TWI326894B - Ion sensing devices, reference electrodes and fabrication methods thereof - Google Patents

Ion sensing devices, reference electrodes and fabrication methods thereof Download PDF

Info

Publication number
TWI326894B
TWI326894B TW95141144A TW95141144A TWI326894B TW I326894 B TWI326894 B TW I326894B TW 95141144 A TW95141144 A TW 95141144A TW 95141144 A TW95141144 A TW 95141144A TW I326894 B TWI326894 B TW I326894B
Authority
TW
Taiwan
Prior art keywords
reference electrode
solution
conductive substrate
conductive
ion sensing
Prior art date
Application number
TW95141144A
Other languages
Chinese (zh)
Other versions
TW200822177A (en
Inventor
Jung Chuan Chou
Cheng Chen Chen
Cheng Wei Chen
Ya Ping Huang
Ching Hsiang Hsu
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW95141144A priority Critical patent/TWI326894B/en
Publication of TW200822177A publication Critical patent/TW200822177A/en
Application granted granted Critical
Publication of TWI326894B publication Critical patent/TWI326894B/en

Links

Description

1326894 • , 九、發明說明: 【發明所屬之技術領域】 、 本發明係有關於一種感測器,特別是有關於一種離子 - 感測器及其應用之參考電極。 * 【先前技術】 隨著化學感測器(Chemical Sensors)與生物感測器 φ (Biosensors)之蓬勃發展,感測器之多樣化研發逐漸被重 視,其必須符合微小化、多工化、與智慧化等條件。 然而,於感測器中需搭配一參考電極方可進行量測, 故感測器之發展亦與搭配之參考電極息息相關。傳統電化 學原理感測之參考電極係採用銀/氯化銀電極(Ag/AgCl Electrode)或甘汞電極(Calomel Electrode),但因汞元素具毒 性,故逐漸由銀/氯化銀電極所取代。然而,使用銀/氯化銀 電極時,由於其易與待測溶液發生氧化或還原反應,故易 • 造成訊號漂移之現象產生。 因此即需要研製出穩定且不易受外在環境影響而改變 基準電壓之參考電極。目前國内外商品化之參考電極仍以 液態接面(Liquid Junction)參考電極較普遍,其備製方式係 以玻璃透析膜作為内部鹽類溶液與待測溶液之介面,藉由 參考電極與内部鹽類溶液相互反應達至平衡,以使得輸出 訊號較穩定。但就此類之參考電極而言,由於其所使用之 玻璃材質具有易碎、製程不易、價格較高,且需長時間於 氣化鉀溶液中保存以及體積過大f致不易攜帶等缺點。此 0619-A21623TWF(N2);shawnchang 5 1326894 • 戶 外若以微小化感測器為目標時,如此之玻璃材質電極並不 適用,因此即需要一種可微小化之參考電極。 - 【發明内容】 ; 有鑑於此,本發明提供一種可微小化之參考電極,適 . 用於微小化之感測器中。 依據一實施例,本發明提供一種參考電極,包括: 一導電基板;一絕緣層,大體包覆該導電基板,具有 • 大體露出該導電基板一部之一開口; 一導電高分子層,設 置於該開口内之導電基板上;一金屬導線,部份埋設於該 絕緣層内且部份凸出於該絕緣層外,電性接觸該導電基 板;以及一遮罩,環繞凸出於該絕緣層外之該金屬導線。 依據另一實施例,本發明提供一種參考電極之製造方 法,包括: 提供一導電基板;固定一金屬導線於該導電基板之一 部上;利用一絕緣材料大體封裝該導電基板與該金屬導 • 線,僅留下一開口,該開口露出該導電基板之一部,而該 金屬導線則部份突出於該絕緣材料;以及施行一電聚合反 應,以利於該開口内之該導電基板上形成一導電南分子膜。 依據另一實施例,本發明提供一種離子感測裝置,包 括: 一延伸式閘極場效電晶體離子感測元件、一離子待測 溶液、一參考電極用以提供穩定電位、一加熱器用以對感 測環境進行加熱保持固定溫度、一溫度控制器連接於該加 熱器、一半導體參數分析裝置連接於該系統測試裝置,以 0619-A21623TWF(N2);shawnchang 6 1326894 • 鮮 及一暗箱用以避免感測過程受到光線影響。其中該參考電 極包括一導電基板、大體包覆該導電基板之一絕緣層,具 有大體露出該導電基板一部之一開口、設置於該開口内之 導電基板上一導電高分子、部份埋設於該絕緣層内且凸出 延伸於該絕緣層外之一金屬導線,以電性接觸該導電基板 以及環繞凸出於該絕緣層外之該金屬導線之一遮罩。 為使本發明之上述和其他目的、特徵與優點能更明顯 易懂,下文特舉一較佳實施例,並配合所附圖示,作詳細 說明如下: ' 【實施方式】 本發明之參考電極之實施例將配合第】圖至第 作一詳細敘述如下。 ° 請參照第1目,顯示依據本發明之一實 二電㈣’其包括-檢測部14以及一金屬導線18。; 才欢測部14上露出有—於、目丨* ; 顯示),而金屬導線口以接觸一檢測溶液(未 遮罩性連結Γ測部14,並為一 示)。 明離上述金屬導線與檢測溶液(未顯 :參第2圖,顯示第!圖中區域之 如圖所示,檢測部14主 大It幵v。 上之一導電層24。此外匕 土 22,以及形成於其 覆上述基板22 C測部14更包括環繞並部份包 、土攸“興導電層24 並定義出上述檢測窗 ,、“層28,絕緣層28 24。於檢測窗口 12 ,且部份露出其内之導電層 内之導電層12上則形成有一導 0619-A21623TWF(N2);shawnchang 问 7 1326894 » , 分子層26,而上述金屬導線18係部份埋設於絕緣層28 内,以電性連結於導電層24。 . 如第1圖與第2圖所示之參考電極10之各構件中, 導線18例如為銅、铭、銀之一金屬導線,遮罩16例如 • 為玻璃、陶瓷、鐵氟龍材質之一遮罩,絕緣層28例如為 * 環氧樹脂、環氧_聚氨酯、絕緣膠之一絕緣材料,導電 V 層24例如為銦錫氧化物(ITO)、RuN、Ru02之一導電材 料,導電高分子層26例如為聚砒硌、聚苯胺、聚噻吩等 ® 導電高分子材料,基板22例如為矽、網版塑膠、玻璃等材 質。 如第1圖與第2圖所示之參考電極10主要採用含導 電南分子層、導電層與基板之分離式架構所組成之一導電 聚合物薄膜,因此具有可微型化之特徵,特別適用於各式 生物、離子與化學感測器感測中作為參考電極之用,其可 提供較為穩定且不會有訊號漂移之一參考準位。 0 以下揭示參考電極10之製備: 檢測部之製備: 在此以採用聚砒硌材質之導電高分子層26之檢測部 製備作為解說,首先採用塗佈有導電層24之基板22(簡稱 為導電基板30),例如為台灣光華開發科技股份有限公司所 產製之氧化銦錫玻璃(ITO Glass),並將此導電基板30 置於倒入有適量丙酮溶液之一燒杯中,經由超音波振盪器 振盪5分鐘後,以去離子水(D.I. Water)清洗此導電基板 0619-A21623TWF(N2);shawnchang 8 1326894 ► 声 30。接著再將此經丙酮溶液潔淨過之導電基板30置入玻璃 燒杯中,並倒入適量之乙醇溶液,使用超音波振盪器振盪 . 5分鐘後再以去離子水(D.I. Water)清洗導電基板30,而 ' 後以無塵紙將導電基板30輕輕拭乾。接著採用銀膠將如銅 * 線之金屬導線16固定於導電基板30上之導電層24上,接 • 著將此固定完成之元件置於130°C烤箱中烘烤10分鐘。接 . 著利用如環氧樹脂之一絕緣層28將銀膠之部份加以固 定,並將其上述元件大體封裝,僅留下約2 mm X 2 mm大 ® 小之檢測窗口 12,並置於130°C烤箱中烘烤30分鐘,以烤 乾絕緣層28,進而得到一未塗佈有導電高分子層26之一 檢測部14’(詳見第3圖),此時檢測窗口 12中露出有部份 之導電層24。於烘乾後,若絕緣層28中產生有小孔洞時, 則需再次以相同之絕緣材料將孔洞填平,並繼續以130°C 烘烤,使經過絕緣層28封裝後之元件於水溶液中進行感測 時有良好之防水及絕緣效果。 接著利用如第3圖所示之一電聚合系統,於上述檢測 ^ 部14之檢測窗口之導電層24上製備導電高分子層26。導 電高分子層26之製備首先提供一電聚合溶液34,其包含 濃度為0.1〜0.31\4之1〇12?〇4(分子量 136.09)與1^1^〇4(分 子量174.18)磷酸鉀(皆為一般試藥級)緩衝溶液(ΚΗ2Ρ04: K2HPO4調配比例約1:1)、濃度為1M之乙睛(Acetonitrile, 分子式為CH3CN,分子量為41.05,曰本試藥工業株式會 社產製)與濃度為〇_1Μ之KC1(分子量74.56,日本試藥工 業株式會社產製)等電解質溶液,以及濃度為0.1〜0.5M之 0619-A21623TWF(N2);shawnchang 9 1326894 導電高分子砒硌(分子式為C4H5N,分子量為67,東京化成 產製),其中含KH2P〇4之磷酸鉀緩衝溶液之pH值約介於 . 4〜5,而含K2HP〇4之磷酸鉀緩衝溶液之pH值約介於 ' 8.5〜9.5。電聚合溶液34係藉由將上述電解質與導電高分子 • 溶液加入於pH7之填酸钟缓衝溶液中,藉由磁石擾拌器攪 - 拌3至5分鐘所調配而成。其中由KC1與乙睛所組成之電 • 解質溶液的氧化還原電位約為4.2V,而於電聚合溶液34 中之各溶液重量比例約為乙睛:KC1 :砒硌=2 : 2 : 1,其 •過氧化電位約為5V。 接著,使用一循環伏安儀(未顯示)量測電聚合溶液34 與檢測部14’之過氧化還原電位,並使用直流電源供應器 36,將其電壓調至如5V之一固定電壓,並將正極接於上 述檢測部14’,負極則接於一白金電極32。所施行之電聚 合時間約為30分鐘,於電聚合完成後,隨即將檢測部14’ 取出,並置於去離子水(D. I. Water)中30分鐘後,自去離 子水(D. I. Water)中取出參考電極,並置於乾燥處12小時。 ^ 隨後調配濃度6M之NaOH溶液(NaOH之分子量40.00,為 顆粒狀之材料,日本試藥工業株式會社產製),並將此經電 聚合反應過後之檢測部14’置於上述溶液中30秒鐘後隨 即取出,並置於去離子水(D. I. Water)中30分鐘後取出置 於乾燥處,待其乾燥即可得到如第1圖所示參考電極10 中之檢測部14,其檢測窗口 12内此時設置有聚砒硌材質 之一導電高分子層(未顯示)。 另外,亦可採用上述類似之電聚合製程以製備出如聚 0619-A21623TWF(N2) ishawnchang 10 1326894 苯胺、聚°塞吩材質之導電高分子層26。 離子感測系統與方法 本發明之離子感測系統之實施例將配合第4圖至第5 圖作一詳細敘述如下,其中第4圖顯示一電流-電壓(I-V) 離子感測系統之一示意圖,而第5圖顯示一電壓-時間 (V-T)離子感測系統之一示意圖。 請參照第4圖,顯示依據本發明之一實施例之離子感 測系統50,此離子感測系統50係採用延伸式感測場效電 晶體(Extended Gate Ion Sensitive Field Effect Transistor, EGFET)之一離子感測系統為例,使金氧半場效電晶體 (Metal Oxide Semiconductor Field Effect Transistor, MOSFET)完全與待測溶液隔離,藉以降低半導體元件之不 穩定特性,及避免受到溶液中之訊號干擾,但不以上述系 統為限。離子感測系統50可用於感測於生物或化學溶液中 如氫、納、钟等驗金屬離子之感測度,但並不以上述離子 為限,亦可用於感測其他類型離子。於此,離子感測系統 50係將一驗金屬離子感測元件60浸入於一待測溶液66 中。驗金屬離子感測元件60例如為以下幾種感測元件之 (1) 氫離子感測元件; (2) 鈉離子感測元件;或 (3) 鉀離子感測元件。 0619-A21623TWF(N2);shawnchang 1326894 • _ 如第4圖所示,鹼金屬離子感測元件60經由一導線而 . 電性連結於一金氧半場效電晶體54之閘極端G,而金氧半 場效電晶體5 4之沒極D及源極S則分別措由導線而相連 • 於一半導體參數分析裝置52,例如為Keithley公司所產製 . 之Keithley 236分析裝置。另外,於待測溶液66中則浸入 . 有一參考電極5 6,例如為習知之銀/氯化銀參考電極或如第 1圖所不之爹考電極10,措以提供'一穩定電位,而爹考電 ® 極56則經由一導線而相連於半導體參數分析裝置54。如 圖所示,上述待測溶液66、驗金屬離子感測元件60以及 參考電極56等皆置於一光隔絕容器68中,藉以避免光線 對感測過程造成影響。此外於光隔絕容器68内則設置有加 熱器64,以負責控制緩衝溶液之溫度,其係連結於一溫度 控制器58。另外於緩衝溶液66中則可額外設置有一熱耦 合器62,其亦連結於溫度控制器58。於此溫度控制器58 例如為一 PID溫度控制器。 ❿ 如第5圖所示,則顯示利用於記錄一鹼金屬離子感測 元件60之輸出電壓(Output Voltage)對時間曲線之V-T離 子感測系統70,其包括一儀表放大器72,例如為LT1167。 如圖所示,驗金屬離子感測元件7 2可採用如第4圖所示之 驗金屬離子感測元件,其係浸入於一測試溶液66中,驗金 屬離子感測元件60經由一導線而連結於儀表放大器72之 (-)輸入端。另外於測試溶液66中亦浸入有一參考電極56, 例如為習知之銀/氯化銀參考電極或如第1圖所示之參考電 0619-A21623TWF(N2);shawnchang 12 極10,參考電極56 大器72之 山又—端則經由一導線而連結於儀表放1326894 • , IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a sensor, and more particularly to a reference electrode for an ion-sensor and its application. * [Prior Art] With the development of chemical sensors and biosensors, the diversified research and development of sensors has been paid more and more attention. It must meet miniaturization, multiplexing, and Conditions such as wisdom. However, it is necessary to measure with a reference electrode in the sensor, so the development of the sensor is also closely related to the matching reference electrode. The reference electrode used in the traditional electrochemical principle sensing uses silver/silver chloride electrode (Ag/AgCl Electrode) or calomel electrode (Calomel Electrode), but it is gradually replaced by silver/silver chloride electrode because of its toxicity. . However, when a silver/silver chloride electrode is used, it is easy to cause a signal drift phenomenon due to its easy oxidation or reduction reaction with the solution to be tested. Therefore, it is necessary to develop a reference electrode which is stable and which is not easily affected by the external environment and which changes the reference voltage. At present, the reference electrodes for commercialization at home and abroad are still relatively common with Liquid Junction reference electrodes. The preparation method is to use a glass dialysis membrane as the interface between the internal salt solution and the solution to be tested, with reference electrode and internal salt. The solutions react to each other to achieve equilibrium so that the output signal is relatively stable. However, in the case of such a reference electrode, the glass material used is fragile, the process is not easy, the price is high, and it takes a long time to store in the vaporized potassium solution and the volume is too large to be easily carried. This 0619-A21623TWF(N2);shawnchang 5 1326894 • If a small sensor is targeted at home, such a glass electrode is not suitable, so a reference electrode that can be miniaturized is required. - SUMMARY OF THE INVENTION In view of the above, the present invention provides a miniaturizable reference electrode suitable for use in a miniaturized sensor. According to an embodiment, the present invention provides a reference electrode comprising: a conductive substrate; an insulating layer substantially covering the conductive substrate, having: an opening substantially exposing a portion of the conductive substrate; a conductive polymer layer disposed on a conductive wire in the opening; a metal wire partially embedded in the insulating layer and partially protruding outside the insulating layer to electrically contact the conductive substrate; and a mask surrounding the insulating layer The metal wire is outside. According to another embodiment, the present invention provides a method for manufacturing a reference electrode, comprising: providing a conductive substrate; fixing a metal wire on a portion of the conductive substrate; and substantially encapsulating the conductive substrate and the metal guide with an insulating material. a line, leaving only an opening exposing a portion of the conductive substrate, the metal wire partially protruding from the insulating material; and performing an electropolymerization reaction to facilitate formation of a conductive substrate on the conductive substrate Conductive south molecular film. According to another embodiment, the present invention provides an ion sensing device comprising: an extended gate field effect transistor ion sensing element, an ion to be tested solution, a reference electrode for providing a stable potential, and a heater for Heating the sensing environment to maintain a fixed temperature, a temperature controller is connected to the heater, and a semiconductor parameter analyzing device is connected to the system testing device, and is used in 0619-A21623TWF (N2); shawnchang 6 1326894 • fresh and a black box Avoid the sensing process being affected by light. The reference electrode includes a conductive substrate, an insulating layer substantially covering the conductive substrate, and a conductive polymer substantially exposed on one of the conductive substrates, and a conductive polymer disposed on the conductive substrate, partially embedded in the conductive substrate A metal wire extending in the insulating layer and extending outside the insulating layer to electrically contact the conductive substrate and to cover one of the metal wires protruding from the insulating layer. The above and other objects, features and advantages of the present invention will become more <RTIgt; The embodiment will be described in detail below with reference to the drawings to the first. ° Referring to the first item, there is shown a second electric (four)' which includes a detecting portion 14 and a metal wire 18 in accordance with the present invention. The sensing portion 14 is exposed with -, 丨*; display), and the metal wire port contacts a detection solution (unmasked connection detecting portion 14 and is shown). Clear the metal wire and the detection solution (not shown: see Figure 2, the area shown in the figure! is shown in the figure, the detection part 14 is mainly large. It is the upper conductive layer 24. In addition to the earthen earth 22, And the detecting portion 14 formed on the substrate 22 includes a surrounding and partial package, a conductive layer 24 and defining the detection window, and a layer 28, an insulating layer 28 24 . A portion of the conductive layer 12 exposed in the conductive layer 12 is formed with a guide 0619-A21623TWF (N2); a shawnchang 7 7326894 », a molecular layer 26, and the metal wire 18 is partially embedded in the insulating layer 28, Electrically connected to the conductive layer 24. In each of the members of the reference electrode 10 shown in Figures 1 and 2, the wire 18 is, for example, a metal wire of copper, inscription, or silver, and the mask 16 is, for example, glass. One of ceramic, Teflon material, the insulating layer 28 is, for example, an epoxy resin, an epoxy-polyurethane, an insulating material, and the conductive V layer 24 is, for example, indium tin oxide (ITO), RuN, A conductive material of Ru02, the conductive polymer layer 26 is, for example, polyfluorene, polyaniline, poly Conductive polymer material, substrate 22 is, for example, tantalum, screen plastic, glass, etc. The reference electrode 10 as shown in Figures 1 and 2 is mainly composed of a conductive south molecular layer, a conductive layer and a substrate. The conductive polymer film is composed of a structure, so it has the characteristics of being miniaturized, and is particularly suitable for use as a reference electrode in various biological, ion and chemical sensor sensing, which can provide relatively stable and does not have The reference level of one of the signal drifts is as follows. 0 Preparation of the reference electrode 10 is as follows: Preparation of the detecting portion: Here, the preparation portion of the conductive polymer layer 26 using the polyfluorene material is prepared as an explanation, firstly, a conductive layer is coated. The substrate 22 of 24 (referred to as the conductive substrate 30 for short) is, for example, indium tin tin glass (ITO Glass) manufactured by Taiwan Guanghua Development Technology Co., Ltd., and the conductive substrate 30 is placed in one of the appropriate acetone solutions. In a beaker, after shaking for 5 minutes via an ultrasonic oscillator, the conductive substrate 0619-A21623TWF (N2) was cleaned with DI Water; shawnchang 8 1326894 ► sound 30. Then The conductive substrate 30 cleaned by the acetone solution was placed in a glass beaker, poured into an appropriate amount of ethanol solution, and shaken using an ultrasonic oscillator. After 5 minutes, the conductive substrate 30 was washed with DI Water. After that, the conductive substrate 30 is lightly wiped dry with a dust-free paper. Then, a metal wire 16 such as a copper wire is fixed to the conductive layer 24 on the conductive substrate 30 by silver glue, and the fixed component is placed. Baking in an oven at 130 ° C for 10 minutes. The part of the silver paste is fixed by an insulating layer 28 such as epoxy resin, and the above components are generally packaged, leaving only about 2 mm X 2 mm large. ® Small inspection window 12, and baked in a 130 ° C oven for 30 minutes to dry the insulating layer 28, thereby obtaining a detecting portion 14' which is not coated with the conductive polymer layer 26 (see Figure 3 for details). At this time, a portion of the conductive layer 24 is exposed in the detection window 12. After drying, if small holes are formed in the insulating layer 28, the holes are filled again with the same insulating material, and the baking is continued at 130 ° C, so that the components encapsulated by the insulating layer 28 are in an aqueous solution. It has good waterproof and insulation effects when sensing. Next, a conductive polymer layer 26 is formed on the conductive layer 24 of the detection window of the detecting portion 14 by using an electropolymerization system as shown in Fig. 3. The preparation of the conductive polymer layer 26 first provides an electropolymerization solution 34 comprising 1〇12?〇4 (molecular weight 136.09) and 1^1^〇4 (molecular weight 174.18) potassium phosphate at a concentration of 0.1 to 0.31\4. It is a general reagent grade) buffer solution (ΚΗ2Ρ04: K2HPO4 is prepared at a ratio of about 1:1), and the concentration of 1M acetonitrile (Acetonitrile, molecular formula is CH3CN, molecular weight is 41.05, manufactured by Sakamoto Pharmaceutical Co., Ltd.) and concentration are电解质_1ΜKC1 (molecular weight 74.56, manufactured by Nippon Pharmaceutical Co., Ltd.) and other electrolyte solutions, and a concentration of 0.1 to 0.5M of 0619-A21623TWF (N2); shawnchang 9 1326894 conductive polymer 砒硌 (molecular formula is C4H5N, The molecular weight is 67, manufactured by Tokyo Chemical Industry Co., Ltd., wherein the pH of the potassium phosphate buffer solution containing KH2P〇4 is about 4. 4~5, and the pH of the potassium phosphate buffer solution containing K2HP〇4 is about '8.5~ 9.5. The electropolymerization solution 34 is prepared by adding the above electrolyte and the conductive polymer solution to the acid clock buffer solution of pH 7, and stirring it by a magnetic stirrer for 3 to 5 minutes. The redox potential of the electrolyte solution composed of KC1 and acetonitrile is about 4.2V, and the weight ratio of each solution in the electropolymerization solution 34 is about acetonitrile: KC1 : 砒硌 = 2 : 2 : 1 The peroxide potential is about 5V. Next, the cyclic oxidation voltammeter (not shown) is used to measure the peroxidation potential of the electropolymerization solution 34 and the detecting portion 14', and the voltage is adjusted to a fixed voltage of, for example, 5 V using a DC power supply 36, and The positive electrode is connected to the detecting portion 14', and the negative electrode is connected to a platinum electrode 32. The electropolymerization time was about 30 minutes. After the electropolymerization was completed, the detection portion 14' was taken out and placed in deionized water (DI Water) for 30 minutes, and then taken out from the deionized water (DI Water). The electrode was placed in a dry place for 12 hours. ^ Then, a 6M NaOH solution (molecular weight of NaOH 40.00, which is a granular material, manufactured by Nippon Pharmaceutical Co., Ltd.) was prepared, and the detection portion 14' after the electropolymerization reaction was placed in the above solution for 30 seconds. Immediately after the clock, it was taken out and placed in deionized water (DI Water) for 30 minutes, and then taken out in a dry place. After it was dried, the detecting portion 14 in the reference electrode 10 as shown in Fig. 1 was obtained, and the detection window 12 was inside. At this time, a conductive polymer layer (not shown) of a polyfluorene material is provided. Alternatively, a similar electropolymerization process as described above may be employed to prepare a conductive polymer layer 26 such as poly 0619-A21623TWF(N2)ishawnchang 10 1326894 aniline or poly. Ion Sensing System and Method The embodiment of the ion sensing system of the present invention will be described in detail below with reference to Figures 4 to 5, wherein Figure 4 shows a schematic diagram of a current-voltage (IV) ion sensing system. Figure 5 shows a schematic diagram of a voltage-time (VT) ion sensing system. Referring to FIG. 4, an ion sensing system 50 according to an embodiment of the present invention is shown. The ion sensing system 50 is one of Extended Gate Ion Sensitive Field Effect Transistors (EGFETs). The ion sensing system is an example in which the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is completely isolated from the solution to be tested, thereby reducing the unstable characteristics of the semiconductor device and avoiding signal interference in the solution, but Not limited to the above system. The ion sensing system 50 can be used to sense the sensitivity of a metal ion in a biological or chemical solution such as hydrogen, sodium, or the like, but is not limited to the above ions, and can also be used to sense other types of ions. Here, the ion sensing system 50 immerses a metal ion sensing element 60 in a solution 66 to be tested. The metal ion sensing element 60 is, for example, one of the following sensing elements: (1) a hydrogen ion sensing element; (2) a sodium ion sensing element; or (3) a potassium ion sensing element. 0619-A21623TWF(N2); shawnchang 1326894 • _ As shown in Fig. 4, the alkali metal ion sensing element 60 is electrically connected to the gate terminal G of a MOS field 54 via a wire, and the gold oxide The gate D and the source S of the half field effect transistor 5 are connected by wires, respectively. • A semiconductor parameter analysis device 52, such as the Keithley 236 analyzer manufactured by Keithley. In addition, it is immersed in the solution 66 to be tested. A reference electrode 5 6 is, for example, a conventional silver/silver chloride reference electrode or a reference electrode 10 as shown in FIG. 1 to provide a stable potential. The power metering pole 56 is connected to the semiconductor parameter analyzing device 54 via a wire. As shown in the figure, the above-mentioned test solution 66, the metal ion sensing element 60, and the reference electrode 56 are placed in a light-insulating container 68 to avoid the influence of light on the sensing process. Further, a heater 64 is disposed in the light-insulating container 68 to control the temperature of the buffer solution, which is coupled to a temperature controller 58. Additionally, a thermal coupler 62 can be additionally provided in the buffer solution 66, which is also coupled to the temperature controller 58. The temperature controller 58 is, for example, a PID temperature controller. As shown in Fig. 5, a V-T ion sensing system 70 for recording the output voltage versus time curve of an alkali metal ion sensing element 60 is shown, which includes an instrumentation amplifier 72, such as LT1167. As shown, the metal ion sensing element 72 can employ a metal ion sensing element as shown in FIG. 4, which is immersed in a test solution 66, and the metal ion sensing element 60 is passed through a wire. Connected to the (-) input of instrumentation amplifier 72. In addition, a reference electrode 56 is also immersed in the test solution 66, such as a conventional silver/silver chloride reference electrode or a reference electric 0619-A21623TWF (N2) as shown in FIG. 1; a shawnchang 12 pole 10, and a reference electrode 56 The mountain of the 72 is connected to the meter via a wire.

將可經由儀+ 表金屬離子感測元件60之輸出電壓 34401A之一精° 2 :傳遞至一電錶74,例如為HP 錄於一資料記錄哭輸出電壓對時間曲線最後則將記 參考電極之穩定性 第6圖顯_用第5圖之感測系統所得出之 10之穩定性結果。 4照第6圖’採用如第5圖之離子感測系統7〇以測 、,不同,Η之待測溶液中的氫離子穩定度,此時系統中 斤知用=氫離子感測元件6G係為本發明的參考電極,其上 之V電4子層㈣聚祉硌材質之導電高分子材料,參考 元件56係為商品化參考電極(由廳ttler toled〇公司 產製之DX2QG ’為玻璃材質),所㈣之儀表放大器72係 為LT1167,其㈠輸入端連接本發明之參考電極,(+)輸入 端連接商品化參考電極(DX200),量測時間係為300秒。上 述感測應用於參考電極感測時,係將本發明之參考電極置 於酸鹼緩衝溶液中,並結合商品化參考電極(DX200)進行量 測,其量測結果如第6圖所示,其表示本發明之參考電極 的穩定度為0.69mV/pH。第6圖中可發現本發明之參考電 極無論於酸性或鹼性溶液中,其輸出電壓變動相當小,故 本發明之參考電極於酸驗溶液中的穩定性相當優異。 0619-A21623TWF(N2);shawnchangIt can be transmitted to an electric meter 74 via one of the output voltages 34401A of the instrument + table metal ion sensing element 60, for example, HP records a data recording crying output voltage versus time curve and then the reference electrode is stable. Figure 6 shows the stability results obtained with the sensing system of Figure 5. 4 According to Figure 6 'Using the ion sensing system as shown in Figure 5 to measure, different, the hydrogen ion stability in the solution to be tested, at this time the system knows the use of = hydrogen ion sensing element 6G The reference electrode of the present invention is a V-electric 4 sub-layer (4) conductive polymer material of the polysilicon material, and the reference component 56 is a commercial reference electrode (the DX2QG manufactured by the hall ttler toled company) is a glass. Material (4) The instrumentation amplifier 72 is the LT1167. The (1) input terminal is connected to the reference electrode of the present invention, and the (+) input terminal is connected to the commercial reference electrode (DX200). The measurement time is 300 seconds. When the above sensing is applied to the reference electrode sensing, the reference electrode of the present invention is placed in an acid-base buffer solution and measured in combination with a commercial reference electrode (DX200), and the measurement result is as shown in FIG. It shows that the reference electrode of the present invention has a stability of 0.69 mV/pH. It can be seen from Fig. 6 that the reference electrode of the present invention has a relatively small variation in output voltage regardless of the acidic or alkaline solution, so that the reference electrode of the present invention is quite excellent in the acid test solution. 0619-A21623TWF(N2);shawnchang

II 驗金屬離子感測元件之製借 (1)本發明之氫離子减 及第8圖作-詳細敘述如下^件之貫施例將配合第7圖 :茶恥第7圖’顯示依據本發明之一實施例之 ::广9’其結構相似於如第1圖所示之參考i 極二。,氯離子感測元件19包括一檢測部15以】 -二,線44。於檢測部15上露出有一檢測窗口 46, 二= 衾測之pH緩衝溶液’而金屬導線44係電性連結 於核測部15 ,並為一遮罩42 線與PH緩衝溶液。 所%繞,以隔離上述金屬導 請參照第8圖,顯示第7圖中區域40之一放大情形。 如_示’檢測部15主要包括一基㈣,以及形成於其 ^之導電層24。此外,檢測部15更包括環繞並部份包 復士述基板22與導電層24之一絕緣層28,絕緣層μ I疋義出上述檢測窗口 46且部份露出其内之導電層 24而上述金屬導線44係部份埋設於絕緣層28内,以 電性連結於導電層24。 如第7圖與第8圖所示之氫離子感測元件19之各構 件中,導線44例如為銅之—金屬導線,遮罩42為一般 毛細破璃材質料,絕緣層28例如為環氧難可絕緣之 材’導電層24例如為含銦錫氧化物(ITO)之玻璃、Run 之V電材料,基板22例如為矽或半導體等材質。 省如第7圖與第8圖所示之氫離子感測元件19主要採 用導電層與基板之分離式架構所組成,因此具有可微型化 0619-A21623TWF(N2):shawnchang 1326894 鱗 之特徵,適用於溶液中氫離子之量測。 下文解說氫離子感測元件19之製備。首先採用塗佈有 導電層24之基板22(簡稱為導電基板30),例如為台灣光 華開發科技股份有限公司所產製之ITO玻璃(氧化銦錫玻 璃),並將此導電基板3 0置於倒入有適量丙酮溶液之一燒 杯中,經由超音波振盪器振盪5分鐘後,以去離子水(D.I. Water)清洗此導電基板30。接著再將此經丙酮溶液潔淨 過之導電基板30置入玻璃燒杯中,並倒入適量之乙醇溶 液,使用超音波振盪器振盪5分鐘後,再以去離子水(D.I. Water)清洗導電基板30,而後以無塵紙將導電基板30輕 輕拭乾。接著採用銀膠將如導線之金屬導線54固定於導電 基板30上之導電層24上,並接著將此固定完成之元件置 於130°C烤箱中烘烤10分鐘。接著利用如環氧樹脂之一絕 緣層28,將銀膠之部份加以固定,並將其上述元件大體封 裝,僅留下約2 mm X 2 mm大小之檢測窗口 12,並置於 130°C烤箱中烘烤30分鐘,以烤乾絕緣層28,此時檢測窗 口 56中露出有部份之導電層24。於烘乾後,若絕緣層28 中產生有小孔洞時,則需再次以相同之絕緣材料將孔洞填 平,並繼續以130°C烘烤,使經過絕緣層28封裝後之元件 於水溶液中進行感測時有良好之防水及絕緣效果。 (2)本發明之鈉離子感測元件之實施例將配合第7圖 及第9圖作一詳細敘述如下。 請參照第7圖,顯示依據本發明之一實施例之一氫 離子感測元件11,其結構相似於如第1圖所示之參考電 0619-A21623TWF(N2) ;shawnchang 極〗〇。在此,鈉離子感測元件 —金屬導線44。於檢測部】7雨 祆測部17以及 以接觸檢測之㈤緩衝溶液,而:::檢測窗口 46, 於檢測部17,並為一遮罩42 : j ¥線_44係電性連結 線與ρ;Η緩衝溶液。 衣,%,以隔離上述金屬導 請參照第9圖,顯示第7圖中區 … 如圖所示,檢測部17主要包括 敦大情形。 上之-導電層24。此外,檢…; 以及形成於其 覆上述基板22與導電層24、:=括:衰繞並部份包 24。於檢測窗口 46内之導電;=出其内之導電層 選擇膜25,而層24上則形成有-鈉離子 内,以電性連結係部份埋設於絕緣層28 如第^圖與第9圖所示之納離子感測元件n之各構 ¥線18例如為銅之一金屬導線,遮罩16為一妒 材=玻Γ:質遮罩’絕緣層28例如為環氧樹脂可絕緣2 之導電=I4例如為含銦錫氧化物(IT〇)之玻璃、Sn〇2 之=電材枓,鈉離子感測膜25為混合高分子之材料,基 反2例如為矽或半導體材料等材質。 如第7圖與第9圖所示之納離子感測元件u主要採 ^含納離子感咖、導電層與基板之分離式㈣所組成, '、有可微型化之特徵’特別適用於生物、食品中納離 子量測之肖。 雕 下文解說鈉離子感測元件11之製備。首先採用塗佈有 〇619-A2l623TWF(N2):shawnchang 1326894 » $ 導電層24之基板22(簡稱為導電基板3〇),例如為台灣光 華開發科技股份有限公司所產製之IT〇玻場(氧化姻锡玻 璃),並將此導電基板30置於倒入有適量丙_溶液之一燒 杯中,經由超音波振盪器振盪5分鐘後,以去離子水(D工 Water )清洗此導電基板30。接著再將此經内_溶液潔淨 過之導電基板30置入玻璃燒杯中,並倒入適量之乙醇溶 液,使用超音波振盪器振盪5分鐘後,再以去離子水(D j Water)清洗導電基板30,而後以無塵紙將導電基板3〇輕 輕拭乾。接著採用銀膠將如導線之金屬導線44固定於導電 基板30上之導電層24上,並接著將此固定完成之元件置 於130t烤箱中烘烤10分鐘。接著利用如環氧樹脂之一絕 緣層28,將銀膠之部份加以固定,並將其上逑元件大體封 裝’僅留下約2 mm X 2 mm大小之檢測窗口 46,並置於 130°C烤箱中烘烤30分鐘,以烤乾絕緣層28,此時檢測窗 口 46中露出有部份之導電層24。於烘乾後,若絕緣層28 中產生有小孔洞時,則需再次以相同之絕緣材料將孔洞填 平,並繼續以130°C供烤,使經過絕緣層28封裝後之元件 於水溶液中進行感測時有良好之防水及絕緣效果。 鈉離子感測膜25之製備方法為取聚氯乙烯 (Polyvinyl Chloride ’ PVC)高分子材料加癸二酸二辛酯 (Bis(2-ethylhe-xyl)sebacat &gt; DOS)塑化劑,並力〇 上四氫 呋喃(Tetrahydrofuran ’ THF)溶液將高分子材料溶解,再 加上鈉離子選擇物雙甲基四氧環十二烷十二甲基丙酸 { Bis[ ( 12-crown-4 ) methylj-dodecylmethylmalonate » 0619-A21623TWF(N2) :shawnchan〇 17 1326894 (B12C4 ) }與陰電性納離子錯合物[SodiumII. Inspection of metal ion sensing elements (1) Hydrogen ion reduction of the present invention and Fig. 8 - Detailed description of the following examples will be carried out in conjunction with Fig. 7: Tea shame Fig. 7 'display according to the invention One embodiment of the invention: Width 9' has a structure similar to that of the reference i-pole 2 as shown in FIG. The chloride ion sensing element 19 includes a detecting portion 15 to be a second line 44. A detection window 46 is exposed on the detecting portion 15, and the metal buffer 44 is electrically connected to the nuclear measuring portion 15 and is a mask 42 line and a pH buffer solution. % winding to isolate the above metal guide Referring to Fig. 8, an enlargement of one of the regions 40 in Fig. 7 is shown. The detecting portion 15 mainly includes a base (four), and a conductive layer 24 formed thereon. In addition, the detecting portion 15 further includes an insulating layer 28 surrounding and partially covering the substrate 22 and the conductive layer 24. The insulating layer μI defines the detecting window 46 and partially exposes the conductive layer 24 therein. The metal wires 44 are partially embedded in the insulating layer 28 to be electrically connected to the conductive layer 24. In each of the members of the hydrogen ion sensing element 19 shown in FIGS. 7 and 8, the wire 44 is, for example, a copper-metal wire, the mask 42 is a general capillary material, and the insulating layer 28 is, for example, an epoxy. The conductive layer 24 is, for example, a glass containing indium tin oxide (ITO) or a V material of Run, and the substrate 22 is made of, for example, germanium or a semiconductor. The hydrogen ion sensing element 19 shown in Figures 7 and 8 is mainly composed of a separate structure of a conductive layer and a substrate, and thus has the characteristics of miniaturizing 0619-A21623TWF(N2): shawnchang 1326894 scale, suitable for The measurement of hydrogen ions in the solution. The preparation of the hydrogen ion sensing element 19 is explained below. First, a substrate 22 (referred to as a conductive substrate 30) coated with a conductive layer 24, such as ITO glass (indium tin oxide glass) manufactured by Taiwan Guanghua Development Technology Co., Ltd., is used, and the conductive substrate 30 is placed. The mixture was poured into a beaker having an appropriate amount of acetone solution, and after shaking for 5 minutes via an ultrasonic oscillator, the conductive substrate 30 was washed with DI Water. Then, the conductive substrate 30 cleaned by the acetone solution is placed in a glass beaker, and an appropriate amount of the ethanol solution is poured, and the ultrasonic substrate is shaken for 5 minutes, and then the conductive substrate 30 is washed with DI Water. Then, the conductive substrate 30 is lightly dried with a dust-free paper. Next, a metal wire 54 such as a wire was fixed to the conductive layer 24 on the conductive substrate 30 by silver glue, and then the fixed component was baked in an oven at 130 ° C for 10 minutes. Then, using an insulating layer 28 such as an epoxy resin, the silver paste portion is fixed, and the above components are substantially packaged, leaving only the detection window 12 of about 2 mm X 2 mm size, and placed in a 130 ° C oven. The baking is performed for 30 minutes to dry the insulating layer 28, and a portion of the conductive layer 24 is exposed in the detecting window 56. After drying, if small holes are formed in the insulating layer 28, the holes are filled again with the same insulating material, and the baking is continued at 130 ° C, so that the components encapsulated by the insulating layer 28 are in an aqueous solution. It has good waterproof and insulation effects when sensing. (2) An embodiment of the sodium ion sensing element of the present invention will be described in detail with reference to Figs. 7 and 9 as follows. Referring to Fig. 7, there is shown a hydrogen ion sensing element 11 according to an embodiment of the present invention, which has a structure similar to that of reference numeral 0619-A21623TWF(N2) as shown in Fig. 1; shawnchang 〇. Here, the sodium ion sensing element is a metal wire 44. In the detection unit 7 rain detection unit 17 and the (five) buffer solution for contact detection, the ::: detection window 46 is in the detection unit 17, and is a mask 42 : j ¥ line _44 is an electrical connection line and ρ; Η buffer solution. Clothing, %, to isolate the above metal guides Referring to Fig. 9, the area in Fig. 7 is shown. As shown in the figure, the detecting portion 17 mainly includes the case of Dunda. Above - conductive layer 24. In addition, the inspection is performed; and is formed on the substrate 22 and the conductive layer 24, and includes: a fading and partial package 24. Conductive in the detection window 46; = the conductive layer selection film 25 therein, and the layer 24 is formed with - sodium ions, and the electrical connection portion is buried in the insulating layer 28 as shown in the figure and the ninth The constituent wires 18 of the nano-ion sensing element n shown in the drawing are, for example, one metal wire of copper, and the mask 16 is a coffin = glass: a material mask. The insulating layer 28 is, for example, an epoxy resin. Conductive = I4 is, for example, glass containing indium tin oxide (IT〇), Sn〇2 = electric material, sodium ion sensing film 25 is a mixed polymer material, and base reverse 2 is, for example, germanium or a semiconductor material. . The nano-ion sensing element u shown in Figures 7 and 9 is mainly composed of a nano-inductive sensor, a separation layer of a conductive layer and a substrate (4), and a feature that can be miniaturized is particularly suitable for living organisms. The amount of nano-ion measurement in food. Engraving The preparation of the sodium ion sensing element 11 is explained below. First, a substrate 22 (referred to as a conductive substrate 3) coated with 〇619-A2l623TWF(N2):shawnchang 1326894 » $ conductive layer 24, for example, an IT 〇 glass field produced by Taiwan Guanghua Development Technology Co., Ltd. Oxidized tin-plated glass), and the conductive substrate 30 is placed in a beaker filled with an appropriate amount of C-solution, and shaken for 5 minutes via an ultrasonic oscillator, and then the conductive substrate 30 is washed with deionized water (D Water). . Then, the conductive substrate 30 cleaned by the internal solution is placed in a glass beaker, and an appropriate amount of the ethanol solution is poured, and the ultrasonic oscillator is used for 5 minutes, and then the conductive is washed with deionized water (D j Water). The substrate 30 is then lightly wiped dry with a dust-free paper. Next, a metal wire 44 such as a wire is fixed to the conductive layer 24 on the conductive substrate 30 by silver glue, and then the fixed component is baked in a 130 t oven for 10 minutes. Then, using an insulating layer 28 such as an epoxy resin, the silver paste portion is fixed, and the upper germanium element is substantially packaged, leaving only a detection window 46 of about 2 mm X 2 mm size and placed at 130 ° C. Bake in the oven for 30 minutes to dry the insulating layer 28, at which point a portion of the conductive layer 24 is exposed in the inspection window 46. After drying, if a small hole is formed in the insulating layer 28, the hole is filled again with the same insulating material, and the baking is continued at 130 ° C, so that the component encapsulated by the insulating layer 28 is in the aqueous solution. It has good waterproof and insulation effects when sensing. The sodium ion sensing film 25 is prepared by using a polyvinyl chloride (PVC) polymer material and a dioctyl sebacate (Bis(2-ethylhe-xyl)sebacat &gt; DOS) plasticizer. Dissolve the polymer material in a solution of tetrahydrofuran (Tetrahydrofuran 'THF), plus the sodium ion option bismethyltetraoxolane dodecylpropanoic acid { Bis[ ( 12-crown-4 ) methylj-dodecylmethylmalonate » 0619-A21623TWF(N2) :shawnchan〇17 1326894 (B12C4 ) } and anion-type nano-ion complex [Sodium

Tetrakis(4-fluorophenyl) Borate Dihydrate(Na-TFBD)], 利用超音波振盪器將高分子溶液調勻。取高分子溶液滴 於EGFET之感測窗口,使其乾燥。Na-TFBD為陰電性之 鈉離子錯合物,其係增加膜負電性以加大選擇電壓。首 先,秤取0.33g PVC高分子材料加0.66g DOS塑化劑, 加入5ml之四氫σ夫喃(Tetrahydrofuran,THF)溶液將高分 子材料以超音波振盪器調勻10分鐘溶解。而後加上鈉離 子選擇物B12C4(Na-TFBD所加入量係様品B12C4重量之 0.6倍),再以超音波振盪器將高分子溶液調勻30分鐘。 接著,取高分子溶液滴2ml於EGFET之感測窗口 12上。 最後,靜置8小時,待其乾燥,因而完成納離子感測膜之 製備。 (3)本發明之鉀離子感測元件之實施例將配合第7圖 及第10圖作一詳細敘述如下。 請參照第7圖,顯示依據本發明之一實施例之一鉀 離子感測元件13,其結構相似於如第1圖所示之參考電 極10。在此,鉀離子感測元件13包括一檢測部21以及 一金屬導線44。於檢測部21上露出有一檢測窗口 46, 以接觸一檢測溶液(未顯示),而金屬導線44係電性連結 於檢測部21,並為一遮罩42所環繞,以隔離上述金屬導 線與檢測溶液(未顯示)。 請參照第10圖,顯示第7圖中區域40之一放大情 形。如圖所示,檢測部21主要包括一基板2 2,以及形成 0619-A21623TWF(N2);shawnchang 18 於其上之一導雷声24。u_ μ 份色覆上述基^與更包括環繞並部 28並定義出上述檢測窗口 5fi 絕緣層28,絕緣層Tetrakis (4-fluorophenyl) Borate Dihydrate (Na-TFBD)], using a ultrasonic oscillator to mix the polymer solution. The polymer solution was dropped on the sensing window of the EGFET and allowed to dry. Na-TFBD is a negatively charged sodium ion complex which increases the film negative charge to increase the selection voltage. First, 0.33 g of PVC polymer material and 0.66 g of DOS plasticizer were weighed, and 5 ml of tetrahydrotetrahydrofuran (THF) solution was added to homogenize the polymer material with an ultrasonic oscillator for 10 minutes. Then, the sodium ion option B12C4 (the amount of Na-TFBD added was 0.6 times the weight of the product B12C4) was added, and the polymer solution was homogenized by an ultrasonic oscillator for 30 minutes. Next, 2 ml of the polymer solution was dropped onto the sensing window 12 of the EGFET. Finally, it was allowed to stand for 8 hours and allowed to dry, thereby completing the preparation of a nano ion sensing film. (3) An embodiment of the potassium ion sensing element of the present invention will be described in detail with reference to Figs. 7 and 10 as follows. Referring to Figure 7, there is shown a potassium ion sensing element 13 in accordance with an embodiment of the present invention having a structure similar to that of reference electrode 10 as shown in Figure 1. Here, the potassium ion sensing element 13 includes a detecting portion 21 and a metal wire 44. A detecting window 46 is exposed on the detecting portion 21 to contact a detecting solution (not shown), and the metal wire 44 is electrically connected to the detecting portion 21 and surrounded by a mask 42 to isolate the metal wire and the detecting. Solution (not shown). Referring to Fig. 10, an enlarged view of one of the areas 40 in Fig. 7 is shown. As shown, the detecting portion 21 mainly includes a substrate 2 2 and a 0619-A21623TWF (N2); a shawnchang 18 is used to guide the thunder 24 . U_ μ part of the color covering the above and further including the surrounding portion 28 and defining the above detection window 5fi insulating layer 28, insulating layer

24。於檢測窗口 56内之導電/ =份露出其内之導電層 感測膜27,而上述金屬導曰上則形成有一卸離子 内,以電性連結於導電層2。係部份埋設於絕緣層U 構::第第1〇圖所示之钟離子感測元件13之各 =中導線44例如為銅之-金屬導線,遮罩42為! 身又毛細玻璃材質遮罩 為 之材料,,電二例如為環氧樹脂可絕緣 R N + g a例如為含銦錫氧化物(ITO)之玻璃、 Run之導電材料’鉀離子感測膜27為混合二: 料,基板22例如為石夕或半導體等材質。 71 用八t第/圖與第10圖所示之卸離子感測器13主要採 龍、導電層與基板之分離式架構所組成, 微型化之特徵,特別適用於生物、食品中卸離 子Ϊ測之用。twenty four. The conductive layer in the detection window 56 exposes the conductive layer sensing film 27 therein, and the metal guiding layer is formed with a discharge ion to be electrically connected to the conductive layer 2. The portion is embedded in the insulating layer U: Each of the clock ion sensing elements 13 shown in Fig. 1 is a copper-metal wire, and the mask 42 is! The body is made of a capillary glass material, and the electric 2 is, for example, an epoxy resin which can be insulated RN + ga, for example, a glass containing indium tin oxide (ITO), and a conductive material of Run 'potassium ion sensing film 27 is a mixture. Second, the substrate 22 is made of, for example, a stone or a semiconductor. 71 It is composed of the separation structure of the main collector, the conductive layer and the substrate, which are shown in Fig. 8 and Fig. 10, and the characteristics of miniaturization are especially suitable for the discharge of ions in biological and food. For measurement purposes.

古道2揭示了鉀離子感測元件13之製備。首先採用塗佈 ^ g 24之基板22(簡稱為導電基板3〇),例如為台灣 光華開發科技股份有限公⑽產製之IT◦玻璃(氧化^錫 玻璃)’並將此導f基板3G置於倒人有適f丙_溶液之一 燒杯_,、經由超音波振盈器振I 5分鐘後,以去離子水(D I Water)清洗此導電基3〇。接著再將此經丙酮溶液潔淨 過之‘電基板30置入破璃燒杯中,並倒入適量之乙醇溶 液,使用超音波振盪器振盪5分鐘後,再以去離子水(D I 0619-A21623TWF(N2):Shawnchanfl 1326894Gudao 2 discloses the preparation of the potassium ion sensing element 13. First, a substrate 22 coated with a g 24 (referred to as a conductive substrate 3 〇), for example, an IT ◦ glass (oxidized tin glass) manufactured by Taiwan Guanghua Development Technology Co., Ltd. (10), and placed on the f substrate 3G After inverting one of the beakers, one of the beakers was shaken by the ultrasonic vibrator for 5 minutes, and then the conductive group was washed with DI Water. Then, the 'electric substrate 30 cleaned by the acetone solution was placed in a glass beaker, and poured into an appropriate amount of ethanol solution, and shaken for 5 minutes using an ultrasonic oscillator, followed by deionized water (DI 0619-A21623TWF ( N2): Shawnchanfl 1326894

Water)清洗導電基板30 ’而後以無塵紙將導電基板3〇輕 輕拭乾。接著採用銀膠將如導線之金屬導線44固定於導電 * 基板上之導電層24上’並接著將此固定完成之元件置 .於130 C烤箱中烘烤10分鐘。接著利用如環氧樹脂之一絕 緣層28 ’將銀膠之部份加以固定,並將其上述元件大體封 * 裝,僅留下約2 mm x 2 mm大小之檢測窗口 %,並置於 130°C烤箱中烘烤30分鐘,以烤乾絕緣層28,此時檢測窗 口 46中露出有部份之導電層24。於供乾後,若絕緣層2 8 中產生有小孔洞日守’則品再次以相同之絕緣材料將孔洞填 平,並繼續以130°C烘烤,使經過絕緣層28封裝後之元件 於水溶液中進行感測時有良好之防水及絕緣效果。 钟離子感測膜27之製備方法為取聚氣乙稀(p〇lyvinyl Chloride ’ PVC)高分子材料加癸二酸二辛g旨(Bis(2_ethylhe -xyl)Sebacat,DOS)塑化劑,並加上四氫呋喃(Tetrahydr〇_ furan ’ THF)溶液將焉分子材料溶解,再加上鉀離子選擇物 &gt; 結胺黴素(Valinomycin)與陰電性鉀離子錯合物(p〇tassiumWater) The conductive substrate 30' is cleaned and then the conductive substrate 3 is lightly wiped dry with a dust-free paper. Next, a metal wire 44 such as a wire is fixed to the conductive layer 24 on the conductive substrate by silver glue' and then the fixed component is placed and baked in a 130 C oven for 10 minutes. Then, the portion of the silver paste is fixed by using an insulating layer 28' such as an epoxy resin, and the above-mentioned components are generally sealed, leaving only a detection window % of about 2 mm x 2 mm and placed at 130°. Bake in the oven for 30 minutes to dry the insulating layer 28, at which point a portion of the conductive layer 24 is exposed in the inspection window 46. After the supply is dry, if a small hole is formed in the insulating layer 28, the hole is filled again with the same insulating material, and the baking is continued at 130 ° C, so that the component after being encapsulated by the insulating layer 28 is Good waterproof and insulating effect when sensing in aqueous solution. The method for preparing the clock ion sensing film 27 is to use a polystyrene (p〇lyvinyl Chloride 'PVC) polymer material and a Bis(2_ethylhe-xyl)Sebacat, DOS plasticizer. Add tetrahydrofuran (Tetrahydr〇_furan 'THF) solution to dissolve the ruthenium molecular material, plus potassium ion selection> Valinomycin and cation potassium complex (p〇tassium)

Terakis(p-chlorophenyl) Borate &gt; K-TpCIPB),利用超音波 振盪器將高分子溶液調勻。取高分子溶液滴於EGFET之感 測窗口,使其乾燥。K-TpCIPB為陰電性之鉀離子錯合物, 其係增加膜負電性以加大選擇電壓。首先,秤取〇 33g PVC 高分子材料加〇.66g DOS塑化劑,加入5mi之四氫呋喃 (Tetrahydrofuran,THF)溶液將高分子材料以超音波振盪 器調勻1 〇分鐘溶解。而後,加上卸離子選擇物 Valinomycin(K-TpClPB 所加入量係様品 Valin〇_ mycin 重 0619-A21623TWF(N2);shawnchan〇 20 1326894 • * 量之5倍),再以超音波振盪器將高分子溶液調勻30分 鐘。接者,取高分子溶液滴2ml於EGFET之感測窗口 12 上。最後,靜置8小時,待其乾燥,進而於製備出鉀離子 * 感測膜27。 氫離子(pH)之感測 • 第11圖〜第13圖分別顯示採用第4圖之感測系統所得 出之氫離子感測結果。 * 請參照第11圖,採用如第4圖所示之離子感測系統 50以測試不同pH之待測溶液中的氫離子感測度,此時系 統中所採用之氫離子感測元件60係為一 EGFET感測元 件,例如為第7圖所示之氫離子感測元件19,所採用之半 導體裝置分析裝置52係為Keithley 236,其連結於金氧半 場效電晶體54之汲極S,並設定VD為0.2V,以確保元件 工作於線性區。另外半導體裝置分析裝置52並電性連結於 參考電極,並設定為1〜6V,藉由待測液給予金氧半場效電 * 晶體54 —閘極電壓。另外半導體裝置分析裝置52亦連接 至金氧半場效電晶體54之源極S,並設定Vs為接地(0V)。 感測度係氫離子感測元件60最重要之參數,其定義為 每改變一個pH值,溶液與感測膜界面間之表面電位的相 對變化量。其係藉由如第4圖所示之I-V感測系統感測其 内氫離子感測元件60之I-V曲線中對應的pH值變化量, 於I-V曲線中固定某一點IDS,其輸出電壓值會隨pH值而 變化,再使用Microsoft Origin 7.0軟體進行數據分析後, 0619-A21623TWF(N2);shawnchang 1326894 即可求出氫離子感測元件60之生物離子感測元件之感測 度(△mV/ΛρΗ)。 上述感測應用於於氫離子感測時’係將適用於感測氮 - 離子之一 EGFET感測器置於酸鹼緩衝溶液中,並結合如第 . 1圖所示之可微小化之參考電極1 〇進行感測’此時所使用 , 之導電高分子膜為聚砒硌,所使用之導電基板為ITO玻璃 _ 基板,其感測結果如第10圖所示’此時亦採用IT0基底 之氫離子感測元件60進行pH感測,其感測度為 Φ 57.4mV/pH。第11圖則顯示相同感測狀態下將參考電極56 替換為一商品化參考電極(由METTLER T0LED0公司產 製之DX200,為玻璃材質)所進行感測的結果’其得知感測 度係53.67mV/pH。第I1圖與第12圖中皆可發現於鹼性部 份之感測度明顯下降’此乃IT0基底之感測特性,故比較 本發明之參考電極與目前商品化參考電極’於感測度上相 差不大,但於鹼性部份之感測效果,本發明之參考電極較 佳。 鲁 另外,第13圖顯示採用如第1圖所示之可微小化的參 考電極10進行感測’其上之導電高分子膜為聚础硌’以及 採用RuN基底之氫離子感測元件60進行pH感測的實驗結 果,其感測度亦有51.09mV/pH ’且具有極佳之線性度。 鈉離子(pNa)之感測 參照前述氫離子之感測方法’將離子感測系統50中之 氫離子感測元件60替換為如第7圖所示之鈉離子感測元件 0619-A21623TWF(N2) :shawnchang 22 U後進行感測。第U圖顯示採用鈉離子EGFET感測器於 不同/辰度之鈉难子落液中,並採用如第1圖所示之可微小 1之參考電極10進行感測的實驗結果,其上之導電高分子 : 膜為來砒硌,感測度為45.7mV/pNa。此外第15圖則顯示 .知用—商品化參考電極(DX200)以及此鈉離子感測元件11 於相同感測條件下所得到之一感測結果,其感測度 42-5mV/pNa。使用本發明之具有導電高分子的參考電極之 _ 感測結果較佳。 卸離子(pK)之感測 斤+參照丽述鉀離子之感測方法,將離子感測系統50中之 氣離子感測元件60替換為如第7圖所示之鉀離子感測元件 =後進行感測。第16圖顯示採用如第7圖所示之鉀離子 感'!元件13之卸離子EGFET感測器於不同濃度之钾離 子/合液中’並採用如第j圖所示之可微小化之參考電極1 〇 • 進仃感測之感測結果,其上之導電高分子膜為聚石比路,感 測度為47.58mV/PK。此外第17圖則顯示採用一商品化參 考電極(DX2GG)以及钾離子EGFET感測器於㈣感測條件 下所仔到之一感測結果,其感測度35 69mV/pK。使用本發 明之具有導電高分子的參考電極之感測結果較佳。 由於本發明係利用如聚石比硌之導電高分子材料所研製 出的一微小化參考電極取代習知之銀/氯化銀的參考電 極,其具有體積小、製程簡單、成本低,適用於抛棄式元 0619-A21623TWF(N2):shawnchang 23 1326894 φ 彝 件之結合與易於大量生產等優點,故以如聚础路之導電南 分子材料所製作出之一微小化參考電極使得其應用之感測 器微小化更為有利,易利於微量化之生醫檢測應用。 • 此外,經由上述驗證,本發明之參考電極擁有穩定之 • 感測特性,可應用於生物離子之感測,且易整合於感測器 中以製作出一整合式感測晶片。此外本發明之參考電極只 . 需放置於乾燥處,具有易存放保存之優點。另外微小化之 蒼考電極易於生醫感測上具較便利的檢驗功效’未來之發 • 展性極佳。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Terakis (p-chlorophenyl) Borate &gt; K-TpCIPB), using a ultrasonic oscillator to mix the polymer solution. The polymer solution was dropped on the sensing window of the EGFET and allowed to dry. K-TpCIPB is a negatively charged potassium ion complex which increases the film negative charge to increase the selection voltage. First, weighed 33g of PVC polymer material and added .66g of DOS plasticizer. Add 5μ of tetrahydrofuran (THF) solution and mix the polymer with an ultrasonic oscillator for 1 minute. Then, add the ion-exchange option Valinomycin (the amount of K-TpClPB added is Valin〇_mycin weight 0619-A21623TWF(N2); shawnchan〇20 1326894 • * 5 times), and then the ultrasonic oscillator Mix the polymer solution for 30 minutes. Then, 2 ml of the polymer solution was dropped onto the sensing window 12 of the EGFET. Finally, it was allowed to stand for 8 hours, and it was dried, and then a potassium ion* sensing film 27 was prepared. Hydrogen ion (pH) sensing • Figures 11 to 13 show the hydrogen ion sensing results obtained using the sensing system of Figure 4. * Refer to Figure 11, using the ion sensing system 50 as shown in Figure 4 to test the hydrogen ion sensitivities in the solution to be tested at different pH. At this time, the hydrogen ion sensing element 60 used in the system is An EGFET sensing element, such as the hydrogen ion sensing element 19 shown in FIG. 7, is a semiconductor device analyzing device 52 which is Keithley 236, which is coupled to the drain S of the gold oxide half field effect transistor 54 and Set the VD to 0.2V to ensure that the component is operating in the linear region. In addition, the semiconductor device analyzing device 52 is electrically connected to the reference electrode and is set to 1 to 6 V, and the gate electrode voltage is given to the gold oxide half field effect transistor * by the liquid to be tested. Further, the semiconductor device analyzing device 52 is also connected to the source S of the MOS field 54 and sets Vs to ground (0 V). Sensitivity is the most important parameter of the hydrogen ion sensing element 60, which is defined as the relative amount of change in surface potential between the solution and the interface of the sensing film for each pH change. It senses the corresponding pH value change in the IV curve of the hydrogen ion sensing element 60 in the IV sensing system as shown in FIG. 4, and fixes a certain point IDS in the IV curve, and the output voltage value thereof Depending on the pH value, after using Microsoft Origin 7.0 software for data analysis, 0619-A21623TWF(N2); shawnchang 1326894 can determine the sensitivity of the bio-ion sensing element of the hydrogen ion sensing element 60 (ΔmV/ΛρΗ ). The above sensing is applied to hydrogen ion sensing when the EGFET sensor suitable for sensing nitrogen-ion ions is placed in an acid-base buffer solution, and combined with the miniaturized reference as shown in Fig. 1. Electrode 1 〇 is sensed. 'The conductive polymer film used at this time is polyfluorene, and the conductive substrate used is ITO glass _ substrate. The sensing result is shown in Fig. 10'. At this time, the IT0 substrate is also used. The hydrogen ion sensing element 60 performs pH sensing with a sensitivity of Φ 57.4 mV/pH. Fig. 11 shows the result of sensing the reference electrode 56 replaced by a commercial reference electrode (DX200 manufactured by METTLER T0LED0, which is made of glass) in the same sensing state. It is known that the sensitivity is 53.67 mV. /pH. Both the first and the twelfth images can be found that the sensitivity of the alkaline portion is significantly decreased. 'This is the sensing characteristic of the IT0 substrate, so the comparison between the reference electrode of the present invention and the current commercial reference electrode' is different in sensitivity. It is not large, but the sensing electrode of the present invention is preferred in terms of the sensing effect of the alkaline portion. In addition, Fig. 13 shows the sensing of the conductive polymer film on which the miniaturized reference electrode 10 as shown in Fig. 1 is used, and the hydrogen ion sensing element 60 using the RuN substrate. The experimental results of pH sensing have a sensitivity of 51.09 mV/pH ' and excellent linearity. Sensing of sodium ion (pNa) with reference to the aforementioned sensing method of hydrogen ion 'replaces the hydrogen ion sensing element 60 in the ion sensing system 50 with the sodium ion sensing element 0619-A21623TWF (N2) as shown in FIG. ) : shawnchang 22 U after sensing. Figure U shows the experimental results of sensing with a sodium ion EGFET sensor in different sodium ions of the different ages, and using the reference electrode 10 as shown in Fig. 1 for sensing. Conductive polymer: The film is 砒硌, and the sensitivity is 45.7 mV/pNa. In addition, Fig. 15 shows that one of the sensing results obtained by using the commercially available reference electrode (DX200) and the sodium ion sensing element 11 under the same sensing condition has a sensitivity of 42-5 mV/pNa. The _ sensing result using the reference electrode of the present invention having a conductive polymer is preferred. The sensory method of unloading ions (pK) + the sensing method of potassium ions of Lisa, replacing the gas ion sensing element 60 in the ion sensing system 50 with the potassium ion sensing element as shown in Fig. 7 = after Perform sensing. Figure 16 shows the use of the ion-discharge EGFET sensor of the potassium ion sense '! element 13 shown in Figure 7 in different concentrations of potassium ion/liquid mixture' and using the micronization shown in Figure j Reference electrode 1 〇• Sensing result of sensing, the conductive polymer film on it is a polystone ratio road, and the sensitivity is 47.58mV/PK. In addition, Fig. 17 shows a sensing result obtained by using a commercial reference electrode (DX2GG) and a potassium ion EGFET sensor under (4) sensing conditions, and the sensitivity is 35 69 mV/pK. The sensing result using the reference electrode having a conductive polymer of the present invention is preferred. Since the present invention replaces a conventional silver/silver chloride reference electrode with a miniaturized reference electrode developed by using a conductive polymer material such as polypyrene, it has a small volume, a simple process, and a low cost, and is suitable for disposal. Formula 0619-A21623TWF(N2): shawnchang 23 1326894 φ The combination of 彝 与 与 与 与 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 易于 故 故 故 故 故 故 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一 之一The miniaturization of the device is more advantageous, and it is easy to facilitate the application of biomedical detection. • In addition, through the above verification, the reference electrode of the present invention has stable sensing characteristics, can be applied to the sensing of biological ions, and is easily integrated into the sensor to produce an integrated sensing wafer. In addition, the reference electrode of the present invention only needs to be placed in a dry place, and has the advantages of easy storage and preservation. In addition, the miniaturized Cang test electrode is easy to use for medical test and has a convenient test effect. The future is very good. While the present invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

0619-A21623TWF(N2);shawnchang 24 1326894 # Λ 【圖式簡早說明】 第1圖為一示意圖,顯示依據本發明一實施例之一參 - 考電極, / 第2圖為一示意圖,顯示第1圖中區域20内之放大情 . 形; 第3圖為一示意圖,顯示用於製備一參考電極之一電 聚合系統; • 第4圖為一示意圖,顯示依據本發明一實施例之一電 流-電壓(I-V)離子感測系統; 第5圖為一示意圖,顯示依據本發明一實施例之一電 壓-時間(V-T)離子感測系統; 第6圖顯示了採用第5圖之感測系統所量測得到之一 參考電極穩定性量測結果; 第7圖為一示意圖,顯示依據本發明一實施例之一鹼 金屬量測元件; • 第8圖為一示意圖,顯示第7圖中區域40内之放大情 形; 第9圖為一示意圖,顯示第7圖中區域40内之放大情 形; 第10圖為一示意圖,顯示第7圖中區域40内之放大 情形; 第11圖顯示採用依據本發明一實施例之一參考電極 所得出的氫離子之電流-電壓感測結果; 第12圖顯示採用由METTLER TOLEDO公司產製之 0619-A21623TWF(N2):shawnchang 250619-A21623TWF(N2);shawnchang 24 1326894 # Λ [Simplified explanation of the drawings] Fig. 1 is a schematic view showing a reference electrode according to an embodiment of the present invention, and Fig. 2 is a schematic view showing 1 is an enlarged view of the area 20; FIG. 3 is a schematic view showing an electropolymerization system for preparing a reference electrode; and FIG. 4 is a schematic view showing a current according to an embodiment of the present invention. - Voltage (IV) ion sensing system; Figure 5 is a schematic diagram showing a voltage-time (VT) ion sensing system in accordance with an embodiment of the present invention; Figure 6 is a sensing system employing Figure 5 One of the reference electrode stability measurement results is measured; FIG. 7 is a schematic view showing an alkali metal measuring element according to an embodiment of the present invention; • FIG. 8 is a schematic view showing the area in FIG. The enlargement situation in 40; Fig. 9 is a schematic view showing the enlargement in the area 40 in Fig. 7; Fig. 10 is a schematic view showing the enlargement in the area 40 in Fig. 7; An embodiment of the invention The reference electrode of the resulting hydrogen ion current - voltage sensing result; FIG. 12 uses a display manufactured by METTLER TOLEDO yield of 0619-A21623TWF (N2): shawnchang 25

1326894 • D 商用茶考電極(型號DX200)所得出的氫離子之電流-電壓 感測結果; 第13圖顯示採用依據本發明一實施例之一參考電極 所得出的氫離子之電流-電壓感測結果; 第14圖顯示採用依據本發明一實施例之一參考電極 所得出的鈉離子之電流-電壓感測結果; 第15圖顯示採用由METTLER TOLEDO公司產製之 商用參考電極(型號DX2〇0)所得出的鈉離子之電流-電壓 感測結果; 第16圖顯示採用依據本發明一實施例之一參考電極 所得出之鉀離子之電流-電壓感測結果;以及 第17圖顯示採用由METTLER TOLEDO公司產製之 商用參考電極(型號DX200)所得出的鉀離子之電流-電壓 感測結果。 【主要元件符號說明】 10〜參考電極; 11〜鈉離子感測元件; 12、46〜檢測窗口; 13〜鉀離子感測元件; 14、14’、15、17、21〜檢測部; 16、42〜遮罩; 18、44〜金屬導線; 19〜氫離子感測元件; 0619-A21623TWF(N2):shawnchang 26 1326894 20、40〜區域; 22〜基板; 24〜導電層; / 25〜鈉離子感測膜; / 26〜導電高分子層; 27〜鉀離子感測膜; 28〜絕緣層; 3 0〜導電基板, $ 32〜白金電極; 34〜電聚合溶液; 36〜電源供應器; 50〜I-V離子感測系統; 52〜半導體參數分析裝置; 54〜金氧半場效電晶體; 56〜爹考電極, 58〜溫度控制器; 60〜離子感測元件; 鲁 62〜熱柄合器; 64〜加熱爐管; 66〜待測溶液; 68〜光隔絕容器; 70〜V-T離子感測系統; 72〜儀表放大器; 74〜電錶; 76〜資料記錄器。 0619-A21623TWF(N2);shawnchang 271326894 • D current-voltage sensing results of hydrogen ions obtained from commercial tea test electrodes (model DX200); Figure 13 shows current-voltage sensing of hydrogen ions obtained using a reference electrode according to an embodiment of the present invention Results; Figure 14 shows the current-voltage sensing results of sodium ions obtained using a reference electrode according to an embodiment of the present invention; Figure 15 shows the use of a commercial reference electrode (model DX2〇0) manufactured by METTLER TOLEDO. The current-voltage sensing result of the obtained sodium ion; FIG. 16 shows the current-voltage sensing result of the potassium ion obtained by using the reference electrode according to an embodiment of the present invention; and FIG. 17 shows the adoption by METTLER The current-voltage sensing result of the potassium ion obtained from the commercial reference electrode (model DX200) manufactured by TOLEDO. [Description of main component symbols] 10~ reference electrode; 11~ sodium ion sensing element; 12, 46~ detection window; 13~ potassium ion sensing element; 14, 14', 15, 17, 21~ detecting part; 42 ~ mask; 18, 44 ~ metal wire; 19 ~ hydrogen ion sensing element; 0619-A21623TWF (N2): shawnchang 26 1326894 20, 40 ~ area; 22 ~ substrate; 24 ~ conductive layer; / 25 ~ sodium ion Sense film; / 26~ conductive polymer layer; 27~ potassium ion sensing film; 28~ insulating layer; 3 0~ conductive substrate, $32~ platinum electrode; 34~ electropolymerization solution; 36~ power supply; ~ IV ion sensing system; 52 ~ semiconductor parameter analysis device; 54 ~ gold oxygen half field effect transistor; 56 ~ 爹 test electrode, 58 ~ temperature controller; 60 ~ ion sensing element; Lu 62 ~ hot handle; 64~ heating furnace tube; 66~ test solution; 68~ light isolation container; 70~VT ion sensing system; 72~ instrumentation amplifier; 74~ meter; 76~ data recorder. 0619-A21623TWF(N2);shawnchang 27

Claims (1)

1326894 〆 第95141144號 修正日期:99.3.235 修正本 十、申請專利範圍: ^年3糾h沒(更)_「: 1. 一種參考電極,包括: ί 1 --—— 一導電基板,該導電基板為塗佈有銦錫氧化物之一玻 • 璃基板; . 一絕緣層,大體包覆該導電基板,具有大體露出該導 . 電基板之該銦錫氧化物之一部之一開口; 一導電高分子層,設置於該開口内之導電基板之該銦 錫氧化物上並實體接觸該銦錫氧化物; • 一金屬導線,部分埋設於該絕緣層内且凸出延伸於該 絕緣層外,電性接觸該導電基板,以及 一遮罩,環繞凸出於該絕緣層外之該金屬導線。 2. 如申請專利範圍第1項所述之參考電極,其中該導 電高分子層為一聚础路層、一聚苯胺層或一聚嗟吩層。 3. 如申請專利範圍第1項所述之參考電極,其中該開 口為 2mm X 2mm 之一開口。 4. 如申請專利範圍第1項所述之參考電極,其中該絕 • 緣層包括環氧樹脂。 5. 如申請專利範圍第1項所述之參考電極,其中該遮 罩之材質為玻璃,以阻隔該金屬導線接觸一測試溶液。 6. —種參考電極的製造方法,包括: 提供一導電基板,該導電基板為塗佈有銦錫氧化物之 一玻璃基板; 固定一金屬導線於該導電基板之一部上; 利用一絕緣材料大體封裝該導電基板與該金屬導線, 28 1326894 &quot; 第95141144號 修正日期:99.3.235 修正本 僅留下一開口,該開口露出該導電基板之該銦錫氧化物之 一部,而該金屬導線則部份突出於該絕緣材料;以及 施行一電聚合反應,以於該開口内之該銦錫氧化物上 • 形成一導電高分子膜,且該導電高分子膜實體接觸該銦錫 - 氧化物。 . 7.如申請專利範圍第6項所述之參考電極的製造方 法,其中該電聚合反應之施行,包括: 將經該絕緣材料大體封裝之該導電基板與該金屬導線 # 置入於一電聚合溶液中;以及 將該金屬導線連結於一直流電源供應器之正極,而該 直流電源供應器之負極連結於一白金電極。 8. 如申請專利範圍第6項所述之參考電極的製造方 法,其中該導電高分子膜為一聚砒硌膜,該電聚合溶液係 由磷酸鉀緩衝溶液、電解質溶液與一高分子溶液所混合而 成。 9. 如申請專利範圍第6項所述之參考電極的製造方 ® 法,其中該磷酸鉀缓衝溶液包括濃度為0.1M〜0..3M之 ΚΉ2ΡΟ4溶液與K2HPO4溶液。 10. 如申請專利範圍第9項所述之參考電極的製造方 法,其中該KH2P〇4溶液為pH4〜pH5,該K2HP04溶液為 pH8.5〜pH9_5。 11. 如申請專利範圍第9項所述之參考電極的製造方 法,其中該KH2P04溶液與K2HP04溶液之調配重量比例為 29 1326894 • 第95141144號 修正日期:99.3.235 修正本 12. 如申請專利範圍第8項所述之參考電極的製造方 法,其中該電解質溶液包括KC1及乙睛。 13. 如申請專利範圍第8項所述之參考電極的製造方 法,其中該電解質溶液中之該KC1濃度為0.1M〜0.3M,而 - 該乙睛濃度為1Μ〜3 Μ。 • 14.如申請專利範圍第8項所述之參考電極的製造方 法,其中該高分子溶液中包括濃度為0.1Μ〜0.5Μ之砒硌。 15. 如申請專利範圍第6項所述之參考電極的製造方 # 法,其中該電聚合反應施行時間為30分鐘。 16. 如申請專利範圍第6項所述之參考電極的製造方 法,其中係以銀膠固定該金屬導線於該導電基板之一部上。 17. 如申請專利範圍第6項所述之參考電極的製造方 法’其中絕緣材料之材質為极乳樹脂。 18. 如申請專利範圍第8項所述之參考電極的製造方 法,其中該開口之大小為2 mm X 2 mm。 19. 一種離子感測裝置,包括: ® 一延伸式閘極場效電晶體離子感測元件; 一離子待測溶液; 一參考電極,以提供穩定電位,包括; 一導電基板,該導電基板為塗佈有銦錫氧化物之一玻 璃基板, 一絕緣層,大體包覆該導電基板’具有大體露出該導 電基板之該銦錫氧化物之一部之一開口;以及 一導電向分子層,設置於該開口内之導電基板之該姻 1326894 第 95141144 號 修正日期:99.3.235 修正本 錫氧化物上,且該導電高分子層實體接觸該銦錫氧化物; 一金屬導線,部分埋設於該絕緣層内且凸出延伸於該 絕緣層外,電性接觸該導電基板;以及 • 一遮罩,環繞凸出於該絕緣層外之該金屬導線; .一加熱器,用以對感測環境進行加熱保持固定溫度; . 一溫度控制器,連接於該加熱器; 一半導體參數分析裝置,連接於該系統測試裝置;以 及 修一暗箱,用以避免感測過程受到光線影響。 20. 如申請專利範圍第19項所述之離子感測裝置,其 中該延伸式閘極場效電晶體離子感測元件為離子感測元 件。 21. 如申請專利範圍第20項所述之離子感測裝置,其 中該離子感測元件為氫離子感測元件、鈉離子感測元件或 钾離子感測元件。 22. 如申請專利範圍第20項所述之離子感測裝置,其 Φ 中該溫度控制器為PID溫度控制器。 311326894 〆No. 95141144 Revision date: 99.3.25 Amendment of this ten, the scope of patent application: ^ Year 3 correction h not (more) _ ": 1. A reference electrode, including: ί 1 --- a conductive substrate, the The conductive substrate is a glass substrate coated with indium tin oxide; an insulating layer substantially covering the conductive substrate, and having an opening substantially exposing one of the indium tin oxides of the conductive substrate; a conductive polymer layer disposed on the indium tin oxide of the conductive substrate in the opening and physically contacting the indium tin oxide; a metal wire partially embedded in the insulating layer and protrudingly extending from the insulating layer In addition, the conductive substrate is electrically contacted, and a mask surrounds the metal wire protruding from the insulating layer. 2. The reference electrode according to claim 1, wherein the conductive polymer layer is The base layer, a polyaniline layer or a polythiophene layer. 3. The reference electrode according to claim 1, wherein the opening is an opening of 2 mm X 2 mm. a reference electrode as described in the item 5. The rim layer comprises an epoxy resin. 5. The reference electrode according to claim 1, wherein the mask is made of glass to block the metal wire from contacting a test solution. The method for manufacturing an electrode includes: providing a conductive substrate, wherein the conductive substrate is a glass substrate coated with indium tin oxide; fixing a metal wire on a portion of the conductive substrate; and substantially encapsulating the conductive substrate by using an insulating material And the metal wire, 28 1326894 &quot; 95141144, date of revision: 99.3.235, the correction only leaves an opening that exposes one portion of the indium tin oxide of the conductive substrate, and the metal wire is partially protruded And an electropolymerization reaction to form a conductive polymer film on the indium tin oxide in the opening, and the conductive polymer film physically contacts the indium tin oxide. The method for manufacturing a reference electrode according to claim 6, wherein the performing of the electropolymerization comprises: guiding the conductor substantially encapsulated by the insulating material The substrate and the metal wire # are placed in an electropolymerization solution; and the metal wire is connected to the positive electrode of the DC power supply, and the negative electrode of the DC power supply is connected to a platinum electrode. The method for producing a reference electrode according to Item 6, wherein the conductive polymer film is a polyfluorene film, and the electropolymerization solution is a mixture of a potassium phosphate buffer solution, an electrolyte solution and a polymer solution. The method for producing a reference electrode according to claim 6, wherein the potassium phosphate buffer solution comprises a solution of ΚΉ2ΡΟ4 and K2HPO4 at a concentration of 0.1 M to 0..3M. 10. The method of producing a reference electrode according to claim 9, wherein the KH2P〇4 solution is pH 4 to pH 5, and the K2HP04 solution is pH 8.5 to pH 9_5. 11. The method for producing a reference electrode according to claim 9, wherein the ratio of the KH2P04 solution to the K2HP04 solution is 29 1326894. The correction date of 95141144 is 99.3.235. The method for producing a reference electrode according to Item 8, wherein the electrolyte solution comprises KC1 and acetonitrile. 13. The method of producing a reference electrode according to claim 8, wherein the concentration of the KC1 in the electrolyte solution is 0.1 M to 0.3 M, and the concentration of the acetonitrile is 1 Μ 3 Μ. 14. The method of producing a reference electrode according to claim 8, wherein the polymer solution comprises a ruthenium having a concentration of 0.1 Μ to 0.5 砒硌. 15. The method of manufacturing a reference electrode according to claim 6, wherein the electropolymerization reaction time is 30 minutes. 16. The method of manufacturing a reference electrode according to claim 6, wherein the metal wire is fixed to one of the conductive substrates by silver glue. 17. The method of manufacturing a reference electrode according to claim 6, wherein the material of the insulating material is a lenticular resin. 18. The method of manufacturing a reference electrode according to claim 8, wherein the opening has a size of 2 mm X 2 mm. 19. An ion sensing device comprising: an extended gate field effect transistor ion sensing element; an ion to be tested solution; a reference electrode to provide a stable potential, comprising: a conductive substrate, the conductive substrate being a glass substrate coated with one of indium tin oxide, an insulating layer substantially covering the conductive substrate 'having an opening of one portion of the indium tin oxide substantially exposing the conductive substrate; and a conductive molecular layer disposed The bonding substrate of the conductive substrate in the opening 13268894 Revision No. 95141144: 99.3.235 The tin oxide is modified, and the conductive polymer layer is in physical contact with the indium tin oxide; a metal wire is partially embedded in the insulation a layer extending in the layer and extending outside the insulating layer to electrically contact the conductive substrate; and a mask surrounding the metal wire protruding from the insulating layer; a heater for sensing the environment Heating to maintain a fixed temperature; a temperature controller connected to the heater; a semiconductor parameter analysis device connected to the system test device; and repairing Box, to avoid the influence of light by the sensing process. 20. The ion sensing device of claim 19, wherein the extended gate field effect transistor ion sensing element is an ion sensing element. 21. The ion sensing device of claim 20, wherein the ion sensing element is a hydrogen ion sensing element, a sodium ion sensing element, or a potassium ion sensing element. 22. The ion sensing device of claim 20, wherein the temperature controller is a PID temperature controller. 31
TW95141144A 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof TWI326894B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95141144A TWI326894B (en) 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95141144A TWI326894B (en) 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof

Publications (2)

Publication Number Publication Date
TW200822177A TW200822177A (en) 2008-05-16
TWI326894B true TWI326894B (en) 2010-07-01

Family

ID=44770710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141144A TWI326894B (en) 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof

Country Status (1)

Country Link
TW (1) TWI326894B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485400B (en) * 2012-11-19 2015-05-21 Univ Nat Yunlin Sci & Tech Chlorine ion measurement system
TWI687683B (en) * 2019-04-08 2020-03-11 禪譜科技股份有限公司 Long-lasting disposable reference electrode
CN115479972A (en) 2021-06-15 2022-12-16 群创光电股份有限公司 Liquid sensing device and preparation method thereof

Also Published As

Publication number Publication date
TW200822177A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
TWI302197B (en) Reference ph sensor, the preparation and application thereof
US20040256685A1 (en) Biosensor, method of manufacturing sensing unit thereof, and measuring system
TWI279539B (en) Biosensor containing ruthenium, and measurement using the same and the application thereof
US8133750B2 (en) Method for forming extended gate field effect transistor (EGFET) based sensor and the sensor therefrom
TW201224478A (en) Methods and apparatus for testing ISFET arrays
TW201221950A (en) Ion-sensing charge-accumulation circuits and methods
US6740911B1 (en) α-WO3-gate ISFET devices and method of making the same
TW201124719A (en) Hydrogen ion sensitive field effect transistor and manufacturing method thereof
US20090008681A1 (en) Alkaloid sensor
TWI247113B (en) A method and fabrication of the potentiometric chemical sensor and biosensor on an uninsulated solid material
Van den Vlekkert et al. Multi-ion sensing system based on glass-encapsulated pH-ISFETs and a pseudo-REFET
TWI326894B (en) Ion sensing devices, reference electrodes and fabrication methods thereof
TW200538728A (en) Ion selective electrode, method of fabricating sensing unit used therein, and method of potential detection using the same
US20090266712A1 (en) Calcium ion sensors and fabrication method thereof, and sensing systems comprising the same
TWI393880B (en) Method for sodium ion selective electrode, sodium ion selective electrode therefrom and sodium ion sensing device
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
TW200521239A (en) Penicillin G biosensor, systems comprising the same, and measurement using the systems
TW200804803A (en) Sensor for vitamin C measurement and measuring systems comprising the same
WO2020212535A1 (en) Extended gate transistor for sensing applications
TWI399538B (en) Calcium ion sensing units and fabrication method thereof, and sensing systems comprising the same
US8410530B2 (en) Sensitive field effect transistor apparatus
TWI235237B (en) Biosensor, method of fabricating sensing unit thereof, and measuring system comprising the same
TWI485400B (en) Chlorine ion measurement system
Wu et al. High dielectric constant PrYxOy sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea
TWI310085B (en) Chloric ion sensors and fabrication method thereof, and sensing systems comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees