TWI336141B - Light-emitting diode and method for manufacturing the same - Google Patents

Light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TWI336141B
TWI336141B TW95149361A TW95149361A TWI336141B TW I336141 B TWI336141 B TW I336141B TW 95149361 A TW95149361 A TW 95149361A TW 95149361 A TW95149361 A TW 95149361A TW I336141 B TWI336141 B TW I336141B
Authority
TW
Taiwan
Prior art keywords
gold
light
emitting diode
titanium
nickel
Prior art date
Application number
TW95149361A
Other languages
Chinese (zh)
Other versions
TW200828623A (en
Inventor
Schang Jing Hon
Shuncheng Hsu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW95149361A priority Critical patent/TWI336141B/en
Publication of TW200828623A publication Critical patent/TW200828623A/en
Application granted granted Critical
Publication of TWI336141B publication Critical patent/TWI336141B/en

Links

Landscapes

  • Led Devices (AREA)

Description

13361411336141

二極體及其製造方法,且特別 發光二極體及其製造方法。 九、發明說明 • - ..,- -V .·.· -«.·-:'> «.'V- - ·-.-; 【發明所屬之技術領域】 本發明是有關於一種發光 是有關於一種具有導電基板之 【先前技術】 請參照第1A圖至第10圖,其係繪示傳統發光二極體之 製程剖面圖。在一般發光二極體之製作中,先於成長基板ι〇6 ♦上蟲晶成長發光蠢晶結構1〇4。接下來,提供永久基板1〇〇, 並^永久基板100之欲進行接合表面上形成接合金屬層1〇2。 接著,使發光磊晶結構1 04與接合金屬層丨〇2相對,並對成 長基板106與永久基板100施加壓力116,以使發光磊晶結構 104與接合金屬層1〇2結合,如第1A圖所示。此時,發光磊 晶結構104透過接合金屬層1〇2而與永久基板1〇〇接合。 接著,利用雷射剝除方式,以雷射114來移除成長基板 106,並暴露出發光磊晶結構1〇4之表面,如第iB圖所示。 鲁隨後,可先利用微影與蝕刻技術進行發光二極體元件之定 義’以在發光磊晶結構104中形成數個溝槽1丨2,其中這些溝 槽112貫穿發光磊晶結構1〇4,而暴露出部分之接合金屬層 102’如第1C圖所示。藉由這些溝槽112,而將發光磊晶結構 104分隔成數個發光蟲晶單元1〇8。再製作數個電極與電 極120分別位於發光磊晶單元1〇8與永久基板1〇〇上,而形 成如第1C圖所示之結構。 接下來’即可利用切割技術,並沿著溝槽丨丨2切開接合 5 1336141 金屬層102與永久基板100,而將所有之發光磊晶單元ι〇8 以分離’而完成發光二極體118之製作。 然而,利用雷射U4從發光蟲晶結構1〇4之表面上剝除 成長基板106時,由於接合金屬i 1〇2與發光磊晶結構]⑽ 之熱膨脹係數具有非常大之差異,因此在雷射剝除過程中會 產生巨大之熱應力與壓應力,進而對接合金屬層與發光 磊晶結構104之接合介面造成相當大之衝擊。如此—來,不 僅會降低發光磊晶結構1〇4轉移至永久基板1〇〇的均勻性= 完整性,而導致轉移製程可靠度下降,更可能會對.發光磊一 結構104造成損害。 【發明内容】 因此’本發明之目的就是在提供一種發光二極體,具有 導電性佳且反射率好之導電基板,藉以提高發光二極體元件 之散熱效能與光取出率,進一步提升發光二極體元件之操作 效能與亮度。 ' 本發明之另一目的是在提供一種發光二極體之製造方 法’其係在製作導電基板之前’先在發光磊晶結構中形成數 個溝槽,再於溝槽中填入絕緣緩衝層,接著設置導電基板於 發光磊晶結構上。如此一來,後續利用雷射剝離製程移除不 導電之成長基板時,可有效降低製程熱應力與壓應力對發光 磊晶結構所造成之衝擊。因此,可大幅提升雷射剝離製程的 良率。 本發明之又一目的是在提供一種發光二極體之製造方 6 1336141 法,其係在製作導電基板之前,先在發光磊晶結構中形成數 個溝槽,再於溝槽中填入絕緣膠,之後再設置導電基板於發 光磊晶結構上。因此,可有效降低後續成長基板之雷射剝離 製程所造成之熱應力與壓應力衝擊,而可提高發光二極體元 件之爲晶品質,進而可增加元件之使用壽命。 根據本發明之上述目的,提出一種發光二極體,至少包 括.一導電基板;一第二電性電極設於基板上;一發光磊晶 早疋•設於第二電性電極之第一部分上,其中發光磊晶單元具 有一側面、以及相對之第一表面與第二表面,且發光磊晶單 疋之第一表面與第二電性電極直接接合,發光磊晶單元之第 一表面暴露出;一絕緣緩衝層設於第二電性電極之第二部分 上並圍繞在發光磊晶單元之側面外;以及一第一電性電極設 於發光猫日日單元之第二表面的一部分上,其中第一電性電極 與第二電性電極具有相反之電性。 依照本發明一較佳實施例,上述導電基板之材料為具導 電性佳且反射率好之金屬,例如銅、鎳、鉬或鋁。 依照本發明另一較佳實施例,上述絕緣緩衝層之材料可 為氧切(si〇x)、氮化伟iN〇、氧化鈦(Ti〇x)或氧化紹(Αΐ〇χ) 等氧化物所組成之一族群。 —根據本發明之目的,提出一種發光二極體,至少包括: :導電基板;一第二電性電極設於導電基板上;一發光磊晶 單兀-又於第一電性電極之第_部分上,其中發光磊晶單元具 有側φ卩及相對之第一表面與第二表面,且發光蟲晶單 -第表面與第一電性電極直接接合,發光磊晶單元之第 7 1336141 二表面暴露出;一絕緣膠設於第二電性電極之第二部分上並 ,在發光磊晶單元之側面外;以及一第一電性電極:於發 先站晶單元之第二表面的-部分上,其中第—電性電極與第 一電性電極具有相反之電性。 依照本發明一較佳實施例,上述絕緣膠之材料可為聚亞 酿胺(pi)、苯并環丁院(BCB)、過氣環丁烧(pfcb)或環氧樹脂 (Epoxy)所構成材料族群中至少一種材料或其他可代替之 料。 根據本發明另一之目的,提出一種發光二極體之製造方 法,至少包括:形成一發光磊晶結構於一成長基板之一表面 j 2成複數個溝槽貫穿發光磊晶結構,以形成複數個發光 磊晶單元,並暴露出成長基板之表面的一部分,其中每一發 光磊晶單元具有一侧面、以及相對之第一表面與第二表面, 且每一發光磊晶單元之第二表面與成長基板接合;形成一絕 緣缓衝層填滿每一溝槽並圍繞在發光磊晶單元之側面外;形 成一第二電性電極位於這些發光磊晶單元之第一表面與絕緣 緩衝層上;形成一導電基板覆蓋在第二電性電極上;移除成 長基板’以暴露出每一發光磊晶單元之第二表面;形成複數 個第一電性電極,其中這些第一電性電極分別對應於這些發 光遙晶單元’且位於對應之發光磊晶單元之第二表面上,其 中這些第一電性電極與第二電性電極具有相反之電性;以及 進行一分割步驟,以沿著發光磊晶結構之溝槽而分離發光磊 晶單元。 依照本發明一較佳實施例,上述移除成長基板之步驟可 8 1336141 利用雷射剝離法β 根據本發明之又一目的,提出一種發光二極體之製造方 法,至少包括:形成一發光磊晶結構於一成長基板之—表面 ^ j,成複數個溝槽貫穿發光磊晶結構,以形成複數個發光 從日日單元並暴路出成長基板之表面的一部分,其中每一發 光磊晶單元具有一側面、以及相對之第一表面與第二表面, 且每一發光磊晶單元之第二表面與成長基板接合;形成—絕 緣膠填滿每一溝槽並園繞在發光磊晶單元之側面外;形成— 第二電性電極位於發光磊晶單元之第一表面與絕緣膠上;形 成一導電基板覆蓋在第二電性電極上;移除成長基板,以暴 露出每一發光磊晶單元之第二表面;形成複數個第一電性電 極,其中這些第一電性電極分別對應於發光磊晶單元,且位 於對應之發光磊晶單元之第二表面上,其中這些第一電性電 極與第二電性電極具有相反之電性;以及進行一分割步驟, 以沿著發光磊晶結構之溝槽而分離發光磊晶單元。 依照本發明一較佳實施例,上述形成導電基板之步驟與 形成第二電性電極之步驟之間,更至少包括形成—反射層直 接覆蓋在第二電性電極上。 【實施方式】 本發明揭露一種發光二極體及其製造方法,係先於發光 磊晶結構中設置數個溝槽,再利用絕緣緩衝結構填入溝槽 中,以隔離發光磊晶結構與後續形成之導電基板。因此,可 降低後續之雷射剝離製程所產生之熱應力與壓應力對發光磊 9 1336141 晶結構的衝擊,而可提高雷射剝離製程之良率,順利製作出 具有高導電性且高反射率之導電基板的發光二極體元件,進 一步提升發光元件之操作性能,延長發光元件之使用壽命, 並增強發光元件之亮度》為了使本發明之敘述更加詳盡與完 •備’可參照下列描述並配合第2A圖至第7圖之圖式。 請參照第2A圖至第2E圖,其繪示依照本發明一較佳實 施例的一種發光二極體之製程剖面圖。在本示範實施例中, 先提供成長基板200,以供後續磊晶材料層成長於其上其中成 >長基板200之材料可例如為藍寶石。再利用例如磊晶成長方 式形成發光磊晶結構202於成長基板200之表面上。在本實 細例中,發光磊晶結構202可由皿族氮化物化合物半導體, 例如氮化鎵(GaN) ’因此所製成之發光二極體元件亦可稱為冚 族氮化物化合物半導體發光二極體,例如氮化鎵發光二極 體。一般而言,發光磊晶結構2〇2主要包括依序堆疊在成長 基板200之表面的第一電性半導體層、主動層以及第二電性 半導體層,其中第—電性與第二電性具有相反之電性。舉例 _而。’當第-電性為N型時,第二電性為p型;而當第一電 ^為P型時,第二電性為N型。接下來,利用蝕刻方式,較 佳可利用‘乾式蝕刻法,移除發光磊晶結構2〇2的特定區域, 例如對應於預定切割線的區域以在發光磊晶結構2〇2中形 j數個溝槽206貫穿發光磊晶結構202,其中這些溝槽206暴 =成長基板200之部分表面,而將發光磊晶結構2〇2分隔 成夕個發光蟲晶單元2〇4,如第2A圖所示。這些發光蟲 π 2〇4 $ _ 主工;& /、成長基板200之表面接合。在本發明中, 1336141 屢槽206之側面可為平面 '抛物面或曲自,因此發光 從日日單元204之側面可為平面、拋物面、或曲面。接著,形 成名緣緩衝層208填滿溝槽2〇6而覆蓋住每一個發光蟲晶單 元204之側面’以隔離發光蟲晶單元2〇4與後續形成之導電 基板212(請先參照第2B圖)。絕緣緩衝層期之材料可例如 為减邦i〇x)'氮切(SiNx)、氧化鈦(吨)以及氧化輯叫 等氧化物所組成之一族群。隨後,利用例如熱蒸鍍法、電子 束蒸鍍法或離子錢錢法’形成第二電性電㉟21〇位於發光磊 晶單元204與絕緣緩衝層2〇8上,而形成如第2a圖所示之結 構。在本發明中’第二電性電極21G可為不透明歐姆反射電 極。其中,第二電性電極210之材料可為選自於由錄/金、氧 化錦/金、纪/銀/金/鈦/金、始/釕、鈦/銘/金、把/錄、錄/把/金、 叙/錄/金、釕/金、疏/金 '録/金、麵/錦/金、鎮/翻、鎖姻以及 鉑銦(Phln7)所組成之一族群。 接著,利用電鑛法或沉積法,形成導電基板212覆蓋在 第二電性電極2Π)上,如第2B圖所示。導電基板212之材料 較佳係採用具導電性佳且反射率好之金屬。在本發明中,導 電基板212之材料可例如為銅、翻、鎳以及叙所組成之一族 群。 待導電基板212完成後,利用例如雷射剝離方式,以雷 射214來剝除成長基板細,而暴露出發光蠢晶單元2G4盘絕 緣緩衝層208,如第2C圖所示。 '、 由於,發光蠢晶單元204 t外侧面上有絕緣緩衝層· 包覆’如此可使發光磊晶早A 2〇4與第二電性電㉟21〇及導 11 1336141 電基板2丨2之間不直接接合而為絕緣緩衝層2〇8所阻隔。因 此,利用雷射214剝除成長基板200時,藉由絕緣緩衝層2〇8 之緩衝,可有效減低雷射剝離過程中在發光磊晶單元2〇4與 導電基板212之間所引發之熱應力與壓應力’而可降低對發 光磊晶單元204與導電基板212之接合介面的衝擊,進一步 可提升發光磊晶單元204轉移至導電基板212的均勻性與完 整性,達到提高轉移可靠度與發光磊晶單元2〇4之品質的目 的。 剝除成長基板200後,利用例如熱蒸鍍法、電子束蒸鍍 法或離子濺鍍法,形成數個第一電性電極216分別對應於^ 光蟲晶單A 204且位於對應之發光蟲晶單&綱 露面 的-部分上,如第2D圖所示。其中,這些第一電性暴電= 之材料可例如選自於由銦“呂、鈦、金、鎢、銦錫、氮化鈦、 矽化鎢 '始銦(PtIn2)、鈀/链、鎳/妙、钽/紹、鈦/銀、钽/銀、 鈦/紹、鈦/金、鈦/氮化鈦、錯/氮化錯、金/鍺/鎳、路/錄/金、 鎳/鉻/金、鈦/纪/金、鈦/銘/金、鈦/铭/鍊/金、金⑼/欽/金/石夕 以及金/鎳/鈦/矽/鈦所組成之一族群。如此,第一電性電極216 與發光磊晶單元204中之第一電性半導體層電性接合,而第 二電性電極210與發光磊晶單元2〇4中之第二電性半 電性接合》 a 接著,可進行分割步驟,以分離這些發光磊晶單元2〇4。 進行分割步驟時,可沿著相鄰之二發光磊晶單元2〇4之間的 溝槽206進订切割,而將所有之發光蟲晶單元2。4連同對應 之第—電性電極216與第二電性電極21〇、以及下方之導電基 12 1336141 板2 12予以分離, 與第2F圖所示。 而完成發光二極體218的製作,如第2E圖 從第2E圖與第2F圖之發光二極體218結構中可清楚看 出,發光二極體218之第二電性電極21〇位於導電基二 上,發光磊晶單元204設於第二電性電極21〇上,而絕緣緩 衝層208則介於第二電性電極21〇與發光磊晶單元2〇4之間 並同時包覆在發光遙晶單元204之側面上,第一電性電極216 則位在發光磊晶單元204的表面上且相對於第二電性電極 210。 請參照第4圖,在本發明之另一實施例中,可在上述實 施例尚未形成導電基板212之前(如第2A圖之結構),先形成 反射層222覆蓋在第二電性電極21〇上,以將發光蟲晶單元 204朝導電基板212所發出之光予以反射,而達到增進元件之 光取出率的效果。在此實施例中中,第二電性電極21〇可為 透明歐姆電極,且第二電性電極21〇之材料可為氧化銦錫 _、氧化鎘錫、氧化辞、氧化銦、氧化錫、氧化銅鋁、氧 籲化銅鎵以及氧化鋰銅所組成之一族群。接著,於反射層222 上設置導電基板212,再經後續製程.後可獲得如第4圖所示之 發光二極體226 ^在發光二極體226中,反射層222位於導電 *基板212上,其中反射層222之材料可選自於由銀、金、鉑、 .銅、鎳、鋅、鋁、鈀以及鈀錫所組成之一族群。第二電性電 極210位於反射層222上,發光磊晶單元2〇4設於第二電性 電極21〇上,而絕緣緩衝層2〇8則圍繞在發光磊晶單元2〇4 之側面外,第一電性電極216則位在發光磊晶單元2〇4的表 13 1336141 面上且相對於第二電性電極210。 清參照第3A圖至第3E圖,其係繪示依照本發明另一較 .佳貫施:列的一種發光二極體之製冑剖面圖。纟本示範實施例 中,先提供成長基板3〇〇,以供後續磊晶材料層成長於其上其 ‘.中成長基板3〇〇之材料可例如為藍寳石。再利用例如磊晶成 長f式形成發光磊晶結構3〇2於成長基板3〇〇之表面上。在 本貫施例中,發光磊晶結構3〇2可由族氮化物化合物半導 體’例如氮化鎵,因此所製成之發光二極體元件亦可稱為瓜 鲁族氮化物化合物半導體發光二極體,例如氮化鎵發光:極 體。通常,發光為晶結構302主要包括依序堆疊在成長基板 300之表面的第一電性半導體層、主動層以及第二電性半導體 層,其中第-電性與第二電性具有相反之電性。在本實施例 中,第一電性電極為N型,第二電性電極為p型。接著,利 用银刻方式’較佳可利用乾式触刻法,移除發光蠢晶結構逝 的特定區域,例如對應於預定切割線的區域,以在發光磊晶 結構302中形成數個溝槽3〇6貫穿發光磊晶結構3〇2,其中^ •些溝槽306暴路出成長基板则之部分表面而將發光蟲晶 結構302分隔成多個發光遙晶單元3〇4,如第3a圖所示。= 些發光蟲晶單元304之-表面與成長基& 3〇〇之表面接合。 在本發明中,這些溝槽3G6之側面可為平面' 拋物面、或曲 面’因此發光磊晶單元3〇4之側面可為平面' 拋物面、或曲 面。接下來,形成絕緣膠3〇8填入這些溝槽3〇6中,其中絕 緣膠308覆蓋住每—個發光蠢晶單元斯之側面亦即絕緣 膠308包圍住每個發光蠢晶單元3〇4之側面以隔離發光蟲 1336141 晶車元304與後續形成之導電基板312(請先參照第把圖)。 絕緣谬308之材料可例如為聚亞酿胺、笨并環丁烧、過氣環 丁烷或環氧樹脂。接著,利用例如熱蒸鍍法、電子束蒸鍍法 或離子_法,形成第二電性電極31G位於發光Μ單元又3〇4 的暴露表面與絕緣膠308上,而形成如第3Α圖所示之结構。 .在本發明中,這些第二電性電極31G可為不透明歐姆反°射電 極。其中,這些第二電性電極310之材料可例如選自於由鎳/ 金、氧化鎳/金、把/銀/金/鈦/金、麵/舒 '鈦/銘/金、鈀/錄、錄 參/把/金、,/鎳/金、釕/金 '銳/金、钻/金、翻/錦/金、鎳/始:、 鎳銦以及鉑銦(PWn7)所組成之一族群。然 沉積法,形成導電基板M2覆蓋在第二電性電極二電= 電基板3丨2直接覆蓋在第二電性電極31〇上,如第3B圖所示。 導電基板3 12之材料較佳係採用具導電性佳且反射率好之金 屬。在本發明中,導電基板312之材料可例如為銅、鉬、鎳 或鋁所組成之一族群。 待完成導電基板3 12後,利用例如雷射剝離方式,以雷 射314來剝除成長基板300,而暴露出發光磊晶單元與成 長基板300接合之表面與絕緣膠3〇8,如第3C圖所示。 由於,發光磊晶單元304之外側面為絕緣膠3〇8所覆蓋 包圍,如此可使發光磊晶單元3〇4與導電基板312之間不直 接接合而為絕緣膠308所阻隔。因此,利用雷射314剝除成 長基板300時,藉由絕緣膠3〇8所提供之緩衝,同樣可大幅 降低雷射剝離過程中在發光磊晶單元3〇4與導電基板312之 間所引發之熱應力與壓應力,而可減輕對發光磊晶單元 15 1336141 與導電基板312之接合介面的衝整 町擎,進而可提升發光磊晶單 元304轉移至導電基板312的均勺地Α 0勾性與完整性,達到提高轉 移可靠度與發光蟲晶單元304之品質的目的。 剝除成長基板3 0 0後,利用你丨丨&扭廿 W用例如熱蒸鍍法、電子束蒸鍍 法或離子濺鍍法,形成數個第—雷松 电性電極316分別對應於發 光蠢晶單元304且位於對應之發氺石 。一 较尤邱3日早兀304的暴露表面 的一部分上,如第3D圖所示。盆中,货 ^ 一〒’第一電性電極316之材 料可為選自於由銦、鋁、鈦、今、趙 ^ 金鎢、銦錫、氮化鈦、矽化 鎢' 銘銦陶、驗 '鎳/石夕、崎、鈦/銀、组/銀、鈦/ 銘、鈦/金、鈦/氣化鈦、锆遠化錯、金/錯/錄、絡/錄/金、錦/ 絡/金、鈦/把/金、鈦/叙/金、鈦/紹/鎳/金、金/石夕/欽/金/石夕以及 金/鎳/鈦/矽/鈦所組成之一族群。在本發明中,第一電性電極 316與發光蟲晶單元304中之第—電性半導體層電性接合,而 第二電性電極310與發光蠢晶單元3。4中之第二電性半導體 層電性接合。 接著,可進行分割步驟,以分離這些發光為晶單元州。 進行分割步驟時’可沿著相鄰之二發光蟲晶單& 3〇4之間的 溝槽306進行切割,而將所有之發光蟲晶單元遍連同對麻 之第-電性電極316與第二電性電極31〇、以及下方之導電基 板jl2予以分離,而完成發光二極體318的製作,如第3E圖 所 〇 從圖之發光二極體318結構中可知,絕緣夥爛設 、—電性電極31〇之表面上,而絕緣膠308圍 晶單元取之侧面外,第二電性鋒31〇位於發光 1336141 304與導電基板312之間。發光磊晶單元3〇4位於第二電性電 極3 10上,亦即發光磊晶單元3〇4之一表面與第二電性電極 310直接接合,其中發光磊晶單元3〇4為絕緣膠3〇8所圍繞。 第一電性電極316則位在發光磊晶單元3〇4的暴露表面上且 相對於第二電性電極3 10。 請參照第5圖,在本發明之另一實施例中,可在前述實 施例尚未形成導電基板312之前(如第3入圖之結構),先形成 =射層322直接覆蓋在第二電性電極31〇上,以將發光遙晶 早兀304朝導電基板312所發出之光予以反射,而達到增進 兀件之光取出率的效果。然後,於反射層322上設置導電基 板川,再經後續製程後可獲得如第5圖所示之發光二極體 324。在發光二極體324中,反射層322位於導電基板Η]上, 其中反射層322之材料係選自於由銀、金、翻、銅、錄、辞、 紹、把以及㈣所組成之—族群。反射層322介於導電基板 之表面與第一電性電極31〇之間。第二電性電極則位於 反射層322上’其中第二電性電極31〇可為透明歐姆電極, 且第二電性電極則之材料可選自於由氧化銦錫、氧化錫錫、 :化辞、氧化銦、氧化錫、氧化銅紹、氧化銅鎵以及氧化錄 銅所組成之-族群。發光磊晶單元3〇4位於第二電性電極31〇 ^ ’亦即發光蟲晶單元304之-表面與第二電性電極31〇直 接合,其中發光蠢晶單元304為絕緣夥3〇8所圍繞。第一 電杜電極3 16則位在發杏石曰 幻位在發光邱日日早兀304的暴露表面上且相對 於第二電性電極310。 清參照第6圖,在本發明之又一實施例中,可在第从圖 17 1336141 至第3E圖所述之實施例尚未形成絕緣膠3 麻’先形成絕緣緩衝…董在每《發光= 側面上,再將絕緣膠3〇8填入溝槽3〇6巾其中絕緣 326與絕㈣3G8均可作為導電基板312與發^晶單元^ 之間的應力緩衝結構。絕緣緩衝層326之材料可例如 矽(S!0X)、乳化石夕(SiNx)、氧化欽(Ti〇x)或氧化紹⑷〜)等 物所組成之一族群。然後,即可設置導電基板⑴覆 緣勝308與第二電性電極31〇,再經後續製程後可獲得如第6 3 = = 體㈣。在發光二極體⑽中’絕緣膠3〇8 與.、,邑緣緩衝層326設於第二電性電極31()之表面上, 緩衝層326覆蓋在發光單元3〇4之側面。第二電性電極⑽ 可為不透明歐姆反射電極,其中第二電性電極3H)之材料可 為選自於由鎳/金、氧化錦/金 '叙/銀/金/欽/金、鈾/釕、欽/ W金、麵/錄、錄/纪/金、麵/錄/金、釕/金、鈮/金、姑/金、叙 /錄/金、鎳/鈾、錄銦以及銘銦(pt3ln7)所組成之一族群。發光 磊晶單元304位於第二電性電極31〇上,亦即發光磊晶‘元 參304之-表面與第二電性電極⑽直接接合,其中發光蟲晶單 凡304為絕緣緩衝層326與絕緣膠3〇8所圍繞。第—電性電 極3 1 6則位在發光磊晶單元3〇4的暴露表面上且相對於第二 電性電極310,其中第—電性電極316之材料可為選自於由 銦鋁、鈦、金、鶴、麵錫、氮化欽、石夕化鶴、麵姻⑽〜)、 鈀/铭、錄/碎、组/紹、鈦/銀、雜/銀、鈦/链 '鈦/金、鈦/氮化 欽、錯/氮化錯、金/鍺/鎳、路/鎳/金、錄/絡/金、鈦/纪/金、鈦 鉑/金鈦/紹/錄/金、金/石夕/鈦/金/石夕以及金/錄/鈦/石夕/鈦所組 18 1336141 成之一族群。 請參照第7圖’於本發明之再一實施例中,可在第6圖 所述之實施例尚未形成導電基板312之前,先形成反射層332 .直接覆蓋在第二電性電極310上’以將發光磊晶單元3〇4朝 •導電基板312所發出之光予以反射,而達到增進元件之光取 出率的效果。其中,反射層33 2之材料係選自於由銀、金、 鉑、銅、鎳、鋅、鋁、鈀以及鈀錫所經成之一族群。然後, 於反射層332上設置導電基板312,再經後續製程後可獲得如 籲第7圖所示之發光二極體334。在發光二極體334中,反射層 3 32位於導電基板312上,且介於導電基板312之表面與第二 電性電極310之間。第二電性電極31〇位於反射層332上, 其中第二電性電極332可為透明歐姆電極,且第二電性電極 3 32之材料可為選自於由氧化銦錫 '氧化鎘錫、氧化鋅、氧化 铜、氧化錫、氧化銅紹、氧化銅鎵以及氧化錄銅所組成之一 族群。 贫无磊晶單元304 ^ %,工包你V工,邳即發光 ,早疋304之一表面與第二電性電極310直接接合,其中 發光蟲晶單元304為絕緣緩衝層326與絕緣膠地所圍繞。 第一電性電極316則位在 曰 免先秘日日早兀304的暴露表面上且 相對於第二電性電極31〇,直中 一 6 ^ . ”中第電性電極316之材料可為 選自於由銦、鋁、鈦、今、 ^rPtT ..; ,,鎢、銦錫、氮化鈦、矽化鎢、鉑 銦(Ptln2)、鈀/鋁、鎳/矽、鈕 金、钍/氣外斗^/Λ. '鋁、鈦/銀、鈕/銀、鈦/鋁、鈦/ -鈦/虱化鈦、錯/氮化锆、全 銳/銳/金、鈦/叙/金、欽/紹/錄錄金、錄/絡7金、 鋁鎳/金、金/石夕/鈦/金/石夕以及金/鎳/ 1336141 銳/叾夕/鈦所組成之一族群。 由上述本發明較佳實施例可知,本發明之一優點就是因 為本發明之發光二極體具有高導電性且高反射率之導電基 板’因此可提高發光二極體之散熱效能與光取出率,進而; 達到提升發光二極體元件之操作效能與亮度之目的。 由上述本發明較佳實施例可知’本發明之另一優點就是 因為在本發明之發光二極體之製造方法中,係在製作導電基 板之前’ S在發光蟲晶結構中形成數個溝槽,再於溝槽之二 壁上設置絕緣緩衝層及/或於溝槽中填入絕緣膠,接著設置導 電基板於發光磊晶結構上。如此一來,後續利用雷射剝離製 ,移除成長基板時,可大大地降低製程熱應力與>1應力對發 ^晶結構:斤造成之衝擊。因此,可提升雷射剝離製程的良 :二並可提咼發光磊晶結構的品質,進而可提升發光二極體 讀之操作品質’並延長元件之使用壽命。 雖然本發明已以—較佳實施例揭露如上,然其並非用以 =本發明’任何在此技術領域中具有通常知識者,在不脫 :::明之精::和範圍内,當可作各種之更動與潤飾: *之保4辄圍畲視後附《申請專利範圍所界定者為準。 【圖式簡單說明】 坌圖至第1D圖係繪示傳統發光二極體之製程 第2A圖至箪,^ 種發光-極h制 繪示依照本發明—較佳實施例的— 禋^尤一極體之製程剖面圖。 第2F圖係緣示依照本發明一較佳實施例的-種發光二極 20 1336141 體之上視圖。 'A圖至第3E圖係繪示依照本發明另一較佳實施例的 一種發光二極體之製程剖面圖。 第4圖係續·示依昭太恭 .,、、本發明再一較佳實施例的一種發光二 -極體之剖面示意圖。 第5圖係繪不依昭太路$ …、本發明再一較佳實施例的一種發光二 極體之剖面示意圖。 第6圖係繪示依昭太路$ “、、本I明再一較佳實施例的一種發光二 _極體之剖面示意圖。 第7圖係、繪示依照本發明再一較佳實施例的一種發光二 極體之剖面示意圖。 主要元件符號說明] 100 :永久基板 104 :發光蠢晶結構 108:發光蟲晶單元 Π2 :溝槽 116 :壓力 120 :電極 202 :發光磊晶結構 206 :溝槽 2 10 :第二電性電極 214 :雷射 218 :發光二極體 102:接合金屬層 1 ·成長基板 110 :電極 114 :雷射 118 :發光二極體 2〇〇 :成長基板 204 :發光磊晶單元 208 :絕緣緩衝層 212 :導電基板 216 :第一電性電極 222 :反射層 21 1336141 226 : 發 光 二 極 體 300 : 302 : 發 光蠢 晶 結構 304 : 306 : 溝槽 308 : 310 : 第 二 電 性 電極 312 : 314 : 雷 射 316 : 318 : 發 光 二 極 體 322 : 324 : 發 光 二 極 體 326 : 330 : 發 光 二 極 體 332 : 334 : 發 光 二 極 體 成長基板 發光磊晶單元 絕緣膠 導電基板 第一電性電極 反射層 絕緣緩衝層 反射層A diode and a method of manufacturing the same, and particularly a light-emitting diode and a method of manufacturing the same. Nine, invention descriptions - - .., - -V ... - «.·-: '> «.'V- - ·-.-; Technical Field of the Invention The present invention relates to a kind of illumination [Previous Art] Referring to FIGS. 1A to 10, a cross-sectional view showing a process of a conventional light-emitting diode is shown. In the production of a general light-emitting diode, the growth of the substrate is first grown on the growth substrate 〇6 ♦. Next, a permanent substrate 1 提供 is provided, and the bonding metal layer 1 〇 2 is formed on the bonding surface of the permanent substrate 100. Next, the luminescent epitaxial structure 104 is opposed to the bonding metal layer 丨〇2, and a pressure 116 is applied to the growth substrate 106 and the permanent substrate 100 to bond the luminescent epitaxial structure 104 to the bonding metal layer 1 , 2, such as the 1A. The figure shows. At this time, the light-emitting epitaxial structure 104 is bonded to the permanent substrate 1 through the bonding metal layer 1〇2. Next, by using the laser stripping method, the growth substrate 106 is removed by the laser 114, and the surface of the light-emitting epitaxial structure 1〇4 is exposed, as shown in Fig. iB. Subsequently, the definition of the light-emitting diode element can be first performed by using a lithography and etching technique to form a plurality of trenches 1丨2 in the light-emitting epitaxial structure 104, wherein the trenches 112 penetrate the light-emitting epitaxial structure 1〇4 And the exposed portion of the bonding metal layer 102' is as shown in FIG. 1C. By these trenches 112, the luminescent epitaxial structure 104 is separated into a plurality of luminescent crystal units 1 〇 8. Further, a plurality of electrodes and electrodes 120 are formed on the light-emitting epitaxial cells 1 to 8 and the permanent substrate 1 to form a structure as shown in Fig. 1C. Next, the cutting technique can be utilized, and the metal layer 102 and the permanent substrate 100 are joined by the trench 丨丨2, and all the light-emitting epitaxial cells ι8 are separated to complete the light-emitting diode 118. Production. However, when the growth substrate 106 is peeled off from the surface of the luminescent crystal structure 1 〇 4 by the laser U4, since the thermal expansion coefficient of the bonding metal i 1 〇 2 and the luminescent epitaxial structure (10) is very different, During the stripping process, a large thermal stress and compressive stress are generated, which in turn causes a considerable impact on the bonding interface between the bonding metal layer and the luminescent epitaxial structure 104. In this way, not only will the uniformity of the luminescent epitaxial structure 1〇4 transferred to the permanent substrate 1=integrity be reduced, but the reliability of the transfer process is lowered, which is more likely to cause damage to the luminescent structure. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a light-emitting diode having a conductive substrate with good conductivity and good reflectivity, thereby improving the heat dissipation performance and light extraction rate of the light-emitting diode element, and further improving the light-emitting diode. Operating efficiency and brightness of polar components. Another object of the present invention is to provide a method for fabricating a light-emitting diode, which is formed by forming a plurality of trenches in a light-emitting epitaxial structure before filling a trench, and then filling an insulating buffer layer in the trench. Then, a conductive substrate is disposed on the luminescent epitaxial structure. In this way, when the non-conductive growth substrate is removed by the laser stripping process, the impact of the process thermal stress and the compressive stress on the luminescent epitaxial structure can be effectively reduced. As a result, the yield of the laser stripping process can be greatly improved. A further object of the present invention is to provide a method for manufacturing a light-emitting diode according to the method of 1 336 141, which is to form a plurality of trenches in a light-emitting epitaxial structure before filling a conductive substrate, and then fill the trench with an insulating layer. The glue is then placed on the luminescent epitaxial structure. Therefore, the thermal stress and the compressive stress impact caused by the laser stripping process of the subsequently grown substrate can be effectively reduced, and the crystal quality of the LED component can be improved, thereby increasing the service life of the component. According to the above object of the present invention, a light emitting diode is provided, comprising at least one conductive substrate; a second electrical electrode is disposed on the substrate; and an illuminating epitaxial layer is disposed on the first portion of the second electrical electrode The illuminating epitaxial unit has a side surface, and the first surface and the second surface opposite to each other, and the first surface of the illuminating epitaxial unit is directly bonded to the second electric electrode, and the first surface of the luminescent epitaxial unit is exposed An insulating buffer layer is disposed on the second portion of the second electrical electrode and surrounding the side of the luminescent epitaxial unit; and a first electrical electrode is disposed on a portion of the second surface of the illuminating cat day unit The first electrical electrode and the second electrical electrode have opposite electrical properties. According to a preferred embodiment of the present invention, the material of the conductive substrate is a metal having good conductivity and good reflectivity, such as copper, nickel, molybdenum or aluminum. According to another preferred embodiment of the present invention, the material of the insulating buffer layer may be an oxide such as oxygen (si〇x), nitrided iN〇, titanium oxide (Ti〇x) or oxidized (Αΐ〇χ). One of the groups that make up. In accordance with the purpose of the present invention, a light emitting diode is provided, comprising: at least: a conductive substrate; a second electrical electrode disposed on the conductive substrate; and an illuminating epitaxial unit - and the first electrical electrode In part, wherein the luminescent epitaxial unit has a side φ 卩 and the opposite first surface and the second surface, and the illuminating crystal single-surface is directly bonded to the first electrical electrode, and the surface of the illuminating epitaxial unit is 7 1336141 Exposed; an insulating paste is disposed on the second portion of the second electrical electrode and outside the side of the luminescent epitaxial unit; and a first electrical electrode: at the second portion of the second surface of the pre-stationary unit The first electrical electrode and the first electrical electrode have opposite electrical properties. According to a preferred embodiment of the present invention, the material of the insulating rubber may be composed of polyaramine (pi), benzocyclobutylene (BCB), peroxycyclobutane (pfcb) or epoxy resin (Epoxy). At least one material or other alternative material in the material group. According to another aspect of the present invention, a method for fabricating a light emitting diode includes at least forming a light emitting epitaxial structure on a surface j 2 of a growth substrate into a plurality of trenches extending through the light emitting epitaxial structure to form a plurality of Illuminating an epitaxial unit and exposing a portion of a surface of the grown substrate, wherein each of the luminescent epitaxial cells has a side surface, and opposite first and second surfaces, and a second surface of each of the luminescent epitaxial units Forming an insulating buffer layer; forming an insulating buffer layer to fill each trench and surrounding the side of the light emitting epitaxial unit; forming a second electrical electrode on the first surface of the light emitting epitaxial unit and the insulating buffer layer; Forming a conductive substrate covering the second electrical electrode; removing the growth substrate ' to expose the second surface of each of the light-emitting epitaxial cells; forming a plurality of first electrical electrodes, wherein the first electrical electrodes respectively correspond to And on the second surface of the corresponding luminescent epitaxial unit, wherein the first electrical electrode and the second electrical electrode have opposite Sex; and performing a division step, to separate the light emitting cells along BARROW crystal epitaxial structure of the light emitting groove to. According to a preferred embodiment of the present invention, the step of removing the growth substrate can be performed by using a laser stripping method. According to still another object of the present invention, a method for manufacturing a light emitting diode includes at least forming a light emitting beam. The crystal structure is formed on a surface of a growth substrate, and a plurality of grooves are formed through the luminescent epitaxial structure to form a plurality of illuminating portions from the solar cell and blasting out a portion of the surface of the growth substrate, wherein each luminescent epitaxial unit Having a side surface and an opposite first surface and a second surface, and a second surface of each of the luminescent epitaxial cells is bonded to the growth substrate; forming an insulating glue to fill each trench and winding the luminescent epitaxial unit Forming the second electrical electrode on the first surface of the luminescent epitaxial unit and the insulating paste; forming a conductive substrate covering the second electrical electrode; removing the growing substrate to expose each luminescent epitaxial a second surface of the unit; forming a plurality of first electrical electrodes, wherein the first electrical electrodes respectively correspond to the luminescent epitaxial unit and are located in the corresponding luminescent epitaxial unit On the second surface, wherein the first electrical electrodes and the second electrical electrodes have opposite electrical properties; and a dividing step is performed to separate the luminescent epitaxial cells along the trenches of the luminescent epitaxial structure. In accordance with a preferred embodiment of the present invention, the step of forming the conductive substrate and the step of forming the second electrical electrode further comprise at least the formation-reflecting layer directly overlying the second electrical electrode. [Embodiment] The present invention discloses a light-emitting diode and a manufacturing method thereof, in which a plurality of trenches are disposed in a light-emitting epitaxial structure, and then an insulating buffer structure is used to fill the trench to isolate the light-emitting epitaxial structure and subsequent A conductive substrate formed. Therefore, the impact of the thermal stress and the compressive stress generated by the subsequent laser stripping process on the crystal structure of the illuminating beam 9 1336141 can be reduced, the yield of the laser stripping process can be improved, and the high conductivity and high reflectivity can be smoothly produced. The light-emitting diode element of the conductive substrate further enhances the operational performance of the light-emitting element, prolongs the service life of the light-emitting element, and enhances the brightness of the light-emitting element. In order to make the description of the present invention more detailed and complete, the following description can be referred to Match the drawings of Figures 2A to 7. Referring to FIGS. 2A-2E, a cross-sectional view showing a process of a light emitting diode according to a preferred embodiment of the present invention is shown. In the exemplary embodiment, the growth substrate 200 is first provided for the subsequent epitaxial material layer to grow thereon. The material of the long substrate 200 may be, for example, sapphire. The luminescent epitaxial structure 202 is formed on the surface of the growth substrate 200 by, for example, epitaxial growth. In the present embodiment, the light-emitting epitaxial structure 202 may be a nitride-based compound semiconductor, such as gallium nitride (GaN). Therefore, the light-emitting diode element may also be referred to as a bismuth nitride compound semiconductor light-emitting diode. A polar body such as a gallium nitride light emitting diode. In general, the luminescent epitaxial structure 2 〇 2 mainly includes a first electrical semiconductor layer, an active layer, and a second electrical semiconductor layer sequentially stacked on the surface of the growth substrate 200, wherein the first electrical property and the second electrical property Has the opposite electrical properties. Example _ and. When the first electrical property is N-type, the second electrical property is p-type; and when the first electrical property is P-type, the second electrical property is N-type. Next, by etching, it is preferable to remove a specific region of the luminescent epitaxial structure 2 〇 2 by a dry etching method, for example, a region corresponding to a predetermined dicing line to form a number in the luminescent epitaxial structure 2 〇 2 The trenches 206 extend through the luminescent epitaxial structure 202, wherein the trenches 206 swell = part of the surface of the substrate 200, and the luminescent epitaxial structure 2 〇 2 is divided into a luminescent illuminating crystal unit 2 〇 4, as shown in FIG. 2A Shown. These luminescent insects π 2〇4 $ _ main work; & /, the surface of the growth substrate 200 is joined. In the present invention, the side of the 1336141 repeating groove 206 may be a planar 'paraboloid or curved self, so the light may be a plane, a paraboloid, or a curved surface from the side of the day unit 204. Next, the famous edge buffer layer 208 is formed to fill the trenches 2〇6 to cover the side surface of each of the light-emitting insect crystal cells 204 to isolate the light-emitting insect crystal unit 2〇4 and the subsequently formed conductive substrate 212 (please refer to the second Figure). The material of the insulating buffer layer may be, for example, a group consisting of oxides such as nitrogen cut (SiNx), titanium oxide (ton), and oxides. Subsequently, the second electrical electric 3521 is formed on the luminescent epitaxial unit 204 and the insulating buffer layer 2 利用 8 by, for example, thermal evaporation, electron beam evaporation, or ion exchange, to form a pattern as shown in FIG. 2a. The structure of the show. In the present invention, the second electric electrode 21G may be an opaque ohmic reflective electrode. The material of the second electrical electrode 210 may be selected from the group consisting of: gold/gold, gold/gold, gold/silver/gold/titanium/gold, samarium/niobium, titanium/ming/gold, / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Next, a conductive substrate 212 is formed over the second electrical electrode 2 by means of an electrominening method or a deposition method, as shown in Fig. 2B. The material of the conductive substrate 212 is preferably a metal having good conductivity and good reflectance. In the present invention, the material of the conductive substrate 212 may be, for example, a group consisting of copper, turn, nickel, and reed. After the conductive substrate 212 is completed, the growth substrate is peeled off by the laser 214 by, for example, a laser lift-off method, and the light-emitting cell 2G4 disk insulating buffer layer 208 is exposed, as shown in Fig. 2C. ', because, there is an insulating buffer layer on the outer side of the light-emitting element 204 t · cladding' so that the luminescent epitaxial early A 2 〇 4 and the second electrical electric 3521 〇 and the conductive 11 1336 141 electrical substrate 2 丨 2 They are not directly joined and are blocked by the insulating buffer layer 2〇8. Therefore, when the growth substrate 200 is stripped by the laser 214, the heat generated between the light-emitting epitaxial unit 2〇4 and the conductive substrate 212 during the laser stripping process can be effectively reduced by the buffering of the insulating buffer layer 2〇8. The stress and the compressive stress can reduce the impact on the bonding interface between the luminescent epitaxial unit 204 and the conductive substrate 212, and further improve the uniformity and integrity of the luminescent epitaxial unit 204 transferred to the conductive substrate 212, thereby improving the transfer reliability and The purpose of the quality of the luminescent epitaxial unit 2〇4. After the growth substrate 200 is peeled off, a plurality of first electrical electrodes 216 are respectively formed corresponding to the light insect crystal single A 204 and located in the corresponding light-emitting insects by, for example, thermal evaporation, electron beam evaporation, or ion sputtering. On the - part of the crystal single & appearance, as shown in Figure 2D. Wherein, the material of the first electrical storm power can be selected, for example, from indium "lu, titanium, gold, tungsten, indium tin, titanium nitride, tungsten germanium", indium (PtIn2), palladium/chain, nickel/ Miao, 钽 / 绍, titanium / silver, 钽 / silver, titanium / Shao, titanium / gold, titanium / titanium nitride, wrong / nitriding, gold / 锗 / nickel, road / record / gold, nickel / chrome / Gold, titanium/Ji/Gold, Titanium/Ming/Gold, Titanium/Ming/Chain/Gold, Gold (9)/Chin/Gold/Shixi, and gold/nickel/titanium/矽/titanium are one group. So, An electrical electrode 216 is electrically coupled to the first electrical semiconductor layer of the luminescent epitaxial unit 204, and the second electrical electrode 210 is coupled to the second electrical semi-electrical junction of the luminescent epitaxial unit 2〇4. Then, a dividing step may be performed to separate the luminescent epitaxial units 2〇4. When performing the dividing step, the cutting may be performed along the groove 206 between the adjacent two illuminating epitaxial units 2〇4, and all The illuminating insect crystal unit 2. 4 is separated from the corresponding first-electrode electrode 216 and the second electric electrode 21 〇, and the lower conductive group 12 1336 141 plate 2 12, and is shown in Fig. 2F. Production of polar body 218, As shown in FIG. 2E, from the structure of the light-emitting diode 218 of FIGS. 2E and 2F, the second electrical electrode 21 of the light-emitting diode 218 is located on the conductive substrate 2, and the light-emitting epitaxial unit 204 is provided. On the second electrical electrode 21〇, the insulating buffer layer 208 is interposed between the second electrical electrode 21〇 and the luminescent epitaxial unit 2〇4 and simultaneously coated on the side of the illuminating crystal unit 204. An electrical electrode 216 is located on the surface of the luminescent epitaxial unit 204 and opposite to the second electrical electrode 210. Referring to FIG. 4, in another embodiment of the present invention, conductive may not be formed in the above embodiment. Before the substrate 212 (as in the structure of FIG. 2A ), a reflective layer 222 is formed on the second electrical electrode 21 , to reflect the light emitted by the luminescent crystal unit 204 toward the conductive substrate 212 to achieve the enhancement component. The effect of the light extraction rate. In this embodiment, the second electrical electrode 21 can be a transparent ohmic electrode, and the material of the second electrical electrode 21 can be indium tin oxide, cadmium tin oxide, and oxidation. , indium oxide, tin oxide, copper oxide aluminum, oxygenated copper gallium and oxygen A group of lithium copper is formed. Then, a conductive substrate 212 is disposed on the reflective layer 222, and then a subsequent process is performed to obtain a light-emitting diode 226 as shown in FIG. 4 in the light-emitting diode 226. The layer 222 is located on the conductive substrate 212, wherein the material of the reflective layer 222 can be selected from the group consisting of silver, gold, platinum, copper, nickel, zinc, aluminum, palladium, and palladium tin. 210 is located on the reflective layer 222, the luminescent epitaxial unit 2 〇 4 is disposed on the second electrical electrode 21 ,, and the insulating buffer layer 2 〇 8 is surrounded by the side of the luminescent epitaxial unit 2 〇 4, the first electrical The electrode 216 is located on the surface of the surface 13 1336141 of the luminescent epitaxial unit 2〇4 and opposite to the second electrical electrode 210. Referring to Figures 3A through 3E, there is shown a cross-sectional view of a light-emitting diode according to another preferred embodiment of the present invention. In the exemplary embodiment, the growth substrate 3 is first provided for the subsequent epitaxial material layer to grow thereon. The material of the growth substrate 3 can be, for example, sapphire. Further, a light-emitting epitaxial structure 3? 2 is formed on the surface of the growth substrate 3 by, for example, epitaxial growth. In the present embodiment, the luminescent epitaxial structure 3 〇 2 may be a compound nitride semiconductor semiconductor such as gallium nitride, and thus the light-emitting diode element may also be referred to as a guazu nitride compound semiconductor light-emitting diode. Body, such as gallium nitride luminescence: polar body. Generally, the light-emitting crystal structure 302 mainly includes a first electrical semiconductor layer, an active layer, and a second electrical semiconductor layer which are sequentially stacked on the surface of the growth substrate 300, wherein the first electrical property and the second electrical property have opposite electrical powers. Sex. In this embodiment, the first electrical electrode is of the N type and the second electrical electrode is of the p type. Then, using a silver engraving method, it is preferable to use a dry lithography method to remove a specific region of the luminescent crystal structure, for example, a region corresponding to a predetermined dicing line, to form a plurality of trenches 3 in the luminescent epitaxial structure 302. 〇6 penetrates through the luminescent epitaxial structure 3〇2, wherein some of the trenches 306 violently exit part of the surface of the substrate to separate the luminescent crystal structure 302 into a plurality of illuminating crystal units 3〇4, as shown in Fig. 3a Shown. = The surface of the luminescent crystal unit 304 is bonded to the surface of the growth substrate & In the present invention, the sides of these grooves 3G6 may be planar 'paraboloids, or curved surfaces' so that the sides of the luminescent epitaxial elements 3〇4 may be planar 'paraboloids, or curved surfaces. Next, an insulating paste 3〇8 is formed to fill the trenches 3〇6, wherein the insulating paste 308 covers the side of each of the light-emitting cells, that is, the insulating paste 308 surrounds each of the light-emitting cells. The side of 4 is to isolate the illuminating insect 1336141 crystal car element 304 and the subsequently formed conductive substrate 312 (please refer to the first drawing first). The material of the insulating crucible 308 may be, for example, polyaramine, stupid butadiene, cyclohexane or epoxy. Next, the second electrical electrode 31G is formed on the exposed surface of the illuminating unit and the insulating adhesive 308 by, for example, a thermal evaporation method, an electron beam evaporation method, or an ion method, and is formed as shown in FIG. The structure of the show. In the present invention, these second electrical electrodes 31G may be opaque ohmic counter electrodes. Wherein, the material of the second electrical electrodes 310 can be selected, for example, from nickel/gold, nickel oxide/gold, palladium/gold/gold/titanium/gold, face/shu' titanium/ming/gold, palladium/record, Recording / gold, / / nickel / gold, 钌 / gold 'sharp / gold, diamond / gold, turn / brocade / gold, nickel / beginning:, nickel indium and platinum indium (PWn7) is a group of people. However, in the deposition method, the conductive substrate M2 is formed to cover the second electrical electrode. The electrical substrate 3 is directly covered on the second electrical electrode 31A, as shown in FIG. 3B. The material of the conductive substrate 312 is preferably a metal having good conductivity and good reflectance. In the present invention, the material of the conductive substrate 312 may be, for example, a group of copper, molybdenum, nickel or aluminum. After the conductive substrate 312 is completed, the growth substrate 300 is stripped by the laser 314 by, for example, a laser stripping method, and the surface of the luminescent epitaxial unit bonded to the growth substrate 300 and the insulating paste 3 〇 8 are exposed, such as the 3C. The figure shows. The outer surface of the illuminating epitaxial unit 304 is surrounded by the insulating adhesive 3〇8, so that the illuminating epitaxial unit 3〇4 and the conductive substrate 312 are not directly joined to each other to be blocked by the insulating adhesive 308. Therefore, when the growth substrate 300 is stripped by the laser 314, the buffer provided by the insulating adhesive 3 〇 8 can also greatly reduce the occurrence between the luminescent epitaxial unit 3 〇 4 and the conductive substrate 312 during the laser stripping process. The thermal stress and the compressive stress can reduce the bonding of the bonding interface between the light-emitting epitaxial unit 15 1336141 and the conductive substrate 312, thereby improving the transfer of the light-emitting epitaxial unit 304 to the conductive substrate 312. Sexuality and integrity achieve the purpose of improving the reliability of transfer and the quality of the luminescent crystal unit 304. After stripping the growth substrate 300, using a 丨丨 & twist, for example, by thermal evaporation, electron beam evaporation, or ion sputtering, forming a plurality of first-leisson electrodes 316 respectively correspond to The light emitting unit 304 is illuminated and located in the corresponding vermiculite. A part of the exposed surface of the Yuqiu 3rd early morning 304, as shown in Figure 3D. In the basin, the material of the first electrical electrode 316 can be selected from indium, aluminum, titanium, Jin, Zhao, gold, tungsten, indium tin, titanium nitride, tungsten telluride 'Nickel/Shixi, Saki, Titanium/Silver, Group/Silver, Titanium/Ming, Titanium/Gold, Titanium/Gasified Titanium, Zirconium Distalization, Gold/Error/Record, Network/Record/Gold, Jin/Luo / Gold, titanium / handle / gold, titanium / Syria / gold, titanium / Shao / nickel / gold, gold / Shi Xi / Qin / gold / Shi Xi and gold / nickel / titanium / tantalum / titanium composed of a group. In the present invention, the first electrical electrode 316 is electrically coupled to the first electrical semiconductor layer of the luminescent crystal unit 304, and the second electrical electrode 310 and the second electrical component of the luminescent amorphous unit 3. 4 The semiconductor layer is electrically bonded. Next, a dividing step can be performed to separate the luminescence into a crystalline unit state. When performing the segmentation step, 'the etch can be performed along the trench 306 between the adjacent two illuminating crystals & 3〇4, and all the luminescent crystal unit is multiplexed with the first-electrode electrode 316 The second electrical electrode 31〇 and the lower conductive substrate jl2 are separated to complete the fabrication of the light-emitting diode 318. As shown in FIG. 3E, the structure of the light-emitting diode 318 is as shown in the figure. The second electrical front 31 is located between the illuminating 1361141 304 and the conductive substrate 312. The illuminating epitaxial unit 3 〇 4 is located on the second electric electrode 3 10 , that is, one surface of the illuminating epitaxial unit 3 〇 4 is directly bonded to the second electric electrode 310 , wherein the illuminating epitaxial unit 3 〇 4 is an insulating rubber Surrounded by 3〇8. The first electrical electrode 316 is located on the exposed surface of the luminescent epitaxial unit 3〇4 and opposite to the second electrical electrode 316. Referring to FIG. 5, in another embodiment of the present invention, before the conductive substrate 312 is formed in the foregoing embodiment (as in the structure of FIG. 3), the first formation layer 322 is directly covered by the second electrical property. The electrode 31 is turned on to reflect the light emitted from the light-emitting crystal 300 to the conductive substrate 312, thereby achieving an effect of increasing the light extraction rate of the element. Then, a conductive substrate is disposed on the reflective layer 322, and after subsequent processing, the light-emitting diode 324 as shown in FIG. 5 can be obtained. In the light-emitting diode 324, the reflective layer 322 is located on the conductive substrate ,], wherein the material of the reflective layer 322 is selected from the group consisting of silver, gold, turn, copper, record, vocabulary, sho, and (4) Ethnic group. The reflective layer 322 is interposed between the surface of the conductive substrate and the first electrical electrode 31A. The second electrical electrode is located on the reflective layer 322. The second electrical electrode 31 can be a transparent ohmic electrode, and the second electrical electrode can be selected from indium tin oxide, tin oxide tin, and the like. The group consisting of indium, indium oxide, tin oxide, copper oxide, copper gallium oxide and copper oxide. The illuminating epitaxial unit 3〇4 is located at the surface of the second electrical electrode 31〇, that is, the surface of the illuminating unit 104, and is directly connected to the second electrical electrode 31〇, wherein the illuminating unit 304 is an insulating gang 3〇8 Surrounded by. The first electric electrode 3 16 is located on the exposed surface of the radiant apricot and is opposite to the second electrical electrode 310. Referring to FIG. 6, in still another embodiment of the present invention, the insulating paste 3 may be formed in the embodiment described in the drawings from 1336141 to 3E of FIG. 17 to form an insulating buffer. On the side, the insulating adhesive 3〇8 is filled into the trench 3〇6, wherein the insulating 326 and the (4) 3G8 can be used as the stress buffering structure between the conductive substrate 312 and the emitting unit. The material of the insulating buffer layer 326 may be, for example, a group consisting of strontium (S!0X), emulsified stone (SiNx), oxidized (Ti〇x) or oxidized (4)~). Then, the conductive substrate (1) can be disposed to cover the edge 308 and the second electrical electrode 31, and after the subsequent process, the sixth (=) body (four) can be obtained. In the light-emitting diode (10), the insulating glue 3〇8 and . , the edge buffer layer 326 is disposed on the surface of the second electrical electrode 31 (), and the buffer layer 326 covers the side of the light-emitting unit 3〇4. The second electrical electrode (10) may be an opaque ohmic reflective electrode, wherein the material of the second electrical electrode 3H) may be selected from the group consisting of nickel/gold, oxidized jin/gold's/silver/gold/chin/gold, uranium/钌, 钦 / W gold, face / record, record / record / gold, face / record / gold, 钌 / gold, 铌 / gold, gu / gold, Syria / record / gold, nickel / uranium, recorded indium and Ming indium (pt3ln7) is a group of people. The illuminating epitaxial unit 304 is located on the second electrical electrode 31〇, that is, the surface of the luminescent epitaxial 'metaparatide 304' is directly bonded to the second electrical electrode (10), wherein the illuminating insect crystal 304 is an insulating buffer layer 326 and The insulating rubber is surrounded by 3〇8. The first electrical electrode 3 16 is located on the exposed surface of the luminescent epitaxial unit 3 〇 4 and opposite to the second electrical electrode 310 , wherein the material of the first electrical electrode 316 may be selected from indium aluminum, Titanium, gold, crane, tin, nitrite, Shi Xihua, face (10) ~), palladium / Ming, recorded / broken, group / Shao, titanium / silver, miscellaneous / silver, titanium / chain 'titanium / Gold, titanium/nitride, wrong/nitriding, gold/niobium/nickel, road/nickel/gold, recording/column/gold, titanium/ki/gold, titanium platinum/gold-titanium/sho/record/gold, Gold / Shi Xi / Titanium / Gold / Shi Xi and gold / recorded / titanium / Shi Xi / Titanium group 18 1336141 into one group. Referring to FIG. 7 in another embodiment of the present invention, before the conductive substrate 312 is formed in the embodiment described in FIG. 6, the reflective layer 332 is formed. The direct coverage on the second electrical electrode 310 The light emitted from the light-emitting epitaxial unit 3〇4 toward the conductive substrate 312 is reflected to achieve an effect of improving the light extraction rate of the element. The material of the reflective layer 33 2 is selected from the group consisting of silver, gold, platinum, copper, nickel, zinc, aluminum, palladium, and palladium tin. Then, a conductive substrate 312 is disposed on the reflective layer 332, and after subsequent processing, the light-emitting diode 334 as shown in FIG. 7 can be obtained. In the light-emitting diode 334, the reflective layer 332 is located on the conductive substrate 312 and between the surface of the conductive substrate 312 and the second electrical electrode 310. The second electrical electrode 31 is located on the reflective layer 332, wherein the second electrical electrode 332 can be a transparent ohmic electrode, and the material of the second electrical electrode 332 can be selected from indium tin oxide, cadmium tin oxide, A group consisting of zinc oxide, copper oxide, tin oxide, copper oxide, copper gallium oxide and copper oxide. The epitaxial-free epitaxial unit is 304%, and the slab is light-emitting, and one surface of the early-twist 304 is directly bonded to the second electrical electrode 310, wherein the luminescent insect crystal unit 304 is an insulating buffer layer 326 and an insulating rubber layer. Surrounded by. The first electrical electrode 316 is located on the exposed surface of the forbidden secret date 304 and is opposite to the second electrical electrode 31, and the material of the first electrical electrode 316 can be Selected from indium, aluminum, titanium, present, ^rPtT..;,, tungsten, indium tin, titanium nitride, tungsten telluride, platinum indium (Ptln2), palladium/aluminum, nickel/ruthenium, button gold, 钍/ Gas outer bucket ^ / Λ. 'Aluminum, titanium / silver, button / silver, titanium / aluminum, titanium / - titanium / titanium telluride, wrong / zirconium nitride, full sharp / sharp / gold, titanium / Syria / gold, Chin / Shao / Record gold, record / network 7 gold, aluminum nickel / gold, gold / Shi Xi / titanium / gold / Shi Xi and gold / nickel / 1336141 sharp / Yu Xi / titanium composed of one group. According to a preferred embodiment of the present invention, one of the advantages of the present invention is that the light-emitting diode of the present invention has a highly conductive and highly reflective conductive substrate, thereby improving the heat dissipation performance and light extraction rate of the light-emitting diode. The purpose of improving the operational efficiency and brightness of the light-emitting diode element is achieved. From the above-described preferred embodiments of the present invention, another advantage of the present invention is that it is in the manufacturing method of the light-emitting diode of the present invention. Before the conductive substrate is fabricated, 'S forms a plurality of trenches in the luminescent crystal structure, and then an insulating buffer layer is disposed on the two walls of the trench and/or the insulating paste is filled in the trench, and then the conductive substrate is disposed on the conductive substrate. In the illuminating epitaxial structure, the subsequent use of the laser stripping system can greatly reduce the thermal stress of the process and the stress caused by the stress on the crystal structure: The laser stripping process is good: two can improve the quality of the light-emitting epitaxial structure, thereby improving the operational quality of the light-emitting diode reading and extending the service life of the component. Although the present invention has been disclosed as a preferred embodiment However, it is not used in the present invention. Anyone who has a general knowledge in this technical field can do various changes and refinements in the range of:: and within the scope: * Despise is attached as defined in the scope of the patent application. [Simple description of the drawing] The drawing to the 1D drawing shows the process of the conventional light-emitting diode 2A to 箪, ^ luminescence - extremely h-painting Shown in accordance with the present invention - a preferred embodiment - A cross-sectional view of a process of a second embodiment of the present invention. FIG. 2F is a top view of a light-emitting diode 20 1336141 according to a preferred embodiment of the present invention. 'A to 3E are diagrams according to the present invention. A cross-sectional view of a process of a light-emitting diode according to another preferred embodiment. FIG. 4 is a cross-sectional view of a light-emitting diode in accordance with still another preferred embodiment of the present invention. Fig. 5 is a schematic cross-sectional view showing a light-emitting diode according to still another preferred embodiment of the present invention. Fig. 6 is a diagram showing the Yizhao Tai Road $", A schematic cross-sectional view of a light-emitting diode of a preferred embodiment. Figure 7 is a cross-sectional view showing a light emitting diode according to still another preferred embodiment of the present invention. Main component symbol description] 100: permanent substrate 104: light-emitting crystal structure 108: light-emitting crystal unit Π2: trench 116: pressure 120: electrode 202: light-emitting epitaxial structure 206: trench 2 10: second electrical electrode 214 : Laser 218 : Light-emitting diode 102 : Bonding metal layer 1 · Growth substrate 110 : Electrode 114 : Laser 118 : Light-emitting diode 2 〇〇 : Growth substrate 204 : Light-emitting epitaxial unit 208 : Insulation buffer layer 212 : Conductive substrate 216: first electrical electrode 222: reflective layer 21 1336141 226: light emitting diode 300: 302: light emitting crystal structure 304: 306: trench 308: 310: second electrical electrode 312: 314: laser 316 : 318 : Light-emitting diode 322 : 324 : Light-emitting diode 326 : 330 : Light-emitting diode 332 : 334 : Light-emitting diode growth substrate light-emitting epitaxial unit insulating adhesive conductive substrate first electrical electrode reflective layer insulation Buffer layer reflective layer

22twenty two

Claims (1)

1336141 十、申請專利範圍 1. 一種發光二極體,至少包括: 一導電基板; 一第二電極,設於該導電基板上; 一發光磊晶單元,設於該第二電極 蚀之一第一部分上,其 中該發光蟲晶單元具有一側面、以及加i 久相對之一第一表面與 一第'一表面’且該發光蟲晶早元之該笛1336141 X. Patent Application Range 1. A light-emitting diode comprising at least: a conductive substrate; a second electrode disposed on the conductive substrate; a light-emitting epitaxial unit disposed in the first portion of the second electrode Above, wherein the illuminating crystal unit has a side surface, and the first surface and the first 'one surface' are added to each other, and the ray of the luminescent crystal crystal is early Λ弟一表面與該第二電 極接合’該發光磊晶單元之該第二表面暴露出; 一絕緣緩衝層,設於該第二電極之—牮 Α 上〇 ^ 第二部分上並圍繞 在該發光磊晶單元之該側面外; 一絕緣膠,圍繞該絕緣緩衝層;以及 一第一電極,設於該發光磊晶單元之該第二表面的一部 分上。 2. 如申請專利範圍第1項所述之發光二極體,其中該導 _ 電基板之材料為具導電性佳且反射率好之金屬。 3. 如申請專利範圍第1項所述之發光二極體,其中該導 電基板之材料係選自於由銅、鉬、鎳以及鋁所組成之一 族群。 4. 如申請專利範圍第1項所述之發光二極體,其中該第 23 1336141 二電極係一不透明歐姆反射電極。 5.如申請專利範圍第4項所述之發光二極體,其中該第 二電極之材料係選自於由鎳/金、氧化鎳/金、鈀/銀/金 /鈦/金、鉑/釕、鈦/鉑/金、鈀/鎳、鎳7鈀/金 '鉑/鎳/ 金、釕/金、銳/金、钻/金、鉑/錄/金、錄/鉑、錄銦以 及鉑銦(Ptaln7)所組成之一族群。 i. 如申請專利範圍第1項所述之發光二極體,其中該絕 緣緩衝層之材料係選自於由氧化矽(S i 〇x)、氮化矽 (SiNx)、氧化鈦(Ti〇x)以及氧化鋁(Al〇x)所組成之一族 群。 7 · 如申請專利範圍第1項所述之發光二極體,其中該發 光蟲晶单元之該側面為平面、抛物面、或曲面。 Φ 8. 如申請專利範圍第1項所述之發光二極體,其中該發 光二極體係一 m族氣化物化合物半導體發光二極體。 9. 如申請專利範圍第1項戶斤述之發光一極體,其中該發光 二極體係一氮化鎵發光二極體。 10. 如申請專利範圍第1頊所述之發光二極體,其中該發 光磊晶單元至少包括一第/電性半導體層、一主動層以 及一第二電性半導體層,真該第一電性半導體層與該第 24 1336141 一電極電性連接,該第二電性半導體層與該第二電極電 性連接。 11. 如申請專利範圍第1項所述之發光二極體,其中該第 一電極之材料係選自於由銦、鋁、鈦、金、鎢、銦錫、 氮化鈦、矽化鎢、鉑銦(P11 Π2)、鈀/鋁、鎳/矽、组/紹、 鈦/銀、组/銀、鈦/鋁、鈦/金、鈦/氮化鈦、錯/氮化結、 金/鍺/鎳、鉻/鎳/金 '鎳/鉻/金、鈦/鈀/金、鈦/鉑/金、 鈦/銘/鎳/金、金/矽/鈦/金/矽以及金/鎳/鈦/矽/鈦所 組成之一族群。 12. 如申請專利範圍第1項所述之發光二極體,更至少包 括一反射層介於該導電基板與該第二電極之間。 13. 如申請專利範圍第12項所述之發光二極體,其中該 反射層材料係選自於由銀、金、鉑 '銅、鎳、鋅 '鋁、 鈀以及把錫所組成之一族群。 14. 如申請專利範圍第12項所述之發光二極體,其中該 第二電極係一透明歐姆電極。 15. 如申請專利範圍第14項所述之發光二極體’其中該 第二電極之材料係選自於由氧化銦錫、氧化錫錫、氣化 鋅、氧化銦、氧化錫、氧化銅鋁、氧化銅鎵以及氧化鳃 銅所組成之一族群。 25 1336141 朽年G月讀修(更)正替換頁 16.如申凊專利範圍第1項所述之發光二極體,其中該絕 緣膠之材料係選自於由聚亞醯胺(ρι )、苯并環丁烷 (BCB)、過氟環丁烷(pFCB)以及環氧樹脂(Ep〇xy)所組成 之一族群。 17. 一種發光二極體之製造方法,至少包括: 形成一發光磊.晶結構於一成長基板之一表面上; 形成複數個溝槽貫穿該發光磊晶結構,以形成複數個 發光磊晶單元,並暴露出該成長基板之該表面的一部分, 其中每一該些發光磊晶單元具有一側面、以及相對之—第 表面與一第二表面,且每一該些發光磊晶單元之該第二 表面與該成長基板接合; 形成一絕緣緩衝層圍繞在該些發光磊晶單元之該側 面外; 形成一絕緣膠圍繞該絕緣緩衝層; 形成一第二電極位於該些發光磊晶單元之該第一表 面上; 开&gt; 成一導電基板,覆蓋在該第二電極上; 移除該成長基板’以暴露出每一該些發光蟲晶單元之 該第二表面; 形成複數個第一電極,其中該些第一電極分別對應於 該些發光磊晶單元,且位於對應之該些發光磊晶單元之該 26 1336141 ___ 辦纟月&gt;^修(¾正替換頁 ; ---—^_ 第二表面上;以及 進行一分割步驟,以沿著該發光磊晶結構之該些溝槽 而分離該些發光磊晶單元。 18.如申睛專利範圍第17項所述之發光二極體之製造方 法,其中該成長基板之材料為藍寶石。 _ 19.如申凊專利範圍第17項所述之發光二極體之製造方 法’其中該發光二極體係一皿族氮化物化合物半導體發 光二極體。 20. 如申請專利範圍第17項所述之發光二極體之製造方 法’其中每一該些發光磊晶單元之該側面為平面、拋物 面、或曲面。 φ 21- 如申請專利範圍第17項所述之發光二極體之製造方 法,其中形成該些溝槽之步驟係利用乾式姓刻法。 22. 如申請專利範圍第17項所述之發光二極體之製造方 法,其中該絕緣緩衝層之材料係選自於由氧化矽 (Si〇x)、氮化矽(SiNx)、氧化鈦(Ti〇x)以及氧化鋁(Al〇x) 所組成之一族群。 23. 如申請專利範圍第17項所述之發光二極體之製造方 27 1336141a second surface of the radiant epitaxial unit is exposed; a dielectric buffer layer is disposed on the second portion of the second electrode and surrounds the second electrode An insulating paste surrounding the insulating buffer layer; and a first electrode disposed on a portion of the second surface of the light emitting epitaxial unit. 2. The light-emitting diode according to claim 1, wherein the material of the conductive substrate is a metal having good conductivity and good reflectivity. 3. The light-emitting diode of claim 1, wherein the material of the conductive substrate is selected from the group consisting of copper, molybdenum, nickel, and aluminum. 4. The light-emitting diode according to claim 1, wherein the second electrode of the 23 1336141 is an opaque ohmic reflective electrode. 5. The light-emitting diode according to claim 4, wherein the material of the second electrode is selected from the group consisting of nickel/gold, nickel oxide/gold, palladium/silver/gold/titanium/gold, platinum/ Bismuth, titanium/platinum/gold, palladium/nickel, nickel 7 palladium/gold 'platinum/nickel/gold, rhodium/gold, sharp/gold, diamond/gold, platinum/recorded/gold, recorded/platinum, indium and platinum A group of indium (Ptaln7). The light-emitting diode according to claim 1, wherein the material of the insulating buffer layer is selected from the group consisting of yttrium oxide (S i 〇 x), tantalum nitride (SiNx), and titanium oxide (Ti〇). x) and a group of alumina (Al〇x). 7. The light-emitting diode of claim 1, wherein the side of the light-emitting crystal unit is a plane, a paraboloid, or a curved surface. Φ 8. The light-emitting diode according to claim 1, wherein the light-emitting diode system is a m-group vapor compound semiconductor light-emitting diode. 9. For example, in the first paragraph of the patent application, the light-emitting diode of the first embodiment is a gallium nitride light-emitting diode. 10. The light-emitting diode of claim 1, wherein the light-emitting epitaxial unit comprises at least a first/electrical semiconductor layer, an active layer, and a second electrical semiconductor layer. The semiconductor layer is electrically connected to the 24th 1336141 electrode, and the second electrical semiconductor layer is electrically connected to the second electrode. 11. The light-emitting diode according to claim 1, wherein the material of the first electrode is selected from the group consisting of indium, aluminum, titanium, gold, tungsten, indium tin, titanium nitride, tungsten telluride, platinum Indium (P11 Π2), palladium/aluminum, nickel/ruthenium, group/should, titanium/silver, group/silver, titanium/aluminum, titanium/gold, titanium/titanium nitride, staggered/nitrided knot, gold/锗/ Nickel, Chromium/Nickel/Gold 'Nickel/Chromium/Gold, Titanium/Palladium/Gold, Titanium/Platinum/Gold, Titanium/Ming/Nickel/Gold, Gold/矽/Titanium/Gold/矽 and Gold/Nickel/Titanium/ A group consisting of bismuth/titanium. 12. The light-emitting diode of claim 1, further comprising at least a reflective layer interposed between the conductive substrate and the second electrode. 13. The light-emitting diode according to claim 12, wherein the reflective layer material is selected from the group consisting of silver, gold, platinum 'copper, nickel, zinc 'aluminum, palladium, and tin. . 14. The light-emitting diode of claim 12, wherein the second electrode is a transparent ohmic electrode. 15. The light-emitting diode according to claim 14, wherein the material of the second electrode is selected from the group consisting of indium tin oxide, tin tin oxide, zinc vapor, indium oxide, tin oxide, copper oxide aluminum. A group of copper oxide gallium and copper beryllium oxide. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A group consisting of benzocyclobutane (BCB), perfluorocyclobutane (pFCB), and epoxy resin (Ep〇xy). 17. A method of fabricating a light emitting diode, comprising: forming a light emitting epitaxial structure on a surface of a growth substrate; forming a plurality of trenches extending through the light emitting epitaxial structure to form a plurality of light emitting epitaxial cells And exposing a portion of the surface of the growth substrate, wherein each of the luminescent epitaxial cells has a side surface, and a first surface and a second surface, and each of the luminescent epitaxial units The two surfaces are bonded to the growth substrate; an insulating buffer layer is formed around the side of the luminescent epitaxial cells; an insulating glue is formed around the insulating buffer layer; and a second electrode is formed on the luminescent epitaxial cells. On the first surface; opening &gt; forming a conductive substrate overlying the second electrode; removing the growth substrate 'to expose the second surface of each of the light-emitting insect crystal units; forming a plurality of first electrodes, The first electrodes respectively correspond to the illuminating epitaxial units, and are located in the corresponding illuminating epitaxial units of the 26 1336141 ___ 纟月&gt;^修(3⁄4正Forming a page; ----^_ on the second surface; and performing a dividing step to separate the light-emitting epitaxial units along the trenches of the light-emitting epitaxial structure. The method for manufacturing the light-emitting diode according to the invention, wherein the material of the growth substrate is sapphire. The method for manufacturing the light-emitting diode according to claim 17, wherein the light-emitting diode system The method of manufacturing a light-emitting diode according to claim 17, wherein the side of each of the light-emitting epitaxial units is a plane, a paraboloid, or a curved surface. Φ 21- The method of manufacturing the light-emitting diode according to claim 17, wherein the step of forming the trenches is performed by a dry-type method. 22. The light-emitting method according to claim 17 A method of manufacturing a diode, wherein the material of the insulating buffer layer is selected from the group consisting of yttrium oxide (Si〇x), tantalum nitride (SiNx), titanium oxide (Ti〇x), and aluminum oxide (Al〇x) Form a group. 23. If applying for a patent Surrounding the light emitting diode 17 of the first producing 271,336,141 法’其中形成該些第一電極夕止_ ^ 之步驟與形成該第二電極之 步驟係利用熱蒸鍍法、電子弟 了果4鑛法或離子濺鍍法。 仏如申請專利範圍第17項所述之發光二極體之製造方 法,其中該第二電極係-不透明歐姆反射電極層。 25·如申請專利範圍第24項所述之發光二極體之製造方 法,其中該第二電極之材料係選自於由鎳/金、氧化鎳/ 金、鈀/銀/金/鈦/金、鉑/釘、鈦/鉑/金、鈀/鎳 '鎳/ 鈀/金、鉑/鎳/金、釕/金、鈮/金、鈷/金、鉑/鎳/金、 鎳/鉑、鎳銦以及鉑銦(PtUh)所組成之一族群。 26.如申請專利範圍第17項所述之發光二極體之製造方 法’其中該些第一電極之材料係選自於由銦、鋁、鈦、 金、鎢、銦錫、氮化鈦、矽化鎢 '鉑銦(ΡΐΙη2)、鈀/鋁、 鎖/矽、鈕/鋁、鈦/銀、钽/銀、鈦/鋁、鈦/金、鈦/氮 化鈦 '鍅/氮化锆、金/鍺/鎳、鉻/鎳/金、鎳/鉻/金、 鈦/鈀/金、鈦/鉑/金、鈦/鋁/鎳/金、金/矽/鈦/金/石夕 以及金/鎳/鈦/矽/鈦所組成之一族群。 27. 如申請專利範圍第1 7項所述之發光二極體之製造方 法’其_形成該導電基板之步驟係利用電鐘法或沉積 法0 28. 如申請專利範圍第17項所述之發光二極體之製造方 28 1336141 - ' 挤6、月Μ修(更)正替換頁 * 法,其中該導電基板之材料為具導電性佳且反射率好之 金屬》 . 29. 如申請專利範圍第17項所述之發光二極體之製造方 法,其中該導電基板之材料係選自於由銅、鉬' 録以及 鋁所組成之一族群。 * 3 0. 如申請專利範圍第1 7項所述之發光二極體之製造方 φ 法,其中移除該成長基板之步驟係利用雷射剝離法。 31. 如申請專利範圍第1 7項所述之發光二極體之製造方 法’其中該第二電極係一不透明歐姆反射電極層。 3 2.如申請專利範圍第1 7項所述之發光二極體之製造方 法’其中該第二電極之材料係選自於由鎳/金、氧化錄/ 金、把/銀/金/欽/金、始/釕、鈦/翻/金、把/鎳、錄/ φ 鈀/金、鉑/鎳/金、釕/金、鈮/金、鈷/金、鉑/鎳/金、 錄/翻、鎳銦以及鉑銦(Pt3InT)所組成之一族群。 33. 如申請專利範圍第丨7項所述之發光二極體之製造方 法’於形成該導電基板之步驟與形成該第二電極之步驟 門 更至少包括形成一反射層覆蓋在該第二電極上。 34. 如申請專利範圍第33項所述之發光二極體之製造方 会其中該反射層材料係選自於由銀、金、麵、鋼、鎳、 29 1336141 Mes修(更)正替換頁 鋅、鋁、鈀以及鈀錫所組成之一族群。 35. 如申請專利範圍第33項所述之發光二極體之製 法,其中該第二電極係一透明歐姆電極。 36. 如申請專利範圍第35項所述之發光二極體之製 法,其中該第二電極之材料係選自於由氧化銦錫、 鎘錫、氧化鋅、氧化銦、氧化錫、氧化銅鋁、氧化 以及氧化锶銅所組成之一族群。 37. 如申請專利範圍第1 7項所述之發光二極體之製 法,其中該絕緣膠之材料係選自於由聚亞醯胺、苯 丁烷、過氟環丁烷以及環氧樹脂所組成之一族群。 造方 造方 氧化 銅鎵 造方 并環The step of forming the first electrodes and the step of forming the second electrode are by thermal evaporation, electron microscopy or ion sputtering. A method of fabricating a light-emitting diode according to claim 17, wherein the second electrode is an opaque ohmic reflective electrode layer. The method of manufacturing the light-emitting diode according to claim 24, wherein the material of the second electrode is selected from the group consisting of nickel/gold, nickel oxide/gold, palladium/silver/gold/titanium/gold. , platinum/nail, titanium/platinum/gold, palladium/nickel 'nickel/palladium/gold, platinum/nickel/gold, rhodium/gold, rhodium/gold, cobalt/gold, platinum/nickel/gold, nickel/platinum, nickel A group of indium and platinum indium (PtUh). The method for manufacturing a light-emitting diode according to claim 17, wherein the materials of the first electrodes are selected from the group consisting of indium, aluminum, titanium, gold, tungsten, indium tin, titanium nitride, Tungsten carbide 'Platinum indium (ΡΐΙη2), palladium/aluminum, lock/矽, button/aluminum, titanium/silver, yttrium/silver, titanium/aluminum, titanium/gold, titanium/titanium nitride' 鍅/zirconium nitride, gold /锗/Nickel, Chromium/Nickel/Gold, Nickel/Chromium/Gold, Titanium/Palladium/Gold, Titanium/Platinum/Gold, Titanium/Aluminum/Nickel/Gold, Gold/矽/Titanium/Gold/Shixi and Gold/ A group of nickel/titanium/niobium/titanium. 27. The method of manufacturing a light-emitting diode according to claim 17 of the invention, wherein the step of forming the conductive substrate is by an electric clock method or a deposition method. 28. The method of claim 17 is as described in claim 17 Manufacture of light-emitting diodes 28 1336141 - 'Squeeze 6, Μ repair (more) is replacing page * method, wherein the material of the conductive substrate is a metal with good conductivity and good reflectivity. The method for manufacturing a light-emitting diode according to Item 17, wherein the material of the conductive substrate is selected from the group consisting of copper, molybdenum, and aluminum. * 3 0. The method of manufacturing the light-emitting diode according to claim 17, wherein the step of removing the grown substrate is performed by a laser lift-off method. 31. A method of fabricating a light-emitting diode according to claim 17 wherein the second electrode is an opaque ohmic reflective electrode layer. 3. The method for manufacturing a light-emitting diode according to claim 17, wherein the material of the second electrode is selected from the group consisting of nickel/gold, oxide/gold, and silver/gold/gold. /Gold, start/钌, titanium/turn/gold, handle/nickel, record/φ palladium/gold, platinum/nickel/gold, rhodium/gold, rhodium/gold, cobalt/gold, platinum/nickel/gold, recorded/ A group of turned over, nickel indium, and platinum indium (Pt3InT). 33. The method for manufacturing a light-emitting diode according to claim 7, wherein the step of forming the conductive substrate and the step of forming the second electrode further comprise forming at least a reflective layer over the second electrode on. 34. The manufacturer of the light-emitting diode according to claim 33, wherein the reflective layer material is selected from the group consisting of silver, gold, face, steel, nickel, 29 1336141 Mes (more) replacement page A group of zinc, aluminum, palladium, and palladium tin. The method of claim 26, wherein the second electrode is a transparent ohmic electrode. 36. The method according to claim 35, wherein the material of the second electrode is selected from the group consisting of indium tin oxide, cadmium tin, zinc oxide, indium oxide, tin oxide, copper oxide aluminum. One group consisting of oxidized and yttrium copper oxide. 37. The method for producing a light-emitting diode according to claim 17, wherein the material of the insulating rubber is selected from the group consisting of polyamidoamine, benzobutane, perfluorocyclobutane, and epoxy resin. Form a group of people. Manufacture of copper oxide gallium 3030
TW95149361A 2006-12-27 2006-12-27 Light-emitting diode and method for manufacturing the same TWI336141B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149361A TWI336141B (en) 2006-12-27 2006-12-27 Light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149361A TWI336141B (en) 2006-12-27 2006-12-27 Light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200828623A TW200828623A (en) 2008-07-01
TWI336141B true TWI336141B (en) 2011-01-11

Family

ID=44817703

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149361A TWI336141B (en) 2006-12-27 2006-12-27 Light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI336141B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416758B (en) * 2008-12-12 2013-11-21 Everlight Electronics Co Ltd Structure of light emitting diode and method of fabricaiting the same
TWI473299B (en) * 2011-12-15 2015-02-11 Ritedia Corp Flip-chip light emitting diode and manufacturing method and application thereof
TW201401547A (en) * 2012-06-19 2014-01-01 Chi Mei Lighting Tech Corp Fabricating method for light emitting diode
CN114072895A (en) * 2019-06-25 2022-02-18 苏州晶湛半导体有限公司 Light emitting device, template of light emitting device and preparation method thereof

Also Published As

Publication number Publication date
TW200828623A (en) 2008-07-01

Similar Documents

Publication Publication Date Title
US8502193B2 (en) Light-emitting device and fabricating method thereof
KR101396121B1 (en) Method for handling a semiconductor wafer assembly
TWI431798B (en) Light emitting diode with conducting metal substrate
US6838704B2 (en) Light emitting diode and method of making the same
TWI395351B (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP4623953B2 (en) Semiconductor chip emitting electromagnetic beam and method of manufacturing the same
US8242530B2 (en) Light emitting device and method for fabricating the same
WO2004109764A2 (en) Method of fabricating vertical structure compound semiconductor devices
TW201145591A (en) High efficiency light emitting diode
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
JP2012028773A (en) Semiconductor light-emitting element and manufacturing method of the same
US20140353582A1 (en) High efficiency light emitting diode and method of fabricating the same
JP2010225852A (en) Semiconductor element, and method of manufacturing the same
JP2022516669A (en) Vertical structure blue light emitting diode and its manufacturing method
TWI336141B (en) Light-emitting diode and method for manufacturing the same
JPH10242516A (en) Gallium nitride compound semiconductor light emitting element and its manufacture
KR100946441B1 (en) LED having Vertical- Structured Electrodes and Manufacturing Method thereof
KR20070044099A (en) Nitride-based light emitting diode and manufacturing method of the same
KR101428066B1 (en) vertical structured group 3 nitride-based light emitting diode and its fabrication methods
TWI625870B (en) Method of manufacuring semiconductor light emitting device
KR20210135424A (en) Light-emitting device
KR100752348B1 (en) Method of producing light emitting diode having vertical structure
CN112652689B (en) Light emitting diode and manufacturing method thereof
KR20090115902A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2005086137A (en) GaN-BASED LIGHT EMITTING DIODE