TWI282713B - Electronic ballast with constant current control - Google Patents

Electronic ballast with constant current control Download PDF

Info

Publication number
TWI282713B
TWI282713B TW94124400A TW94124400A TWI282713B TW I282713 B TWI282713 B TW I282713B TW 94124400 A TW94124400 A TW 94124400A TW 94124400 A TW94124400 A TW 94124400A TW I282713 B TWI282713 B TW I282713B
Authority
TW
Taiwan
Prior art keywords
diode
rectifying diode
capacitor
resonant
circuit
Prior art date
Application number
TW94124400A
Other languages
Chinese (zh)
Other versions
TW200706069A (en
Inventor
Ray-Lee Lin
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94124400A priority Critical patent/TWI282713B/en
Publication of TW200706069A publication Critical patent/TW200706069A/en
Application granted granted Critical
Publication of TWI282713B publication Critical patent/TWI282713B/en

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

The electronic ballast used to drive a discharge lamp and keep the current flowing through the discharge lamp is invented. The electronic ballast includes a rectifier, a starting circuit, a gate converter, an inverter, a resonant circuit and a constant current controlling circuit. The constant current control circuit is used to sense the current flowing through the lamp and then to control the gate converter for increasing or decreasing the switching frequency of the inverter for further regulating the current flowing the lamp.

Description

1282713 九、發明說明: •【發明所屬之技術領域】 , :發明是有關於一種電子式安定器,特別是有關於— ”有回授式定電流控制電路之電子式安定器。 【先前技術】 隨著科技的發展及生活水準的提高,照明已成為人巧 •日常生活中不可缺少的基本需求。近年來由於全球各種^ :的遙勃發展、商業活動的頻繁以及居家生活品質的提 照明用電也與日俱增,使得合乎高效率'舒適、安全、 同經濟效應之照明系統的開發也漸漸備受重視。其中,由 於氣體放電燈具有發光效率高、壽命長,光色多元等優點, 成為了今日照明系統的主流。 乳體放電燈係呈現負增量電阻的電氣特性,需要安定 器來維持流經燈管的電流。氣體放電燈的安定器除了維ς • t流的功能之外,必須兼具啟動氣體放電燈的功能,其中 係利用提供-高電壓使游離氣體產生放電現象的方法來啟 -動氣體放電燈。在啟動了氣體放電燈之後,僅需再維持— 較小之電壓維持氣體放電之電流即可。 傳統所使用之安定器為電磁作業的形式。雖然電磁式 安定器具有耐用以及構造簡單等優點,但其更有著效率低 落、體積大、笨重、易生噪音以及低頻閃爍現象等缺點。 對現代的越來越多元化的燈具應用而言,電磁式安定器越 來越無法滿足使用上的需求。相較於電磁式安定器,電子 1282713 式安定器具有啟動快、不閃爍、高光效與高功率因數等優 $,更可較電磁式安定器節省大量的電能。因此電子式安 定器已漸漸地取代了電磁式安定器的地位。 一般的電子式安定器所使用的電源是直流電,但目前 電力系統所供應的電源為交流電。所以目前大多利用二極 體全波整流電路或倍壓整流電路將電力系、統所供應之交流 電源轉換成直流電以供電子式安定器使用。接著電子式安 定器便會在氣體放電燈負載的兩端產生高頻電流,以點燃 並維持氣體放電燈負載所發射出的亮光。 然'而’目前由電力公司所傳送供—般家庭使用的市電 在品質上常無法達到百分之百的穩^,所以電子式安定器 所產生的高頻電流產生也容易因為電源的不穩定而產生變 動’如此’便容易使氣體放電燈負載產生閃燦的現象,而 引起了制者的不舒服H由於氣體放電燈負載會隨 著使用時間的增加而老化’進而會使其本身的阻抗逐漸增 加,如此,流經氣體放電燈負载的電流便會減少,降低了 氣體放電燈負載所能散發出的亮度。 因此,若能夠有效地維持住流經氣體放電燈負載的電 流,使其無論外在環境條件如何變化皆能固定在一定值, 則氣體放電燈負錢能散發^為穩定的絲,使用壽命 也能夠更為長久。 【發明内容】 就疋在提供一種用以啟動及維 因此本發明的主要目的 1282713 持氣體放電燈負載之電子式安定器。 種具有回授定電流控 本發明的另一目的就是在提供一 制電路之電子式安定器。 ^發明的再-目的就是在提供—種能夠提高氣體放電 以載之發光品質以及使用壽命之電子式安定器。 〜本發明的更—目的就是在提供—種適㈣非穩定電源 %境之電子式安定器。 、為達到本發明之上述目的,符合本發明實施例之電子 式女疋益包含有一整流器、一啟動電路、一閘控制器、一 '奐流器、一共振電路以及一定電流控制電路。其中,整流 Γ係用以接收父流電壓源所提供之交流電壓,並將該交 流電壓整流為直流電壓以提供其他元件使用。接著,啟動 電路在接X 了由整流③所提供之直流電壓之後,會引發閉 控制器的動作,其中’閘控制器係用以控制換流器的切換 頻率’使換流II能夠產生不同頻率的高頻方波。共振電路 當中具有多個諧振元件,利用這些諧振元件在魏作用時 所產生的諧振阻抗能夠對換流器所產生之高頻交流方波進 行濾波,經過濾波之後的高頻交流方波會轉變為適於供氣 體放電燈負載使用之正弦電流。 但由於於氣體放電燈負載兩端所產生的正弦電流有可 旎因為一些外在環境因素而變得不穩定,所以本發明中的 疋電流控制電路會將偵測流經氣體放電燈負載的電流,並 以此所偵測出之電流值為依據來回授控制閘控制器,再經 由閘控制器對換流器的控制來改變換流器所產生之高頻方 1282713 波之頻率。因為改變了萬斗首 電路之^頻率便可跟著改變共振 ,,^ ^ 二矾體放電燈負載之電流值。 ^ _ 戟之電流直係變為可控制,所以 也可fe易地固定住該電流值, 射出的光源。 〜乳體放電燈負載所發 【實施方式】 由於一般之電子式安定器所提供之負載電流值 電源品質或負載老化等外在因素而變得不穩定,而造成使 用上的不便,因此本發明之基本概念係將於電子式安定哭 中加裝一定電流控制器,用以擷取通過氣體放電燈負載之 電流值並據此對電子式安定器中的閉控制器進行回授於 制,使間控制器能夠改變換流器所輸出之高頻方波之頻 率。經由控制高頻方波的頻率便能夠連帶控制流經氣體放 電燈負載之電流值’並將其固定於一穩定值。 第1圖緣示了符合本發明概念之_電子式安定器1〇〇 之電路架構圖。其中,整流器,1()4接收了交流電屋源⑽ 所提供的父流電力來源’並整流為直流電源後輸出,以供 後續的電路元件❹。接著,由整” 1G4所提供的直流 電壓會觸發啟動電路106啟動問控制器⑽開始動作,其 中閘控制a 108的作用係能夠控制換流器11〇產生切換動 作’以將直流電源切換成為高頻方波輸出,因此該高頻方 波的頻率也是為閘控制3 1G8所控制。共振電路112内包 含了多個諧振元件,在提供了適當的驅動之後,這些諧振 1282713 元件便會互相產生諧振作用並形成言皆振阻抗。換流器㈣ 所輸出之高頻方波在經過共振電⑬112中譜振阻抗的遽波 作用之後’會在負冑116的兩端上出現接近於正弦波的電 流,用以供應負載116之所需。 由於在實際的使用情況之下,交流電塵源1〇2所提供 的交流電壓通常都極不穩定,連帶著使負載ιΐ6兩端之正 弦電流的電流值也經常會產生變化,使得負載ιΐ6所發出 之光源也極不穩定。另外,隨|, Α Γ 1現者負載1 Μ使用時間的增長, 負載116本身的阻抗值也會隨之增加,進而降低了流經負 載116的電流值,使得負載116所發出之光源產生衰減, 縮短了負« U6的使用期限。因此,在符合本發明實施例 之電路中更包含了-定電流控制電路114,用以穩定流通負 載116之電流值。 定電流控制電路114會先榻取偵測流經負載ιΐ6之電 流值’並依據所偵測到的電流值回授控制閘控制器ι〇8。因 為換流器⑽所輸出之高頻方波之頻率係為閘控制器1〇8 所控制,I高頻方波之頻率又與共振電路112之電壓增益 有關’所⑽由控·㈣器1()8即可間接控制共振電路 108之電壓增益。最後,共振電路1〇8之電壓增益又會影響 流經負載116之電流值大小,因此經由動態地調整共振電 路112之電壓增益’可穩定住流經負載116之電流值,此 即為定電流控制電路之基本作業原理。以下係列舉多種實 施例來說明能夠達成本發明目的之電路態樣。 第2A圖緣示了符合本發明之第一實施例之電子式安 1282713 定器之電路圖。此電子式安定器之電源係由一交流電壓源 齡 Vac所提供。由交流電壓源Vac所提供之交流電源會被送入 由一第一整流二極體D1、一第二整流二極體〇2、一第三 整流二極體D3以及一第四整流二極體〇4所組成之全波整 流器中。經過如此連接之後,再全波整流器的兩端會輸出 一直流電壓,但此時該直流電壓的漣波仍大,所以可在全 波整流器的兩端並聯一穩壓電容Cdc,用以使全波整流器 所輸出的直流電壓的波形較為平穩。 本實施例中的啟動電路包含了一啟動電阻Rst、一啟動 電容Cst以及一兩端交流開關元件(diac)Dac。由全波整流 為所輸出的直流電壓會在啟動電阻Rst上產生一充電電 流,此充電電流會對啟動電容Cst進行充電。當啟動電容1282713 IX. Description of the invention: • [Technical field to which the invention belongs]: The invention relates to an electronic ballast, and in particular to an electronic ballast having a feedback current control circuit. [Prior Art] With the development of science and technology and the improvement of living standards, lighting has become an indispensable basic requirement in daily life. In recent years, due to the global development of various types, the frequent development of commercial activities and the quality of life at home. Electricity is also increasing day by day, making the development of lighting systems that are comfortable, safe, and economical with high efficiency. Gradually, due to the advantages of high luminous efficiency, long life, and diversified light color, gas discharge lamps have become today. The mainstream of the lighting system. The emulsion discharge lamp exhibits the electrical characteristics of a negative incremental resistance and requires a ballast to maintain the current flowing through the lamp. The ballast of the gas discharge lamp must be in addition to the function of the V. The function of starting a gas discharge lamp is to provide a discharge phenomenon by using a high voltage to generate a discharge phenomenon of a free gas. - Dynamic gas discharge lamp. After the gas discharge lamp is activated, it only needs to be maintained - the smaller voltage maintains the current of the gas discharge. The traditionally used ballast is in the form of electromagnetic operation. Although the electromagnetic ballast is durable And the advantages of simple construction, but it has the disadvantages of low efficiency, large size, heavy, easy to generate noise and low frequency flicker. For modern and increasingly diversified lighting applications, electromagnetic ballasts are increasingly unable to Meet the needs of the use. Compared with the electromagnetic ballast, the electronic 1282713 ballast has excellent start-up, no flicker, high luminous efficiency and high power factor, and can save a lot of electric energy compared with the electromagnetic ballast. The ballast has gradually replaced the position of the electromagnetic ballast. The power supply used in general electronic ballasts is direct current, but the power supply currently supplied by the power system is alternating current. Therefore, most of the current use of diode full-wave rectifier circuits Or a voltage doubler rectifier circuit converts the AC power supplied by the power system and the system into DC power for use by the electronic ballast. Then the electronic ballast will generate high-frequency current at both ends of the gas discharge lamp load to ignite and maintain the light emitted by the gas discharge lamp load. However, it is currently transmitted by the power company for general household use. The quality of the mains is often not 100% stable, so the high-frequency current generated by the electronic ballast is also easy to change due to the instability of the power supply. 'So' it is easy to make the discharge of the gas discharge lamp flash. , causing the uncomfortableness of the manufacturer. H The gas discharge lamp load will age with the increase of the use time, which will gradually increase its own impedance. Thus, the current flowing through the gas discharge lamp load will decrease and decrease. The brightness that can be emitted by the gas discharge lamp load. Therefore, if the current flowing through the gas discharge lamp load can be effectively maintained so that it can be fixed at a certain value regardless of the external environmental conditions, the gas discharge lamp is negative. Money can be distributed as a stable silk, and the service life can be longer. SUMMARY OF THE INVENTION An electronic ballast for holding a gas discharge lamp load is provided to activate and maintain the primary object of the present invention. BACKGROUND OF THE INVENTION Another object of the present invention is to provide an electronic ballast for a circuit. The re-invention of the invention is to provide an electronic ballast capable of improving the discharge quality of the gas and the lifetime of the gas. ~ The more the purpose of the present invention is to provide an electronic stabilizer for the (four) unsteady power supply. In order to achieve the above object of the present invention, an electronic female benefit according to an embodiment of the present invention includes a rectifier, a starting circuit, a gate controller, a 'choke, a resonant circuit, and a constant current control circuit. The rectifying lanthanum is used to receive the AC voltage provided by the parent voltage source and rectify the AC voltage into a DC voltage for use by other components. Then, after the start-up circuit is connected to the DC voltage supplied by the rectifier 3, the operation of the closed controller is triggered, wherein the 'gate controller is used to control the switching frequency of the converter' so that the commutation II can generate different frequencies. High frequency square wave. The resonant circuit has a plurality of resonant elements, and the resonant impedance generated by the resonant elements during the action of the Wei can filter the high-frequency alternating square wave generated by the inverter, and the filtered high-frequency alternating square wave is converted into Sinusoidal current suitable for use with gas discharge lamp loads. However, since the sinusoidal current generated at both ends of the gas discharge lamp load is unstable due to some external environmental factors, the 疋 current control circuit of the present invention will detect the current flowing through the gas discharge lamp load. And using the detected current value as a basis to reciprocate the control gate controller, and then control the inverter through the gate controller to change the frequency of the high frequency side 1282713 wave generated by the inverter. Because the frequency of the million-head circuit can be changed, the resonance value can be changed, and the current value of the load of the two-body discharge lamp is changed. ^ _ 电流 The current is directly controllable, so it is also easy to fix the current value and emit the light source. ~Embedded discharge lamp load [Embodiment] The present invention is inconvenient due to external factors such as power supply quality or load aging provided by a general electronic ballast, which causes inconvenience in use. The basic concept is to install a certain current controller in the electronic stability crying to capture the current value of the load through the gas discharge lamp and to feedback the closed controller in the electronic ballast accordingly. The inter-controller can change the frequency of the high-frequency square wave output by the inverter. By controlling the frequency of the high frequency square wave, it is possible to control the current value ' flowing through the gas discharge lamp load' and fix it to a stable value. Fig. 1 is a circuit diagram showing the electronic ballast 1 符合 in accordance with the concept of the present invention. Among them, the rectifier, 1 () 4 receives the parent flow power source provided by the AC house source (10) and rectifies it into a DC power source for output for subsequent circuit components. Then, the DC voltage provided by the whole "1G4" triggers the start circuit 106 to start the controller (10) to start the action, wherein the gate control a 108 functions to control the inverter 11 to generate the switching action 'to switch the DC power to high. The frequency square wave output, so the frequency of the high frequency square wave is also controlled by the gate control 3 1G8. The resonance circuit 112 contains a plurality of resonant elements, and after providing appropriate driving, the resonant 1282713 components will resonate with each other. The action and the formation of the oscillatory impedance. The high-frequency square wave output by the inverter (4) will appear as a current close to the sine wave on both ends of the negative 胄116 after the chopping action of the spectral impedance in the resonant electric 13112 For the purpose of supplying the load 116. Since the AC voltage supplied by the AC dust source 1〇2 is usually extremely unstable under actual use conditions, the current value of the sinusoidal current across the load ΐ6 is also connected. Frequent changes often make the light source emitted by the load ΐ6 extremely unstable. In addition, with |, Α Γ 1 the current load 1 Μ increase in use time, the load 116 itself The impedance value also increases, thereby reducing the value of the current flowing through the load 116, causing the source of light emitted by the load 116 to attenuate, shortening the life of the negative «U6. Thus, in a circuit consistent with embodiments of the present invention, A constant current control circuit 114 is included for stabilizing the current value of the circulating load 116. The constant current control circuit 114 first detects the current value flowing through the load ι6 and feedback control according to the detected current value. The gate controller ι〇8. Because the frequency of the high frequency square wave output by the inverter (10) is controlled by the gate controller 1〇8, the frequency of the I high frequency square wave is related to the voltage gain of the resonance circuit 112. (10) The voltage gain of the resonant circuit 108 can be indirectly controlled by the control (4) device 1 () 8. Finally, the voltage gain of the resonant circuit 1 〇 8 in turn affects the magnitude of the current flowing through the load 116, thus dynamically adjusting the resonant circuit The voltage gain of 112 can stabilize the current value flowing through the load 116, which is the basic operating principle of the constant current control circuit. The following series of various embodiments are used to illustrate the circuit aspect that can achieve the object of the present invention. 2A is a circuit diagram of an electronic amp 1282713 aligner according to the first embodiment of the present invention. The power supply of the electronic ballast is provided by an AC voltage source age Vac. Provided by an AC voltage source Vac. The AC power source is sent to a full-wave rectifier composed of a first rectifying diode D1, a second rectifying diode 〇2, a third rectifying diode D3, and a fourth rectifying diode 〇4. After such connection, the full-wave rectifier will output a DC voltage at both ends of the full-wave rectifier, but the DC voltage is still large at this time, so a voltage-stabilizing capacitor Cdc can be connected in parallel across the full-wave rectifier for The waveform of the DC voltage outputted by the full-wave rectifier is relatively smooth. The starting circuit in this embodiment includes a starting resistor Rst, a starting capacitor Cst, and a two-terminal AC switching element (diac) Dac. The full-wave rectification into the output DC voltage produces a charging current on the starting resistor Rst, which charges the starting capacitor Cst. When starting capacitor

Cst上的充電電壓超過了一定的程度之後,會導通兩端交流 開關7L件Dac,此時,便會有啟動電流流通兩端交流開關 元件Dac。After the charging voltage on Cst exceeds a certain level, the AC switch 7L Dac at both ends is turned on. At this time, the starting current flows through the AC switching element Dac at both ends.

本實施例中的閘控制器包含了一第一控制線圈 ^1·1、一第一控制線圈CT1-2以及一第三控制線圈 CT1」,且該三控制線圈皆纏繞於同一鐵心繞阻上,所以能 夠互相傳遞電流能量。其中,第-控制線圈CT1-1控制了 »第一開關兀件S1的切換,第二控制線圈CT1-2控制了一 ^一開關兀件S2的切換,而第三控制線圈cT1_3則偵測了 、振電路上電流。本電路中的換流器便是由前述之第一開 哥元件S1以及第二開關元件S2串聯而成,其中在本電路 中的開關το件係利用M〇SFET來實現,而第一開關元件W 10 1282713 本電路中的共振電 與第二開關元件S2之間的連接點會再盥 路連接。 〜、本μ施例中的共振電路包含了-隔離電容Cb、-諧振 雜=Lr以及一谐振電容Cr。其中,隔離電容以係用以隔 離^流成分,而賴電感Lr及諧振電容Cr係能夠互相產 生咱振作用’以產生諧振電壓與電流供氣體放電燈負載The gate controller in this embodiment includes a first control coil ^1·1, a first control coil CT1-2, and a third control coil CT1", and the three control coils are all wound on the same core winding. So they can transfer current energy to each other. Wherein, the first control coil CT1-1 controls the switching of the first switch element S1, the second control coil CT1-2 controls the switching of the switch element S2, and the third control coil cT1_3 detects , the current on the vibration circuit. The inverter in the circuit is formed by connecting the first Kaikoe element S1 and the second switching element S2 in series, wherein the switch τ in the circuit is realized by M〇SFET, and the first switching element W 10 1282713 The connection point between the resonant power in this circuit and the second switching element S2 is connected again. ~ The resonant circuit in the present embodiment includes - isolation capacitor Cb, - resonance impurity = Lr, and a resonance capacitor Cr. Wherein, the isolation capacitor is used to isolate the component, and the inductor Lr and the resonant capacitor Cr are capable of generating a resonance effect with each other to generate a resonant voltage and current for the gas discharge lamp load.

Lamp使用。在本實施例中,整個共振電路係與第—開關元 _ 件S1並聯。 依據上述之連接關係,當兩端交流開關元件Dac被導 通之後,便會有電流流經第一控制線圈CTM,接著第三 、 控制線圈CT1-3便會感應出另—電流往隔離電容cb等元件 的方向流去。但因為另外有―穩麗元件與第—控制線圈 CT1-1並聯,在本實施例中該穩壓元件係由相對之一第三 齊納二極體DZ3以及-第四齊納二極體Dz4所串接而成, 所以也會有部分電流流經第三齊納二極體Dz3以及第四齊 納二極體Dz4而產生觸發第1關元件S1導通的電壓,導 •致在第三控制線圈CTW上又緊接著會流通一往第一開關 -元件S1方向流去之電流。此時,第二控制線圈cti_2便會 感應產生一電流,此電流會流經與其並聯 生電壓啟動第二開關元件。在本實施例中,== 相對之一第一齊納二極體Dzl以及一第二齊納二極體μ 所串接而成,其不僅能夠提供第二控制線圈CT1_2 一電流 釋放路徑’也能夠穩定第二開關元件S2的觸發電壓。另外1 I本實施例中還有-第五放電二極M D5帛以限制第二控 11 1282713 制線圈CT1-2所產生之電流流回啟動電路。 在本實施例中’係將第一控制線圈Ctp丨以及第二控 制線圈CT1 -2设計為互為相反極性。如此,會造成第一開 關兀件si以及第二開關元件S2也會互相反相切換,並於 該二開關元件之串聯連接處輸出高頻方波,且該高頻方波 的頻率便是由第一開關元件S1以及第二開關元件S2的切 換頻率做决疋,也就是由流經第三齊納二極體以及第 四角納一極體Dz4或是流經第一齊納二極體Dz丨以及第二 齊納二極體Dz2的電流大小做決定。 由換流器所輸出之高頻方波經過諧振電感^以及諧振 電谷Cr的諧振濾波之後,會在氣體放電燈負載的兩 端產生一電壓與電流,其中該電壓與電流之大小係與高頻 方波之頻率大小有_,亦即,調整高頻方波之頻率大小即 可凋整忒正弦電流之大小。此外,氣體放電燈負載 的阻抗大小可能會隨著時間以及環境的變化而變化,造成 流經氣體放電燈負載Lamp的電流大小也會跟著變化,因 此,需時時調控流經氣體放電燈負載Lamp之電流大小,使 其能固定在一定值。 因此,在本實施例的定電流控制電路中,具有纏繞於 同一鐵心繞組上之一第一感測線圈CT2」以及一第二感測 線圈CT2-2。第一感測線圈c丁2]能夠偵測流經氣體放電 燈負載Lamp之電流並將其感測至第二感測線圈CT2_2。由 第一感測線圈CT2-2所感應輸出的電流會經過由一第六整 流二極體D6、一第七整流二極體D7 '一第八整流二極體 12 1282713 D8以及-第九整流二極體D9所組成之全波整流器整流成 為一直流電流。接著該直流電流會再流過一轉換電阻Rl, 以產生一感測電壓。感測電壓會先為一濾波電阻R2以及一 滤波電容C3所組成之濾波器所過濾、,以將電壓訊號中的雜 訊濾除。經過濾波之後的電壓訊號會被用以調整一可變電 阻元件S3之電阻值,在本實施例中也是以一 來 實現可變電阻元件S3,但與第一開關元件S1以及第二開 關元件S2不同的是,可變電阻元件S3係操作於m〇sfet 的歐姆區,故可做為可變電阻使用。另外,在此一樣會裝 設用以穩定可變電阻元件S3的觸發端電壓之一穩壓元件, 在本實施例中係以一齊納二極體Dz5來實現該穩壓元件。 如箣所述,經由控制流經第三齊納二極體以及第 四齊納二極體Dz4的電流大小可以連帶控制流經氣體放電 燈負載Lamp之電流大小,因此可變電阻元件S3的電阻值 會被用來控制流經第三齊納二極體Dz3以及第四齊納二極 體Dz4的電流大小。如圖所示,可變電阻元件會與由一 第十整流二極體D10、一第十一整流二極體DU、一第十 一整μ —極體D12以及一第十三整流二極體D丨3所組成之 全波整流盗之雙輸出端並聯,且該全波整流器之雙輸出端 會與該第一控制線圈CT1-1之兩端並聯,用以控制流經第 二齊納二極體Dz3以及第四齊納二極體dz4的電流。 將定電流控制電路根據上述之連接方式連接之後,當 流經氣體放電燈負載Lamp之電流過大時,感測線圈CT2_2 也會輸出一較大之電流,並於轉換電阻R1上產生一較大之 13 1282713 電壓1接著,較大之電壓便會造成可變電阻元件S3具有較 J之電阻,此時,原本從第一控制線圈cti_ 1流往第三齊 納一極體DZ3以及第四齊納二極體Dz4之電流會有一大部 分:旁分流往可變電阻元件S3,造成第一開關元件si以 及第二開關元件S2的切換頻率皆上升,進而使共振電路之 電壓增盈以及流經氣體放電燈負載Lamp之電流皆下降。如 此’流經氣體放電燈負載Lamp之電流大小反而會回復額定 電流。 反之富"IL經氣體放電燈負載Lamp之電流過小時,感 測線圈CT2-2也會輸出一較小之電流,並於轉換電阻ri 上產生一較小之電壓。接著,較小之電壓便會造成可變電 阻元件S3具有較大之電阻,此日寺,原本從第一控制線圈 cti-i流往第三齊納二極體Dz3以及第四齊納二極體 之電w會有僅有一小部分甚至無電流被旁分流往可變電阻 兀件S3,造成第一開關元件S1以及第二開關元件的切 換頻率皆下降’進而使共振電路之電壓增益以及流經氣體 放電k負載Lamp之電流皆上升。如此,流經氣體放電燈負 載Lamp之電流大小反而會回復額定電流。 口刖所述,無淪控制流經第三齊納二極體以及第 四齊納二極體DZ4之電流大小,或是控制流經第一齊納二 極體Dzl以及第二齊納二極體Dz2之電流大小皆可間接地 控制流經氣體放電燈負載Lamp之電流大小。因此在第2B 圖所不本發明之第二實施例之電路圖中,係將由第十整 流二極體DIG、第十—整流二極體DU、第十二整流二極 14 1282713 體D 12以及苐十三整流二極 雔於入姓命 > 篮DU所組成之全波整流器之 又輸入鳊與弟二控制線圈 钼溆筮面 2並聯。如此,本電路亦能實 現與弟2A圖所示電路相同之作用。 、 第从圖緣示了本發明之第三實施例,本實施例係 2A圖所不之電路變化而來。〜 罘 ^ ηι . ^ _ ”中係利用一弟十四整流二極 體D14來取代由第十整 D11、第+-敕4 D1G、弟十-整流二極體 所植成之人:一極體DU以及第十三整流二極體Dl3 所成之王波整流器,以達到節省電路元件之效果。第十 四限流二極體Dl4之連 议禾弟十 … 運接方式係使苐-控制線目CT1-1盥 可變電阻元件S3能夠形成一 ^ 杏馆也#。 电爪^路。如此,本電路亦能 员見人弟2Α圖所示電路相同之作用。 會示了本發明之第四實施例,本實施例 體DU來取代由第十一弟十四整流二極 nn…丄 瓜―極體Dl0、第十一整流二極體 '/二整流二極體Dl2以及第十三整流二極體Dl3 斤=之全波㈣H ’㈣到節省電路元件之效果 四限流二極體m4之連接 币卞 運接方式係使第二控制線圈CT1J盥 元件S3能夠形成一電流迴路。如此,本電路亦能 貝見,、弟2B圖所不電路相同之作用。 Μ ξ7Α时不了本發明之第五實施例,本實施例係由第 二:不之電路變化而來。其中係將原本與第-開關元: 並:之共振電路整組改與第二開關元件s2相並聯,而 …電路當中的各個電路元件則未有改變。其中 振電路來說,其上所流通之電流依然為交流電流,所么 15 !282713 電路亦能實現盘第2 A同π ^ 一弟2Α圖所示電路相同之作用。 第4Β圖繪示了本發丄每 2F5岡無- 之弟只轭例,本實施例係由楚 2Β圖所不之電路變化而來。其由: 以並聯之共振電路整組改 /、弟開關兀件 j電路當中的各個電路元件則未有改變。其中因為^ J來說,其上所流通之電流依然為交流電流,所以:Lamp is used. In the present embodiment, the entire resonant circuit is connected in parallel with the first switching element S1. According to the above connection relationship, when the two-terminal AC switching element Dac is turned on, a current flows through the first control coil CTM, and then the third, control coil CT1-3 induces another current to the isolation capacitor cb, etc. The direction of the component flows. However, since there is another "stable component" in parallel with the first control coil CT1-1, in the embodiment, the voltage stabilizing component is composed of a third Zener diode DZ3 and a fourth Zener diode Dz4. Connected in series, so some current flows through the third Zener diode Dz3 and the fourth Zener diode Dz4 to generate a voltage that triggers the conduction of the first off element S1, and leads to the third control. The coil CTW is followed by a current flowing in the direction of the first switch-element S1. At this time, the second control coil cti_2 induces a current which flows through the parallel voltage to activate the second switching element. In this embodiment, == is connected in series with one of the first Zener diode Dz1 and a second Zener diode μ, which can provide not only the second control coil CT1_2, but also a current release path. The trigger voltage of the second switching element S2 can be stabilized. In addition, in the present embodiment, there is a fifth discharge diode M D5 帛 to limit the current generated by the second control 11 1282713 coil CT1-2 to flow back to the startup circuit. In the present embodiment, the first control coil Ctp 丨 and the second control coil CT 1-2 are designed to have opposite polarities with each other. In this way, the first switching element si and the second switching element S2 are also reverse-phase-switched to each other, and a high-frequency square wave is outputted at the series connection of the two switching elements, and the frequency of the high-frequency square wave is The switching frequency of the first switching element S1 and the second switching element S2 is determined, that is, flowing through the third Zener diode and the fourth corner body Dz4 or flowing through the first Zener diode The current magnitude of Dz丨 and the second Zener diode Dz2 is determined. After the high-frequency square wave outputted by the inverter is subjected to the resonance filtering of the resonant inductor and the resonant electric valley Cr, a voltage and a current are generated at both ends of the gas discharge lamp load, wherein the voltage and the current are high. The frequency of the frequency square wave has _, that is, the frequency of the high frequency square wave can be adjusted to the magnitude of the sinusoidal current. In addition, the impedance of the gas discharge lamp load may change with time and environment, and the current flowing through the gas discharge lamp load Lamp will also change accordingly. Therefore, it is necessary to regulate the flow through the gas discharge lamp load. The current is so large that it can be fixed at a certain value. Therefore, in the constant current control circuit of the present embodiment, there is one of the first sensing coil CT2" and the second sensing coil CT2-2 wound around the same core winding. The first sensing coil c2] is capable of detecting a current flowing through the gas discharge lamp load Lamp and sensing it to the second sensing coil CT2_2. The current induced by the first sensing coil CT2-2 passes through a sixth rectifying diode D6, a seventh rectifying diode D7', an eighth rectifying diode 12 1282713 D8, and a ninth rectifying The full-wave rectifier composed of the diode D9 is rectified into a constant current. The DC current then flows through a switching resistor R1 to generate a sensing voltage. The sense voltage is first filtered by a filter composed of a filter resistor R2 and a filter capacitor C3 to filter out noise in the voltage signal. The filtered voltage signal is used to adjust the resistance value of a variable resistance element S3. In this embodiment, the variable resistance element S3 is also implemented in one, but with the first switching element S1 and the second switching element S2. The difference is that the variable resistance element S3 operates in the ohmic region of m〇sfet, so it can be used as a variable resistor. In addition, a voltage stabilizing element for stabilizing the voltage of the trigger terminal of the variable resistive element S3 is provided in the same manner. In the present embodiment, the voltage stabilizing element is realized by a Zener diode Dz5. As described in the above, the magnitude of the current flowing through the third Zener diode and the fourth Zener diode Dz4 can be controlled to control the magnitude of the current flowing through the gas discharge lamp load Lamp, and thus the resistance of the variable resistance element S3. The value is used to control the magnitude of the current flowing through the third Zener diode Dz3 and the fourth Zener diode Dz4. As shown in the figure, the variable resistive element and the tenth rectifying diode D10, an eleventh rectifying diode DU, an eleventh whole micro-pole D12, and a thirteenth rectifying diode The dual output terminals of the full-wave rectification pirate composed of D丨3 are connected in parallel, and the dual output ends of the full-wave rectifier are connected in parallel with the two ends of the first control coil CT1-1 for controlling the flow through the second Zener The current of the polar body Dz3 and the fourth Zener diode dz4. After the constant current control circuit is connected according to the above connection mode, when the current flowing through the gas discharge lamp load Lamp is excessively large, the sensing coil CT2_2 also outputs a large current, and a larger one is generated on the conversion resistor R1. 13 1282713 Voltage 1 Then, the larger voltage causes the variable resistance element S3 to have a resistance of J. At this time, it originally flows from the first control coil cti_ 1 to the third Zener diode DZ3 and the fourth Zener. The current of the diode Dz4 has a large portion: the bypass current flows to the variable resistance element S3, causing the switching frequency of the first switching element si and the second switching element S2 to rise, thereby increasing the voltage of the resonant circuit and flowing the gas. The current of the discharge lamp load ramp drops. As such, the current flowing through the gas discharge lamp load ramp will return to the rated current. On the contrary, if the current of the gas discharge lamp is too small, the sense coil CT2-2 will also output a small current and generate a small voltage on the conversion resistor ri. Then, the smaller voltage causes the variable resistance element S3 to have a larger resistance. This day, the temple originally flows from the first control coil cti-i to the third Zener diode Dz3 and the fourth Zener diode. The body of the power w will have only a small part or even no current being bypassed to the variable resistance element S3, causing the switching frequency of the first switching element S1 and the second switching element to decrease, thereby causing the voltage gain and flow of the resonant circuit. The current through the gas discharge k load ramp rises. Thus, the current flowing through the gas discharge lamp load ramp will return to the rated current. According to the mouth, the current is controlled by the current of the third Zener diode and the fourth Zener diode DZ4, or is controlled to flow through the first Zener diode Dzl and the second Zener diode The current magnitude of the body Dz2 can indirectly control the current flowing through the gas discharge lamp load ramp. Therefore, in the circuit diagram of the second embodiment of the present invention, which is not shown in FIG. 2B, the tenth rectifying diode DIG, the tenth-rectifying diode DU, the twelfth rectifying diode 14 1282713, the body D 12 and the crucible Thirteen rectifying diodes are in the name of the surviving life> The full-wave rectifier consisting of the basket DU is connected in parallel with the second control coil molybdenum crucible. Thus, the circuit can also perform the same function as the circuit shown in Figure 2A. The third embodiment of the present invention is shown in the figure, and the circuit of the present embodiment is changed. ~ 罘^ ηι . ^ _ ” The middle system uses a fourteenth rectifier diode D14 to replace the person implanted by the tenth whole D11, the +-敕4 D1G, the younger-rectifier diode: one pole The body wave and the thirteenth rectifying diode Dl3 form a king wave rectifier to save the effect of circuit components. The fourteenth current limiting diode Dl4 is connected to the younger brother... The operation mode is to make the 苐-control line The CT1-1盥variable resistance element S3 can form a ^Xingguan also #.Electric Claw^. Thus, this circuit can also see the same function of the circuit shown in Figure 2. In the fourth embodiment, the body DU of the present embodiment is replaced by the eleventh fourteenth rectifying diode nn... 丄 melon-polar body Dl0, the eleventh rectifying diode '/ two rectifying diode Dl2, and the thirteenth rectification The diode D13 jin=the full wave (four)H '(4) to save the effect of the circuit components. The four current limiting diodes m4 are connected to each other so that the second control coil CT1J盥 element S3 can form a current loop. This circuit can also be seen, and the second circuit of the second embodiment of the present invention does not have the same effect. In this embodiment, the circuit is changed from the second circuit to the second switching element s2, and the circuit of the circuit is replaced by the second switching element s2. The component has not changed. In the vibration circuit, the current flowing on it is still AC current, and the 15!282713 circuit can also achieve the same function as the circuit shown in Figure 2A. The fourth figure shows the yoke example of every 2F5 gang-no brother of this hairpin. This embodiment is changed by the circuit of the Β2Β diagram. It consists of: The circuit components in the circuit of the switch element j have not changed. Because the current flowing through it is still AC current, therefore:

電路,能實現與第2B圖所示電路相同之作用。 第5A圖繪示了本發明篦每 只也例,本實施例係由第 圖所不之電路變化而來。盆中係 ,、T係將原本與弟一開關元件 並聯之』電路整組改與第二開關元件s2相並 共振電路當中的各個電路元件則未有改變。其中因為對丑 振電路來說,其上所流通之電流依然為交流電流,所以ς 電路亦能實現與第3Α圖所示電路相同之作用。The circuit can achieve the same function as the circuit shown in Fig. 2B. Fig. 5A is a view showing each of the examples of the present invention, and the present embodiment is changed by the circuit of the figure. In the middle of the basin, the T system changes the circuit group that is originally connected in parallel with the switching element of the brother to the second switching element s2, and the circuit elements in the resonant circuit are unchanged. Because the current flowing through the ugly circuit is still an alternating current, the 电路 circuit can also perform the same function as the circuit shown in Fig. 3.

第5 Β圖繪示了本發明之第八實施例,本實施例係由第 3Β圖所示之電路變化而來。其中係將原本與第一開關元件 S1並聯之共振電路整組改與第二開關元件S2相並連,而 共振電路當中的各個電路元件則未有改變。其中因為對共 振電路來說’其上所流通之電流依然為交流電流,所以: 電路亦能實現與第3B圖所示電路相同之作用。 第6A圖繪示了本發明之第九實施例,本實施例係由第 2A圖所示之電路變化而來。其中係於共振電路中將原本與 第二控制線圈CT1 -3以及諧振電感Lr相串聯之隔離電容 Cb,改以與氣體放電燈負載Lamp串聯之隔離諧振電容cbr 取代之,如此,隔離譜振電容Cbr不僅可保有隔離電容cb 16 1282713 原本之直流隔離作用,還可與諧振電感Lr及諧振電容心 ~ 一同產生諧振作用,提高共振電路之電壓增益。因此,本 . 電路除了能實現與第2A圖所示電路相同之作用以外,更加 適合需要大電壓之燈具負載Lamp使用。 口 第6Β圖繪示了本發明之第十實施例,本實施例係由第 ⑼圖所示之電路變化而來。其中係於共振電路中將原本與 第三控制線目CTi-3 1乂及譜振電⑨Lr才目串聯之隔離電容 ⑩ Cb,、改以與氣體放電燈負載Lamp串聯之隔離諧振電容cbr 取代之,如此’隔離諧振電容Cbr不僅可保有隔離電容“ 原本之直流隔離作用,還可與諧振電感Lr及諧振電容& :同產生諧振作用’提高共振電路之電壓增益。因此,本 電路除了此貝現與弟2B圖所示電路相同之作用以外,更加 適合需要大電壓之燈具負載Lamp使用。 ^第7A圖繪示了本發明之第十一實施例’本實施例係由 弟3Α圖所示之電路變化而來。丨中係於共振電路中將原本 與第三控制線圈0^-3以及諧振電感Lr相串聯之隔離電容 、改以與氣體放電燈負載Lamp串聯之隔離請振電容Cbr 代之如此,隔離諧振電容Cbr不僅可保有隔離電容cb 原本之直流隔離作用,還可與諧振電感Lr及諧振電容心 “同產生谐振作用,提高共振電路之電壓增益。因此,本 電路除了能實現與第3A圖所示電路相同之作用以外,更加 適合需要大電壓之燈具負載Lamp使用。 ^第圖繪示了本發明之第十二實施例,本實施例係由 弟3B圖所示之電路變化而來。其中係於共振電路中將原本 17 1282713 與第二控制線圈CT1 -3以及諧振電感Lr相串聯之隔離電容 Cb,改以與氣體放電燈負載Lamp串聯之隔離諧振電容cbr 取代之,如此,隔離諧振電容Cbr不僅可保有隔離電容Cb 原本之直流隔離作用,還可與諧振電感Lr及諧振電容Cr 一同產生諧振作用,提高共振電路之電壓增益。因此,本 電路除了能實現與第3B圖所示電路相同之作用以外,更加 適合需要大電壓之燈具負載Lamp使用。Fig. 5 is a view showing an eighth embodiment of the present invention, which is a variation of the circuit shown in Fig. 3. In this case, the entire resonant circuit which is originally connected in parallel with the first switching element S1 is connected in parallel with the second switching element S2, and the respective circuit elements in the resonant circuit are not changed. Since the current flowing through the resonance circuit is still an alternating current, the circuit can also perform the same function as the circuit shown in Fig. 3B. Fig. 6A is a view showing a ninth embodiment of the present invention, which is a variation of the circuit shown in Fig. 2A. The isolation capacitor Cb, which is originally connected in series with the second control coil CT1 -3 and the resonant inductor Lr, is replaced by an isolated resonant capacitor cbr connected in series with the gas discharge lamp load Lamp, so that the isolation spectral capacitance is replaced. Cbr not only can maintain the isolated DC capacitor isolation function cb 16 1282713, but also can generate resonance with the resonant inductor Lr and the resonant capacitor core to improve the voltage gain of the resonant circuit. Therefore, in addition to the same function as the circuit shown in Figure 2A, this circuit is more suitable for use in a lamp load Lamp that requires a large voltage. Port Figure 6 illustrates a tenth embodiment of the present invention, which is a variation of the circuit shown in Figure (9). In the resonance circuit, the isolation capacitor 10 Cb which is originally connected in series with the third control line CTi-3 1乂 and the spectral vibration 9Lr is replaced by an isolated resonance capacitor cbr connected in series with the gas discharge lamp load ramp. Therefore, the 'isolated resonant capacitor Cbr can not only maintain the isolated capacitor's original DC isolation function, but also can resonate with the resonant inductor Lr and the resonant capacitor & to increase the voltage gain of the resonant circuit. Therefore, this circuit is in addition to this Now, in addition to the same function as the circuit shown in Figure 2B, it is more suitable for the lamp load Lamp that requires a large voltage. ^ Figure 7A shows the eleventh embodiment of the present invention, which is shown in Figure 3 The circuit is changed. The middle is connected to the third control coil 0^-3 and the resonant inductor Lr in the resonant circuit, and the isolation capacitor is connected in series with the gas discharge lamp load Lamp. In this way, the isolated resonant capacitor Cbr can not only maintain the original DC isolation of the isolation capacitor cb, but also generate resonance with the resonant inductor Lr and the resonant capacitor core to improve the resonant power. The voltage gain of the road. Therefore, in addition to the same function as the circuit shown in Fig. 3A, this circuit is more suitable for use in a lamp load Lamp requiring a large voltage. The figure shows a twelfth embodiment of the present invention, and this embodiment is changed by the circuit shown in the drawing of the brother 3B. In the resonance circuit, the isolation capacitor Cb, which is connected in series with the second control coil CT1 -3 and the resonant inductor Lr, is replaced by an isolated resonant capacitor cbr connected in series with the gas discharge lamp load lamb. Thus, the isolation resonance The capacitor Cbr not only retains the original DC isolation of the isolation capacitor Cb, but also generates a resonance effect together with the resonant inductor Lr and the resonant capacitor Cr to improve the voltage gain of the resonant circuit. Therefore, in addition to the same function as the circuit shown in Fig. 3B, this circuit is more suitable for use in a lamp load Lamp requiring a large voltage.

^第8A圖繪示了本發明之第十三實施例,本實施例係由 第6 A圖所不之電路變化而來。其中係將原本與第一開關元 件S1並聯之共振電路整組改與第二開關元件以相並聯, 而共振電路當中的各個電路元件則未有改變。《中因為對 共振電路來說,其上所流通之電流依然為交流電流,所以 本電路亦犯貫現與第6A圖所示電路相同之作用。 ^ …卞”只示丁四1施例,本實施例镑 弟6Β圖所示之電路變化而來。其中係將原本與第一開關 件si並聯之共振電路整組改與第二開關元件s2相並聯 振電路§中的各個電路元件則未有改變。其中因 :振電路來,兄’其上所流通之電流依然為交流電流,所 本電,亦能實現與第6B圖所示電路相同之作用。 第_不了本發明之第十五實施例,本實施例係 件811:不之電路變化而來。其中係將原本與第-開關 而=^=電路整組改與第二瞻件%相並聯 "振電路來說,其上所流通之電流依然為交流電流,= 18 1282713 B繪不了本發明之第十六實施例’本實施例係由 圖所示之電路變化而來。其中係將原本與第—開關元 1並聯之共振電路整組改與第二開關元件s2相並聯, 而共振電路當中的各個電路元件則未有改^其中因為對 /、振電路來„兒,其上所流通之電流依然為交流電流,所以 本電路亦能實現與第7B圖所示電路相同之作用。 本電路亦能實現與第7A圖所示電路相同之作用。 斤第10A圖緣示了本發明之第十七實施例,本實施例係 由第Μ圖所示之電路變化而來。其中係於共振電路中將原 :與第三控制線圈CT1_3以及諧振電感。相串聯之隔離電 容Cb,改以-第-隔離電容cbi以及一第二隔離電容Cb2 取代之中’第—隔離電容Cbl與整個共振電路以及第 一開關兀件S2並聯,而第二隔離電容CM則是與整個共振 電路以及第-開關元件S1並聯,如此,第—隔離電容叫 以及第二隔離電容Cb2能夠提供直流隔離以及濾波作用。 因此,本電路亦能實現與第2A圖所示電路相同之作用。 第10B圖繪示了本發明之第十八實施例,本實施例係 由第2B圖所示之電路變化而來。其中係於共振電路中將原 本與第三控制線圈CT1-3以及諧振電感Lr相串聯之隔離電 容cb,改以一第一隔離電容Cbl以及一第二隔離電容cb2 取代之,其中,第一隔離電容(^丨與整個共振電路以及第 二開關元件S2並聯,而第二隔離電容CM則是與整個共振 電路以及第一開關元件s 1並聯,如此,第一隔離電容cb丄 以及第二隔離電容Cb2能夠提供直流隔離以及濾波作用。 19 1282713 因此’本電路亦能實現與第2B圖所示電路相同之作用。 第11A圖繪示了本發明之第十九實施例,本實施例係 由第3 A圖所示之電路變化而來。其中係於共振電路中將原 本與第三控制線圈CT1-3以及諧振電感Lr相串聯之隔離電 容cb,改以一第一隔離電容cbl以及一第二隔離電容 取代之,其中,第一隔離電容Cbl與整個共振電路以及第 二開關兀件S2並聯,而第二隔離電容Cb丨則是與整個共振 電路以及弟開關元件並聯,如此,第一隔離電容Cbl 以及第二隔離電容Cb2能夠提供直流隔離以及濾波作用。 因此,本電路亦能實現與第3A圖所示電路相同之作用。 第11B圖繪示了本發明之第二十實施例,本實施例係 由第3B圖所示之電路變化而來。其中係於共振電路中將原 本與第三控制線圈CT1_3以及諧振電感&相串聯之隔離電 容cb,改以一第一隔離電容Cbl以及一第二隔離電容 取代之,其中,第一隔離電容Cbl與整個共振電路以及第 一開關το件S2並聯,而第二隔離電容CM則是與整個共振 電路:及第-開關元件S1並聯,如此,第一隔離電容: 以及第一隔離電容Cb2能夠提供更強之直流隔離以及渡波 作用。因此,本電路亦能實現與第3B圖所示電路相同之作 用。 雖然本發明已以多個較佳實施例揭露如i,然其並非 用以限定本發明’任何熟習此技藝者,在不脫離本發明之 精神和耗圍内’當可作各種之更動與潤飾,因此本發明之 保護範圍當視後附之中請專利範圍所界定者為準。 20 1282713 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖為符合本發明實施例之電子式安定器之架構圖。 第2A圖為符合本發明第一實施例之電子式安定器之 電路圖。 第2B圖為符合本發明第二實施例之電子式安定器之 電路圖。 第3A圖為符合本發明第三實施例之電子式安定器之 電路圖。 第3B圖為符合本發明第四實施例之電子式安定器之 電路圖。 第4A圖為符合本發明第五實施例之電子式安定器之 電路圖。 第4B圖為符合本發明第六實施例之電子式安定器之 電路圖。 第5A圖為符合本發明第七實施例之電子式安定器之 電路圖。 第5B圖為符合本發明第八實施例之電子式安定器之 電路圖。 第6A圖為符合本發明第九實施例之電子式安定器之 電路圖。 21 1282713 電路圖 之電路圖 :。θ為付合本發明第十實施例之電子式安定器 :二圖為符合本發明第十-實施例之電子式安定 器 之電路圖 第8Α圖Α夕立人, 〜、、5本發明第十三實施例之電子式 之電路圖。 屯丁叭文疋态 弟8Β圖兔. 器 馬付合本發明第十四實施例之電子式 之電路圖。 ^ 第9Α圖 為符合本發 之電路圖 明第十五實施例之電子式安定 器 弟9Β圖為符合本發明第十六實施例之電子 之電路圖。 疋口口 第 _為符合本發明第十七實施例《電子式安定哭 之電路圖。 文疋口口 第 圖為符合本發明第十八實施例之電子式安定哭 之電路圖。 、文疋口口 第11A圖為符合本發明第十九實施例之電子式安 之電路圖。 第11B圖為符合本發明第二十實施例之電子式安 之電路圖。 明 主要元件符號說 22 1282713 100 :電子式安定器 102 :交流電壓源 104 :整流器 106 :啟動電路 108 :閘控制器 110 :換流器 112 :共振電路 114 :定電流控制電路 116 :負載 Vac ·父流電壓源 D1 :第一整流二極體 D2 :第二整流二極體 D3 :第三整流二極體 D4 :第四整流二極體 D5 ··第五限流二極體 D6 :第六整流二極體 D7 :第七整流二極體 D8 :第八整流二極體 D9 :第九整流二極體 D10 :第十整流二極體 D11 :第十一整流二極體 D12 :第十二整流二極體 D13 :第十三整流二極體 D14 :第十四限流二極體 Dzl :第一齊納二極體 Dz2 :第二齊納二極體 Dz3 ··第三齊納二極體 Dz4 ··第四齊納二極體 Dz5 :第五齊納二極體 Cdc :穩壓電容 Cst :啟動電容 Cb :隔離電容 Cbr :隔離諧振電容 Cbl :第一隔離電容 Cb2 :第二隔離電容 Cr :諧振電容 C3 :濾波電容 Rst :啟動電阻 R1 :轉換電阻 R2 :濾波電阻 Lr :諧振電感 Dac :交流開關元件 CT1-1 :第一控制線圈 CT1-2 :第二控制線圈 CT1-3 ··第三控制線圈 CT2-1 :第一感測線圈 CT2-2 :第二感測線圈 S1 :第一開關元件 23 1282713 可變電阻元件 S2 :第二開關元件 S3 :Fig. 8A is a diagram showing a thirteenth embodiment of the present invention, and the present embodiment is changed by the circuit of Fig. 6A. The whole of the resonant circuit which is originally connected in parallel with the first switching element S1 is changed in parallel with the second switching element, and the circuit elements in the resonant circuit are not changed. In the case of a resonant circuit, the current flowing through it is still an alternating current, so this circuit also has the same effect as the circuit shown in Fig. 6A. ^ ... 卞 只 只 只 只 只 只 只 只 只 只 只 只 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路 电路The circuit components in the phase-parallel oscillator circuit § have not changed. Among them: due to the vibration circuit, the current flowing through the brother is still the alternating current, and the power can also be the same as the circuit shown in Figure 6B. In the fifteenth embodiment of the present invention, the embodiment of the present invention 811: the circuit is not changed, wherein the original and the first switch and the =^= circuit group are changed to the second one. In the case of a % parallel connection, the current flowing therethrough is still an alternating current, and = 18 1282713 B can not depict the sixteenth embodiment of the present invention. This embodiment is a variation of the circuit shown in the figure. The whole of the resonant circuit which is originally connected in parallel with the first switching element 1 is connected in parallel with the second switching element s2, and the various circuit components in the resonant circuit are not changed because of the /, the vibration circuit. The current flowing on it is still an alternating current, so The circuit can also achieve the same of the circuit shown in FIG. 7B effect. This circuit can also perform the same function as the circuit shown in Figure 7A. Fig. 10A shows the seventeenth embodiment of the present invention, and the present embodiment is changed by the circuit shown in Fig. Among them, the resonant circuit is the same as the third control coil CT1_3 and the resonant inductor. The series-connected isolation capacitor Cb is replaced by a -first isolation capacitor cbi and a second isolation capacitor Cb2, wherein the 'first-isolation capacitor Cb1 is connected in parallel with the entire resonant circuit and the first switching element S2, and the second isolation capacitor CM Then, it is connected in parallel with the entire resonant circuit and the first switching element S1. Thus, the first isolation capacitor and the second isolation capacitor Cb2 can provide DC isolation and filtering. Therefore, this circuit can also perform the same function as the circuit shown in Fig. 2A. Fig. 10B is a diagram showing an eighteenth embodiment of the present invention, and this embodiment is changed by the circuit shown in Fig. 2B. The isolation capacitor cb, which is originally connected in series with the third control coil CT1-3 and the resonant inductor Lr, is replaced by a first isolation capacitor Cbl and a second isolation capacitor cb2, wherein the first isolation is performed in the resonance circuit. The capacitor (^丨 is connected in parallel with the entire resonant circuit and the second switching element S2, and the second isolation capacitor CM is connected in parallel with the entire resonant circuit and the first switching element s1, such that the first isolation capacitor cb丄 and the second isolation capacitor Cb2 can provide DC isolation and filtering. 19 1282713 Therefore, this circuit can also achieve the same function as the circuit shown in Fig. 2B. Fig. 11A shows a nineteenth embodiment of the present invention, and this embodiment is 3 The circuit shown in Figure A is changed. The isolation capacitor cb, which is originally connected in series with the third control coil CT1-3 and the resonant inductor Lr, is replaced by a first isolation capacitor cbl and a second. The isolation capacitor is replaced by the first isolation capacitor Cb1 in parallel with the entire resonant circuit and the second switching element S2, and the second isolation capacitor Cb丨 is connected to the entire resonant circuit and the younger The components are connected in parallel, so that the first isolation capacitor Cbl and the second isolation capacitor Cb2 can provide DC isolation and filtering. Therefore, the circuit can also achieve the same function as the circuit shown in FIG. 3A. FIG. 11B illustrates the present invention. In the twentieth embodiment, the present embodiment is changed by the circuit shown in FIG. 3B, wherein the isolation capacitor cb which is originally connected in series with the third control coil CT1_3 and the resonant inductor & Replaced by a first isolation capacitor Cbl and a second isolation capacitor, wherein the first isolation capacitor Cb1 is connected in parallel with the entire resonant circuit and the first switch τ, and the second isolation capacitor CM is connected to the entire resonant circuit: The first-switching element S1 is connected in parallel, so that the first isolation capacitor: and the first isolation capacitor Cb2 can provide stronger DC isolation and wave-transmission. Therefore, the circuit can also achieve the same function as the circuit shown in FIG. 3B. The present invention has been disclosed in various preferred embodiments, such as i, which is not intended to limit the invention to any skilled person, without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the patent application. 20 1282713 [Simple Description of the Drawings] For the above and other purposes of the present invention The features, advantages, and embodiments will be more apparent and understood. The detailed description of the drawings is as follows: Figure 1 is a structural diagram of an electronic ballast in accordance with an embodiment of the present invention. Figure 2A is a first embodiment of the present invention. FIG. 2B is a circuit diagram of an electronic ballast according to a second embodiment of the present invention. FIG. 3A is a circuit diagram of an electronic ballast according to a third embodiment of the present invention. A circuit diagram of an electronic ballast in accordance with a fourth embodiment of the present invention. Fig. 4A is a circuit diagram of an electronic ballast in accordance with a fifth embodiment of the present invention. Fig. 4B is a circuit diagram of an electronic ballast in accordance with a sixth embodiment of the present invention. Fig. 5A is a circuit diagram of an electronic ballast in accordance with a seventh embodiment of the present invention. Fig. 5B is a circuit diagram of an electronic ballast in accordance with an eighth embodiment of the present invention. Fig. 6A is a circuit diagram of an electronic ballast in accordance with a ninth embodiment of the present invention. 21 1282713 Circuit diagram of the circuit diagram: θ is an electronic ballast according to a tenth embodiment of the present invention: FIG. 2 is a circuit diagram of an electronic ballast according to the tenth embodiment of the present invention. FIG. 8 is a diagram of the first tenth of the present invention. An electronic circuit diagram of an embodiment.屯丁叭文疋 弟8Β图兔. The circuit diagram of the electronic type of the fourteenth embodiment of the present invention. Fig. 9 is a circuit diagram showing an electronic device according to a fifteenth embodiment of the present invention in accordance with the circuit diagram of the present invention.疋口口 _ is a circuit diagram of the electronic stability crying according to the seventeenth embodiment of the present invention.疋 疋 口 口 The first figure is a circuit diagram of the electronic stability crying according to the eighteenth embodiment of the present invention. 。 疋 口 口 Figure 11A is a circuit diagram of an electronic ampere in accordance with a nineteenth embodiment of the present invention. Fig. 11B is a circuit diagram of an electronic ampere in accordance with a twentieth embodiment of the present invention. Main component symbol 22 1282713 100 : Electronic ballast 102 : AC voltage source 104 : Rectifier 106 : Start circuit 108 : Gate controller 110 : Inverter 112 : Resonance circuit 114 : Constant current control circuit 116 : Load Vac · Parent voltage source D1: first rectifier diode D2: second rectifier diode D3: third rectifier diode D4: fourth rectifier diode D5 · fifth current limiting diode D6: sixth Rectifier diode D7: seventh rectifying diode D8: eighth rectifying diode D9: ninth rectifying diode D10: tenth rectifying diode D11: eleventh rectifying diode D12: twelfth Rectifier diode D13: thirteenth rectifying diode D14: fourteenth current limiting diode Dzl: first Zener diode Dz2: second Zener diode Dz3 · · third Zener diode Body Dz4 ··4th Zener diode Dz5: Fifth Zener diode Cdc: Voltage regulator capacitor Cst: Start capacitor Cb: Isolated capacitor Cbr: Isolated resonant capacitor Cbl: First isolation capacitor Cb2: Second isolation capacitor Cr : Resonant capacitor C3 : Filter capacitor Rst : Start resistor R1 : Conversion resistor R2 : Filter resistor Lr : Resonant inductor Dac: AC switching element CT1-1: First control coil CT1-2: Second control coil CT1-3 · Third control coil CT2-1: First sensing coil CT2-2: Second sensing coil S1: First switching element 23 1282713 variable resistance element S2: second switching element S3:

Lamp :氣體放電燈負載 24Lamp : Gas discharge lamp load 24

Claims (1)

1282713 十、申請專利範圍: ^ 一種電子式安定器,包含: 整流器’用以將一交流電壓源所提供之一交流電壓 整流為一直流電壓; ~換流器,用以將該直流電壓切換為一方波電壓; —閘控制器,用以驅動控制該換流器; 一啟動電路,用以啟動該閘控制器之作業; 一共振電路,用以產生一燈管負載之燈管穩態電壓與 啟動電壓;以及 疋電流控制電路’用以彳貞測該燈管之電流,並據以 回授控制該閘控制器改變該換流器之開關頻率,以致於能 夠穩定燈管電流。 2.如申請專利範圍第1項所述之電子式安定器,其中 該整流器包含·· 一第一整流二極體; 一弟一整流二極體,其負極與該第一整流二極體之負 極連接; 一第三整流二極體,其負極與該第一整流二極體之正 極連接; 一第四整流二極體,其負極與該第二整流二極體之正 極連接,正極與該第三整流二極體之正極連接;以及 一穩壓電容,其雨端分別與該第二整流二極體之負極 25 1282713 以及該第四整流二極體之正極連接, 其中該第一整流二極體之正極以及該第二整流二極體 之正極係用以接收該交流電壓,以及該第二整流二極體之 負極以及該第四整流二極體之正極係用以輸出該直流電 壓。 3·如申請專利範圍第1項所述之電子式安定器,其中 該啟動電路包含: 一啟動電阻; :啟動電容’其中該啟動電容之第—端係、與該啟動電 阻之第二端連接,而該啟動電阻之第一端及該啟動電容之 第二端係與該直流電壓並聯; 一交流開關元件(diac),其第一端與該啟動電容之第一 端連接;以及 一第五放電二極體,其正極與該啟動電容之第一端連 接。 4·如申請專利範圍第3項所述之電子式安定器,其中 5亥換流器包含·· 一第一開關元件,其觸發端與該交流開關元件之第二 端連接,第二端與該第四整流二極體之正極連接;以及 一第二開關元件,其第一端與該第二整流二極體之負 極連接,第二端與該第一開關元件之第一端連接。 26 1282713 5 ·如申請專利範圍第4項所述之電子式安定器,其中 該第一開關元件以及該第二開關元件為M〇SFEt。 6 ·如申睛專利範圍第4項所述之電子式安定器,其中 該閘控制器包含: 一第一控制線圈,其兩端分別連接於該第一開關元件 之觸發端以及該第四整流二極體之正極; 一第二控制線圈,其兩端分別連接於該第二開關元件 之觸發&以及s亥弟五放電二極體之負極,其中該第一控制 線圈與該第二控制線圈係纏繞於同一鐵心繞組上; 一第一穩壓元件,與該第二開關元件之觸發端及第二 端並聯;以及 一第二穩壓元件,與該第一開關元件之觸發端及第二 端並聯。 7. 如申請專利範圍第6項所述之電子式安定器,其中 該第一穩壓元件包含: 一第一齊納二極體,其負極與該第二開關元件之觸發 端連接;以及 一第二齊納二極體,其正極與該第一齊納二極體之正 極連接,負極與該第二開關元件之第二端連接。 8. 如申請專利範圍第6項所述之電子式安定器,其中 該第二穩壓元件包含: 27 1282713 其負極與該第一開關元件之觸發 一第三齊納二極體, 端連接;以及 一第四齊納二極體 極連接,負極與該第一 ’其正極與該第三齊納二極體之正 開關元件之第二端連接。 > 9·如中凊專利粑圍第6項所述之電子式安定器,其中 该共振電路包含: 一隔離電容; -第三控制線圈’其兩端分別與該第一開關元件之第 /以及该隔離電容之第_端連接,纟中該第三控制線圈 係纏繞於與該第—控制線圈及該第二控制線圈相同之鐵心 繞組上; 一諧振電感,其第-端與該隔離電容之第二端連接; 以及 -㈣電容’其第—端與該諸振電感之第二端連接, 第二端與該第四整流-土辦 ^山矛正,瓜一極體之正極連接,其中該諧振電容 之第一端及第二端係用以與該燈管負載並聯。 10·如申請專利範圍第6項所述之電子式安定器,其 中該共振電路包含: 一隔離電容; 一第三控制線圈,其兩端分別與該第一開關元件之第 -端以及該隔離電容之第—端連接,其中㈣三控制線圈 係纏繞於與該第—控制線圈及該第:控制線圈相同之鐵心 28 l2827l3 繞組上; 一諧振電感,其第一端與該隔離電容之第二端連接; 以及 一諧振電容,其第一端與該第二整流二極體之負極連 接,第二端與該諧振電感之第二端連接,其中該諧振電容 之第一端及第二端係用以與該燈管負載並聯。 11.如申請專利範圍第6項所述之電子式安定器,其 中该共振電路包含: 一諧振電感; 一第三控制線圈,其兩端分別與該第一開關元件之第 ^鈿以及该5皆振電感之第一端連接,其中該第三控制線圈 係纏繞於與該第一控制線圈及該第二控制線圈相同之鐵心 繞組上; 咱振電容,其第一端與該諧振電感之第二端連接, 第一端與該第四整流二極體之正極連接;以及 一隔離濾波電容,其第一端與該諧振電容之第一端連 接其中该隔離濾波電容之第二端與該諧振電容之第二端 係用以與該燈管負載並聯。 29 1282713 -端以及該義電感之第—端連接,#中該第三控制線圈 係纏繞於與該第-控制線圈及該第二控制線圈相同之鐵心 繞組上; °白振電谷’其第1與該第二整流二極體之負極連 接,第二端與該諧振電感之第二端連接;以及 、 一隔離遽波電容,其第—端與該諧振電容之第 接’其中該隔離濾波電容之第二端與該諧振電容之第二端 係用以與該燈管負載並聯。 其 13_如中請專利範圍第6項所述之電子式安定器 中该共振電路包含·· 一谐振電感; 一二第三控制線圈,其兩端分別與該第一開關元件之第 一端以及該諧振電感之第一端連 係纏繞於與該第一"J魂園… 弟二控制線圈 弟&制線圈及該第二控制線圈相同之鐵心 、^〇、,且 Jl* , -譜振電容’其第—端與該諧振電感之第二端連接, 其中,該諧振電容之第一姑盘楚 並聯; 之弟“與弟二端係用以與該燈管負載 -第-隔離電容,其第一端與該第二整流二極 極連接,第二端與該諧振電容之第二端連接;以及、 :第二隔離電容,其第-端與該譜振電容之第二端連 接,第二端與該第四整流二極體之正極連接。 30 1282713 14·如申請專利範圍第6項所述之電子式安定器,其 中該定電流控制電路包含: 一第六整流二極體; 第七正一極體,其負極與該第六整流二極體之正 極連接; 第八i ML —極體,其負極與該第六整流二極體之負 極連接; ' 一第九整流二極體,其負極與該第八整流二極體之正 極連接,正極與該第七整流二極體之正極連接; ,,第-感測線圈,用以與該燈管負載串聯,使流經該 燈官負載之該交流電流亦會流經該第_感測線圈; -第二感測線圈,係與該第一感測線圈纏繞於同一鐵 心繞組上,其中該第二感測線圈之兩端係分別與該第六整 流二極體之正極及該第八整流二極體之正極連接; 一轉換電阻’其兩端分別盘蜂笛\針、士 Μ0亥弟八整流二極體之負極 以及該第九整流二極體之正極連接; 、 -可變電阻元件’其觸發端係與該第八整流二極體之 負極連接,第二端係與該第九整流二極體之正極 一第三穩壓元件,其兩端分別盘 變電阻元件之觸 發以及该弟九整流二極體之正極連接; 一第十整流二極體,其負極係盘 巧可變電阻 一端連接; 兀仵之弟 -第十-整流二極體,其負極與 正極連接; 弟十整流二極體之 31 1282713 一第十二整流二極體,其 負極連接;以及 員極…亥弟十整流二極體之 之正整流二極體,其負極與該第十二整流二極體 :連接:正極與該第十-整流二極體之正極連接, Ί亥第十整流二極體之正極以及該第十二整流二極 體之正極係與該第一控制 σ 径制線圈或弟二控制線圈並聯。 1—5.如申請專利_第14項所述之電子式安定器,其 中该定電流控制電路更包含·· 濾波電阻’其兩端分別與該可變電阻元件之觸發端 以及該第八整流二極體之負極連接’·以及 一濾波電容,其兩端分別與 ^ ^ M ^ 忒』夂電阻兀件之觸發端 以及该弟九整流二極體之正極 16.如申請專利範圍第 中该定電流控制電路中之該 極體,其中該第五齊納二極 觸發端連接,正極與該第九 14項所述之電子式安定器,其 第三穩壓元件為一第五齊納二 體之負極與該可變電阻元件之 整流二極體之正極連接。 Π.如申請專利範圍帛14項所述之電子式安定哭,立 中該定電流控制電路中之該可變電阻元件為—M⑽. 請專利範圍第6項所述之電子式安定器,其 中該定電流控制電路包含: 32 1282713 一第六整流二極體; -第七整流二極體,其負極舆該第六整流二極體之正 極連接; -第八整流二極體,其負極與該第六整流二極體之負 極連接; ' -第九整流二極體,其負極與該第八整流二極體之正 極連接’正極與該第七整流二極體之正極連接; -第-感測線圈’用以與該燈管負載串聯,使流經該 負载之該交流電流亦會流經該第一感測線圈; -第二感測線圈’係與該第_感測線圈纏繞於同一鐵 心繞組上’其中該第二感測線圈之兩端係分別與該第六整 流二極體之正極及該第八整流二極體之正極連接; -轉換電阻’其兩端分別與該第人整流二極體之負極 以及該第九整流二極體之正極連接; 一可變電阻元件,其觸發端係與該第八整流二極體之 負極連接,第二端係與該第九整流二極體之正極連接; 一第三穩壓元件,其兩端分別與該可變電阻元件之觸 發端以及該第九整流二極體之正極連接;以及 第十四整流二極體,其負極係與該可變電阻元 第一端連接, —其中該第十四整流二極體之正極以及該可變電阻元件 之第二端係與該第一控制線圈或第二控制線圈並聯。 19·如申清專利範圍第〗8項所述之電子式安定器,其 33 1282713 中該定電流控制電路更包含: 一遽波電阻,其兩端分別與該可變電阻元件之觸心 以及該第八整流二極體之負極連接,·以及 a而 以及了兩端分別與該可變電阻元件之觸發端 以及δ亥弟九整流二極體之正極連接。 20.如申請專利範圍帛⑺項所述之電子式安定器,盆 该定電流控制電路中之該第三穩壓元件為一第五齊納二 觸恭山中4第五齊納二極體之負極與該可變電阻元件之 端連接,正極與該第九錢二極體之it極連接。 上21.如申睛專利範圍第“項所述之電子式安定器,其 中°亥疋電流控制電路中之該可變電阻元件為-MOSFET。 341282713 X. Patent application scope: ^ An electronic ballast, comprising: a rectifier 'for rectifying an alternating current voltage provided by an alternating voltage source into a direct current voltage; ~ an inverter for switching the direct current voltage to a one-way voltage; a gate controller for driving and controlling the converter; a start-up circuit for starting the operation of the gate controller; and a resonant circuit for generating a steady-state voltage of the lamp with a lamp load The starting voltage; and the 疋 current control circuit' is used to detect the current of the lamp, and according to the feedback control, the gate controller changes the switching frequency of the converter, so that the lamp current can be stabilized. 2. The electronic ballast of claim 1, wherein the rectifier comprises: a first rectifying diode; a dipole-rectifying diode, a negative pole thereof and the first rectifying diode a negative connection; a third rectifying diode having a negative electrode connected to the positive electrode of the first rectifying diode; a fourth rectifying diode having a negative electrode connected to the positive electrode of the second rectifying diode, the positive electrode and the cathode a positive connection of the third rectifying diode; and a stabilizing capacitor, wherein the rain end is respectively connected to the negative pole 25 1282713 of the second rectifying diode and the anode of the fourth rectifying diode, wherein the first rectifying diode The positive electrode of the polar body and the positive electrode of the second rectifying diode are configured to receive the alternating current voltage, and the negative electrode of the second rectifying diode and the positive electrode of the fourth rectifying diode are used to output the direct current voltage. 3. The electronic ballast of claim 1, wherein the starting circuit comprises: a starting resistor; a starting capacitor, wherein the first end of the starting capacitor is connected to the second end of the starting resistor And the first end of the starting resistor and the second end of the starting capacitor are connected in parallel with the DC voltage; an alternating current switching element (diac) having a first end connected to the first end of the starting capacitor; and a fifth The discharge diode has a positive electrode connected to the first end of the starting capacitor. 4. The electronic ballast of claim 3, wherein the 5-Hair inverter comprises a first switching element, the trigger end of which is connected to the second end of the AC switching element, the second end is a positive connection of the fourth rectifying diode; and a second switching element having a first end connected to the negative terminal of the second rectifying diode and a second end connected to the first end of the first switching element. The electronic ballast of claim 4, wherein the first switching element and the second switching element are M〇SFEt. The electronic ballast of claim 4, wherein the gate controller comprises: a first control coil, the two ends of which are respectively connected to the trigger end of the first switching element and the fourth rectification a second control coil; a second control coil, the two ends of which are respectively connected to the trigger of the second switching element and the negative electrode of the sigma five discharge diode, wherein the first control coil and the second control The coil is wound on the same core winding; a first voltage stabilizing element is connected in parallel with the trigger end and the second end of the second switching element; and a second voltage stabilizing element, and a trigger end of the first switching element The two ends are connected in parallel. 7. The electronic ballast of claim 6, wherein the first voltage stabilizing element comprises: a first Zener diode having a negative pole connected to a trigger end of the second switching element; and a The second Zener diode has a positive electrode connected to the positive electrode of the first Zener diode, and a negative electrode connected to the second end of the second switching element. 8. The electronic ballast of claim 6, wherein the second voltage stabilizing element comprises: 27 1282713, the negative electrode and the first switching element are triggered by a third Zener diode, and the end is connected; And a fourth Zener diode connection, the negative electrode is connected to the first end of the first positive electrode of the third Zener diode. The electronic ballast of the sixth aspect of the invention, wherein the resonant circuit comprises: an isolating capacitor; - the third control coil has its two ends respectively opposite to the first switching element And the first terminal of the isolation capacitor is connected, wherein the third control coil is wound on the same core winding as the first control coil and the second control coil; a resonant inductor, the first end thereof and the isolation capacitor The second end is connected; and the (four) capacitor 'the first end is connected to the second end of the vibrating inductors, and the second end is connected to the fourth rectifying-earthing machine, the positive pole of the melon body, The first end and the second end of the resonant capacitor are used in parallel with the lamp load. 10. The electronic ballast of claim 6, wherein the resonant circuit comprises: an isolating capacitor; a third control coil having its two ends respectively coupled to the first end of the first switching element and the isolation a first end connection of the capacitor, wherein the (four) three control coil is wound on the same winding of the core 28 l2827l3 as the first control coil and the first control coil; a resonant inductor, the first end thereof and the second of the isolation capacitor And a resonant capacitor, the first end of which is connected to the negative pole of the second rectifying diode, and the second end is connected to the second end of the resonant inductor, wherein the first end and the second end of the resonant capacitor are Used in parallel with the lamp load. 11. The electronic ballast of claim 6, wherein the resonant circuit comprises: a resonant inductor; a third control coil, the two ends of which are respectively associated with the first switching element and the fifth The first end of the isotropic inductor is connected, wherein the third control coil is wound on the same core winding as the first control coil and the second control coil; the first end of the resonant capacitor and the first of the resonant inductor a second end connection, the first end is connected to the anode of the fourth rectifying diode; and an isolating filter capacitor, the first end of which is connected to the first end of the resonant capacitor, wherein the second end of the isolation filter capacitor and the resonance The second end of the capacitor is used in parallel with the lamp load. 29 1282713 - the end and the first end of the sense inductor, # the third control coil is wound on the same core winding as the first control coil and the second control coil; ° white vibrating valley 'the first 1 is connected to the negative electrode of the second rectifying diode, the second end is connected to the second end of the resonant inductor; and, an isolated chopper capacitor, the first end of the resonant capacitor is connected to the first end of the resonant capacitor. The second end of the capacitor and the second end of the resonant capacitor are used in parallel with the lamp load. In the electronic ballast of the sixth aspect of the patent application, the resonant circuit includes: a resonant inductor; and a second control coil, the two ends of which are respectively connected to the first end of the first switching element And the first end of the resonant inductor is entangled with the core of the first "J soul garden... the second control coil brother & coil and the second control coil, and Jl*, - spectrum The first end of the oscillating capacitor is connected to the second end of the resonant inductor, wherein the first capacitor of the resonant capacitor is connected in parallel; the younger brother and the second end are used to load the lamp with the first-isolated capacitor The first end is connected to the second rectifying diode, the second end is connected to the second end of the resonant capacitor, and the second isolating capacitor has a first end connected to the second end of the spectral capacitor. The second end is connected to the positive pole of the fourth rectifying diode. The electronic ballast of the sixth aspect of the invention, wherein the constant current control circuit comprises: a sixth rectifying diode; a seventh positive pole, the negative pole thereof and the sixth rectifier The anode of the pole body is connected; the eighth i ML is a pole body whose anode is connected to the cathode of the sixth rectifier diode; and a ninth rectifier diode whose anode is connected to the anode of the eighth rectifier diode The positive electrode is connected to the positive electrode of the seventh rectifying diode; and the first sensing coil is connected in series with the lamp load, so that the alternating current flowing through the lamp load also flows through the first sense a second sensing coil is wound on the same core winding with the first sensing coil, wherein the two ends of the second sensing coil are respectively connected to the positive pole of the sixth rectifying diode and the first The positive connection of the eight-rectifier diode; a conversion resistor's two ends of which are respectively a bee flute, a pin, a negative electrode of a gyroscope, and a positive connection of the ninth rectifying diode; The resistor element 'the trigger end is connected to the negative pole of the eighth rectifying diode, the second end is connected to the positive pole of the ninth rectifying diode, and the third voltage stabilizing element is triggered by the disc variable resistance element at both ends thereof. And the positive connection of the brother nine rectifier diode; a diode, the negative electrode is connected to one end of the variable resistor; the younger brother of the tenth-rectifier diode, the negative pole is connected to the positive pole; the third of the ten-rectifier diode is 12 1282713, the twelfth rectifier a polar body, a negative electrode thereof; and a positive-rectifying diode of the sir-polar diode, the negative electrode and the twelfth rectifying diode: connection: the positive electrode and the tenth-rectifying diode The positive pole is connected, the anode of the tenth rectifier diode of the Ίhai and the anode of the twelfth rectifier diode are connected in parallel with the first control σ diameter coil or the second control coil. 1—5. The electronic ballast of claim 14, wherein the constant current control circuit further comprises: a filter resistor' having two ends connected to the trigger end of the variable resistive element and the negative pole of the eighth rectifying diode respectively. And a filter capacitor having a trigger end of the ^ ^ M ^ 忒 夂 兀 兀 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Body, wherein the fifth Zener diode The trigger terminal is connected, and the positive electrode is the electronic ballast of the ninth item, wherein the third voltage stabilizing element is a negative electrode of a fifth Zener diode connected to a positive electrode of the rectifier diode of the variable resistance element. Π 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The constant current control circuit comprises: 32 1282713 a sixth rectifying diode; a seventh rectifying diode having a negative electrode connected to the anode of the sixth rectifying diode; - an eighth rectifying diode, the negative electrode thereof a negative electrode of the sixth rectifying diode is connected; a ninth rectifying diode having a negative electrode connected to a positive electrode of the eighth rectifying diode and a positive electrode connected to a positive electrode of the seventh rectifying diode; The sensing coil 'is connected in series with the lamp load so that the alternating current flowing through the load also flows through the first sensing coil; - the second sensing coil is wound with the first sensing coil The two ends of the second sensing coil are respectively connected to the positive electrode of the sixth rectifying diode and the positive electrode of the eighth rectifying diode; the two ends of the conversion resistor are respectively a negative electrode of a human rectifier diode and the ninth rectifier a positive resistance connection of the body; a variable resistance element, the trigger end is connected to the negative pole of the eighth rectifying diode, the second end is connected to the anode of the ninth rectifying diode; and a third voltage stabilizing element, The two ends are respectively connected to the trigger end of the variable resistive element and the anode of the ninth rectifying diode; and the fourteenth rectifying diode has a negative pole connected to the first end of the variable resistive element, wherein The positive electrode of the fourteenth rectifying diode and the second end of the variable resistive element are connected in parallel with the first control coil or the second control coil. 19. The electronic ballast of claim 13, wherein the constant current control circuit of 33 1282713 further comprises: a chopper resistor, the two ends of which are respectively in contact with the variable resistive element and The negative electrode of the eighth rectifying diode is connected, and a and the two ends are respectively connected to the trigger end of the variable resistive element and the positive electrode of the delta-six-rectifier diode. 20. The electronic stabilizer according to claim 7 (7), wherein the third voltage stabilizing element in the constant current control circuit is a fifth Zener two-touch Gongshan middle 4 fifth Zener diode The negative electrode is connected to the end of the variable resistance element, and the positive electrode is connected to the it pole of the ninth money diode. The electronic ballast described in the above paragraph, wherein the variable resistance element in the current control circuit is -MOSFET.
TW94124400A 2005-07-19 2005-07-19 Electronic ballast with constant current control TWI282713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94124400A TWI282713B (en) 2005-07-19 2005-07-19 Electronic ballast with constant current control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94124400A TWI282713B (en) 2005-07-19 2005-07-19 Electronic ballast with constant current control

Publications (2)

Publication Number Publication Date
TW200706069A TW200706069A (en) 2007-02-01
TWI282713B true TWI282713B (en) 2007-06-11

Family

ID=38823813

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94124400A TWI282713B (en) 2005-07-19 2005-07-19 Electronic ballast with constant current control

Country Status (1)

Country Link
TW (1) TWI282713B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476847B2 (en) 2011-04-22 2013-07-02 Crs Electronics Thermal foldback system
US8669715B2 (en) 2011-04-22 2014-03-11 Crs Electronics LED driver having constant input current
US8669711B2 (en) 2011-04-22 2014-03-11 Crs Electronics Dynamic-headroom LED power supply
TWI682619B (en) * 2018-12-03 2020-01-11 大陸商昂寶電子(上海)有限公司 Linear constant current control system and method for constant current control of load

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476847B2 (en) 2011-04-22 2013-07-02 Crs Electronics Thermal foldback system
US8669715B2 (en) 2011-04-22 2014-03-11 Crs Electronics LED driver having constant input current
US8669711B2 (en) 2011-04-22 2014-03-11 Crs Electronics Dynamic-headroom LED power supply
TWI682619B (en) * 2018-12-03 2020-01-11 大陸商昂寶電子(上海)有限公司 Linear constant current control system and method for constant current control of load

Also Published As

Publication number Publication date
TW200706069A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
TWI393337B (en) Two stage switching power conversion circuit
JP5887524B2 (en) Power supply
KR20140040227A (en) High voltage led and driver
JPWO2003103121A1 (en) converter
CN111817583A (en) Power converter circuit
TWI282713B (en) Electronic ballast with constant current control
KR20120049779A (en) Lamp circuit of light emitting device
JP5811329B2 (en) Power supply
CN216905379U (en) LED drive circuit
JP3918109B2 (en) Discharge lamp lighting device
TWI336485B (en) An electronic ballast with a power factor corrector working in continuous-current-mode
KR20090036084A (en) An electronic driver for a fluorescent lamp
US20170142794A1 (en) Dimmable instant-start ballast
TW200810606A (en) A self-oscillating full-bridge electronic ballast
JP6648502B2 (en) Lighting device and lighting equipment
KR102592251B1 (en) A converter for a resonant flicker-free LED lighting device that offsets transient power noise and maintains stable light output
TWI310197B (en) An electronic ballast with a power factor corrector working in discontinuous-current-mode
KR100259184B1 (en) Error voltage detecting circuit for electronic ballast
JPH10326688A (en) Neutral point type inverter device
Lee et al. Single-switch electronic ballast with near-unity power factor and soft-switching characteristic
JP4698707B2 (en) Discharge lamp lighting device and bulb-type fluorescent lamp
JP2000323290A (en) Discharge lamp lighting device
JPH06269161A (en) Power supply
KR20230174434A (en) High-efficiency LED lighting device of Suppressing blinking and flickering
TW200417291A (en) Self-oscillating electronic discharge lamp ballast with dimming control

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees