seed layer onto a barrier layer
JP2004200273A (en) Process for fabricating semiconductor device
KR101219586B1 (en) Method for decreasing resistance of copper coating layer using annealing
Cui et al. Characterization of electroless-deposited ternary M1M2-R (M1= Co, Ni, M2= W, Mo, R= P, B) nano thin film for optical-sensor interconnects
KR101100084B1 (en) Method for forming copper interconnection layer
Shacham-Diamand et al. Alternative materials for ULSI and MEMS metallization
Ling et al. Electroless NiMoP Thin Film Deposition on Si/SiO 2
JP2004197168A (en) Method for forming metal-protecting film
Yu Electroless Deposition of Copper and Copper-Manganese Alloy for Application in Interconnect Metallization
Dubin 3D THROUGH-SILICON VIA FILLING WITH ELECTROCHEMICAL NANOMATERIALS

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees