TWI336485B - An electronic ballast with a power factor corrector working in continuous-current-mode - Google Patents

An electronic ballast with a power factor corrector working in continuous-current-mode Download PDF

Info

Publication number
TWI336485B
TWI336485B TW94121057A TW94121057A TWI336485B TW I336485 B TWI336485 B TW I336485B TW 94121057 A TW94121057 A TW 94121057A TW 94121057 A TW94121057 A TW 94121057A TW I336485 B TWI336485 B TW I336485B
Authority
TW
Taiwan
Prior art keywords
capacitor
rectifying diode
switching element
inductor
diode
Prior art date
Application number
TW94121057A
Other languages
Chinese (zh)
Other versions
TW200701295A (en
Inventor
Raylee Lin
Hungyi Liu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94121057A priority Critical patent/TWI336485B/en
Publication of TW200701295A publication Critical patent/TW200701295A/en
Application granted granted Critical
Publication of TWI336485B publication Critical patent/TWI336485B/en

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Description

1336485 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種電子式安定器,特別是有關於一 種具有連績電流式功因修正器之電子式安定器· • 【先前技術】 隨著科技的發展及生活水準的提高,照明已成為人類 • 日常生活中不可缺少的基本需求。近年來由於全球各種產 業的蓬勃發展、商業活動的頻繁以及居家生活品質的提 高,照明用電也與日俱增,使得合乎高效率、舒適、安全、 高經濟效應之照明系統的開發也漸漸備受重視^其中,由 於螢光燈具有發光效率高、壽命長、燈管溫度低,光色及 - 形狀多元等優點,成為了今日照明系統的主流。 螢光燈與大多數的氣體放電燈一樣,係呈現負增量電 阻的電氣特性,需要安定器來限制流經燈管的電流。螢光 • 燈的安定器除了限流的功能之外,必須兼具啟動螢光燈的 功能,其中係利用提供一高電壓使游離氣體產生放電現象 的方法來啟動螢光燈。在啟動了螢光燈之後,僅需再維持 • 一較小之電麼維持螢光燈之氣體放電電流即可。 傳統所使用之安定器為電磁作業的形式。雖然電磁式 安定器具有耐用以及構造簡單等優點,但其更有著效率低 落、體積大、笨重、易生噪音以及低頻閃爍現象等缺點。 對現代的越來越多元化的燈具應用而言,電磁式安定器越 來越無法滿足使用上的需求。相較於電磁式安定器電子 5 1336485 式安定器具有啟動快、不閃爍、高光效與高功率因數等優 點’更可較電磁式安定器節省大量的電能。因此電子式安 定器已漸漸地取代了電磁式安定器的地位β . 一般的電子式安定器所使用的電源是直流電,但目前 電力系統所供應的電源為交流電。所以目前大多利用二極 體全波整流電路或倍壓整流電路將電力系統所供應之交流 電源轉換成直流電以供電子式安定器使用。因此為了消除 • 整流後的交流成分’會利用一大電容與該直流電並聯以獲 得穩定的直流電壓。然而正是由於此電容將直流電壓維持 在一大約固定的準位,使得整流器只能在交流電壓的振幅 高於電容電壓時才得以導通,從電源部分汲取所需功率。 • 故整流器於每個輸入電源週期中導通的時間都非常短,且 ' 在該時段内會有很大的脈波湧入電流。湧入電流於交流電 源電壓的峰值附近以脈衝之形式出現。此種電流波形含有 高量諧波(harmonic) ’並在交流電源處產生低功率因數的不 φ 良影響。 功率因數的降低不僅使系統中電力設備(如變壓器)的 利用因數隨之降低,更迫使相關元件與設備的額定容量必 . 須提高’以供應負載所需。此外,高次諧波電流常導致控 制電路及電力保護設備的誤動作,並使量測儀器或通訊系 統受到干擾,以及影響電源電壓的波形使之產生畸變。因 此’如何改善功率因數及降低總諧波失真,乃設計電子式 安定器之重要課題。 6 1336485 【發明内容】 因此本發明的主要目的就是在提供一種用以啟動及維 持螢光燈負載之電子式安定器。 . 本發明的另一目的就是在提供一種具有功因修正器之 電子式安定器。 本發明的再一目的就是在提供一種作業於連續電流模 式之電子式安定器。 鲁 本發明的更一目的就是在提供一種適用於大功率應用 環境之電子式安定器。 為達到本發明之上述目的,符合本發明實施例之電子 式安定器包含有一交流電壓源、一整流器、一功因修正器、 • 一換流器以及一共振電路。其中,整流器係用以將交流電 i源所提供之交流電屋整流為直流電壓,以使換流器㈣ • 利用直流電壓來切換出高頻交流方波電壓。共振電路中的 元件能夠互相產生諧振作用,並利用諧振作用所產生的諧 • 冑阻抗對換流器所產生之高頻交流方波進行滤波。經過滤 波之後的高頻交流方波會轉變為適於供螢光燈負載使用之 正弦波。另外,功因修正器係為一直流對直流之轉換電路, • 係能夠使輸入之電流波形能夠追隨輸入之電壓波形,以達 . ㈣因修正及的功能,並偵測輸人和輸出電_因應 不同功率之螢光燈負載所需。 在符合本發明之實施例中,功因修正器係作業於連續 t流模式,以降低功因修正器内元件的♦值電流,使符合 本發明之電子式安定器適於利用在需要輸出高功率之應用 7 1336485 場合。 【實施方式】 由於一般之電子式安定器具有低功因以及高諧波失真 等問題,因此本發明之基本概念係將於電子式安定器中加 裝一功因修正器’以提高功因並降低諧波失真。其中,於 本發明實施例中所提出之功因修正器係運作於連續電流模 • 式’以降低電路中各元件所需承擔之電性強度,使各元件 能夠有著更低的電性容量以及成本,並使電路更適合操作 於大功率的應用場合。 第1圖繪示了符合本發明概念之一電子式安定器1〇〇 之電路架構圖。其中,交流電壓源i02提供了整個電路之 ' 電力來源,但由於在後續電路所需之電源為直流電源,所 以必需先經由整流器104將交流電壓源102所輸出之交流 電整流為直流電後’再往後續電路傳輸。接著,藉由換流 • 器108的快速切換,可將整流器104所輸出的直流電壓切 換成高頻方波電壓。在共振電路11〇中會利用電感及電容 元件來產生諧振效應,當換流器108所輸出之高頻方波電 • 壓經過此諧振阻抗的濾波作用之後,會在負載端112上出 現接近於正弦波的電壓及電流,用以供應螢光燈負載之所 需。另外,共振電路110在螢光燈負載啟動前可以於負載 兩端產生足夠高的燈管啟動電壓,使燈管進入發光狀態。 功因修正器106係在整流器104之後所介入之一直流 對直流的轉換電路,以因應負載不同功率之需求。並以控 8 制開關切換的時機’使其中之儲能電路進行能量的儲存及 釋放,藉以改變輸入功率與電流波形,使輸入電流波形能 追隨輸入電壓的波形。經由適當的操作程序,可精確地控 制輸入電流的波形與大小,達到功因修正及穩壓的功能。 根據實驗結果’將功因修正電路106加入電子式安定器1〇〇 的電路中之後,可將諧波失真抑制到幾乎不存在,功因幾 乎接近於一’並允許輸入電源和負載在相當大的範圍内變 化。 其中’在本發明實施例中所提出之功因修正器1〇6係 工作於連續電流模式,亦即,流經功因修正器i 〇6内元件 之電流僅具有較小的峰值,也使得電路在進行切換時的截 止損失與導通損失隨之降低。因此,具有連續電流式功因 修正器之電子式安定器特別適合應用於需要大功率輸出之 場合°以下係列舉多種實施例來說明能夠達成本發明目的 之電路態樣。 第2A圖繪示了符合本發明之第一實施例之電子式安 定器之電路圖。此電子式安定器之電源係由一交流電壓源 2〇2所提供。由交流電壓源所提供之交流電源會先經過由濾 波電感204及濾波電容2〇6所組成的濾波器將高頻雜訊濾 除掉’以確保電源的品質。經過濾波之後的交流電源會接 著經過一第一儲能電感222被送入由一第一整流二極體 212及一第二整流二極體214所組成之半波整流器。 由一第一開關元件232及一第二開關元件234所組成 之換流器會與該半波整流器並聯,其中,第一開關元件232 1336485 與第一開關元件234可為如金氧半場效電晶體(M〇SFET) 之類的開關元件所實現,因此在圖中係直接以一開關加上 一電晶體的等效電路方式來代表第一開關元件232及第二 開關元件234。因此,由第2A圖中可以看出,由第一整流 二極體212以及第二整流二極體214所組成的半波整流器 並聯上内含著等效二極體的第一開關元件232及第二開關 元件234實際上可實現一全波濾波器之功能。 本電路中的共振電路是由一第一諧振電容242、一諧振 電感244以及一第二諧振電容246所組成。其中,諧振電 感244的兩端分別與第一諧振電容242及第二諧振電容246 串聯,第一諳振電容242的另一端則連接於第一整流二極 體212與第二整流二極體214之間,以及第二諧振電容246 的另一端則連接於第一開關元件232及第二開關元件234 之間。第二負載電容246的兩端係用以與螢光燈負載252 並聯。 另外,還有一儲能電容216與整個半波整流器並聯、 一第一回授電容224與半波整流器中的第一整流二極鱧 212並聯,以及一第二回授電容226與半波整流器中的第二 整流二極體214並聯。 如同之前所述,第一整流二極想212及第二整流二極 體214所連接組成之半波整流器與第一開關元件232及第 二開關元件234所連接組成之換流器互相並聯後,能夠得 到全波整流的效果,因此,第一整流二極體212之負極能 夠提供一經整流過後的正電壓。又因為此半波整流器與一 10 1336485 儲能電容216並聯,使第一整流二極體212之負極能夠提 供一較為平穩之直流正電壓。 在本電路中,會有另外的控制電路(未繪示於圖式中) 控制著第一開關元件232及第二開關元件234的切換。一 般來說’第一開關元件232及第二開關元件234會以互相 反相的方式快速切換,以於其兩者之中間連接處輸出高頻 方波電壓》此高頻方波電壓為由第一諧振電容、諧振電感 • 以及第二諧振電容所組成之共振電路諧振濾波之後,便能 夠在負載252的兩端產生近似於正弦波的電壓及電流。 其中,當第二開關元件234在進行切換動作的瞬間, 會引發大電流流經共振電路及第二開關元件234,且此大電 流會較流經第一儲能電感222之電流為大,所以除了流經 第一儲能電感222的電流以外,儲能電容216也會經由第 一回授電容224釋放出所儲存之電能以支援通過第二開關 元件234之大電流,並同時對第一回授電容224充電。其 p 中’因為第一儲能電感222的存在,使流經第二開關元件 234的電流不會大幅提昇。另外,也因為第一回授電容224 的存在,讓儲能電容216有一個回授路徑,使第一儲能電 感222上所儲存的電能不會一次耗盡,使通過第一儲能電 感222的電流成為不連續。這些特點都使得通過電路中各 個元件的電流不會瞬間地大幅變動,降低了各個元件所需 的電氣規格。 接著,當整個電路到達一個平衡時,流經第一儲能電 感222會大於流經共振電路的電流,此時,除了第一整流 11 1336485 二極體212會導通之外,第一回授電容224也會將所儲存 的電能傳送回儲能電容216»透過如此的電能轉移動作,可 以將電路的功率因數維持在一定的程度。 另外,第二回授電容226的作用與第一回授電容224 的作用是相同的,但第二回授電容226是動作於第一開關 元件232切換的瞬間’相對於第一回授電容224是動作於 不同的高頻方波週期。所以在電路中可以僅有第一回授電 容224或第二回授電容226,也可以同時具有第一回授電容 224及第二回授電容226,其各自具有不同的能量轉移效 果,端看實際應用情況而定。 第2B圖繪示了符合本發明之第二實施例之電子式安 定器之電路圖。其所繪示之電路與第2A圖所繪示之電路相 同’但原本之第一健能電感222係為一第二儲能電感228 所取代。第二儲能電感228之一端連接於交流電壓源2〇2 與濾波電容206之間,而另一端則直接連接於第一開關元 件232與第二開關元件234之間。因為本電路之電源是由 交流電壓源202所提供之交流電,所以雖然連接的方式不 同,但第二儲能電感228仍然能夠達成和第一儲能電感222 相同的作用,因此,第2Α圖中所示之第一儲能電感222 與第2Β圖中所示之第二儲能電感228是能夠同時存在的, 此舉也有著增加儲能電感總感值的效果。 第3Α圖繪示了符合本發明之第四實施例之電子式安 定器之電路圖。第3Α圖所示之電路圓係由第2八圖所示之 電路圖變化而來,其中是將第2Α圖所示電路中的第一回授 12 1336485 電容224以及第二回授電容226移除,並加入另一回授電 容322’其中回授電容322與由第一諧振電容242、諧振電 感244以及第二错振電容246所組成的共振電路並聯。 • 如此’當流經共振電路的電流較大時,可一同對回授 電容322充電’當流經儲能電感222的電流較大時,回授 電容322可經由第一整流二極體212將電能轉移給儲能電 容216,以達成能量轉移的目的。 鲁 第3B圖繪示了符合本發明之第四實施例之電子式安 定器之電路圖。其所繪示之電路與第3A圖所繪示之電路相 同’但原本之第一儲能電感222係為一第二儲能電感228 所取代。第二儲能電感228之一端連接於交流電壓源2〇2 與濾波電容206之間,而另一端則直接連接於第一開關元 件232與第二開關元件234之間。因為本電路之電源是由 交流電壓源202所提供之交流電,所以雖然連接的方式不 同,但第二儲能電感228仍然能夠達成和第一儲能電感222 • 相同的作用,因此,第3A圖中所示之第一儲能電感222 與第3B圖中所示之第二儲能電感228是能夠同時存在的, 此舉也有著增加儲能電感總感值的效果。 - 第4A圖繪示了符合本發明之第五實施例之電子式安 定器之電路圖。此電路係由第2八圖所示之電路變化而來, 其中,多加入了由一第三整流二極體412及一第四整流二 極趙414所串聯而成的半波整流器,並與由第一整流二極 帛212及第—整流二極體214所串聯而成之半波整流器並 冑成為-全波整流器β另外’因為在本電路中採用了全波 13 1336485 整流器的關係,在全波整流器與儲能電容216之間亦串聯 了 一限流二極體416用以阻止電流的回流,其中限流二極 體416的正極與第一整流二極體212及第三整流二極體412 的負極連接,負極與儲能電容216連接。 同樣的,在第4A圖所示的電路中,第一回授電容224 及第二回授電容226同樣為全波整流器所輸出之電壓提供 了穩壓的功能,並且能夠在限流二極體416導通的時候將 其所儲存之電能傳送給儲能電容216。因此第二回授電容 226的作用與第一回授電容224的作用是相同的,。所以在 電路中可以僅有第一回授電容224或第二回授電容226,也 可以同時具有第一回授電容224及第二回授電容226,其各 自具有不同的能量轉移效果,端看實際應用情況而定。 第4B圖繪示了符合本發明之第六實施例之電子式安 定器之電路圖。其所繪示之電路與第4A圖所繪示之電路相 同,但原本之第一儲能電感222係為一第二儲能電感228 所取代。第二儲能電感228之一端連接於交流電壓源2〇2 與濾波電容206之間,而另一端則直接連接於第三限流二 極體412與第四限流二極體414之間。因為本電路之電源 是由父流電壓源202所提供之交流電,所以雖然連接的方 式不同,但第二儲能電感228仍然能夠達成和第—儲能電 感222相同的作用,因此,第4A圖中所示之第__儲能電感 222與第4B圖中所示之第二儲能電感228是能夠同時存在 的,此舉也有著増加儲能電感總感值的效果。 第5A圖緣不了符合本發明之第七實施例之電子式安 14 1336485 定器之電路圖。此電路係由第4A圖所示之電路變化而來, 其中’共振電路及回授電容之連接方式皆有所不同。在本 電路中,共振電路是由一第一諧振電容542、一諧振電感 544以及一第二猎振電容546所組成,其中第一諧振電容 542之兩端分別與諸振電感544及一第二回授電容524串 聯,而諧振電感544之另一端則連接於第一開關元件232 及第二開關元件234之間,第二回授電容524之另一端則 鲁 連接於第二·整流二極體412及第四整流二择體414之間β 一第一猎振電容546之一端連接於第二回授電容524及第 一諳振電容542之間,另一端則與第二整流二極體214及 第四整流二極體414的正極連接。負載252與第二諧振電 容546互相並聯。另外,一第一回授電容522之一端連接 於第一開關元件232及第二開關元件234之間,另一端則 連接於第一整流二極體212及第二整流二極體214之間。 在此種電路組態中,由第一諧振電容542、諧振電感 瞻 544及第二諧振電容546所組成之共振電路,配合第一開關 疋件232及第二開關元件234的快速切換—樣可提供負載 252所需之正弦電壓及電流。其中,當第二開關元件… 纟切換的瞬間引發大電流時,第—回授電容⑵可同時儲 能,並在連到平衡狀態時,將所儲電能透過第一整流二極 體212轉移給儲能電容216,同時,也因為第1授電容 522上所儲有之電能,使流經儲能電感222之電流為連續狀 態。另外,第二回授電容524的作用與第一回授電容522 的作用相同,但其是於第一開關元件m切換時的瞬間進 15 丄 336485 行儲能。 第圖繪示了符合本發明之第八實施例之電子式安 疋器之電路圖。其所繪示之電路與第5A圖所繪示之電路相 同^原本之第一儲能電感222係為一第二儲能電感228 所取代第一儲能電感228之一端連接於交流電壓源2〇2 與濃波電容2G6之間,而另―端則直接連接於第三限流三 極體412與第四限流二極體414之間。因為本電路之電源 疋由父流電壓源202所提供之交流電,所以雖然連接的方 式不同,但第二儲能電感228仍然能夠達成和第一儲能電 感222相同的作用,因此,第5A圖中所示之第一儲能電感 222與第5B圖中所示之第二儲能電感228是能夠同時存在 的’此舉也有著增加儲能電感總感值的效果。 第6A圖繪示了符合本發明之第九實施例之電子式安 定器之電路圖。此電路係由第5A圖所示之電路變化而來, '、中回授電容之連接方式有所不同。在本電路中,一第 回授電容622之一端連接於第一諸振電容542及第二箱 振電容446之間,另一端則連接於第一整流二極體212及 第二整流二極體214之間。一第二回授電容624之一端連 接於第一開關元件232及第二開關元件234之間,另一端 則連接於第三整流二極體412及第四整流二極體414之 間。雖然連接方式有所不同,但第一回授電容622及第二 回授電容624於電路中所產生之功能會分別與第5A圖中所 示之第一回授電容522及第二回授電容524相同。 第6B圖繪示了符合本發明之第十實施例之電子式安 16 13364851336485 IX. Description of the Invention: [Technical Field] The present invention relates to an electronic ballast, and more particularly to an electronic ballast having a continuous current type power factor corrector. With the development of technology and the improvement of living standards, lighting has become an indispensable basic requirement in human life. In recent years, due to the booming development of various industries around the world, the frequent commercial activities and the improvement of the quality of life at home, the lighting power is also increasing day by day, making the development of lighting systems that are efficient, comfortable, safe and economical more and more important. Among them, fluorescent lamps have become the mainstream of today's lighting systems due to their high luminous efficiency, long life, low lamp temperature, light color and multi-shape. Fluorescent lamps, like most gas discharge lamps, exhibit electrical characteristics of negative incremental resistance and require a ballast to limit the current flowing through the lamp. Fluorescent • The ballast of the lamp must have the function of starting the fluorescent lamp in addition to the current limiting function. The fluorescent lamp is activated by providing a high voltage to cause the discharge of free gas. After the fluorescent lamp is activated, it is only necessary to maintain a small electric power to maintain the gas discharge current of the fluorescent lamp. Conventional stabilizers are in the form of electromagnetic operations. Although the electromagnetic ballast has the advantages of durability and simple structure, it has disadvantages such as low efficiency, large volume, heavy weight, easy noise generation and low frequency flicker. For modern and increasingly diverse luminaire applications, electromagnetic ballasts are increasingly unable to meet the demands of use. Compared with electromagnetic ballast electronics, the 5 1336485 ballast has the advantages of fast start, no flicker, high luminous efficiency and high power factor. It can save a lot of electric energy compared with electromagnetic ballast. Therefore, electronic stabilizers have gradually replaced the status of electromagnetic ballasts. The power supply used in general electronic ballasts is direct current, but the power supply currently supplied by the power system is alternating current. Therefore, most of the current use of a two-pole full-wave rectifier circuit or a voltage doubler rectifier circuit converts the AC power supplied by the power system into DC power for use by the electronic ballast. Therefore, in order to eliminate the rectified AC component, a large capacitor is used in parallel with the DC to obtain a stable DC voltage. However, it is because this capacitor maintains the DC voltage at a fixed level, so that the rectifier can only be turned on when the amplitude of the AC voltage is higher than the capacitor voltage, and the required power is drawn from the power supply portion. • The rectifier is turned on for very short periods of time during each input power cycle and 'has a large pulse inrush current during this time period. The inrush current appears as a pulse near the peak of the AC source voltage. This current waveform contains high harmonics and produces a low power factor non-φ good effect at the AC source. The reduction in power factor not only reduces the utilization factor of power equipment (such as transformers) in the system, but also forces the rated capacity of the relevant components and equipment to be increased to supply the load. In addition, high harmonic currents often cause malfunctions in the control circuit and power protection equipment, and the measurement instrument or communication system is disturbed, and the waveform of the power supply voltage is affected to be distorted. Therefore, how to improve the power factor and reduce the total harmonic distortion is an important issue in the design of electronic ballasts. 6 1336485 SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide an electronic ballast for activating and maintaining a fluorescent lamp load. Another object of the present invention is to provide an electronic ballast having a power factor corrector. It is still another object of the present invention to provide an electronic ballast that operates in a continuous current mode. A further object of the invention is to provide an electronic ballast suitable for use in high power applications. In order to achieve the above object of the present invention, an electronic ballast according to an embodiment of the present invention includes an AC voltage source, a rectifier, a power factor corrector, an inverter, and a resonance circuit. The rectifier is used to rectify the AC house provided by the AC source to a DC voltage, so that the inverter (4) • uses a DC voltage to switch the high frequency AC square wave voltage. The components in the resonant circuit are capable of resonating with each other and filtering the high frequency alternating square wave generated by the inverter by the harmonic impedance generated by the resonance. The high frequency AC square wave after filtering is converted into a sine wave suitable for use in a fluorescent lamp load. In addition, the power factor corrector is a DC-to-DC converter circuit, which enables the input current waveform to follow the input voltage waveform to achieve. (4) The function of the correction and the detection of the input and output power _ Required for fluorescent lamp loads of different powers. In an embodiment consistent with the present invention, the power factor corrector operates in a continuous t-stream mode to reduce the ♦ value current of the components in the power factor corrector, so that the electronic ballast in accordance with the present invention is suitable for use in demanding output. Power application 7 1336485 occasion. [Embodiment] Since the general electronic ballast has problems of low power factor and high harmonic distortion, the basic concept of the present invention is to add a power factor corrector to the electronic ballast to improve the power factor. Reduce harmonic distortion. Wherein, the power factor corrector proposed in the embodiment of the present invention operates in a continuous current mode to reduce the electrical strength required for each component in the circuit, so that each component can have a lower electrical capacity and Cost and make the circuit more suitable for high power applications. Fig. 1 is a circuit diagram showing an electronic ballast 1〇〇 in accordance with one of the concepts of the present invention. Wherein, the AC voltage source i02 provides the power source of the entire circuit, but since the power source required for the subsequent circuit is a DC power source, it is necessary to first rectify the AC power output from the AC voltage source 102 to the DC power via the rectifier 104. Subsequent circuit transmission. Then, by the fast switching of the converter 108, the DC voltage output from the rectifier 104 can be switched to a high-frequency square wave voltage. In the resonant circuit 11A, the inductive and capacitive elements are used to generate a resonance effect. When the high-frequency square wave voltage outputted by the inverter 108 is filtered by the resonant impedance, it appears close to the load terminal 112. The sine wave voltage and current are used to supply the fluorescent lamp load. In addition, the resonant circuit 110 can generate a sufficiently high lamp starting voltage across the load before the fluorescent lamp load is activated to cause the lamp to enter a lighting state. The power factor corrector 106 is coupled to a DC-to-DC converter circuit after the rectifier 104 to accommodate different power requirements of the load. And the timing of the control switch is switched to enable the energy storage circuit to store and release energy, so as to change the input power and current waveform, so that the input current waveform can follow the waveform of the input voltage. Through appropriate operating procedures, the waveform and size of the input current can be accurately controlled to achieve power factor correction and voltage regulation. According to the experimental result, after the power factor correction circuit 106 is added to the circuit of the electronic ballast 1〇〇, the harmonic distortion can be suppressed to almost no existence, the power factor is almost close to one' and the input power source and the load are allowed to be quite large. The scope of the change. Wherein the power factor corrector 1 〇 6 proposed in the embodiment of the present invention operates in a continuous current mode, that is, the current flowing through the components in the power factor corrector i 〇 6 has only a small peak, which also makes The cut-off loss and conduction loss of the circuit at the time of switching are reduced. Therefore, an electronic ballast having a continuous current type power factor corrector is particularly suitable for applications requiring a high power output. The following series of embodiments are described to illustrate the circuit aspects that can achieve the object of the present invention. Fig. 2A is a circuit diagram showing an electronic ballast in accordance with a first embodiment of the present invention. The power supply of this electronic ballast is provided by an AC voltage source 2〇2. The AC power supply provided by the AC voltage source first filters the high frequency noise through a filter composed of the filter inductor 204 and the filter capacitor 2〇6 to ensure the quality of the power supply. The filtered AC power is supplied to a half-wave rectifier composed of a first rectifying diode 212 and a second rectifying diode 214 via a first energy storage inductor 222. An inverter composed of a first switching element 232 and a second switching element 234 is connected in parallel with the half-wave rectifier, wherein the first switching element 232 1336485 and the first switching element 234 can be, for example, a gold-oxygen half-field power supply. A switching element such as a crystal (M〇SFET) is implemented, so that the first switching element 232 and the second switching element 234 are represented by an equivalent circuit of a switch plus a transistor in the figure. Therefore, as can be seen from FIG. 2A, the half-wave rectifier composed of the first rectifying diode 212 and the second rectifying diode 214 is connected in parallel with the first switching element 232 having the equivalent diode and The second switching element 234 can actually implement the function of a full wave filter. The resonant circuit in the circuit is composed of a first resonant capacitor 242, a resonant inductor 244 and a second resonant capacitor 246. The two ends of the resonant inductor 244 are connected in series with the first resonant capacitor 242 and the second resonant capacitor 246 , and the other end of the first resonant capacitor 242 is connected to the first rectifying diode 212 and the second rectifying diode 214 . The other end of the second resonant capacitor 246 is connected between the first switching element 232 and the second switching element 234. Both ends of the second load capacitor 246 are used in parallel with the fluorescent lamp load 252. In addition, a storage capacitor 216 is connected in parallel with the entire half-wave rectifier, a first feedback capacitor 224 is connected in parallel with the first rectifier diode 212 in the half-wave rectifier, and a second feedback capacitor 226 and a half-wave rectifier are included. The second rectifying diodes 214 are connected in parallel. As described above, after the half-wave rectifier composed of the first rectifying diode 212 and the second rectifying diode 214 is connected in parallel with the inverter composed of the first switching element 232 and the second switching element 234, The effect of full-wave rectification can be obtained, and therefore, the negative electrode of the first rectifying diode 212 can provide a rectified positive voltage. Moreover, because the half-wave rectifier is connected in parallel with a 10 1336485 storage capacitor 216, the negative pole of the first rectifying diode 212 can provide a relatively stable DC positive voltage. In this circuit, there is an additional control circuit (not shown) that controls the switching of the first switching element 232 and the second switching element 234. Generally, the first switching element 232 and the second switching element 234 are quickly switched in opposite phases to each other to output a high-frequency square wave voltage at the intermediate connection between the two. After resonantly filtering the resonant circuit composed of a resonant capacitor, a resonant inductor, and a second resonant capacitor, a voltage and current similar to a sine wave can be generated across the load 252. When the second switching element 234 is in the switching operation, a large current is caused to flow through the resonant circuit and the second switching element 234, and the current of the large current flowing through the first energy storage inductor 222 is large, so In addition to the current flowing through the first energy storage inductor 222, the storage capacitor 216 also releases the stored electrical energy via the first feedback capacitor 224 to support the large current through the second switching element 234, and simultaneously for the first feedback. Capacitor 224 is charged. The current flowing in the second switching element 234 is not greatly increased by the presence of the first energy storage inductor 222. In addition, because of the existence of the first feedback capacitor 224, the storage capacitor 216 has a feedback path, so that the stored energy stored in the first energy storage inductor 222 is not exhausted once, so that the first energy storage inductor 222 passes. The current becomes discontinuous. These features make the current through the various components in the circuit not change instantaneously, reducing the electrical specifications required for each component. Then, when the entire circuit reaches a balance, the flow through the first energy storage inductor 222 is greater than the current flowing through the resonant circuit. At this time, in addition to the first rectification 11 1336485 diode 212 is turned on, the first feedback capacitor 224 will also transfer the stored electrical energy back to the storage capacitor 216. Through such a power transfer action, the power factor of the circuit can be maintained to a certain extent. In addition, the function of the second feedback capacitor 226 is the same as that of the first feedback capacitor 224, but the second feedback capacitor 226 is operated at the moment when the first switching element 232 is switched 'relative to the first feedback capacitor 224. It is acting on different high frequency square wave periods. Therefore, there may be only the first feedback capacitor 224 or the second feedback capacitor 226 in the circuit, and may also have the first feedback capacitor 224 and the second feedback capacitor 226, each having different energy transfer effects. It depends on the actual application. Fig. 2B is a circuit diagram showing an electronic ballast in accordance with a second embodiment of the present invention. The circuit depicted is the same as that shown in Figure 2A. However, the original first energy inductor 222 is replaced by a second energy storage inductor 228. One end of the second energy storage inductor 228 is connected between the AC voltage source 2〇2 and the filter capacitor 206, and the other end is directly connected between the first switching element 232 and the second switching element 234. Because the power supply of the circuit is the alternating current provided by the alternating voltage source 202, although the connection is different, the second energy storage inductor 228 can still achieve the same function as the first energy storage inductor 222. Therefore, in the second diagram. The first energy storage inductor 222 shown and the second energy storage inductor 228 shown in the second diagram can be present at the same time, which also has the effect of increasing the total inductance of the energy storage inductor. Fig. 3 is a circuit diagram showing an electronic ballast in accordance with a fourth embodiment of the present invention. The circuit circle shown in Figure 3 is changed from the circuit diagram shown in Figure 2, where the first feedback 12 1336485 capacitor 224 and the second feedback capacitor 226 in the circuit shown in Figure 2 are removed. And another feedback capacitor 322' is added, wherein the feedback capacitor 322 is connected in parallel with the resonant circuit composed of the first resonant capacitor 242, the resonant inductor 244 and the second fault capacitor 246. • Thus, when the current flowing through the resonant circuit is large, the feedback capacitor 322 can be charged together. When the current flowing through the storage inductor 222 is large, the feedback capacitor 322 can be passed through the first rectifying diode 212. The electrical energy is transferred to the storage capacitor 216 for energy transfer purposes. Fig. 3B is a circuit diagram showing an electronic ballast in accordance with a fourth embodiment of the present invention. The circuit depicted is the same as that shown in Figure 3A, but the original first energy storage inductor 222 is replaced by a second energy storage inductor 228. One end of the second energy storage inductor 228 is connected between the AC voltage source 2〇2 and the filter capacitor 206, and the other end is directly connected between the first switching element 232 and the second switching element 234. Since the power supply of the circuit is the alternating current provided by the alternating voltage source 202, although the connection is different, the second energy storage inductor 228 can still achieve the same function as the first energy storage inductor 222. Therefore, FIG. 3A The first energy storage inductor 222 shown in FIG. 3 and the second energy storage inductor 228 shown in FIG. 3B can exist at the same time, which also has the effect of increasing the total inductance of the energy storage inductor. - Fig. 4A is a circuit diagram showing an electronic ballast in accordance with a fifth embodiment of the present invention. The circuit is changed by the circuit shown in FIG. 8 , wherein a half-wave rectifier connected by a third rectifying diode 412 and a fourth rectifying diode 414 is added, and The half-wave rectifier formed by the first rectifying diode 212 and the rectifying diode 214 is connected in series to become a full-wave rectifier β. In addition, since the full-wave 13 1336485 rectifier is used in the circuit, A current limiting diode 416 is also connected in series between the full-wave rectifier and the storage capacitor 216 to prevent current from flowing back. The positive pole of the current limiting diode 416 and the first rectifying diode 212 and the third rectifying diode The negative electrode of the body 412 is connected, and the negative electrode is connected to the storage capacitor 216. Similarly, in the circuit shown in FIG. 4A, the first feedback capacitor 224 and the second feedback capacitor 226 also provide a voltage regulation function for the voltage outputted by the full-wave rectifier, and can be used in the current limiting diode. When 416 is turned on, the stored electrical energy is transferred to the storage capacitor 216. Therefore, the effect of the second feedback capacitor 226 is the same as that of the first feedback capacitor 224. Therefore, there may be only the first feedback capacitor 224 or the second feedback capacitor 226 in the circuit, and may also have the first feedback capacitor 224 and the second feedback capacitor 226, each having different energy transfer effects. It depends on the actual application. Fig. 4B is a circuit diagram showing an electronic ballast in accordance with a sixth embodiment of the present invention. The circuit depicted is the same as that shown in Figure 4A, but the first first energy storage inductor 222 is replaced by a second energy storage inductor 228. One end of the second energy storage inductor 228 is connected between the AC voltage source 2〇2 and the filter capacitor 206, and the other end is directly connected between the third current limiting diode 412 and the fourth current limiting diode 414. Because the power supply of the circuit is the alternating current provided by the parent voltage source 202, although the connection mode is different, the second energy storage inductor 228 can still achieve the same effect as the first storage inductor 222. Therefore, FIG. 4A The first __ energy storage inductor 222 shown in the figure and the second energy storage inductor 228 shown in FIG. 4B can exist at the same time, and this also has the effect of adding the total inductance value of the energy storage inductor. Fig. 5A is a circuit diagram of an electronic ampere 14 1336485 aligner in accordance with a seventh embodiment of the present invention. This circuit is a change from the circuit shown in Figure 4A, where the connection between the 'resonant circuit and the feedback capacitor is different. In the present circuit, the resonant circuit is composed of a first resonant capacitor 542, a resonant inductor 544, and a second hunting capacitor 546, wherein the two ends of the first resonant capacitor 542 are respectively coupled to the inductors 544 and a second The feedback capacitor 524 is connected in series, and the other end of the resonant inductor 544 is connected between the first switching element 232 and the second switching element 234, and the other end of the second feedback capacitor 524 is connected to the second rectifying diode. One end of the first hunting capacitor 546 between the 412 and the fourth rectifying body 414 is connected between the second feedback capacitor 524 and the first resonant capacitor 542, and the other end is connected to the second rectifying diode 214. And the positive connection of the fourth rectifying diode 414. The load 252 and the second resonant capacitor 546 are connected in parallel with each other. In addition, one end of the first feedback capacitor 522 is connected between the first switching element 232 and the second switching element 234, and the other end is connected between the first rectifying diode 212 and the second rectifying diode 214. In this circuit configuration, the resonant circuit composed of the first resonant capacitor 542, the resonant inductor 544 and the second resonant capacitor 546 cooperates with the fast switching of the first switching element 232 and the second switching element 234. The sinusoidal voltage and current required for load 252 are provided. Wherein, when a high current is induced at the moment when the second switching element ... 纟 is switched, the first feedback capacitor (2) can simultaneously store energy, and when connected to the equilibrium state, transfer the stored electrical energy to the first rectifying diode 212 to The storage capacitor 216, at the same time, also causes the current flowing through the storage inductor 222 to be continuous due to the electrical energy stored in the first capacitor 522. In addition, the function of the second feedback capacitor 524 is the same as that of the first feedback capacitor 522, but it is an energy storage of 15 丄 336 485 at the moment when the first switching element m is switched. The figure shows a circuit diagram of an electronic ampere in accordance with an eighth embodiment of the present invention. The circuit shown in FIG. 5 is the same as the circuit shown in FIG. 5A. The first first energy storage inductor 222 is replaced by a second energy storage inductor 228. One end of the first energy storage inductor 228 is connected to the AC voltage source 2 . Between 2 and the thick-wave capacitor 2G6, and the other end is directly connected between the third current-limiting diode 412 and the fourth current-limiting diode 414. Because the power supply of the circuit is the alternating current provided by the parent voltage source 202, although the connection is different, the second energy storage inductor 228 can still achieve the same function as the first energy storage inductor 222. Therefore, FIG. 5A The first energy storage inductor 222 shown in FIG. 5 and the second energy storage inductor 228 shown in FIG. 5B can exist simultaneously. 'This also has the effect of increasing the total inductance of the energy storage inductor. Fig. 6A is a circuit diagram showing an electronic ballast in accordance with a ninth embodiment of the present invention. This circuit is changed from the circuit shown in Figure 5A, and the connection mode of the medium feedback capacitor is different. In the circuit, one end of the first feedback capacitor 622 is connected between the first resonant capacitor 542 and the second resonant capacitor 446, and the other end is connected to the first rectifying diode 212 and the second rectifying diode. Between 214. One end of a second feedback capacitor 624 is connected between the first switching element 232 and the second switching element 234, and the other end is connected between the third rectifying diode 412 and the fourth rectifying diode 414. Although the connection manner is different, the functions of the first feedback capacitor 622 and the second feedback capacitor 624 in the circuit are respectively different from the first feedback capacitor 522 and the second feedback capacitor shown in FIG. 5A. 524 is the same. FIG. 6B is a diagram showing an electronic safety 16 1336485 according to the tenth embodiment of the present invention.

定器之電路圖。其所繪示之電路與第6A圖所繪示之電路相 同,但原本之第一儲能電感222係為一第二儲能電感228 所取代。第二儲能電感228之一端連接於交流電壓源2〇2 與濾波電容206之間,而另一端則直接連接於第三限流二 極體412與第四限流二極體414之間。因為本電路之電源 是由交流電壓源202所提供之交流電,所以雖然連接的方 式不同,但第二儲能電感228仍然能夠達成和第一儲能電 感222相同的作用,因此’第6A圖中所示之第—儲能電感 222與第6B圖中所示之第二儲能電感228是能夠同時存在 的’此舉也有著增加儲能電感總感值的效果。 第7A圖繪示了符合本發明之第十一實施例之電子3 安定器之電路圖。此電路係由第5A圖所示之電路變化济 來,其中,儲能電感及回授電容的連接方式皆有所不同。 在本電路中,健能電容216與第—整流二極體212之負拐 以及與第三整流二極體412之負極之間會串聯一儲能電感 722以及-第-限流二極體712,其中,儲能電感722之一 端與第整流一極體212及第三整流二極體化之負極達 接’另-端則與第一限流二極體712之正極連接,而第一 限流二極體之負極則與儲能電容216連接。另外,在儲能 電容216與第二整流二極體214之正極以及與第四整流二 極體414之正極之間會串聯一第二限流二極體7Μ,其中 第二限流二極體714之負極與第二整流二極體214以及座 第四整流二極體414之 ’ 極連接’正極與儲能電容216 接0 17 本電路中的共振電路由一第一諧振電容742、一諧振電 感744以及一第二諧振電容746所組成。其中,諧振電感 744之兩端分別與第一諧振電容742及第二諧振電容746 之一端串聯,而第一諧振電容742之另一端則連接於第一 開關元件232及第二開關元件234之間,以及第二諧振電 容746之另一端則與第二限流二極體714之正極連接。負 載252與第二諧振電容746並聯。另外,一第一回授電容 724之一端第一限流二極體712之正極連接,另一端連接於 諧振電感744及第二諧振電容746之間,以及一第二回授 電容726之一端與第二限流二極體714之負極連接,另一 端連接於第一開關元件232及第二開關元件234之間。 由第一諧振電容742、諧振電感744以及第二諧振電容 746所組成之共振電路配合第一開關元件232及第二開關 元件234的快速切換一樣可提供負載252所需之正弦電壓 及電流。而第5A圖中所示之儲能電感222的作用係為儲能 電感722所代替,雖然儲能電感722連接的位置與儲能電 感222的連接位置不相同,但一樣能達到提高功因的目的。 其中,當第二開關元件234在切換的瞬間引發大電流時, 第一回授電容724可同時儲能,並在達到平衡狀態時,將 所儲電能透過第一限流二極體712轉移給儲能電容216,同 時,也因為第一回授電容724上所儲有之電能,使流經儲 能電感722之電流為連續狀態。另外,第二回授電容726 的作用與第一回授電容724的作用相同,但其是於第一開 關元件232切換時的瞬間進行儲能。 安定::雷:符合本發明之第十二實施例之電子式 :二之:路圖。其所繪示之電路與第7A圖所繪示之電路 =:但第二諸振電容746原本與第二限流二極體Μ之 連接的端點則被改連接至第—限流二極體712之負 極。《連接的方式不同,但本電路—樣能達到第Μ圖所 示電路所能達到之效果。 —第8A圖緣示了符合本發明之第十三實施例之電子式 女定器之電路圖。此電路係由第5A圖所示之電路變化而 來。在第8A圖中,係將第5A圖中之第—回授電容^及 第一回授電容524合併為一回授電容822,因此回授電容 822之一端連接於第一整流二極冑212及第二整流二極體 214之間,另-端連接於第—靖振電容542及第二諸振電容 546之間,且回授電容822的電容值可為第一回授電容a】 及第二回授電纟524電容值的總和。另外,全波整流器也 被簡化為僅剩第一整流二極冑212 &第二整流二極體214 之半波整流器,但配合第一開關元件232及第二開關元件 234所内含之等效二極體,一樣可達到全波整流的效果。本 電路與第5A圖所示電路可得到相同的功能與效果。 第8B圖繪示了符合本發明之第十四實施例之電子式 安定器之電路圖。其所繪示之電路與第8A圖所繪示之電路 相同’但原本之第一儲能電感222係為一第二儲能電感228 所取代《第二儲能電感228之一端連接於交流電壓源2〇2 與濾波電容206之間,而另一端則直接連接於第一開關元 件232與第二開關元件234之間。因為本電路之電源是由 1336485 交流電壓源202所提供之交流電,相μ連接的 同,但第二儲能«228㈣能夠達成和第—儲能電感如 相同的作用’因mA圖中所示之第—健能電感如 與第8B圖中所示之第二儲能電感228是能夠同時存在的, 此舉也有者增加儲能電感總感值的效果。 ^Circuit diagram of the device. The circuit depicted is the same as that shown in Figure 6A, but the first first energy storage inductor 222 is replaced by a second energy storage inductor 228. One end of the second energy storage inductor 228 is connected between the AC voltage source 2〇2 and the filter capacitor 206, and the other end is directly connected between the third current limiting diode 412 and the fourth current limiting diode 414. Because the power supply of the circuit is the alternating current provided by the alternating voltage source 202, the second energy storage inductor 228 can still achieve the same function as the first energy storage inductor 222, although the manner of connection is different, so that in FIG. 6A The first energy storage inductor 222 shown and the second energy storage inductor 228 shown in FIG. 6B can exist simultaneously. 'This also has the effect of increasing the total inductance of the energy storage inductor. Fig. 7A is a circuit diagram showing an electronic 3 ballast in accordance with an eleventh embodiment of the present invention. This circuit is modified by the circuit shown in Figure 5A, where the storage inductor and the feedback capacitor are connected differently. In the present circuit, a storage inductor 722 and a -th current limiting diode 712 are connected in series between the energy capacitor 216 and the negative commutation of the first rectifier diode 212 and the negative terminal of the third rectifier diode 412. Wherein one end of the energy storage inductor 722 is connected to the first rectifier diode 212 and the third rectifier diode anode, and the other terminal is connected to the anode of the first current limiting diode 712, and the first limit is The negative electrode of the flow diode is connected to the storage capacitor 216. In addition, a second current limiting diode 7Μ is connected in series between the storage capacitor 216 and the anode of the second rectifying diode 214 and the anode of the fourth rectifying diode 414, wherein the second current limiting diode The anode of the 714 and the second rectifier diode 214 and the fourth rectifier diode 414 are connected to the anode and the storage capacitor 216. The resonant circuit in the circuit is composed of a first resonant capacitor 742 and a resonance. The inductor 744 and a second resonant capacitor 746 are formed. The two ends of the resonant capacitor 744 are respectively connected in series with one end of the first resonant capacitor 742 and the second resonant capacitor 746, and the other end of the first resonant capacitor 742 is connected between the first switching component 232 and the second switching component 234. And the other end of the second resonant capacitor 746 is connected to the anode of the second current limiting diode 714. Load 252 is coupled in parallel with second resonant capacitor 746. In addition, one of the first feedback capacitors 724 is connected to the anode of the first current limiting diode 712, the other end is connected between the resonant inductor 744 and the second resonant capacitor 746, and one end of the second feedback capacitor 726 is connected. The negative terminal of the second current limiting diode 714 is connected, and the other end is connected between the first switching element 232 and the second switching element 234. The resonant circuit composed of the first resonant capacitor 742, the resonant inductor 744, and the second resonant capacitor 746, in conjunction with the fast switching of the first switching element 232 and the second switching element 234, provides the sinusoidal voltage and current required by the load 252. The function of the energy storage inductor 222 shown in FIG. 5A is replaced by the energy storage inductor 722. Although the connection position of the energy storage inductor 722 is not the same as the connection position of the energy storage inductor 222, the same can be achieved. purpose. Wherein, when the second switching element 234 induces a large current at the moment of switching, the first feedback capacitor 724 can simultaneously store energy, and when the equilibrium state is reached, the stored energy is transferred to the first current limiting diode 712 to The storage capacitor 216, meanwhile, also causes the current flowing through the storage inductor 722 to be in a continuous state because of the electrical energy stored in the first feedback capacitor 724. In addition, the second feedback capacitor 726 functions the same as the first feedback capacitor 724, but it is stored at the instant when the first switching element 232 is switched. Stability: Ray: Electronic formula according to the twelfth embodiment of the present invention: two: road map. The circuit shown in FIG. 7A and the circuit shown in FIG. 7A: but the end of the connection between the second vibration capacitor 746 and the second current limiting diode is connected to the first current limiting diode The negative electrode of body 712. "The way of connection is different, but this circuit can achieve the effect that the circuit shown in the figure can achieve. - Figure 8A shows a circuit diagram of an electronic female device in accordance with a thirteenth embodiment of the present invention. This circuit is a change from the circuit shown in Figure 5A. In FIG. 8A, the first feedback capacitor and the first feedback capacitor 524 in FIG. 5A are combined into a feedback capacitor 822, so that one end of the feedback capacitor 822 is connected to the first rectifying diode 212. And the second rectifying diode 214 is connected between the first resonant capacitor 542 and the second resonant capacitor 546, and the capacitance of the feedback capacitor 822 can be the first feedback capacitor a] and The sum of the capacitance values of the second feedback power 524. In addition, the full-wave rectifier is also simplified to a half-wave rectifier in which only the first rectifying diode 212 & second rectifying diode 214 is left, but the first switching element 232 and the second switching element 234 are included. The effect of the diode can achieve full-wave rectification. This circuit can achieve the same functions and effects as the circuit shown in Figure 5A. Fig. 8B is a circuit diagram showing an electronic ballast in accordance with a fourteenth embodiment of the present invention. The circuit shown in the figure is the same as the circuit shown in FIG. 8A. However, the original first energy storage inductor 222 is replaced by a second energy storage inductor 228. One end of the second energy storage inductor 228 is connected to the AC voltage. The source 2〇2 is connected between the filter capacitor 206 and the other end is directly connected between the first switching element 232 and the second switching element 234. Because the power supply of this circuit is the AC power provided by the 1364485 AC voltage source 202, the phase μ connection is the same, but the second energy storage «228 (4) can achieve the same effect as the first energy storage inductor 'as shown in the mA diagram The first-energy-energy inductor can be present at the same time as the second energy-storing inductor 228 shown in FIG. 8B, and this also has the effect of increasing the total inductance of the energy storage inductor. ^

第9A圖緣示了符合本發明之第十五實施例之電子式 安定器之電路圖。此電路係可視為第2A圖及第8八圖所= 電路之結合,其中,便是將第2八圖中所示之第一回授電I 224及第二回授電容226加裝至第8A圖所示之電路中。因 此,第一回授電容224仍然會與第一整流二極體212並聯, 第二回授電容226也仍會與第二整流二極體並聯。但為配 合第一回授電容226的加入,所以必須將第二諧振電容 原本連接至第二整流二極體214之正極之端點改連接至第 二整流二極體214之負極。Fig. 9A is a circuit diagram showing an electronic ballast in accordance with a fifteenth embodiment of the present invention. This circuit can be regarded as a combination of the circuit of FIG. 2A and FIG. 8 and the circuit, wherein the first back power I 224 and the second feedback capacitor 226 shown in FIG. In the circuit shown in Figure 8A. Therefore, the first feedback capacitor 224 will still be in parallel with the first rectifier diode 212, and the second feedback capacitor 226 will still be in parallel with the second rectifier diode. However, in order to cooperate with the addition of the first feedback capacitor 226, the second resonant capacitor must be connected to the anode of the second rectifying diode 214 to be connected to the cathode of the second rectifying diode 214.

在本電路中’由於第一回授電容224以及第二回授電 容226的加入,增加了回授電容的儲能容量,也使得本電 路之功因修正效果更為顯著。 第9Β圖繪示了符合本發明之第十六實施例之電子式 安定器之電路圖。其所繪示之電路與第9Α圖所繪示之電路 相同’但原本之第一儲能電感222係為一第二儲能電感228 所取代。第二儲能電感228之一端連接於交流電壓源202 與濾波電容206之間,而另一端則直接連接於第一開關元 件232與第二開關元件234之間。因為本電路之電源是由 交流電壓源202所提供之交流電,所以雖然連接的方式不 20 1336485 同,但第二儲能電感228仍然能夠達成和第一儲能電感222 相同的作用,因此,第9A圖中所示之第一儲能電感222 與第9B圖中所示之第二儲能電感228是能夠同時存在的, 此舉也有著增加儲能電感總感值的效果。 最後要特別說明的是’在上面所列舉的實施例當中, 共振電路皆是以電容及電感元件的組合來達成,但是在實 際應用上· ,也可使用壓電變壓器來實現共振電路的作用。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’所附圖式之詳細說明如下: 第1圖為符合本發明實施例之電子式安定器之架構圖。 第2A圓為符合本發明第一實施例之電子式安定器之 電路圖。 第 2B 圖氣 吗马符合本發明第二實施例之電子式安定器之 電路圖》 第3A圖為符合本發明第三實施例之電子式安定器之 電路圖》 第3B圖兔外 ’得合本發明第四實施例之電子式安定器之 21 1336485 電路圖。 電路I从圖為符合本發明第五實施例之電子式安定 第4B圖為X 電路圖。 。本發明第六實施例之電子式安定 電路I。 _為符合本發明第七實施例之電子式安定 電二。5B圖為符合本發明第八實施例之電子式安定器之 電路圖。圖為符合本發明第九實施例之電子式安定 電路圖。圖為符合本發明第十實施例之電子式安定器之 之電路圖。4符合本發明第十&quot;&quot;實施例之電子式安定器 之電路圖。4符合本發明第十二實施例之電子式安定器 之電圖為符合本發明第十三實施例之電子式安定器 之電ίΓ/為符合本發明第十四實施例之電子式安定器 之電:Γ圖為符合本發明第十五實施例之電子式安定器 器之 器之 器之 器之 第9Β圖為符合本發明第十六實施例之電子式安定 器 22 1336485 之電路圖。 主要元件符號說明 100 :電子式安定器 102 : 交流電壓源 104 :整流器 106 : 功因修正器 108 :換流器 110 : 共振電路 112 :負載端 202 : 交流電壓源 204 :濾波電感 206 : 濾波電容 212 :第一整流二極體 214 : 第二整流二極體 216 :儲能電容 222 ' 228、722 :儲能電感 224 ' 522 ' 622 ' 724 : 第一回226、 524、624、726 :第二回 授電容 授電容 232 ··第一開關元件 234 : 第二開關元件 242、542、742 :第一 諧振電244、 544、744 :諧振電感 容 246、546、746 :第二 諧振電252 ·’ 負載 容 322 ' 822 :回授電容 412 : 第三整流二極體 414 :第四整流二極體 416 : 限流二極體 712 :第一限流二極體 714 : 第二限流二極體 23In the present circuit, due to the addition of the first feedback capacitor 224 and the second feedback capacitor 226, the energy storage capacity of the feedback capacitor is increased, and the power of the circuit is more significantly corrected. Figure 9 is a circuit diagram showing an electronic ballast in accordance with a sixteenth embodiment of the present invention. The circuit depicted is the same as that shown in Figure 9 but the original first energy storage inductor 222 is replaced by a second energy storage inductor 228. One end of the second energy storage inductor 228 is connected between the AC voltage source 202 and the filter capacitor 206, and the other end is directly connected between the first switching element 232 and the second switching element 234. Because the power supply of the circuit is the alternating current provided by the alternating voltage source 202, although the connection mode is not the same as 20 1336485, the second energy storage inductor 228 can still achieve the same function as the first energy storage inductor 222, therefore, The first energy storage inductor 222 shown in FIG. 9A and the second energy storage inductor 228 shown in FIG. 9B can exist simultaneously, and this also has the effect of increasing the total inductance of the energy storage inductor. Finally, it should be particularly noted that in the above-exemplified embodiments, the resonant circuit is realized by a combination of a capacitor and an inductor element, but in practical applications, a piezoelectric transformer can also be used to realize the function of the resonant circuit. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; The architecture diagram of the device. The 2A circle is a circuit diagram of the electronic ballast in accordance with the first embodiment of the present invention. 2B is a circuit diagram of an electronic ballast according to a second embodiment of the present invention. FIG. 3A is a circuit diagram of an electronic ballast according to a third embodiment of the present invention. FIG. 3B is a view of the present invention. 21 1336485 circuit diagram of the electronic ballast of the fourth embodiment. The circuit I is shown in the figure as an electronic stability according to the fifth embodiment of the present invention. FIG. 4B is an X circuit diagram. . An electronic stabilizer circuit I according to a sixth embodiment of the present invention. _ is an electronic stabilizer according to the seventh embodiment of the present invention. Fig. 5B is a circuit diagram of an electronic ballast in accordance with an eighth embodiment of the present invention. The figure is an electronic stabilizer circuit diagram in accordance with a ninth embodiment of the present invention. The drawing is a circuit diagram of an electronic ballast in accordance with a tenth embodiment of the present invention. 4 is a circuit diagram of an electronic ballast in accordance with the tenth &quot;&quot; embodiment of the present invention. 4 is an electric diagram of an electronic ballast in accordance with a twelfth embodiment of the present invention, which is an electronic ballast according to a thirteenth embodiment of the present invention, which is an electronic ballast according to the fourteenth embodiment of the present invention. Fig. 9 is a circuit diagram of an electronic ballast 22 1336485 according to a sixteenth embodiment of the present invention, which is a device for complying with the electronic ballast of the fifteenth embodiment of the present invention. Main component symbol description 100: Electronic ballast 102: AC voltage source 104: Rectifier 106: Power factor corrector 108: Inverter 110: Resonance circuit 112: Load terminal 202: AC voltage source 204: Filter inductor 206: Filter capacitor 212: first rectifying diode 214: second rectifying diode 216: storage capacitor 222 '228, 722: energy storage inductor 224 ' 522 ' 622 ' 724 : first back 226, 524, 624, 726: Two feedback capacitors 232 · · First switching element 234 : Second switching elements 242 , 542 , 742 : First resonant power 244 , 544 , 744 : Resonant inductance capacitance 246 , 546 , 746 : Second resonant electric 252 · 'Load capacity 322 ' 822 : feedback capacitor 412 : third rectifying diode 414 : fourth rectifying diode 416 : current limiting diode 712 : first current limiting diode 714 : second current limiting dipole Body 23

Claims (1)

13364851336485 十、申請專利範圍: 1. 一種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端以及該濾波電容之第二端連接,且 該第一開關元件之第一端與該第二開關元件之第二端係與 該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; . 一諧振電感,其中該諳振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一整流二 極體之正極,該第二諧振電容之第二端係連接於該第一開 關元件之弟·一端, 一儲能電感,其中該儲能電感之第一端與該濾波電感 24 1336485 之第二端連接,第二端與該第一整流二極體之正極連接; 以及 一第一回授電容,其中該第一回授電容之第二端與該 第一整流二極體之正極連接,第一端與該儲能電容之第一 端連接。 2.如申請專利範圍第1項所述之電子式安定器,更包 含一第二回授電容,其中該第二回授電容之第一端與該第 一整流二極體之正極連接,第二端與該儲能電容之第二端 連接。 3. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極連 接至該第一整流二極體之正極; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 25 1336485 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諸振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一整流二 極體之正極,該第二諧振電容之第二端係連接於該第一開 關元件之第二端; 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第一開關元件之第二端連接; 以及 一第一回授電容,其中該第一回授電容之第二端與該 第一整流二極體之正極連接,第一端與該儲能電容之第一 端連接。 4.如申請專利範圍第3項所述之電子式安定器,更包 含一第二回授電容,其中該第二回授電容之第一端與該第 一整流二極體之正極連接,第二端與該儲能電容之第二端 連接。 5. —種電子式安定器,包含: 一渡波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 26 1336485 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端以及該濾波電容之第二端連接,且 該第一開關元件之第一端與該第二開關元件之第二端係與 該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一整流二 極體之正極,該第二諧振電容之第二端係連接於該第一開 關元件之第二端; 一儲能電感,其中該儲能電感之第一端與該濾波電感 之第二端連接,第二端與該第一整流二極體之正極連接; 以及 一回授電容,其中該回授電容之第一端與該第一整流 二極體之正極連接,第二端與該第一開關元件之第二端連 27 1336485 接。 6. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極連 接至該第一整流二極體之正極; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一整流二 極體之正極,該第二諧振電容之第二端係連接於該第一開 關元件之弟一端, 28 1336485 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第一開關元件之第二端連接; 以及 一回授電容,其中該回授電容之第一端與該第一整流 二極體之正極連接,第二端與該第一開關元件之第二端連 接。 7. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極以及該濾波電容之第二端連接, 正極與該第二整流二極體之正極連接; 一限流二極體,其中該限流二極體之正極與該第三限 流二極體之負、極連接; 一‘能電容,其中該儲能電容係與該限流二極體之負 極以及該第四整流二極體之正極並聯; 29 1336485 —第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一整流二 極體之正極,該第二諧振電容之第二端係連接於該第一開 關元件之弟·一端, 一儲能電感,其中該儲能電感之第一端與該濾波電感 之第二端連接,第二端與該第一整流二極體之正極連接; 以及 一第二回授電容,其中該第二回授電容之第一端與該 第一整流二極體之正極連接,第二端與該儲能電容之一端 連接。 8.如申請專利範圍第7項所述之電子式安定器,更包 含一第一回授電容,其中該第一回授電容之第二端與該第 一整流二極體之正極連接,第一端與該限流二極體之正極 連接。 9. 一種電子式安定器,包含: 30 1336485 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極連接,正極與該第二整流二極體 之正極連接; 一限流二極體,其中該限流二極體之正極與該第三限 流二極體之負極連接; 一儲能電容,其中該儲能電容係與該限流二極體之負 極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; —第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 31 1336485 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一整流二 極體之正極,該第二諧振電容之第二端係連接於該第一開 關元件之第二端; 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第三整流二極體之正極連接; 以及 一第二回授電容,其中該第二回授電容之第一端與該 第一整流二極體之正極連接,第二端與該儲能電容之一端 連接。 10. 如申請專利範圍第9項所述之電子式安定器,更 包含一第一回授電容,其中該第一回授電容之第二端與該 第一整流二極體之正極連接,第一端與該限流二極體之正 極連接。 11. 一種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 32 1336485 一第三整流二極體,其中該第三整流二極體之負極與 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極以及該濾電容之第二端連接,正 極與該第二整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,.該第二諧振電容之第二端係連接於該第二整 流二極體之正極; 一儲能電感,其中該儲能電感之第一端與該濾波電感 之第二端連接,第二端與該第一整流二極體之正極連接; 一第一回授電容,其中該第一回授電容之第一端與該 第一整流二極體之正極連接,第二端與該第一開關元件之 第二端連接;以及 一第二回授電容,其中該第二回授電容之第一端與該 33 1336485 第三整流二極體之正極連接,第二端與該第二諧振電容之 一端連接。 12. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收· 一交流電塵; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極連接,正極與該第二整流二極體 之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 34 1336485 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,該第二諧振電容之第二端係連接於該第二整 流二極體之正極; 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第三整流二極體之正極連接; 一第一回授電容,其中該第一回授電容之第一端與該 第一整流二極體之正極連接,第二端與該第一開關元件之 弟—端連接,以及 —第二回授電容,其中該第二回授電容之第一端與該 第三整流二極體之正極連接,第二端與該第二諧振電容之 一端連接。 13. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 35 1336485 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極以及該濾電容之第二端連接,正 極與該第二整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; .一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諸振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,該第二諧振電容之第二端係連接於該第二整 流二極體之正極; 一儲能電感,其中該儲能電感之第一端與該濾波電感 之第二端連接,第二端與該第一整流二極體之正極連接; 一第一回授電容,其中該第一回授電容之第一端與該 第一整流二極體之正極連接,第二端與該第二諧振電容之 第一端連接;以及 一第二回授電容,其中該第二回授電容之第一端與該 第三整流二極體之正極連接,第二端與該第一開關元件之 36 1336485 第二端連接。 14. 一種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極連接,正極與該第二整流二極體 之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 37 1336485 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,該第二諧振電容之第二端係連接於該第二整 流二極體之正極; 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第三整流二極體之正極連接; 一第一回授電容,其中該第一回授電容之第一端與該 第一整流二極體之正極連接,第二端與該第二諧振電容之 第一端連接;以及 一第二回授電容,其中該第二回授電容之第一端與該 第三整流二極體之正極連接,第二端與該第一開關元件之 第二端連接。 15. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該遽波電感之弟一端連接, 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 38 1336485 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極以及該濾電容之第二端連接,正 極與該第二整流二極體之正極連接; 一儲能電感,其中該儲能電感之第一端與該第一整流 二極體之負極連接; 一第一限流二極體,其中該限流二極體之正極與該儲 能電感之第二端連接; 一第二限流二極體,其中該第二限流二極體之負極與 該第二整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一限流二極體 之負極以及該第二限流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一開關元 件之第二端,該第二諧振電容之第二端係連接於該第二限 流二極體之正極; 一第一回授電容,其中該第一回授電容之第一端與該 39 1336485 第一限流二極體之正極連接,第二端與該第二諧振電容之 弟端运接,以及 一第二回授電容,其中該第二回授電容之第一端與該 第一開關元件之第二端連接,第二端與該第二限流二極體 之負極連接。 16. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一第三整流二極體,其中該第三整流二極體之負極與 該第一整流二極體之負極連接; 一第四整流二極體,其中該第四整流二極體之負極與 該第三整流二極體之正極以及該濾電容之第二端連接,正 極與該第二整流二極體之正極連接; 一儲能電感,其中該儲能電感之第一端與該第一整流 二極體之負極連接; 一第一限流二極體,其中該限流二極體之正極與該儲 能電感之弟·一端連接, 40 1336485 一第二限流二極體,其中該第二限流二極體之負極與 該第二整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一限流二極體 之負極以及該第二限流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第二諧振電容之第一端連 接,以及該第一諧振電容之第一端係連接於該第一開關元 件之第二端,該第二諧振電容之第二端係連接於該第一限 流二極體之負極; 一第一回授電容,其中該第一回授電容之第一端與該 第一限流二極體之正極連接,第二端與該第一諧振電容之 第一端連接;以及 一第二回授電容,其中該第二回授電容之第一端與該 第二諧振電容之第一端連接,第二端與該第二限流二極體 之負極連接。 17. —種電子式安定器,包含: 一濾波電感; 41 1336485 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端以及該濾波電容之第二端連接,且 該第一開關元件之第一端與該第二開關元件之第二端係與 該儲能電容並聯; 一第一譜振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,該第二諧振電容之第二端係連接於該第二整 流二極體之正極; 一儲能電感,其中該儲能電感之第一端與該濾波電感 之第二端連接,第二端與該第一整流二極體之正極連接; 以及 一回授電容,其中該回授電容之第一端與該第一整流 42 1336485 二極體之正極連接,第二端與該第二諧振電容之第一端連 接。 18. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; —第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極與 該第一整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諧振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,該第二諧振電容之第二端係連接於該第二整 43 1336485 流二極體之正極; 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第一開關元件之第二端連接; 以及 一回授電容,其中該回授電容之第一端與該第一整流 二極體之正極連接,第二端與該第二諧振電容之第一端連 接。 19. 一種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體; 一第二整流二極體,其卡該第二整流二極體之負極與 該第一整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端以及該濾波電容之第二端連接,且 該第一開關元件之第一端與該第二開關元件之第二端係與 該儲能電容並聯; 一第一諧振電容; 44 一第二諧振電容,用以並聯一負載; 一諧振電感,其t該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第·-端,該第二諧振電容之第二端係連接於該第二整 流二極體之負極; 一儲能電感,其中該儲能電感之第一端與該濾波電感 之第二端連接,第二端與該第一整流二極體之正極連接; 一第一回授電容,其中該第一回授電容之第一端與該 第一整流二極體之正極連接,第二端與該第二諧振電容之 第一端連接; 一第二回授電容,其中該第二回授電容係與該第一整 流二極體並聯;以及 一第三回授電容,其中該第三回授電容係與該第二整 流二極體並聯。 20. —種電子式安定器,包含: 一濾波電感; 一濾波電容,其中該濾波電容之第一端與該濾波電感 之第二端連接,且該濾波電容之第二端及該濾波電感之第 一端係用以接收一交流電壓; 一第一整流二極體,其中該第一整流二極體之正極與 該濾波電感之第二端連接; 一第二整流二極體,其中該第二整流二極體之負極與 45 1336485 該第一整流二極體之正極連接; 一儲能電容,其中該儲能電容係與該第一整流二極體 之負極以及該第二整流二極體之正極並聯; 一第一開關元件; 一第二開關元件,其中該第二開關元件之第一端與該 第一開關元件之第二端連接,且該第一開關元件之第一端 與該第二開關元件之第二端係與該儲能電容並聯; 一第一諸振電容; 一第二諧振電容,用以並聯一負載; 一諧振電感,其中該諧振電感之第一端及第二端分別 與該第一諧振電容之第二端及該第一開關元件之第二端連 接,以及該第一諧振電容之第一端係連接於該第二諧振電 容之第一端,該第二諧振電容之第二端係連接於該第二整 流二極體之負極; 一儲能電感,其中該儲能電感之第一端與該濾波電容 之第二端連接,第二端與該第一開關元件之第二端連接; 一第一回授電容,其中該第一回授電容之第一端與該 第一整流二極體之正極連接,第二端與該第二諧振電容之 第一端連接; 一第二回授電容,其中該第二回授電容係與該第一整 流二極體並聯;以及 一第三回授電容,其中該第三回授電容係與該第二整 流二極體並聯。 46X. Application Patent Range: 1. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is connected to a second end of the filter inductor, and a second end of the filter capacitor And the first end of the filter inductor is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode, wherein the second rectifying diode has a negative pole and the first rectifying diode a positive storage connection; a storage capacitor, wherein the storage capacitor is connected in parallel with the anode of the first rectifying diode and the anode of the second rectifying diode; a first switching element; a second switching element, wherein The first end of the second switching element is connected to the second end of the first switching element and the second end of the filter capacitor, and the first end of the first switching element and the second end of the second switching element Parallel to the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; a resonant inductor, wherein the first and second ends of the resonant inductor are respectively coupled to the first resonant capacitor It The second end is connected to the first end of the second resonant capacitor, and the first end of the first resonant capacitor is connected to the anode of the first rectifying diode, and the second end of the second resonant capacitor is connected to the a first end of the first switching element, a storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter inductor 24 1336485, and the second end is connected to the anode of the first rectifying diode; And a first feedback capacitor, wherein the second end of the first feedback capacitor is connected to the anode of the first rectifier diode, and the first end is connected to the first end of the storage capacitor. 2. The electronic ballast of claim 1, further comprising a second feedback capacitor, wherein the first end of the second feedback capacitor is connected to the anode of the first rectifier diode, The two ends are connected to the second end of the storage capacitor. 3. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein the first end of the filter capacitor is coupled to the second end of the filter inductor, and the second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the first a cathode of the second rectifier diode is connected to the anode of the first rectifier diode; a storage capacitor, wherein the storage capacitor is connected to the anode of the first rectifier diode and the anode of the second rectifier diode Parallel; a first switching element; a second switching element, wherein the first end of the second switching element is coupled to the second end of the 25 1336485 first switching element, and the first end of the first switching element a second end of the second switching element is connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the resonant inductor is first and second End The second end of the first resonant capacitor is connected to the first end of the second resonant capacitor, and the first end of the first resonant capacitor is connected to the anode of the first rectifying diode, and the second resonant capacitor is The second end is connected to the second end of the first switching element; a storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter capacitor, and the second end is connected to the first switching element The second end is connected; and a first feedback capacitor, wherein the second end of the first feedback capacitor is connected to the anode of the first rectifying diode, and the first end is connected to the first end of the storage capacitor. 4. The electronic ballast of claim 3, further comprising a second feedback capacitor, wherein the first end of the second feedback capacitor is connected to the anode of the first rectifier diode, The two ends are connected to the second end of the storage capacitor. 5. An electronic ballast comprising: a wave inductor; a filter capacitor, wherein the first end of the filter capacitor is coupled to the second end of the filter inductor 26 1336485, and the second end of the filter capacitor and the filter The first end of the inductor is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode, wherein a cathode of the second rectifying diode is coupled to the anode of the first rectifying diode a storage capacitor, wherein the storage capacitor is connected in parallel with the anode of the first rectifying diode and the anode of the second rectifying diode; a first switching element; a second switching element, wherein the second a first end of the switching element is coupled to the second end of the first switching element and a second end of the filter capacitor, and the first end of the first switching element and the second end of the second switching element are coupled to the first end a first resonant capacitor; a second resonant capacitor for paralleling a load; a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor The first a first end of the resonant capacitor is connected, and a first end of the first resonant capacitor is connected to a positive pole of the first rectifying diode, and a second end of the second resonant capacitor is connected to the first switching component a second energy storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter inductor, the second end is connected to the anode of the first rectifier diode, and a feedback capacitor, wherein the capacitor The first end of the feedback capacitor is connected to the anode of the first rectifying diode, and the second end is connected to the second end of the first switching element 27 1336485. 6. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the first a cathode of the second rectifier diode is connected to the anode of the first rectifier diode; a storage capacitor, wherein the storage capacitor is connected to the anode of the first rectifier diode and the anode of the second rectifier diode Parallel; a first switching element; a second switching element, wherein the first end of the second switching element is coupled to the second end of the first switching element, and the first end of the first switching element and the second a second end of the switching element is connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively The first harmonic a second end of the resonant capacitor is coupled to the first end of the second resonant capacitor, and a first end of the first resonant capacitor is coupled to the anode of the first rectifying diode, and a second end of the second resonant capacitor Connected to one end of the first switching element, 28 1336485 is an energy storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter capacitor, and the second end is second with the first switching element And a feedback capacitor, wherein the first end of the feedback capacitor is connected to the anode of the first rectifier diode, and the second end is connected to the second end of the first switching component. 7. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode, wherein a cathode of the second rectifying diode is connected to a positive pole of the first rectifying diode; a third rectifying diode, wherein a negative electrode of the third rectifying diode is connected to a negative electrode of the first rectifying diode; a fourth rectifying diode, wherein a negative electrode of the fourth rectifying diode and the first a positive pole of the three-rectifying diode and a second end of the filter capacitor are connected, and a positive pole is connected to a positive pole of the second rectifying diode; a current limiting diode, wherein the positive pole of the current limiting diode and the third a negative-capacitor connection of the current-limiting diode; a 'capacitance capacitor, wherein the storage capacitor is connected in parallel with the anode of the current-limiting diode and the anode of the fourth rectifier diode; 29 1336485 - the first switching element a second switching element, The first end of the second switching element is connected to the second end of the first switching element, and the first end of the first switching element and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor and the second resonant capacitor The first end is connected, and the first end of the first resonant capacitor is connected to the anode of the first rectifying diode, and the second end of the second resonant capacitor is connected to the first end of the first switching element a storage inductor, wherein the first end of the energy storage inductor is coupled to the second end of the filter inductor, the second end is coupled to the anode of the first rectifier diode, and a second feedback capacitor, wherein the capacitor The first end of the second feedback capacitor is connected to the anode of the first rectifier diode, and the second end is connected to one end of the storage capacitor. 8. The electronic ballast of claim 7, further comprising a first feedback capacitor, wherein the second end of the first feedback capacitor is connected to the anode of the first rectifier diode, One end is connected to the anode of the current limiting diode. An electronic ballast comprising: 30 1336485 a filter inductor; a filter capacitor, wherein the first end of the filter capacitor is connected to the second end of the filter inductor, and the second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the a cathode of the second rectifying diode is connected to a cathode of the first rectifying diode; a third rectifying diode, wherein a cathode of the third rectifying diode is connected to a cathode of the first rectifying diode; a fourth rectifying diode, wherein a negative electrode of the fourth rectifying diode is connected to a positive electrode of the third rectifying diode, and a positive electrode is connected to a positive electrode of the second rectifying diode; a current limiting diode, The positive pole of the current limiting diode is connected to the negative pole of the third current limiting diode; a storage capacitor, wherein the storage capacitor is connected to the negative pole of the current limiting diode and the second rectifier diode The positive pole is connected in parallel; a second switching element, wherein the first end of the second switching element is coupled to the second end of the first switching element, and the first end of the first switching element and the second end of the second switching element The end system is connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively 31 1336485 and the first The second end of the resonant capacitor is connected to the first end of the second resonant capacitor, and the first end of the first resonant capacitor is connected to the anode of the first rectifying diode, and the second end of the second resonant capacitor Connected to the second end of the first switching element; a storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter capacitor, and the second end is opposite to the anode of the third rectifier diode And a second feedback capacitor, wherein the first end of the second feedback capacitor is connected to the anode of the first rectifier diode, and the second end is connected to one end of the storage capacitor. 10. The electronic ballast of claim 9, further comprising a first feedback capacitor, wherein the second end of the first feedback capacitor is connected to the anode of the first rectifier diode, One end is connected to the anode of the current limiting diode. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein the first end of the filter capacitor is connected to the second end of the filter inductor, and the second end of the filter capacitor and the filter inductor One end is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode, wherein a cathode of the second rectifying diode is connected to a positive pole of the first rectifying diode; 32 1336485 a third rectifying diode, wherein a cathode of the third rectifying diode is connected to a cathode of the first rectifying diode; a fourth rectifying diode, wherein a cathode of the fourth rectifying diode is a positive electrode of the third rectifying diode and a second end of the filter capacitor are connected, and a positive electrode is connected to a positive electrode of the second rectifying diode; a storage capacitor, wherein the storage capacitor is connected to the first rectifying diode a negative electrode and a positive electrode of the second rectifying diode are connected in parallel; a first switching element; a second switching element, wherein the first end of the second switching element is connected to the second end of the first switching element, and the First switch element The first end of the device and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the resonant inductor The first end and the second end are respectively connected to the second end of the first resonant capacitor and the second end of the first switching element, and the first end of the first resonant capacitor is connected to the second resonant capacitor An end of the second resonant capacitor is connected to the anode of the second rectifying diode; a storage inductor, wherein the first end of the storage inductor is connected to the second end of the filter inductor, The second end is connected to the anode of the first rectifying diode; a first feedback capacitor, wherein the first end of the first feedback capacitor is connected to the anode of the first rectifying diode, and the second end is a second end of the first switching element is connected; and a second feedback capacitor, wherein the first end of the second feedback capacitor is connected to the anode of the 33 1336485 third rectifying diode, and the second end and the second One end of the resonant capacitor is connected. 12. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current dust; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the a cathode of the second rectifying diode is connected to a cathode of the first rectifying diode; a third rectifying diode, wherein a cathode of the third rectifying diode is connected to a cathode of the first rectifying diode; a fourth rectifying diode, wherein a negative electrode of the fourth rectifying diode is connected to a positive electrode of the third rectifying diode, and a positive electrode is connected to a positive electrode of the second rectifying diode; and a storage capacitor, wherein the The storage capacitor is connected in parallel with the anode of the first rectifying diode and the anode of the second rectifying diode; a first switching element; a second switching element, wherein the first end of the second switching element First switching element The second end is connected, and the first end of the first switching element and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; 34 1336485 a second resonant capacitor for parallel connection a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor and the second end of the first switching element, and the first resonant capacitor One end is connected to the first end of the second resonant capacitor, and the second end of the second resonant capacitor is connected to the positive pole of the second rectifying diode; a storage inductor, wherein the first of the energy storage inductor The second end is connected to the second end of the filter capacitor, and the second end is connected to the anode of the third rectifying diode; a first feedback capacitor, wherein the first end of the first feedback capacitor and the first rectification The anode of the pole body is connected, the second end is connected to the younger end of the first switching element, and the second feedback capacitor, wherein the first end of the second feedback capacitor and the anode of the third rectifier diode Connecting, the second end and the second resonant capacitor Connected at one end. 13. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode, wherein a cathode of the second rectifying diode is connected to a positive pole of the first rectifying diode; a third rectifying diode, wherein a negative electrode of the third rectifying diode is connected to a negative electrode of the first rectifying diode of 35 1336485; a fourth rectifying diode, wherein a negative electrode of the fourth rectifying diode is a positive electrode of the third rectifying diode and a second end of the filter capacitor are connected, and a positive electrode is connected to a positive electrode of the second rectifying diode; a storage capacitor, wherein the storage capacitor is coupled to the first rectifying diode a cathode of the body and the anode of the second rectifier diode are connected in parallel; a first switching element; a second switching element, wherein the first end of the second switching element is connected to the second end of the first switching element, And the first switch The first end of the device and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the resonant inductor The first end and the second end are respectively connected to the second end of the first resonant capacitor and the second end of the first switching element, and the first end of the first resonant capacitor is connected to the second resonant capacitor a first end, the second end of the second resonant capacitor is connected to the anode of the second rectifying diode; an energy storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter inductor, The second end is connected to the anode of the first rectifying diode; a first feedback capacitor, wherein the first end of the first feedback capacitor is connected to the anode of the first rectifying diode, and the second end is a first resonant capacitor is coupled to the first terminal; and a second feedback capacitor, wherein the first end of the second feedback capacitor is coupled to the anode of the third rectifier diode, and the second terminal and the first switching component 36 1336485 second end connection. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein the first end of the filter capacitor is connected to the second end of the filter inductor, and the second end of the filter capacitor and the filter inductor One end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the second a negative electrode of the rectifier diode is connected to the anode of the first rectifier diode; a third rectifier diode, wherein a cathode of the third rectifier diode is connected to a cathode of the first rectifier diode; a rectifying diode, wherein a negative electrode of the fourth rectifying diode is connected to a positive electrode of the third rectifying diode, and a positive electrode is connected to a positive electrode of the second rectifying diode; and a storage capacitor, wherein the energy storage The capacitor is connected in parallel with the anode of the first rectifying diode and the anode of the second rectifying diode; a first switching element; a second switching element, wherein the first end of the second switching element is the first Switch element a second end is connected, and the first end of the first switching element and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; 37 1336485, a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor and the second end of the first switching element, and the first of the first resonant capacitor An end is connected to the first end of the second resonant capacitor, and a second end of the second resonant capacitor is connected to the anode of the second rectifying diode; a storage inductor, wherein the first end of the energy storage inductor Connected to the second end of the filter capacitor, the second end is connected to the anode of the third rectifying diode; a first feedback capacitor, wherein the first end of the first feedback capacitor and the first rectifying diode a positive connection of the body, the second end is coupled to the first end of the second resonant capacitor; and a second feedback capacitor, wherein the first end of the second feedback capacitor is coupled to the positive terminal of the third rectifier diode a second end and the first switching element Two-terminal connection. 15. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to one end of the chopper inductor, and a second rectifying diode, wherein the first a cathode of the second rectifying diode is connected to the anode of the first rectifying diode; a third rectifying diode, wherein the cathode of the third rectifying diode is connected to the cathode of the first rectifying diode of 38 1336485 a fourth rectifying diode, wherein a negative electrode of the fourth rectifying diode is connected to a positive electrode of the third rectifying diode and a second end of the filter capacitor, and a positive electrode and a positive electrode of the second rectifying diode a storage inductor, wherein the first end of the energy storage inductor is connected to the negative pole of the first rectifying diode; a first current limiting diode, wherein the positive pole of the current limiting diode and the energy storage Connecting the second end of the inductor; a second current limiting diode, wherein a negative electrode of the second current limiting diode is connected to a positive electrode of the second rectifying diode; a storage capacitor, wherein the storage capacitor system and the first current limiting diode a negative electrode and a positive electrode of the second current limiting diode are connected in parallel; a first switching element; a second switching element, wherein the first end of the second switching element is connected to the second end of the first switching element, and The first end of the first switching element and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor The first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor and the first end of the second resonant capacitor, and the first end of the first resonant capacitor is connected to the first end a second end of the second resonant capacitor is connected to the anode of the second current limiting diode; a first feedback capacitor, wherein the first end of the first feedback capacitor is 39 1336485 Positive connection of the first current limiting diode The second end is connected to the second resonant capacitor and the second feedback capacitor, wherein the first end of the second feedback capacitor is connected to the second end of the first switching element, and the second end is The cathode of the second current limiting diode is connected. 16. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the first a cathode of the second rectifying diode is connected to the anode of the first rectifying diode; a third rectifying diode, wherein a cathode of the third rectifying diode is connected to a cathode of the first rectifying diode; a fourth rectifying diode, wherein a cathode of the fourth rectifying diode is connected to a cathode of the third rectifying diode and a second end of the filter capacitor, and a cathode is connected to a cathode of the second rectifying diode; An energy storage inductor, wherein the first end of the energy storage inductor is connected to the negative pole of the first rectifier diode; a first current limiting diode, wherein the anode of the current limiting diode and the energy storage inductor Brother · one end connected, 40 1336485 one a second current limiting diode, wherein a negative electrode of the second current limiting diode is connected to a positive electrode of the second rectifying diode; a storage capacitor, wherein the storage capacitor is coupled to the first current limiting diode a cathode of the body and the anode of the second current limiting diode are connected in parallel; a first switching element; a second switching element, wherein the first end of the second switching element is connected to the second end of the first switching element, And the first end of the first switching element and the second end of the second switching element are connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; a resonant inductor, The first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor and the first end of the second resonant capacitor, and the first end of the first resonant capacitor is connected to the first end a second end of the second resonant capacitor is connected to the negative terminal of the first current limiting diode; a first feedback capacitor, wherein the first end of the first feedback capacitor is The positive terminal of the first current limiting diode is connected, and the second end a first resonant capacitor is coupled to the first end; and a second feedback capacitor, wherein the first end of the second feedback capacitor is coupled to the first end of the second resonant capacitor, the second end and the second limit The negative electrode of the flow diode is connected. 17. An electronic ballast comprising: a filter inductor; 41 1336485 a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter The first end of the inductor is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode, wherein a cathode of the second rectifying diode is coupled to the anode of the first rectifying diode a storage capacitor, wherein the storage capacitor is connected in parallel with the anode of the first rectifying diode and the anode of the second rectifying diode; a first switching element; a second switching element, wherein the second a first end of the switching element is coupled to the second end of the first switching element and a second end of the filter capacitor, and the first end of the first switching element and the second end of the second switching element are coupled to the first end The first capacitor and the second terminal are respectively connected to the second end And the first a second end of the switching element is connected, and a first end of the first resonant capacitor is connected to the first end of the second resonant capacitor, and a second end of the second resonant capacitor is connected to the second rectifying diode a positive energy storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter inductor, the second end is connected to the anode of the first rectifier diode, and a feedback capacitor, wherein the capacitor The first end of the feedback capacitor is connected to the anode of the first rectifying 42 1336485 diode, and the second end is connected to the first end of the second resonant capacitor. 18. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating voltage; the first rectifying diode, wherein the anode of the first rectifying diode is coupled to the second end of the filter inductor; and the second rectifying diode, wherein the first a cathode of the second rectifier diode is connected to the anode of the first rectifier diode; a storage capacitor, wherein the storage capacitor is connected to the anode of the first rectifier diode and the anode of the second rectifier diode Parallel; a first switching element; a second switching element, wherein the first end of the second switching element is coupled to the second end of the first switching element, and the first end of the first switching element and the second a second end of the switching element is connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively The first a second end of the first capacitor is connected to the second end of the first switching element, and a first end of the first resonant capacitor is connected to the first end of the second resonant capacitor, and the second end of the second resonant capacitor Connected to the positive pole of the second integral 43 1336485 flow diode; a storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter capacitor, and the second end is connected to the first switching element The second end is connected; and a feedback capacitor, wherein the first end of the feedback capacitor is connected to the anode of the first rectifying diode, and the second end is connected to the first end of the second resonant capacitor. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein the first end of the filter capacitor is coupled to the second end of the filter inductor, and the second end of the filter capacitor and the filter inductor One end is configured to receive an alternating current voltage; a first rectifying diode; a second rectifying diode connected to the anode of the second rectifying diode and the anode of the first rectifying diode; a storage capacitor, wherein the storage capacitor is connected in parallel with the anode of the first rectifying diode and the anode of the second rectifying diode; a first switching element; a second switching element, wherein the second switching element The first end is connected to the second end of the first switching element and the second end of the filter capacitor, and the first end of the first switching element and the second end of the second switching element are coupled to the storage capacitor Parallel; a first resonant capacitor; 44 a second resonant capacitor for paralleling a load; a resonant inductor, wherein the first end and the second end of the resonant inductor are respectively connected to the second end of the first resonant capacitor The first switching element The second end of the second resonant capacitor is connected to the first end of the second resonant capacitor, and the second end of the second resonant capacitor is connected to the second rectifying diode a negative electrode; a storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter inductor, and the second end is connected to the anode of the first rectifying diode; a first feedback capacitor, wherein The first end of the first feedback capacitor is connected to the anode of the first rectifying diode, the second end is connected to the first end of the second resonant capacitor; and a second feedback capacitor, wherein the second feedback The capacitor is connected in parallel with the first rectifying diode; and a third feedback capacitor, wherein the third feedback capacitor is connected in parallel with the second rectifying diode. 20. An electronic ballast comprising: a filter inductor; a filter capacitor, wherein a first end of the filter capacitor is coupled to a second end of the filter inductor, and a second end of the filter capacitor and the filter inductor The first end is configured to receive an alternating current voltage; a first rectifying diode, wherein a positive pole of the first rectifying diode is coupled to a second end of the filter inductor; and a second rectifying diode, wherein the first a cathode of the second rectifier diode is connected to the anode of the first rectifier diode of 45 1336485; a storage capacitor, wherein the storage capacitor is connected to the cathode of the first rectifier diode and the second rectifier diode a positive electrode connected in parallel; a first switching element; a second switching element, wherein the first end of the second switching element is connected to the second end of the first switching element, and the first end of the first switching element a second end of the second switching element is connected in parallel with the storage capacitor; a first resonant capacitor; a second resonant capacitor for paralleling a load; and a resonant inductor, wherein the resonant inductor is first and second End Connected to the second end of the first resonant capacitor and the second end of the first switching element, and the first end of the first resonant capacitor is connected to the first end of the second resonant capacitor, the second resonant capacitor The second end is connected to the negative pole of the second rectifying diode; a storage inductor, wherein the first end of the energy storage inductor is connected to the second end of the filter capacitor, and the second end and the first switching element The second end is connected to the first feedback capacitor, wherein the first end of the first feedback capacitor is connected to the anode of the first rectifying diode, and the second end is connected to the first end of the second resonating capacitor a second feedback capacitor, wherein the second feedback capacitor is connected in parallel with the first rectifying diode; and a third feedback capacitor, wherein the third feedback capacitor and the second rectifying diode in parallel. 46
TW94121057A 2005-06-23 2005-06-23 An electronic ballast with a power factor corrector working in continuous-current-mode TWI336485B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94121057A TWI336485B (en) 2005-06-23 2005-06-23 An electronic ballast with a power factor corrector working in continuous-current-mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94121057A TWI336485B (en) 2005-06-23 2005-06-23 An electronic ballast with a power factor corrector working in continuous-current-mode

Publications (2)

Publication Number Publication Date
TW200701295A TW200701295A (en) 2007-01-01
TWI336485B true TWI336485B (en) 2011-01-21

Family

ID=45075079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94121057A TWI336485B (en) 2005-06-23 2005-06-23 An electronic ballast with a power factor corrector working in continuous-current-mode

Country Status (1)

Country Link
TW (1) TWI336485B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7956549B2 (en) 2008-07-16 2011-06-07 Zippy Technology Corp. Power conversion structure
TWI463771B (en) * 2010-08-27 2014-12-01 Univ Nat Cheng Kung Llc resonant converting system with continuous-current-mode power-factor-correction

Also Published As

Publication number Publication date
TW200701295A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
Wang et al. A single-stage LED driver based on SEPIC and LLC circuits
CN108471232B (en) Double rectifier bridge formula single stage power factor correction power circuit
Wang et al. A single-stage single-switch LED driver based on the integrated SEPIC circuit and class-E converter
US8427064B2 (en) Electronic ballast circuit for fluorescent lamps
JP2021517449A (en) Switching power supply circuit
JP2003520407A (en) Power feedback power factor correction scheme for multiple lamp operation.
KR100724155B1 (en) Single-stage pfc and power converter circuit
Ekkaravarodome et al. Single-Stage Electronic Ballast Using Class-DE Low-${d}\upsilon/{d} t $ Current-Source-Driven Rectifier for Power-Factor Correction
TWI336485B (en) An electronic ballast with a power factor corrector working in continuous-current-mode
TW201330700A (en) Single stage electronic ballast with power factor correction
TWI282713B (en) Electronic ballast with constant current control
TW201023492A (en) Single stage switching power supply circuit
Wang A novel single-switch single-stage electronic ballast with high input power factor
CN201114946Y (en) Dual vertical tube electronic ballast
TWI466421B (en) Method of Activation Method of Passive AC and DC Converter and Its Function Correction Circuit
Huang et al. Analysis and design of a single-stage buck-type AC-DC adaptor
TWI310197B (en) An electronic ballast with a power factor corrector working in discontinuous-current-mode
KR20140028903A (en) Single-stage power factor correction flyback converter for led lighting
TWI334317B (en) Charge-pump electronic ballast with piezoelectric transformer
WO2014086097A1 (en) Passive power factor correction and alternating-direct current conversion device and power factor correction circuit operation method
US6104142A (en) Circuit arrangement for operating low-pressure discharge lamps
TW200810606A (en) A self-oscillating full-bridge electronic ballast
Lam et al. A new passive valley fill dimming electronic ballast with extended line current conduction angle
TW521538B (en) Single-stage electronic ballast circuit having emergency illumination function
Liang et al. Flyback-forward power factor correction circuit with line-frequency ripple suppression

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees