TW200822177A - Ion sensing devices, reference electrodes and fabrication methods thereof - Google Patents

Ion sensing devices, reference electrodes and fabrication methods thereof Download PDF

Info

Publication number
TW200822177A
TW200822177A TW95141144A TW95141144A TW200822177A TW 200822177 A TW200822177 A TW 200822177A TW 95141144 A TW95141144 A TW 95141144A TW 95141144 A TW95141144 A TW 95141144A TW 200822177 A TW200822177 A TW 200822177A
Authority
TW
Taiwan
Prior art keywords
reference electrode
solution
conductive
conductive substrate
ion sensing
Prior art date
Application number
TW95141144A
Other languages
Chinese (zh)
Other versions
TWI326894B (en
Inventor
Jung-Chuan Chou
Cheng-Chen Chen
Cheng-Wei Chen
Ya-Ping Huang
Ching-Hsiang Hsu
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW95141144A priority Critical patent/TWI326894B/en
Publication of TW200822177A publication Critical patent/TW200822177A/en
Application granted granted Critical
Publication of TWI326894B publication Critical patent/TWI326894B/en

Links

Abstract

A reference electrode is provided, comprising a conductive substrate. An insulating layer is formed to substantially cover the conductive substrate, having an opening exposing a part thereof. A conductive wire partially embedded in the insulating layer and partially protruding over the insulating layer, electrically connecting the conductive substrate. A mask substantially surrounds the part of the conductive wire protruding over the insulating layer.

Description

200822177 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種感測器,特別是有關於一種離子 感測器及其應用之參考電極。 【先前技#t】 I1边者化學感測器(Chemical Sensors)與生物感測器 (Bi〇Sensors)之蓬勃發展,感測器之多樣化研發逐漸被重 視,其必須符合微小化、多工化、與智慧化等條件。 然而,於感測器中需搭配一參考電極方可進行量測, 故感測器之發展亦與搭配之參考電極息息相關。傳統電化 學原理感測之參考電極係採用銀/氯化銀電極(Ag/Agci Electrode)或甘水電極(Calomel Electrode),但因果元素具毒 性,故逐漸由銀/氯化銀電極所取代。然而,使用銀/氯化銀 電極時,由於其易與待測溶液發生氧化或還原反應,故易 造成訊號漂移之現象產生。 、因此即需要研製出穩定且不易受外在環境影響而改· 基準電壓之參考電極。目前國内外商品化之參考電極仍以 液態接面(LiquidJunction)參考電極較普遍,其備製方= 以玻璃透析膜作為内部鹽類溶液與待測溶液之介面, 麥考電極與内部鹽類溶液相互反應達至平衡, = 訊號較穩定。但就此類之參考電極而言,由於 :: 玻璃材質具有易碎、製程不易、價格較高,且之 氯化卸溶液中保存以及體積過大料不易攜帶等=。曰於 0619-A21623TWF(N2);shawnchang 5 200822177 外若以微小化感測器為目標時,如此之玻璃材質電極並不 適用,因此即需要一種可微小化之參考電極。 【發明内容】 有鑑於此,本發明提供一種可微小化之參考電極,適 用於微小化之感測器中。 依據一實施例,本發明提供一種參考電極,包括: 一導電基板;一絕緣層,大體包覆該導電基板,具有 大體露出該導電基板一部之一開口;一導電高分子層,設 置於該開口内之導電基板上;一金屬導線,部份埋設於該 絕緣層内且部份凸出於該絕緣層外,電性接觸該導電基 板;以及一遮罩,環繞凸出於該絕緣層外之該金屬導線。 依據另一實施例,本發明提供一種參考電極之製造方 法,包括: 提供一導電基板;固定一金屬導線於該導電基板之一 部上;利用一絕緣材料大體封裝該導電基板與該金屬導 線,僅留下一開口,該開口露出該導電基板之一部,而該 金屬導線則部份突出於該絕緣材料;以及施行一電聚合反 應,以利於該開口内之該導電基板上形成一導電南分子膜。 依據另一實施例,本發明提供一種離子感測裝置,包 括: 一延伸式閘極場效電晶體離子感測元件、一離子待測 溶液、一參考電極用以提供穩定電位、一加熱器用以對感 測環境進行加熱保持固定溫度、一溫度控制器連接於該加 熱器、一半導體參數分析裝置連接於該系統測試裝置,以 0619-A21623TWF(N2);shawnchang 6 200822177 及一暗箱用以避免感測過程受到光線影響。其中該參考電 極包括一導電基板、大體包覆該導電基板之一絕緣層,具 有大體露出該導電基板一部之一開口、設置於該開口内之 導電基板上一導電高分子、部份埋設於該絕緣層内且凸出 (伸於核緣層外之—金屬導線,以電性接觸該導電基板 以及環繞凸出於該絕緣層外之該金屬導線之一遮罩。 為使本發明之上述和其他目的、特徵與優點能更明顯 董下文斗寸舉一較佳實施例,並配合所附圖示,作 說明如下: Μ I邗。手細 【實施方式】 圖至第 圖 本發明之參考電極之實施例將配合第 作一詳細敛述如下。 月…、、、第1圖,顯示依據本發明之一每 “ 考電極10,其包括-檢測部14以及一全一茶 檢測部I4上露出有_ “蜀V、、泉18。於 顯示),而金屬導味^、'固口 12,以接觸—檢測溶液(未 遮罩㈣繞性連結於檢測部14,並為一 示)。 同㈣上述金屬導線與檢測溶液(未顯 請參照第2圖,_ - 如圖所示,檢測部14: 圖中區域20之-放大情形。 上之-導電層24。此外,要人包括一基板22 ’以及形成於其 覆上述基板22與導命双測部14更包括環繞並部份包 並定義出上述檢蜊窗? 24之-絕緣層28,絕緣層28 24。於檢測窗口 12内、首一且口Η刀^各出其内之導電層 〇6™τ师2):shawnchang之導电層12上則形成有一導電高 7 200822177 分子層26,而上述金屬導線18係部份埋設於絕緣層28 内,以電性連結於導電層24。 如第1圖與第2圖所示之參考電極10之各構件中, 導線18例如為銅、鋁、銀之一金屬導線,遮罩16例如 為玻璃、陶瓷、鐵氟龍材質之一遮罩,絕緣層28例如為 壞氧樹脂、壞氧一聚氣醋、絕緣膠之-^絕緣材料5導電 層24例如為銦錫氧化物(ITO)、RuN、Ru02之一導電材 料,導電高分子層26例如為聚砒硌、聚苯胺、聚噻吩等 導電南分子材料’基板2 2例如為碎、網版塑膠、玻璃等材 質。 如第1圖與第2圖所示之參考電極10主要採用含導 電高分子層、導電層與基板之分離式架構所組成之一導電 聚合物薄膜,因此具有可微型化之特徵,特別適用於各式 生物、離子與化學感測器感測中作為參考電極之用,其可 提供較為穩定且不會有訊號漂移之一參考準位。 以下揭示參考電極10之製備: 檢測部之製備: 在此以採用聚砒硌材質之導電高分子層26之檢測部 製備作為解說,首先採用塗佈有導電層24之基板22(簡稱 為導電基板30),例如為台灣光華開發科技股份有限公司所 產製之氧化銦錫玻璃(ITO Glass),並將此導電基板30 置於倒入有適量丙酮溶液之一燒杯中,經由超音波振盪器 振盪5分鐘後,以去離子水(D.I· Water)清洗此導電基板 0619-A21623TWF(N2);shawnchang 8 200822177 3〇。接著縣驗㈣ 燒杯中’並倒人適量之乙醇溶液,使电基立板3G置入玻璃 5分鐘後再以去離子水(D 趋《波振盥器振盪 後以益塵祕胳道干 )清洗導電基板30,而 ί之it:基板3〇輕輕拭乾。接著採用銀齡 、'果之至屬v線16固定於導電 著將此固定完成之元件置於24上’接 菩刹心η, 烤目中供烤1G分鐘。接 _用=乳樹脂之-絕緣層28將報膠之部份加以固 7 =將八上逑凡件大體封裝’僅留下約2mmx2mg :、之k測窗口 12,並置於13(rc烤箱中棋烤⑽鐘,以烤 乾絕緣層28 ’進而得到-未塗佈有導電高分子層26之一 檢測部14,(詳見第3圖),此時檢測窗π η中露出有部份 之:電層24。於烘乾後,若絕緣層28中產生有小孔洞時, 則需再次以相同之絕緣材料將孔洞填平,並繼續以13〇。〇 料’使經緣層28封裝後之元件於水缝巾進行感測 時有良好之防水及絕緣效果。 接著利用如第3圖所示之一電聚合系統,於上述檢測 部丨4之檢測窗口之導電層24上製備導電高分子層26。導 電高分子層26之製備首先提供一電聚合溶液34,其包含 )辰度為0.1〜0.3Μ之ΚΗ2Ρ〇4(分子量136.09)與Κ2ΗΡ〇4(分 子量174.18)磷酸鉀(皆為一般試藥級)緩衝溶液(Κη2ρ〇4: Ι〈2ΗΡ〇4调配比例約1:1 )、濃度為1 ]y[之乙睛(Acetonitrile, 刀子式為CH^CN,分子量為41· 05,曰本試藥工業株式會 社產製)與濃度為0.1M之KC1(分子量74.56,日本試藥工 業株式會社產製)等電解質溶液,以及濃度為之 0619-A21623TWF(N2);shawnchang 9 200822177 導電南分子砒硌(分子式為QHsN,分子量為67,東京化 產製)’其中含KHjO4之磷酸鉀緩衝溶液之pH值約介於 4〜5,而含K2HP〇4之磷酸鉀緩衝溶液之pH值約介於 8.5〜9·5。電聚合溶液34係藉由將上述電解質與導電高分子 溶液加入於ΡΗ7之磷酸鉀缓衝溶液中,藉由磁石攪拌二攪 拌3至5分鐘所調配而成。其中由κα與乙睛所組成 解質溶液的氧化還原電位約為4.2V,而於電聚合溶液34 中之各溶液重量比例約為乙睛:KC1 :砒硌=2 : 2 : 1,其 過氧化電位約為5V。 ' 接著,使用一循環伏安儀(未顯示)量測電聚合溶液34 與檢測部14’之過氧化還原電位,並使用直流電源供應器 36,將其電壓調至如5V之一固定電壓,並將正極接於上 述檢測部14’ ’負極則接於一白金電極32。所施行之電聚 合時間約為30分鐘,於電聚合完成後,隨即將撿測部14, 取出,並置於去離子水(D· I. Water)中30分鐘後,自去離 子水(D· I· Water)中取出參考電極,並置於乾燥處12小時。 隨後調配濃度6M之NaOH溶液(NaOH之分子量40.00,為 顆粒狀之材料,日本試藥工業株式會社產製),並將此經電 聚合反應過後之檢測部14’置於上述溶液中30秒鐘後隨 即取出,並置於去離子水φ· I. Water)中30分鐘後取出置 於乾燥處,待其乾燥即可得到如第1圖所示參考電極1〇 中之檢測部14,其檢測窗口 12内此時設置有聚砒硌材質 之一導電高分子層(未顯示)。 另外,亦可採用上述類似之電聚合製程以製備出如聚 0619-A21623TWF(N2);shawnchang 10 200822177 苯胺、聚噻吩材質之導電高分子層26。 離子感測系統與方法 本發明之離子感測系統之實施例將配合第4圖至第5 圖作一詳細敛述如下,其中第4圖顯示一電流-電壓(I-V) 離子感測系統之一示意圖,而第5圖顯示一電壓-時間 (V-T)離子感測系統之一示意圖。 請參照第4圖,顯示依據本發明之一實施例之離子感 測系統50,此離子感測系統50係採用延伸式感測場效電 晶體(Extended Gate Ion Sensitive Field Effect Transistor, EGFET)之一離子感測系統為例,使金氧半場效電晶體 (Metal Oxide Semiconductor Field Effect Transistor, MOSFET)完全與待測溶液隔離,藉以降低半導體元件之不 穩定特性,及避免受到溶液中之訊號干擾,但不以上述系 統為限。離子感測系統50可用於感測於生物或化學溶液中 如氫、鈉、鉀等鹼金屬離子之感測度,但並不以上述離子 為限,亦可用於感測其他類型離子。於此,離子感測系統 50係將一鹼金屬離子感測元件60浸入於一待測溶液66 中。驗金屬離子感測元件60例如為以下幾種感測元件之 (1) 氫離子感測元件; (2) 鈉離子感測元件;或 (3) 鉀離子感測元件。 0619-A21623TWF(N2);shawnchang ^ 200822177 如第4圖所示,鹼金屬離子感測元件60經由一導線而 電性連結於一金氧半場效電晶體54之閘極端G,而金氧半 場效電晶體5 4之 &gt;及極D及源極S則分別措由導線而相連 於一半導體參數分析裝置52,例如為Keithley公司所產製 之Keithley 236分析裝置。另外,於待測溶液66中則浸入 有一參考電極56,例如為習知之銀/氯化銀參考電極或如第 1圖所示之參考電極10,藉以提供一穩定電位,而參考電 極56則經由一導線而相連於半導體參數分析裝置54。如 圖所示,上述待測溶液66、驗金屬離子感測元件60以及 參考電極56等皆置於一光隔絕容器68中,藉以避免光線 對感測過程造成影響。此外於光隔絕容器68内則設置有加 熱器64,以負責控制緩衝溶液之溫度,其係連結於一溫度 控制器58。另外於緩衝溶液66中則可額外設置有一熱耦 合器62,其亦連結於溫度控制器58。於此溫度控制器58 例如為一 PID溫度控制器。 如第5圖所示,則顯示利用於記錄一驗金屬離子感測 元件60之輸出電壓(Output Voltage)對時間曲線之V-T離 子感測系統70,其包括一儀表放大器72,例如為LT1167。 如圖所示,鹼金屬離子感測元件72可採用如第4圖所示之 驗金屬離子感測元件,其係浸入於一測試溶液66中,驗金 屬離子感測元件60經由一導線而連結於儀表放大器72之 ㈠輸入端。另外於測試溶液6 6中亦浸入有一爹考電極5 6 ’ 例如為習知之銀/氯化銀參考電極或如第1圖所示之參考電 0619-A21623TWF(N2);shawnchang 12 200822177200822177 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a sensor, and more particularly to a reference electrode for an ion sensor and its application. [Previous technology #t] I1 side chemical sensors (Chemical Sensors) and biosensors (Bi〇Sensors) flourished, the diversified research and development of sensors has gradually been valued, it must meet the miniaturization, multiplexing Conditions such as transformation and wisdom. However, it is necessary to measure with a reference electrode in the sensor, so the development of the sensor is also closely related to the matching reference electrode. The reference electrode for sensing the traditional electrochemical principle uses a silver/silver chloride electrode (Ag/Agci Electrode) or a lime electrode (Calomel Electrode), but the causal element is toxic and is gradually replaced by a silver/silver chloride electrode. However, when a silver/silver chloride electrode is used, since it is easily oxidized or reduced with the solution to be tested, signal drift is likely to occur. Therefore, it is necessary to develop a reference electrode that is stable and less susceptible to external environmental influences and changes to the reference voltage. At present, the reference electrode for commercialization at home and abroad is still more common with LiquidJunction reference electrode. The preparation method is as follows: the glass dialysis membrane is used as the interface between the internal salt solution and the solution to be tested, and the McCaw electrode and the internal salt solution Mutual reaction to balance, = signal is more stable. However, in the case of such a reference electrode, the glass material is fragile, the process is not easy, the price is high, and the chlorinated unloading solution is stored and the bulk material is not easy to carry. 06于0619-A21623TWF(N2);shawnchang 5 200822177 When a micro sensor is used, such a glass electrode is not suitable, so a reference electrode that can be miniaturized is needed. SUMMARY OF THE INVENTION In view of the above, the present invention provides a miniaturizable reference electrode suitable for use in a miniaturized sensor. According to an embodiment, the present invention provides a reference electrode, comprising: a conductive substrate; an insulating layer substantially covering the conductive substrate, having an opening substantially exposing a portion of the conductive substrate; a conductive polymer layer disposed on the a conductive substrate in the opening; a metal wire partially embedded in the insulating layer and partially protruding outside the insulating layer to electrically contact the conductive substrate; and a mask surrounding the insulating layer The metal wire. According to another embodiment, the present invention provides a method for fabricating a reference electrode, comprising: providing a conductive substrate; fixing a metal wire on a portion of the conductive substrate; and substantially encapsulating the conductive substrate and the metal wire with an insulating material, Leaving only an opening, the opening exposes a portion of the conductive substrate, and the metal wire partially protrudes from the insulating material; and performing an electropolymerization reaction to facilitate formation of a conductive south on the conductive substrate in the opening Molecular membrane. According to another embodiment, the present invention provides an ion sensing device comprising: an extended gate field effect transistor ion sensing element, an ion to be tested solution, a reference electrode for providing a stable potential, and a heater for Heating the sensing environment to maintain a fixed temperature, a temperature controller is connected to the heater, and a semiconductor parameter analyzing device is connected to the system testing device to use 0619-A21623TWF (N2); shawnchang 6 200822177 and a black box to avoid the sense The measurement process is affected by light. The reference electrode includes a conductive substrate, an insulating layer substantially covering the conductive substrate, and a conductive polymer substantially exposed on one of the conductive substrates, and a conductive polymer disposed on the conductive substrate, partially embedded in the conductive substrate a metal wire protruding in the insulating layer (extending outside the core edge layer to electrically contact the conductive substrate and surrounding one of the metal wires protruding from the insulating layer). And other objects, features and advantages will be more apparent. A preferred embodiment will be described with reference to the accompanying drawings, as follows: Μ I邗. Hand fine [Embodiment] Figure to Figure 1 The embodiment of the electrode will be described in detail as follows. The month..., and the first figure show that each of the "test electrode 10, including the detecting portion 14 and the one-to-one tea detecting portion I4, according to one of the present inventions. Exposed, _ "蜀V, spring 18 is shown", and the metal guides ^, 'Fixed 12, to contact-detection solution (uncovered (four) wound connection to the detection portion 14, and is shown). Same as (4) the above metal wire and the detection solution (not shown in Fig. 2, _ - as shown in the figure, the detecting portion 14: the region 20 in the drawing - the enlarged case. The upper layer - the conductive layer 24. In addition, the dignitor includes one The substrate 22 ′ and the substrate 22 and the guiding and detecting unit 14 are further disposed to surround and partially define the insulating layer 28 and the insulating layer 28 24 of the inspection window 24 . The first one and the mouth knives ^ each out of the conductive layer 〇 6TMτ division 2): shawnchang conductive layer 12 is formed with a conductive high 7 200822177 molecular layer 26, and the above-mentioned metal wire 18 is partially embedded In the insulating layer 28, the conductive layer 24 is electrically connected. In each of the members of the reference electrode 10 shown in FIGS. 1 and 2, the wire 18 is, for example, a metal wire of copper, aluminum or silver, and the mask 16 is, for example, a glass, ceramic or Teflon material. The insulating layer 28 is, for example, a bad oxygen resin, a bad oxygen gas, and an insulating rubber. The conductive layer 24 is a conductive material such as indium tin oxide (ITO), RuN or Ru02, and a conductive polymer layer. 26, for example, a conductive south molecular material such as polyfluorene, polyaniline or polythiophene, the substrate 2 2 is made of, for example, a scrap, a screen plastic, or a glass. The reference electrode 10 shown in FIG. 1 and FIG. 2 mainly adopts a conductive polymer film composed of a conductive polymer layer, a conductive layer and a substrate, and thus has a miniaturization feature, and is particularly suitable for use. It is used as a reference electrode in the sensing of various biological, ion and chemical sensors, which can provide a reference level which is relatively stable and does not have signal drift. The preparation of the reference electrode 10 is disclosed below: Preparation of the detecting portion: Here, as a description, the detecting portion of the conductive polymer layer 26 made of a polyfluorene material is used. First, the substrate 22 coated with the conductive layer 24 (referred to as a conductive substrate for short) is used. 30) For example, indium tin tin glass (ITO Glass) manufactured by Taiwan Guanghua Development Technology Co., Ltd., and placed in the beaker of an appropriate amount of acetone solution, and oscillated via an ultrasonic oscillator. After 5 minutes, the conductive substrate 0619-A21623TWF (N2) was cleaned with deionized water (DI·Water); shawnchang 8 200822177 3〇. Then the county test (4) in the beaker and pour the right amount of ethanol solution, so that the electric base plate 3G is placed in the glass for 5 minutes and then deionized water (D tends to "wave vibrator oscillates to the edge of the dust" The conductive substrate 30 is cleaned, and the substrate 3 is gently wiped dry. Then use the silver age, 'fruit to the v line 16 fixed to the conductive, the fixed component is placed on the 24' to connect the buddha heart η, baked for 1G minutes. _ _ = = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The chess is baked (10) clock, and the dry insulating layer 28' is baked to obtain a detecting portion 14 which is not coated with the conductive polymer layer 26 (see FIG. 3 for details). At this time, a portion of the detecting window π η is exposed. : Electrical layer 24. After drying, if a small hole is formed in the insulating layer 28, the hole is filled again with the same insulating material, and the hole is continued to be 13 〇. The component has a good waterproofing and insulating effect when being sensed by the water-slit towel. Next, a conductive polymer is prepared on the conductive layer 24 of the detection window of the detecting portion 利用4 by using an electropolymerization system as shown in FIG. Layer 26. The preparation of the conductive polymer layer 26 first provides an electropolymerization solution 34 comprising ΚΗ2Ρ〇4 (molecular weight 136.09) and Κ2ΗΡ〇4 (molecular weight 174.18) potassium phosphate having a whiteness of 0.1 to 0.3 Å (both generally The reagent level) buffer solution (Κη2ρ〇4: Ι<2ΗΡ〇4 ratio of about 1:1), the concentration is 1]y [the acetonitrile An electrolyte solution such as KC1 (molecular weight: 74.56, manufactured by Nippon Pharmaceutical Co., Ltd.) having a concentration of 0.1 M, and a concentration of 0.1 M, which is a chemical solution of a KM1 (manufactured by Nippon Pharmaceutical Co., Ltd.). And the concentration is 0619-A21623TWF(N2); shawnchang 9 200822177 Conductive South Molecular 砒硌 (Molecular Formula QHsN, Molecular Weight 67, manufactured by Tokyo Chemical Co., Ltd.) The pH of the potassium phosphate buffer solution containing KHjO4 is about 4~ 5, and the pH of the potassium phosphate buffer solution containing K2HP〇4 is about 8.5~9·5. The electropolymerization solution 34 is prepared by adding the above electrolyte and a conductive polymer solution to a potassium phosphate buffer solution of ΡΗ7, and stirring it by stirring for two to five minutes. The redox potential of the solution consisting of κα and acetonitrile is about 4.2V, and the weight ratio of each solution in the electropolymerization solution 34 is about acetonitrile: KC1 : 砒硌 = 2 : 2 : 1, The oxidation potential is approximately 5V. Next, the cyclic oxidation voltammeter (not shown) is used to measure the peroxidation potential of the electropolymerization solution 34 and the detecting portion 14', and the voltage is adjusted to a fixed voltage of, for example, 5 V using a DC power supply 36. The positive electrode is connected to the detecting portion 14'', and the negative electrode is connected to a platinum electrode 32. The electropolymerization time was about 30 minutes. After the electropolymerization was completed, the detection unit 14 was taken out, and placed in deionized water (D·I. Water) for 30 minutes, after deionized water (D· The reference electrode was taken out in I·Water) and placed in a dry place for 12 hours. Then, a 6 M NaOH solution (molecular weight of NaOH 40.00, which is a granular material, manufactured by Nippon Pharmaceutical Co., Ltd.) was prepared, and the detection portion 14' after the electropolymerization reaction was placed in the above solution for 30 seconds. It is taken out immediately and placed in deionized water φ·I. Water for 30 minutes, and then taken out in a dry place. After it is dried, the detection part 14 in the reference electrode 1〇 shown in Fig. 1 is obtained, and the detection window thereof is detected. In this case, a conductive polymer layer (not shown) of a polythene material is disposed at this time. Alternatively, a similar electropolymerization process as described above may be employed to prepare a conductive polymer layer 26 such as poly 0619-A21623TWF (N2); shawnchang 10 200822177 aniline or polythiophene. Ion Sensing System and Method The embodiment of the ion sensing system of the present invention will be described in detail below with reference to Figures 4 to 5, wherein Figure 4 shows one of the current-voltage (IV) ion sensing systems. Schematic, and Figure 5 shows a schematic of a voltage-time (VT) ion sensing system. Referring to FIG. 4, an ion sensing system 50 according to an embodiment of the present invention is shown. The ion sensing system 50 is one of Extended Gate Ion Sensitive Field Effect Transistors (EGFETs). The ion sensing system is an example in which the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is completely isolated from the solution to be tested, thereby reducing the unstable characteristics of the semiconductor device and avoiding signal interference in the solution, but Not limited to the above system. The ion sensing system 50 can be used to sense the sensitivity of an alkali metal ion such as hydrogen, sodium, potassium, etc. in a biological or chemical solution, but is not limited to the above ions, and can also be used to sense other types of ions. Here, the ion sensing system 50 immerses an alkali metal ion sensing element 60 in a solution 66 to be tested. The metal ion sensing element 60 is, for example, one of the following sensing elements: (1) a hydrogen ion sensing element; (2) a sodium ion sensing element; or (3) a potassium ion sensing element. 0619-A21623TWF(N2);shawnchang ^ 200822177 As shown in FIG. 4, the alkali metal ion sensing element 60 is electrically connected to the gate terminal G of a MOS field 54 via a wire, and the gold oxide half field effect The transistor 5 &gt; and the pole D and the source S are respectively connected to a semiconductor parameter analyzing device 52 by means of a wire, such as a Keithley 236 analyzing device manufactured by Keithley. In addition, a reference electrode 56 is immersed in the solution 66 to be tested, for example, a conventional silver/silver chloride reference electrode or a reference electrode 10 as shown in FIG. 1 to provide a stable potential, and the reference electrode 56 is via A wire is connected to the semiconductor parameter analyzing device 54. As shown in the figure, the above-mentioned test solution 66, the metal ion sensing element 60, and the reference electrode 56 are placed in a light-insulating container 68 to avoid the influence of light on the sensing process. Further, a heater 64 is disposed in the light-insulating container 68 to control the temperature of the buffer solution, which is coupled to a temperature controller 58. Additionally, a thermal coupler 62 can be additionally provided in the buffer solution 66, which is also coupled to the temperature controller 58. The temperature controller 58 is, for example, a PID temperature controller. As shown in Fig. 5, a V-T ion sensing system 70 for recording an output voltage versus time curve of a metal ion sensing element 60 is shown, which includes an instrumentation amplifier 72, such as LT1167. As shown, the alkali metal ion sensing element 72 can employ a metal ion sensing element as shown in FIG. 4, which is immersed in a test solution 66. The metal ion sensing element 60 is connected via a wire. At the (one) input of the instrumentation amplifier 72. In addition, a test electrode 5 6 ' is also immersed in the test solution 66. For example, a conventional silver/silver chloride reference electrode or a reference electrode as shown in FIG. 1 0619-A21623TWF (N2); shawnchang 12 200822177

極二0 $考笔極56之一端則經由一導線而連結於儀表放 大為72之(+)輪入端。鹼金屬離子感測元件6〇之輸出電壓 將可經由儀表放大器72而傳遞至 一電錶74,例如為HP 34401A之一精密電錶,其輸出電壓對時間曲線最後則將記 錄於一資料記錄器76中。 參考電極之穩定性 第6圖顯示採用第5圖之感測系統所得出之參考電極 1 〇之穩定性結果。 請茶照第6圖,採用如第5圖之離子感測系統70以測 试於不同pH之待測溶液中的氫離子穩定度,此時系統中 所私用之氮離子感測元件60係為本發明的參考電極,其上 之導電咼分子層採用聚砒硌材質之導電高分子材料,參考 兀件56係為商品化參考電極(由METTLER TOLEDO公司 產衣之DX200,為玻璃材質),所採用之儀表放大器72係 為LT1167其㈠輪入端連接本發明之參考電極,(+)輸入 鈿連接商0化苓考電極(DX2〇〇),量測時間係為3⑻秒。上 iC感測用於參考電極感測時,係將本發明之參考電極置 於H、爰衝♦液中,並結合商品化參考電極(⑽細)進行量 測,其里測結果如第6圖所示,其表示本發明之參考電極 的穩定度為0.69mV/pH。第6圖中可發現本發明之參考電 極無論於酸性或驗性溶液中,其輸“壓變_目當小,故 本發明之芩考電極於酸鹼溶液中的穩定性相當優異。 0619-A21623TWF(N2);shawnchang 13 200822177 檢金屬離子感測元件之製備 (1)本裔明之氫離子感 — 及第8圖作一詳細敘述如下。件之貫施例將配合第7圖 请參照第7圖,顯示 離子感測元件19,苴社構彳4發明之一實施例之一氫 極U)。在# 構相似於如第1圖所示之袁考★ 位1υ在此,虱離子感測元件 &gt;考电 一金屬導線44。於檢測部κ μ 括一知測部15以及 、口 Ρ 15上露出右一 士人:目I办 以接觸檢測之ΡΗ緩衝溶液,而出f广J (口 46, 於檢測部15,並為一遮罩 =¥線44係電性連結 線與pH緩衝溶液。 I岡雕上述i屬導 睛參照第8圖,顯开》繁7同+ ^、 如圖所示,檢二區域4°之-放大情形。 上之一導帝居24 ^ 基板22,以及形成於其 覆上、丄 檢測部15更包括環繞並部份包 ^出上?與導電層24之一絕緣層28,絕心 24,義出上述檢測窗口 46且部份露出其内之導電層 :上迷金屬導線料係部份埋設於絕 2 電性連結於導電層24。 門 如第7圖與第8圖所示之氳離子感測元件19之各構 ^ J,導線44例如為銅之一金屬導線,遮罩42為—般 破螭材質遮罩,絕緣層28例如為環氧樹脂可絕緣之 ^ 斧电層24例如為含銦錫氧化物(ΙΤΟ)之玻璃、RuN 之導電材料,基板22例如為矽或半導體等材質。 弟7圖與弟8圖所示之氫離子感測元件19主要採 用&amp;兒層與基板之分離式架構所組成,因此具有可微型化 shawnchang 0619~A21623TWF(N2); 14 200822177 之特徵,適用於溶液中氫離子之量測。 下文解說氫離子感測元件19 導電層心基板_稱為導t = 塗佈有 華開發科技股份有限公司所產製之ιτ〇破°為台灣光 璃),並將此導電基板30置於倒入有適銦錫二 杯中,經由超音波振盪器振盡5 :液之一燒 狀導電基板30置人破麵杯中,=_溶液潔淨 液’使用超音波振盪器振盪5分鐘 適量之乙醇溶 洗導電基板3(},而_無塵=子水⑻. 輕拭乾。接著採用銀膠將如導線 V電基板30輕 基板30上之導電層24上,並接 、门4 54固定於導電 此時檢測窗 =8c烤箱中烘烤1〇分鐘。接著利用成之元件置 緣層28 ’將銀膠之部份力Π以固定,並將其氧樹脂之一絕 裝,僅留下約2 mm X 2 mm大小之檢測元件大體封 贼烤箱中烘烤3〇分鐘,以烤乾絕緣^ 〇 12,並置於 口 56中露出有部份之導電層24。於烘二, 中產生有小孔洞時,則需再次以相同之Γ ’若絕緣層28 平,並繼續以13(TC烘烤,使經過絕緣料將孔洞填 於水溶液巾騎❹树Μ狀防錢後之元件 (2)本發明之鈉離子感測元件之實:、::文果。 及第9圖作一詳細敘述如下。 將配合第7圖 請參照第7圖,顯示依據本發明之— 離子感測元件π,其結構相似於如第ι貧施例之一氫 圖戶厅示之參考電 0619~A21623TWF(N2);shawnchang 15 200822177 極〗〇。在此 1粼列兀件^ 〇何一檢 -金屬導線44。於檢測部]7上露出有__ :及 以接觸檢測之pfi緩衝溶液,而、口 46, 於檢測部17,並為一避“ =¥線44係電性連結 線與PH緩衝溶液。 H以_上述金屬導 請參照第9圖,顯示第7圖 如圖所示,檢測部17主要包衽其二0之—放大情形。 上之-㈣24二 基板22’以及形成於其 覆上述a:L心:檢測部17更包括環繞並部份包 :士2 與導電層24之-絕緣層28,絕緣層28 夏疋我出上述檢測窗口 12 曰 24。於柃、、_,丨需n “ 12且口Η刀路出其内之導電層 選擇膜L/卜之導電層24上則形成有一納離子 内H ^金屬料44係部份埋設於絕緣層28 内以電性連結於導電層24。 如第7圖與第9圖所示之鋼離 件中’導線18例如為納夕人尸、“什11之各構 毛細玻璃材㈣I _線’遮罩16為一般 材料,導電絕/層28例如為環氧樹腊可絕緣之 之導㊉扭〇如為含銦錫氧化物(ΙΤΟ)之玻璃、Sn〇2 板22:/A’納離子感消m 25為混合高分子之材料,基 i如為矽或半導體材料等材質。 用含納興第9圖所示之鈉離子感測元件U主要採 測膜、導電層與基板之分離式架構所組成, 子量測之用t型化之特徵,特別適用於生物、食品中納離 旱兒納離子感測元件u之製備。首先採用塗佈有 °61—3TWF{N2):shawnchang 16 200822177One end of the pole 2 0 test pen pole 56 is connected to the instrument by a wire to the 72 (+) wheel end. The output voltage of the alkali metal ion sensing element 6 将 can be transferred to an electricity meter 74 via an instrumentation amplifier 72, such as a precision meter of the HP 34401A, whose output voltage vs. time curve is finally recorded in a data logger 76. . Reference Electrode Stability Figure 6 shows the stability results for the reference electrode 1 所得 obtained using the sensing system of Figure 5. Please use the ion sensing system 70 as shown in Fig. 5 to test the hydrogen ion stability in the solution to be tested at different pH. At this time, the nitrogen ion sensing element 60 used in the system is used. For the reference electrode of the present invention, the conductive germanium molecular layer thereon is made of a conductive polymer material of polyfluorene material, and the reference element 56 is a commercial reference electrode (DX200 made of METTLER TOLEDO company, which is made of glass). The instrumentation amplifier 72 used is the LT1167. The (1) wheel-in terminal is connected to the reference electrode of the present invention, and the (+) input port is connected to the test electrode (DX2〇〇), and the measurement time is 3 (8) seconds. When the upper iC sensing is used for the reference electrode sensing, the reference electrode of the present invention is placed in H, buffer ♦ liquid, and combined with a commercial reference electrode ((10) thin), the measurement result is as the sixth As shown, it shows that the reference electrode of the present invention has a stability of 0.69 mV/pH. In Fig. 6, it can be found that the reference electrode of the present invention is excellent in stability in an acid-base solution, regardless of whether it is in an acidic or in-situ solution, and the pressure of the electrode of the present invention is relatively excellent. A21623TWF(N2);shawnchang 13 200822177 Preparation of metal ion sensing element (1) The hydrogen ion sensation of the present invention - and Fig. 8 is described in detail below. The example of the piece will be matched with the seventh figure. The figure shows an ion sensing element 19, which is one of the embodiments of the invention. The hydrogen electrode U) is similar to the Yuan Kao ★ position 1 shown in Fig. 1, where the cesium ion sensing is performed. The component &gt; test a metal wire 44. The detection unit κ μ includes a sensing unit 15 and the mouth 15 to expose the right person: the target is to contact the detection buffer solution, and the f is wide ( The mouth 46 is in the detecting portion 15, and is a mask = ¥ line 44 is an electrical connecting line and a pH buffer solution. I. The above-mentioned i-genus eye guide refers to the eighth figure, and the display is "complex" with + ^, such as As shown in the figure, the second area is 4°-magnified. The upper one is the 24^ substrate 22, and is formed on the cover, and the detection unit 15 Including surrounding and partially encapsulating an insulating layer 28 with an electrically conductive layer 24, a core 24, the detection window 46 is defined and a portion of the conductive layer is exposed therein: the metal wire system is partially embedded in The second electrode is electrically connected to the conductive layer 24. The door is as shown in Figures 7 and 8 of the structure of the erbium ion sensing element 19, and the wire 44 is, for example, a metal wire of copper, and the mask 42 is generally The insulating material layer 28 is made of, for example, epoxy resin, and the insulating layer 28 is made of, for example, indium tin oxide (yttrium)-containing glass or RuN conductive material. The substrate 22 is made of, for example, germanium or a semiconductor. The hydrogen ion sensing element 19 shown in Figure 7 and Figure 8 is mainly composed of a separate structure of the layer and the substrate, and thus has the characteristics of miniaturizing shawnchang 0619~A21623TWF(N2); 14 200822177, applicable The measurement of hydrogen ions in the solution. The following is a description of the hydrogen ion sensing element 19. The conductive layer substrate _ is called the conductive t = coated by the China Development Technology Co., Ltd., which is made by Taiwan Development Co., Ltd. And placing the conductive substrate 30 in the inverted indium tin cup, via the super Wave oscillator vibrates 5: One of the burnt conductive substrates 30 is placed in the broken cup, and the solution is cleaned by an ultrasonic oscillator for 5 minutes to dissolve the conductive substrate 3 (}, and _ Dust = sub-water (8). Wipe dry. Then use silver glue to be on the conductive layer 24 on the light substrate 30 of the wire V-electrode substrate 30, and connect the door 4 54 to the conductive state. The detection window = 8c oven is baked. 1 minute. Then use the component edge layer 28' to force the part of the silver glue to fix, and one of the oxygen resin is absolutely installed, leaving only the detection element of about 2 mm X 2 mm size The thief is baked in the oven for 3 minutes to dry the insulation ^ 〇 12 and placed in the mouth 56 to expose a portion of the conductive layer 24. In the case of baking 2, when there are small holes, it is necessary to use the same Γ 'If the insulating layer 28 is flat, and continue to 13 (TC baking, so that the holes are filled in the aqueous solution through the insulating material to ride the eucalyptus The component after the money (2) The sodium ion sensing element of the present invention: ,:: the result of the text, and the ninth figure are described in detail below. With reference to Fig. 7, please refer to Fig. 7, showing according to the present invention. — The ion sensing element π, whose structure is similar to that of the hydrogen diagram of one of the first epoch embodiments, 0619~A21623TWF(N2); shawnchang 15 200822177 极〇. In this 1 line condition ^ 〇 The first inspection-metal wire 44. The detection unit 7 is exposed with __: and the pfi buffer solution for contact detection, and the port 46 is for the detection portion 17, and is a "¥¥ line 44 system" The connection line and the PH buffer solution. The reference to Fig. 9 for the above metal guide is shown in Fig. 9. The Fig. 7 is shown in the figure. The detection unit 17 mainly includes the amplification of the two. The above-(four) 24 two substrates 22' And forming the above a: L core: the detecting portion 17 further comprises a surrounding and partial package: the insulating layer 28 of the conductive layer 24 and the insulating layer 28, the insulating layer 28疋I out the above detection window 12 曰24. In 柃,, _, 丨 need “n 12 and the Η Η 出 出 导电 导电 选择 选择 选择 选择 选择 选择 选择 选择 选择 选择 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电The metal material 44 is partially embedded in the insulating layer 28 to be electrically connected to the conductive layer 24. As shown in Figures 7 and 9, the wire 18 is, for example, a Naxi corpse, "Shi 11" Each of the structurally fine glass materials (4) I _ line 'mask 16 is a general material, and the conductive layer / layer 28 is, for example, an insulating layer of epoxy resin wax, such as a glass containing indium tin oxide (ΙΤΟ), Sn 〇 2 Plate 22: /A' nano-ion sensation m 25 is a material of a mixed polymer, and the base i is made of a material such as germanium or a semiconductor material. The sodium ion sensing element U shown in Figure 9 is mainly used for measurement. The membrane, the conductive layer and the substrate are composed of a separate structure, and the sub-measurement is characterized by t-type, which is particularly suitable for the preparation of nano-ion sensing elements u in biological and food products. 61-3TWF{N2): shawnchang 16 200822177

導電層24之基板22(簡稱為導電基板3Q),例 華開發科技=有限公司所產製之ιτ〇玻璃(氧化鋼= 璃),並將此導電基板3〇置於倒入有適量丙崎液之一= 杯中’經㈣音波振盪器振盪5分鐘後,以去離子水 Water)清洗此導電基板3〇。接著再將此經丙酉同溶液潔淨 過之導電基板3G置人玻璃燒杯中,並倒人適量之乙# 液,使用超音波振盪器振盪5分鐘後,再以去離子水 Water)清洗導電基板30,而後以無塵紙將導電基板3〇輕· 輕拭乾。接著採用轉將如導線之金屬導線44目定於導^ 基板30上之導電層24上,並接著將此固定完成之元件置 於130°C烤箱中烘烤10分鐘。接著利用如環氧樹脂之一絕 緣層28,將銀膠之部份加以固定,並將其上述元件大體封 裝,僅留下約2 mm X 2 mm大小之檢測窗口 46,並置於 130°C烤箱中烘烤30分鐘,以烤乾絕緣層28,此時檢測窗 口 46中露出有部份之導電層24。於烘乾後,若絕緣層28 中產生有小孔洞時,則需再次以相同之絕緣材料將孔洞填 平,並繼續以130°C烘烤,使經過絕緣層28封裝後之元件 於水溶液中進行感測時有良好之防水及絕緣效果。 鈉離子感測膜25之製備方法為取聚氣乙烯 (Polyvinyl Chloride,PVC)高分子材料加癸二酸二辛酯 (Bis(2-ethylhe-xyl)sebacat, DOS)塑化劑,並力口 上四氫 呋喃(丁6加11)^〇1\^11,丁1^)溶液將高分子材料溶解,再 加上鈉離子選擇物雙曱基四氧環十二烷十二曱基丙酸 { Bis[ ( 12-crown-4) methyl]-dodecylmethylmalonate ? 0619-A21623TWF(N2);shawnchang 17 200822177 (B12C4 ) }與陰電性鈉離子錯合物[SodiumThe substrate 22 of the conductive layer 24 (referred to as the conductive substrate 3Q), the ιτ〇 glass (oxidized steel = glass) produced by the example of the development of the company, and the conductive substrate 3〇 is placed in the inverted amount of the appropriate One of the liquids = the cup was shaken by the (four) sonic oscillator for 5 minutes, and then the conductive substrate 3 was washed with deionized water (Water). Then, the conductive substrate 3G cleaned with the solution was placed in a glass beaker, and the appropriate amount of liquid B was poured, and the ultrasonic substrate was shaken for 5 minutes, and then the conductive substrate was washed with deionized water (Water). 30. Then, the conductive substrate 3 is lightly and lightly dried with a dust-free paper. Next, a metal wire 44 such as a wire was placed on the conductive layer 24 on the substrate 30, and then the fixed component was baked in a 130 ° C oven for 10 minutes. Then, using an insulating layer 28 such as an epoxy resin, the silver paste portion is fixed, and the above components are substantially packaged, leaving only a detection window 46 of about 2 mm X 2 mm size, and placed in a 130 ° C oven. The baking is performed for 30 minutes to dry the insulating layer 28, and a portion of the conductive layer 24 is exposed in the detecting window 46. After drying, if small holes are formed in the insulating layer 28, the holes are filled again with the same insulating material, and the baking is continued at 130 ° C, so that the components encapsulated by the insulating layer 28 are in an aqueous solution. It has good waterproof and insulation effects when sensing. The sodium ion sensing film 25 is prepared by taking a polyvinyl chloride (PVC) polymer material and adding a dioctyl sebacate (Bis(2-ethylhe-xyl)sebacat, DOS) plasticizer. Tetrahydrofuran (D.6 plus 11)^〇1\^11, Ding 1^) solution dissolves the polymer material, and adds the sodium ion option bis-indolyl tetraoxetane dodecylpropionic acid { Bis[ (12-crown-4) methyl]-dodecylmethylmalonate ? 0619-A21623TWF(N2);shawnchang 17 200822177 (B12C4 ) } with an anionic sodium ion complex [Sodium

Tetrakis(4-fluorophenyl) Borate Dihydrate(Na-TFBD)], 利用超音波振盪器將高分子溶液調勻。取高分子溶液滴 於EGFET之感測窗口,使其乾燥。Na-TFBD為陰電性之 鈉離子錯合物,其係增加膜負電性以加大選擇電壓。首 先,秤取0.33g PVC高分子材料加〇.66g DOS塑化劑, 加入5ml之四氫呋喃(Tetrahydrofuran,THF)溶液將高分 子材料以超音波振盪器調勻1 〇分鐘溶解。而後加上鈉離 子選擇物BuC4(Na_TFBD所加入量係様品B12C4重量之 0.6倍),再以超音波振盪器將高分子溶液調勻3〇分鐘。 接著,取高分子溶液滴2ml於EGFET之感測窗口 12上。 最後’靜置8小時,待其乾燥,因而完成鈉離子感測膜之 製備。 (3)本發明之鉀離子感測元件之實施例將配合第7圖 及第10圖作一詳細敘述如下。 请蒼照第7圖,顯示依據本發明之一實施例之一鉀 離子感測元件13 ’其結構相似於如第1圖所示之參考電 極10 °在此’鉀離子感測元件13包括一檢測部21以及 一金屬導線44。於檢剛部21上露出有一檢測窗口 46, 以接觸一檢測溶液(未顯示),而金屬導線44係電性連結 於檢測部21,並為一遮罩42所環繞,以隔離上述金屬導 線與檢測溶液(未顯示)。 '青餐照第10圖,顯示第7圖中區域40之-放大情 形。如圖所不,檢測部21主要包括一基板22,以及形成 0619-A21623TWF(N2);shawnchang 18 200822177 於其上之一導電層24。此外,檢測部21更包括環繞並部 份包覆上述基板22與導電層24之一絕緣層28,絕緣層 28並定義出上述檢測窗口 56且部份露出其内之導電層 24。於檢測窗口 56内之導電層24上則形成有一鉀離子 感測膜27,而上述金屬導線54係部份埋設於絕緣層28 内,以電性連結於導電層24。 如第7圖與第10圖所示之鉀離子感測元件13之各 構件中,導線44例如為銅之一金屬導線,遮罩42為一 般毛細玻璃材質遮罩,絕緣層28例如為環氧樹脂可絕緣 之材料,導電層24例如為含銦錫氧化物(ITO)之玻璃、 RuN之導電材料,鉀離子感測膜27為混合高分子之材 料,基板22例如為矽或半導體等材質。 如第7圖與第10圖所示之鉀離子感測器13主要採 用含鉀離子感測膜、導電層與基板之分離式架構所組成, 因此具有可微型化之特徵,特別適用於生物、食品中鉀離 子量測之用。 下文揭示了鉀離子感測元件13之製備。首先採用塗佈 有導電層24之基板22(簡稱為導電基板30),例如為台灣 光華開發科技股份有限公司所產製之ITO玻璃(氧化銦錫 玻璃),並將此導電基板30置於倒入有適量丙酮溶液之一 燒杯中,經由超音波振盪器振盪5分鐘後,以去離子水(D.I. Water)清洗此導電基板30。接著再將此經丙酮溶液潔淨 過之導電基板3 0置入玻璃燒杯中,並倒入適量之乙醇溶 液,使用超音波振盪器振盪5分鐘後,再以去離子水(D.I. 0619-A21 623TWF(N2);shawnchang 19 200822177Tetrakis (4-fluorophenyl) Borate Dihydrate (Na-TFBD)], using a ultrasonic oscillator to mix the polymer solution. The polymer solution was dropped on the sensing window of the EGFET and allowed to dry. Na-TFBD is a negatively charged sodium ion complex which increases the film negative charge to increase the selection voltage. First, weigh 0.33g of PVC polymer material and add 66g of DOS plasticizer. Add 5ml of tetrahydrofuran (THF) solution and mix the high molecular material with ultrasonic oscillator for 1 〇 minutes. Then, the sodium ion option BuC4 (the amount of Na_TFBD added was 0.6 times the weight of the product B12C4), and the polymer solution was mixed for 3 minutes with an ultrasonic oscillator. Next, 2 ml of the polymer solution was dropped onto the sensing window 12 of the EGFET. Finally, it was allowed to stand for 8 hours, and it was allowed to dry, thereby completing the preparation of a sodium ion sensing film. (3) An embodiment of the potassium ion sensing element of the present invention will be described in detail with reference to Figs. 7 and 10 as follows. Please refer to FIG. 7 , which shows a potassium ion sensing element 13 ′ according to an embodiment of the present invention, which has a structure similar to that of the reference electrode 10° as shown in FIG. 1 . Here, the potassium ion sensing element 13 includes a The detecting portion 21 and a metal wire 44. A detecting window 46 is exposed on the detecting portion 21 to contact a detecting solution (not shown), and the metal wire 44 is electrically connected to the detecting portion 21 and surrounded by a mask 42 to isolate the metal wire from Detection solution (not shown). 'Green food photo 10, showing the area 40 in Fig. 7 - magnified situation. As shown in the figure, the detecting portion 21 mainly includes a substrate 22, and a conductive layer 24 on which 0619-A21623TWF(N2); shawnchang 18 200822177 is formed. In addition, the detecting portion 21 further includes a conductive layer 24 that surrounds and partially covers the insulating layer 28 of the substrate 22 and the conductive layer 24, and defines the insulating layer 28 and partially defines the detecting window 56. A potassium ion sensing film 27 is formed on the conductive layer 24 in the detecting window 56, and the metal wire 54 is partially embedded in the insulating layer 28 to be electrically connected to the conductive layer 24. In each of the members of the potassium ion sensing element 13 shown in FIGS. 7 and 10, the wire 44 is, for example, a metal wire of copper, the mask 42 is a general capillary glass material, and the insulating layer 28 is, for example, epoxy. The resin insulating material, the conductive layer 24 is, for example, a glass containing indium tin oxide (ITO) or a conductive material of RuN, the potassium ion sensing film 27 is a material of a mixed polymer, and the substrate 22 is made of a material such as germanium or a semiconductor. The potassium ion sensor 13 as shown in FIGS. 7 and 10 is mainly composed of a potassium-ion sensing film, a separate structure of a conductive layer and a substrate, and thus has a miniaturization feature, and is particularly suitable for living things, Potassium ion measurement in food. The preparation of the potassium ion sensing element 13 is disclosed below. First, a substrate 22 (referred to as a conductive substrate 30) coated with a conductive layer 24, such as ITO glass (indium tin oxide glass) manufactured by Taiwan Guanghua Development Technology Co., Ltd., is used, and the conductive substrate 30 is placed down. The conductive substrate 30 was washed with DI Water after being shaken for 5 minutes through an ultrasonic oscillator in a beaker having an appropriate amount of acetone solution. Then, the conductive substrate 30 cleaned by the acetone solution was placed in a glass beaker, and poured into an appropriate amount of ethanol solution, and shaken for 5 minutes using an ultrasonic oscillator, followed by deionized water (DI 0619-A21 623TWF ( N2);shawnchang 19 200822177

Water)清洗導電基板3〇,而後以無塵紙將導電基板3〇 _ 輕拭乾。接著採用銀膠將如導線之金屬導線44固定於導電 基板30上之導電層24上,並接著將此固定完成之元件= 於130 C烤箱中烘烤10分鐘。接著利用如環氧樹脂之一絕 緣層28,將銀膠之部份加以固定,並將其上述元件大體封 裝’僅留下約2 mm X 2 mm大小之檢測窗口 46,並置於 130 C烤箱中烘烤30分鐘,以烤乾絕緣層28,此時檢測窗 口 46中露出有部份之導電層24。於烘乾後,若絕緣層28 中產生有小孔洞日守,則需再次以相同之絕緣材料將孔洞填 平,並繼續以13〇°C烘烤,使經過絕緣層28封裝後之元件 於水溶液中進行感測時有良好之防水及絕緣效果。 鉀離子感測膜27之製備方法為取聚氯乙烯(p〇lyvinyl Chloride ’ PVC)高分子材料加癸二酸二辛酯(Bis(2-ethylhe -Xyl)Sebacat,DOS)塑化劑,並加上四氫呋喃(Tetrahydr〇__ furan,THF)浴液將南分子材料溶解,再加上卸離子選擇物 結胺黴素(Valinomycin)與陰電性鉀離子錯合物(p〇tassium Terakis(p-chlorophenyl) Borate ^ K-TpCIPB),利用超音波 振盪态將咼分子溶液調勻。取高分子溶液滴於egfet之感 測窗口,使其乾燥。K-TpCIPB為陰電性之鉀離子錯合物, 其係增加膜負笔性以加大選擇電壓。首先,秤取〇·Wg pvc 高分子材料加〇.66g DOS塑化劑,加入5ml之四氫呋喃 (Tetrahydrof脱η ’ THF)溶液將高分子材料以超音波振盪 器調勻10分鐘溶解。而後,加上鉀離子選擇物 Vall_ycln(K-TPc㈣所加入量係様口口口 VaHn〇_町如重 0619-A21623TWF(N2);shawnchang 20 200822177 量之5倍),再以超音波振盪器將高分 上 感測膜27 靜置8小時,待其乾燥 測窗口 12 乂備出鉀離子 鐘。接者,取高分子溶液滴2ml於唳調勻3〇分 ! 最後 一μ ..... ^ 氫離子(pH)之感測 第11圖〜第13圖分別顯示採用第4 圖之咸、 出之氫離子感測結果。 钱,系統所得 請參照第11圖,採用如第4圖所禾之 5〇以測試不同pH之待測溶液中的氫離子咸雖子感測系統 統中所採用之氫離子感測元件60係為—度’此時糸 件,例如為第7圖所示之氫離子感測元件感測元 導體裝置分析裝置52係為Keithley 236,其、所採用之半 場效電晶體54之汲極S,並設定VD為〇 2v結於金氧半 工作於線性區。另外半導體裝置分析裝置52教$確保元件 參考電極,並設定為1〜6V,藉由待測液給予八,性連結於 晶體54 —閘極電壓。另外半導體裝置分析穿署 迅 至金氧半場效電晶體54之源極S,並設定Vs為接地(〇v)。 感測度係氳離子感測元件60最重要之參數,其定義為 每改變一個pH值,溶液與感測膜界面間之表面電位的相 對變化量。其係藉由如第4圖所示之I-V感測系統感測其 内氫離子感測元件60之I-V曲線中對應的pH值變化量, 於I-V曲線中固定某一點IDS,其輸出電壓值會隨pH值而 變化,再使用Microsoft Origin 7.0軟體進行數據分析後, 061 9-A21623TWF(N2);shawnchang 21 200822177 即可求出氫離子感測元件60之生物離子感測元件之感測 度(Διτιν/ΔρΗ)。 上述感測應用於於氫離子感測時,係將適用於感測氫 離子之一 EGFET感測器置於酸鹼缓衝溶液中,並結合如第 1圖所示之可微小化之參考電極10進行感測,此時所使用 之導電南分子艇為聚石比路,所使用之導電基板為ΙΤΟ玻璃 基板,其感測結果如第10圖所示,此時亦採用ΙΤΟ基底 之氫離子感測元件60進行pH感測,其感測度為 57.4mV/pH。第11圖則顯示相同感測狀態下將參考電極56 替換為一商品化參考電極(由METTLER TOLEDO公司產 製之DX200,為玻璃材質)所進行感測的結果,其得知感測 度係53.67mV/pH。弟11圖與第12圖中皆可發現於驗性部 份之感測度明顯下降,此乃ITO基底之感測特性,故比較 本發明之參考電極與目前商品化參考電極,於感測度上相 差不大,但於鹼性部份之感測效果,本發明之參考電極較 佳。 另外,第13圖顯示採用如第1圖所示之可微小化的參 考電極10進行感測,其上之導電高分子膜為聚砒硌,以及 採用RuN基底之氫離子感測元件60進行pH感測的實驗結 果,其感測度亦有51.〇9mV/pH,且具有極佳之線性度。 鈉離子(pNa)之感測 參照前述氫離子之感測方法,將離子感測系、统50中之 氫離子感測元件6 0替換為如第7圖所示之鈉離子感測元件 0619-A21623TWF(N2);shawnchang 22 200822177 11後進行感測。第i4圖顯示採用鈉離子EGFET感測器於 不同濃度之麟子溶液巾,並採用—丨_示之讀小 化之參考電極10進行感測的實驗結果,其上之導電高分子 膜為聚砒硌’感測度為45.7mv/PNa。此外第15圖則顯示 採用一商品化參考電極(DX200)以及此納離子感測元件η 於相同感測條件下所得到之果,Μ測度 42.5mV/pNa。使用本發明之具料以分子的參考電極之 感測結果較佳。 鉀離子(pK)之感測 參照前述娜子之感測方法,將離子_“50中之 氫離子感測元件60替換為如第7圖所示之鉀離子感測 13後進行感測。第16圖顯示採用如第7同#一 感測元件13之一鉀離子EGFET感測器於不同濃度之鉀離 子溶液中,並採用如第1圖所示之可微小化之參考電極甲= 進行感測之感測結果,其上之導電高分子腊 丁联馮聚砒硌,咸 測度為47.58mV/pK。此外第17圖則顯示採 : Γ. ^ 同 口口化 考電極(DX200)以及鉀離子EGFET感測哭认丄 &quot; . 』口 口於相同感測條件 下所得到之一感測結果,其感測度35.69mV/ P RR ^ . , . , mv/PK。使用本發 月之具有導電咼分子的參考電極之感測結果較戶 由於本發明係利用如聚石比硌之導電高八 、, 出的一微小化參考電極取代習知之銀/急儿 厂所研製 1匕益艮白勺 極,其具有體積小、製程簡單、成本低,谪 &quot; 通用於拋棄式元 9-A21623TWF(N2);shawnchang 23 200822177 件之結合與易於大量生產等優點,故以如聚砒硌之導電高 分子材料所製作出之一微小化參考電極使得其應用之感測 器微小化更為有利,易利於微量化之生醫檢測應用。 此外’經由上述驗證’本發明之茶考電極擁有穩定之 感測特性,可應用於生物離子之感測,且易整合於感測器 中以製作出一整合式感測晶片。此外本發明之參考電極只 需放置於乾燥處,具有易存放保存之優點。另外微小化之 參考電極易於生醫感測上具較便利的檢驗功效,未來之發 展性極佳。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 0619-A21623TWF(N2);shawnchang 24 200822177 【圖式簡單說明】 第1圖為一示意圖,顯示依據本發明一實施例之一參 考電極, 第2圖為一示意圖,顯示第1圖中區域20内之放大情 形; 第3圖為一示意圖,顯示用於製備一參考電極之一電 聚合系統; / 第4圖為一示意圖,顯示依據本發明一實施例之一電 流-電壓(I-V)離子感測系統; 第5圖為一示意圖,顯示依據本發明一實施例之一電 壓-時間(V-T)離子感測系統; 第6圖顯示了採用第5圖之感測系統所量測得到之一 參考電極穩定性量測結果; 第7圖為一示意圖,顯示依據本發明一實施例之一鹼 金屬量測元件; ί 第8圖為一示意圖,顯示第7圖中區域40内之放大情 形; 第9圖為一示意圖,顯示第7圖中區域40内之放大情 形; 第10圖為一示意圖,顯示第7圖中區域40内之放大 情形; 第11圖顯示採用依據本發明一實施例之一參考電極 所得出的氫離子之電流-電壓感測結果; 第12圖顯示採用由METTLER TOLEDO公司產製之 0619-A21623TWF(N2);shawnchang 25 200822177 商用參考電極(刑 ? ^ ^ (坦就DX200)所得出的氳離子之電流-電壓 感測結果; 第13圖顯示採用依據本發明一實施例之一參考電極 所得出的氫雜工&gt; 第ΐ4 γ雕子之電流-電壓感測結果; 圖頌示採用依據本發明一實施例之一參考電極 所得出的納離工 雕子之電流•電壓感測結果; 第 15函3 一 圃‘貝示採用由METTLER TOLEDO公司產製之 、&quot; 兔極(型號DX200)所得出的鈉離子之電流-電壓 感測結果; 曰第16圖顯示採用依據本發明一實施例之一參考電極 所知出之却離子之電流-電壓感測結果;以及 墙 1 ρη ___ 圖顯示採用由METTLER TOLEDO公司產製之 商用茶考電插(型號DX200)所得出的鉀離子之電流-電壓 感測結果。 【主要元件符號說明】 10〜參考電極; 11〜鈉離子感測元件; 12、46〜檢測窗口; 13〜鉀離子感測元件; 14、14’、15、17、21 〜檢測部; 16、42〜遮罩; 18、44〜金屬導線; 19〜氳離子感測元件; 0619-A21623TWF(N2);shawnchang 26 200822177 20、40〜區域; 22〜基板; 24〜導電層; 25〜鈉離子感測膜; 26〜導電高分子層; 27〜鉀離子感測膜; 28〜絕緣層; 30〜導電基板, 32〜白金電極; 34〜電聚合溶液; 36〜電源供應器; 50〜I-V離子感測系統; 52〜半導體參數分析裝置; 54〜金氧半場效電晶體, 56〜茶考電極, 58〜溫度控制器; 60〜離子感測元件; 62〜熱耦|合器; 64〜加熱爐管; 66〜待測溶液; 68〜光隔絕容器; 70〜V-T離子感測系統; 72〜儀表放大器; 74〜電錶; 7 6〜貢料記錄裔。 0619-A21623TWF(N2);shawnchang 27Water) The conductive substrate 3 is cleaned, and then the conductive substrate 3 _ _ is wiped dry with a dust-free paper. Next, a metal wire 44 such as a wire is fixed to the conductive layer 24 on the conductive substrate 30 by silver glue, and then the fixed component = baked in a 130 C oven for 10 minutes. Next, a portion of the silver paste is fixed using an insulating layer 28 such as an epoxy resin, and the above-mentioned components are generally packaged 'only a detection window 46 of about 2 mm X 2 mm size is left, and placed in a 130 C oven. Bake for 30 minutes to dry the insulating layer 28, at which point a portion of the conductive layer 24 is exposed in the inspection window 46. After drying, if a small hole is formed in the insulating layer 28, the hole is filled again with the same insulating material, and the baking is continued at 13 ° C, so that the component encapsulated by the insulating layer 28 is Good waterproof and insulating effect when sensing in aqueous solution. The potassium ion sensing film 27 is prepared by using a polyvinyl chloride (p〇lyvinyl Chloride 'PVC) polymer material and a dioctyl sebacate (Bis(2-ethylhe-Xyl) Sebacat, DOS) plasticizer, and Add the tetrahydrofuran (Tetrahydr〇__furan, THF) bath to dissolve the South molecular material, plus the ion-exchange option of Valinomycin and the anion potassium complex (p〇tassium Terakis (p -chlorophenyl) Borate ^ K-TpCIPB), using a supersonic oscillatory state to mix the 咼 molecular solution. The polymer solution was dropped on the sensing window of the egfet and allowed to dry. K-TpCIPB is an anion-positive potassium ion complex which increases the film's negative pen to increase the selection voltage. First, weigh the 〇·Wg pvc polymer material and add 66 g of DOS plasticizer. Add 5 ml of tetrahydrofuran (Tetrahydrof de-η' THF) solution and mix the polymer material in an ultrasonic oscillator for 10 minutes. Then, add the potassium ion option Vall_ycln (K-TPc (4) is added to the mouth of the mouth VaHn〇_ town such as heavy 0619-A21623TWF (N2); shawnchang 20 200822177 5 times), and then the ultrasonic oscillator The high-sensing upper sensing film 27 is allowed to stand for 8 hours, and a potassium ion clock is prepared for the drying measurement window 12 . Receiver, take 2ml of polymer solution and mix thoroughly into 3〇 points! The last μ ..... ^ Hydrogen ion (pH) sensing Figure 11 ~ Figure 13 shows the use of the 4th figure of salty, out Hydrogen ion sensing results. Money, system income, please refer to Figure 11, using 5〇 as shown in Figure 4 to test the hydrogen ion in the solution of different pH. The hydrogen ion sensing element 60 system used in the sensor system In this case, for example, the hydrogen ion sensing element sensing element conductor device analyzing device 52 shown in FIG. 7 is Keithley 236, which is the drain S of the half field effect transistor 54 used. And set VD to 〇2v to work in the linear region of the gold oxide half. Further, the semiconductor device analyzing device 52 teaches the element reference electrode and sets it to 1 to 6 V, and is connected to the crystal 54 by the gate voltage by the liquid to be tested. In addition, the semiconductor device analyzes the source S of the MOS transistor 54 and sets Vs to ground (〇v). Sensitivity is the most important parameter of the erbium ion sensing element 60, which is defined as the relative amount of change in surface potential between the solution and the interface of the sensing film for each pH change. It senses the corresponding pH value change in the IV curve of the hydrogen ion sensing element 60 in the IV sensing system as shown in FIG. 4, and fixes a certain point IDS in the IV curve, and the output voltage value thereof Depending on the pH value, and then using Microsoft Origin 7.0 software for data analysis, 061 9-A21623TWF(N2); shawnchang 21 200822177 can determine the sensitivity of the bio-ion sensing element of the hydrogen ion sensing element 60 (Διτιν/ ΔρΗ). The above sensing is applied to hydrogen ion sensing, and an EGFET sensor suitable for sensing hydrogen ions is placed in an acid-base buffer solution, and combined with a miniaturizable reference electrode as shown in FIG. 10, the sensing, the conductive south molecular boat used at this time is a polystone ratio road, the conductive substrate used is a neodymium glass substrate, and the sensing result is shown in Fig. 10, and the hydrogen ion of the base is also used at this time. Sensing element 60 performs pH sensing with a sensitivity of 57.4 mV/pH. Fig. 11 shows the results of sensing the reference electrode 56 replaced by a commercial reference electrode (DX200 manufactured by METTLER TOLEDO Co., Ltd., glass material) in the same sensing state, and found that the sensitivity is 53.67 mV. /pH. Both the 11th and 12th figures can be found that the sensitivity of the test part is significantly reduced. This is the sensing characteristic of the ITO substrate. Therefore, comparing the reference electrode of the present invention with the current commercial reference electrode, the difference in sensitivity is different. It is not large, but the sensing electrode of the present invention is preferred in terms of the sensing effect of the alkaline portion. In addition, Fig. 13 shows the sensing using the miniaturizable reference electrode 10 as shown in Fig. 1, wherein the conductive polymer film is polyfluorene, and the pH of the hydrogen ion sensing element 60 using the RuN substrate is used. The experimental results of the sensing have a sensitivity of 51. 9 mV/pH and excellent linearity. Sensing of sodium ion (pNa) Referring to the sensing method of the aforementioned hydrogen ion, the hydrogen ion sensing element 60 in the ion sensing system 50 is replaced with the sodium ion sensing element 0619 as shown in FIG. A21623TWF (N2); shawnchang 22 200822177 11 after sensing. Figure i4 shows the results of sensing using a sodium ion EGFET sensor at different concentrations of the lining solution, and using the reference electrode 10 of the 丨_ _ _ _ _ _ _ _ _ _ _ _ _ The 感's sensitivity is 45.7 mv/PNa. In addition, Fig. 15 shows the result obtained by using a commercial reference electrode (DX200) and the nano-ion sensing element η under the same sensing conditions, and the enthalpy measurement is 42.5 mV/pNa. The sensing results of the reference electrode of the molecule using the material of the present invention are preferred. Sensing of potassium ion (pK) Referring to the sensing method of the above-described Nazi, the hydrogen ion sensing element 60 in the ion_50 is replaced with the potassium ion sensing 13 as shown in Fig. 7 and then sensed. Figure 16 shows a potassium ion EGFET sensor in a different concentration of potassium ion solution, such as the 7th and #1 sensing elements, and using a micronizable reference electrode as shown in Fig. 1 The measured results were measured on the conductive polymer, Lading, and Feng Ju, with a saltiness of 47.58 mV/pK. In addition, the 17th image shows: Γ. ^ Same mouth test electrode (DX200) and potassium The ion EGFET senses the crying 丄 quot . 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 』 The sensing result of the reference electrode of the conductive ruthenium molecule is better than that of the household. Since the present invention utilizes a conductive high electrode such as polypyramid, a small reference electrode is replaced by a conventional silver/emergency plant. Spoon pole, which has small volume, simple process and low cost, 谪&quot; is generally used in disposable 9-A21623TWF (N2) Shawnchang 23 200822177 The combination of parts and easy mass production, so a tiny reference electrode made of conductive polymer material such as polyfluorene makes the sensor miniaturization of its application more favorable, easy to trace In addition to the above-mentioned verification, the tea test electrode of the present invention has stable sensing characteristics, can be applied to the sensing of biological ions, and is easily integrated into the sensor to produce an integrated sensing. In addition, the reference electrode of the present invention only needs to be placed in a dry place, and has the advantages of easy storage and storage. In addition, the miniaturized reference electrode is easy to be tested by biomedical sensing, and the development in the future is excellent. The invention has been disclosed in the above preferred embodiments, but it is not intended to limit the invention, and the invention can be modified and modified without departing from the spirit and scope of the invention. The scope is subject to the definition of the scope of the patent application. 0619-A21623TWF(N2);shawnchang 24 200822177 [Simple diagram] Figure 1 1 is a schematic view showing a reference electrode according to an embodiment of the present invention, FIG. 2 is a schematic view showing an enlarged condition in a region 20 in FIG. 1; and FIG. 3 is a schematic view showing one of preparing a reference electrode. An electropolymerization system; / Fig. 4 is a schematic view showing a current-voltage (IV) ion sensing system according to an embodiment of the present invention; and Fig. 5 is a schematic view showing a voltage according to an embodiment of the present invention - Time (VT) ion sensing system; FIG. 6 shows one reference electrode stability measurement result measured by the sensing system of FIG. 5; FIG. 7 is a schematic view showing an embodiment according to the present invention An alkali metal measuring component; ί Fig. 8 is a schematic view showing an enlarged situation in a region 40 in Fig. 7; Fig. 9 is a schematic view showing an enlarged state in a region 40 in Fig. 7; For a schematic view, the amplification in the region 40 in FIG. 7 is shown; FIG. 11 shows the current-voltage sensing result of the hydrogen ion obtained by using the reference electrode according to an embodiment of the present invention; M ETTLER TOLEDO company's 0619-A21623TWF (N2); shawnchang 25 200822177 commercial reference electrode (criminal ^ ^ (Tang DX200) obtained 氲 ion current-voltage sensing results; Figure 13 shows the use of according to the invention The current-voltage sensing result of the hydrogen hydride of the reference electrode of one of the embodiments is as follows: Figure 1 shows the nano-engraving of the reference electrode according to one embodiment of the present invention. Current and voltage sensing results; 15th letter 3 圃 'Beet uses the current-voltage sensing result of sodium ion obtained by METTLER TOLEDO, &quot; rabbit pole (model DX200); 曰第16图The current-voltage sensing result of the ion which is known by the reference electrode according to an embodiment of the present invention is shown; and the wall 1 ρη ___ shows the commercial tea test plug (model DX200) manufactured by METTLER TOLEDO. The resulting current-voltage sensing result of potassium ions. [Description of main component symbols] 10~ reference electrode; 11~ sodium ion sensing element; 12, 46~ detection window; 13~ potassium ion sensing element; 14, 14', 15, 17, 21~ detecting part; 42~mask; 18,44~metal wire; 19~氲 ion sensing element; 0619-A21623TWF(N2); shawnchang 26 200822177 20, 40~ area; 22~ substrate; 24~ conductive layer; 25~ sodium ion Film; 26~ conductive polymer layer; 27~potassium ion sensing film; 28~ insulating layer; 30~ conductive substrate, 32~ platinum electrode; 34~ electropolymerization solution; 36~ power supply; Measuring system; 52~ semiconductor parameter analysis device; 54~ gold oxygen half field effect transistor, 56~ tea test electrode, 58~ temperature controller; 60~ ion sensing element; 62~ thermocouple|combiner; 64~ heating furnace Tube; 66~ test solution; 68~ light isolation container; 70~VT ion sensing system; 72~ instrumentation amplifier; 74~ meter; 7 6~ tribute record patriarch. 0619-A21623TWF(N2);shawnchang 27

Claims (1)

200822177 十、申請專利範圍: 1. 一種參考電極,包括: 一導電基板; 一絕緣層,大體包覆該導電基板,具有大體露出該導 電基板一部之一開口; 一導電南分子層’設置於該開口内之導電基板上; 一金屬導線,部分埋設於該絕緣層内且凸出延伸於該 絕緣層外’電性接觸該導電基板,以及 ί 一遮罩,環繞凸出於該絕緣層外之該金屬導線。 2. 如申請專利範圍第1項所述之參考電極,其中該導 電高分子層為一聚础路層、一聚苯胺層或一聚嗟吩層。 3. 如申請專利範圍第1項所述之參考電極,其中該開 口為 2mm X 2mm 之一開口。 4. 如申請專利範圍第1項所述之參考電極,其中該導 電基板為塗佈有銦錫氧化物之一玻璃基板。 5·如申請專利範圍第1項所述之參考電極,其中該絕 ' 緣層包括環氧樹脂。 6. 如申請專利範圍第1項所述之參考電極,其中該遮 罩之材質為玻璃,以阻隔該金屬導線接觸一測試溶液。 7. —種參考電極的製造方法,包括: 提供^一導電基板, 固定一金屬導線於該導電基板之一部上, 利用一絕緣材料大體封裝該導電基板與該金屬導線, 僅留下一開口,該開口露出該導電基板之一部,而該金屬 0619-A21623TWF(N2);shawnchang 28 200822177 導線則部份突出於該絕緣材料;以及 施行一電聚合反應,以於該開口内之該導電基板上形 成一導電高分子膜。 8. 如申請專利範圍第7項所述之參考電極的製造方 法,其中該電聚合反應之施行,包括: 將經該絕緣材料大體封裝之該導電基板與該金屬導線 置入於一電聚合溶液中;以及 將該金屬導線連結於一直流電源供應器之正極,而該 直流電源供應器之負極連結於一白金電極。 9. 如申請專利範圍第7項所述之參考電極的製造方 法,其中該導電高分子膜為一聚砒硌膜,該電聚合溶液係 由磷酸鉀缓衝溶液、電解質溶液與一高分子溶液所混合而 成。 10. 如申請專利範圍第9項所述之參考電極的製造方 法,其中該磷酸鉀緩衝溶液包括濃度為0.1M〜0.3M之 KH2P04溶液與K2HP04溶液。 11. 如申請專利範圍第10項所述之參考電極的製造方 法,其中該KH2P〇4溶液為pH4〜pH5,該K2HP〇4溶液為 ρΗ8·5〜ρΗ9·5。 12. 如申請專利範圍第10項所述之參考電極的製造方 法,其中該κη2ρ〇4溶液與κ2ηρο4溶液之調配重量比例為 1 : 1 〇 13. 如申請專利範圍第9項所述之參考電極的製造方 法,其中該電解質溶液包括KC1及乙睛。 0619-Α21623TWF(N2);shawnchang 29 200822177 Η·如申請專利範圍第9 法,其中哕爺鲧所一 、斤述之翏考電極的製造方 口X迅角午貝洛液中之該Kc 該乙睛濃度為1M〜3M。 又為0.1M〜0.3M,而 15.如申凊專利範圍第9項 法,其中該高分子溶液中包括濃&gt; 笔極的製造 -如申請專利範圍第7 法,其中哕带取人e A貝&quot;玟之參考電極的製造方 〒4电承合反應施行時間為30分鐘。 17.如申請專利範圍第7項所述 法 18·如申請專利範圍第7項所述之參考電 /告上 其中絕緣材料之材質為環氧樹脂。 、衣t 法 19.如申請專利範圍第9項所述之來考 其中該開卩之大小W_x2mm:考⑭的製造方 2〇·—種離子感測裝置,包括·· 一延伸式閘極場效電晶體離子感測元件; 一離子待測溶液; 一參考電極,以提供穩定電位,包括; 一導電基板; 一絕緣層,大體包覆該導電基 電基板一部之一開口; 、百大體路出該導 一導電高分子層,設置於該開口内之導電基板上. 屬部分埋設於該絕緣層内且凸出延伸料 矣巴緣層外’電性接觸該導電基板;以及 一遮罩,環繞凸出於該絕緣層外之該金屬導線; 〇6l9-A21623TWF(N2);shawnchang 30 200822177 一加熱器,用以對感測環境進行加熱保持固定溫度; 一溫度控制器,連接於該加熱器; 一半導體參數分析裝置,連接於該系統測試裝置;以 及 一暗箱,用以避免感測過程受到光線影響。 21. 如申請專利範圍第20項所述之離子感測裝置,其 中該延伸式閘極場效電晶體離子感測元件為離子感測元 件。 22. 如申請專利範圍第21項所述之離子感測裝置,其 中該離子感測元件為氫離子感測元件、鈉離子感測元件或 鉀離子感測元件。 23. 如申請專利範圍第21項所述之離子感測裝置,其 中該溫度控制器為PID溫度控制器。 0619-A21623TWF(N2);shawnchang200822177 X. Patent application scope: 1. A reference electrode comprising: a conductive substrate; an insulating layer substantially covering the conductive substrate, having an opening substantially exposing a portion of the conductive substrate; a conductive south molecular layer 'set on a conductive wire in the opening; a metal wire partially embedded in the insulating layer and extending outside the insulating layer to electrically contact the conductive substrate, and a mask surrounding the insulating layer The metal wire. 2. The reference electrode according to claim 1, wherein the conductive polymer layer is a polymeric layer, a polyaniline layer or a polythiophene layer. 3. The reference electrode of claim 1, wherein the opening is an opening of 2 mm X 2 mm. 4. The reference electrode according to claim 1, wherein the conductive substrate is a glass substrate coated with one of indium tin oxide. 5. The reference electrode of claim 1, wherein the insulating layer comprises an epoxy resin. 6. The reference electrode of claim 1, wherein the mask is made of glass to block the metal wire from contacting a test solution. 7. A method of manufacturing a reference electrode, comprising: providing a conductive substrate, fixing a metal wire on a portion of the conductive substrate, and substantially encapsulating the conductive substrate and the metal wire with an insulating material, leaving only an opening The opening exposes a portion of the conductive substrate, and the metal 0619-A21623TWF(N2); shawnchang 28 200822177 wire partially protrudes from the insulating material; and performs an electropolymerization reaction to the conductive substrate in the opening A conductive polymer film is formed on the film. 8. The method of manufacturing a reference electrode according to claim 7, wherein the performing of the electropolymerization comprises: placing the conductive substrate substantially encapsulated by the insulating material and the metal wire in an electropolymerization solution; And connecting the metal wire to the positive electrode of the DC power supply, and the negative electrode of the DC power supply is coupled to a platinum electrode. 9. The method of manufacturing a reference electrode according to claim 7, wherein the conductive polymer film is a polyfluorene film, and the electropolymerization solution is a potassium phosphate buffer solution, an electrolyte solution and a polymer solution. Mixed. 10. The method of producing a reference electrode according to claim 9, wherein the potassium phosphate buffer solution comprises a KH2P04 solution and a K2HP04 solution having a concentration of 0.1 M to 0.3 M. 11. The method of producing a reference electrode according to claim 10, wherein the KH2P〇4 solution is pH 4 to pH 5, and the K2HP〇4 solution is ρΗ8·5~ρΗ9·5. 12. The method for producing a reference electrode according to claim 10, wherein the ratio of the κη2ρ〇4 solution to the κ2ηρο4 solution is 1:1 〇13. The reference electrode according to claim 9 The manufacturing method, wherein the electrolyte solution comprises KC1 and acetonitrile. 0619-Α21623TWF(N2);shawnchang 29 200822177 Η·If you apply for the patent scope of the ninth method, the 哕 鲧 一 、 斤 斤 斤 斤 斤 翏 翏 翏 翏 X X X X X X X X X X X X X X X X X X X X X X X The concentration of the eye is 1M~3M. Further, it is 0.1M to 0.3M, and 15. The method of the ninth method of the patent scope of the application, wherein the polymer solution includes a thicker &gt; the manufacture of the pen pole - as in the seventh method of claiming the patent range, The manufacturing time of A Bay &quot;玟 reference electrode is 4 minutes and the implementation time is 30 minutes. 17. The method of claim 7 is as described in claim 7. The reference material described in claim 7 is wherein the material of the insulating material is epoxy resin. , clothing t method 19. As described in the scope of claim 9 to test the size of the opening W_x2mm: test 14 manufacturer 2 〇 · - type ion sensing device, including · · an extended gate field An ion crystal ion sensing element; an ion to be tested solution; a reference electrode to provide a stable potential, comprising: a conductive substrate; an insulating layer, substantially covering one of the openings of the conductive base substrate; Leading a conductive polymer layer disposed on the conductive substrate in the opening. The genus portion is embedded in the insulating layer and protrudes outside the rim layer to electrically contact the conductive substrate; and a mask Surrounding the metal wire protruding from the insulating layer; 〇6l9-A21623TWF(N2); shawnchang 30 200822177 a heater for heating the sensing environment to maintain a fixed temperature; a temperature controller connected to the heating a semiconductor parameter analysis device coupled to the system test device; and a black box to prevent the sensing process from being affected by light. 21. The ion sensing device of claim 20, wherein the extended gate field effect transistor ion sensing element is an ion sensing element. 22. The ion sensing device of claim 21, wherein the ion sensing element is a hydrogen ion sensing element, a sodium ion sensing element, or a potassium ion sensing element. 23. The ion sensing device of claim 21, wherein the temperature controller is a PID temperature controller. 0619-A21623TWF(N2);shawnchang
TW95141144A 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof TWI326894B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95141144A TWI326894B (en) 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95141144A TWI326894B (en) 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof

Publications (2)

Publication Number Publication Date
TW200822177A true TW200822177A (en) 2008-05-16
TWI326894B TWI326894B (en) 2010-07-01

Family

ID=44770710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141144A TWI326894B (en) 2006-11-07 2006-11-07 Ion sensing devices, reference electrodes and fabrication methods thereof

Country Status (1)

Country Link
TW (1) TWI326894B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485400B (en) * 2012-11-19 2015-05-21 Univ Nat Yunlin Sci & Tech Chlorine ion measurement system
TWI687683B (en) * 2019-04-08 2020-03-11 禪譜科技股份有限公司 Long-lasting disposable reference electrode
US11852602B2 (en) 2021-06-15 2023-12-26 Innolux Corporation Liquid detection device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485400B (en) * 2012-11-19 2015-05-21 Univ Nat Yunlin Sci & Tech Chlorine ion measurement system
TWI687683B (en) * 2019-04-08 2020-03-11 禪譜科技股份有限公司 Long-lasting disposable reference electrode
US11852602B2 (en) 2021-06-15 2023-12-26 Innolux Corporation Liquid detection device and method for manufacturing the same

Also Published As

Publication number Publication date
TWI326894B (en) 2010-07-01

Similar Documents

Publication Publication Date Title
TWI302197B (en) Reference ph sensor, the preparation and application thereof
TWI279539B (en) Biosensor containing ruthenium, and measurement using the same and the application thereof
US20040256685A1 (en) Biosensor, method of manufacturing sensing unit thereof, and measuring system
TW200946904A (en) Method for forming an extended gate field effect transistor (EGFET) based sensor and the sensor formed thereby
US20090008249A1 (en) Systems of measuring a concentration of alkaloid in a solution
US20050263410A1 (en) Ion-selective electrodes and method of fabricating sensing units thereof
Sinha et al. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling
US20040035699A1 (en) Method and fabrication of the potentiometric chemical sensor and biosensor based on an uninsulated solid material
TW200822177A (en) Ion sensing devices, reference electrodes and fabrication methods thereof
US20090266712A1 (en) Calcium ion sensors and fabrication method thereof, and sensing systems comprising the same
US7638157B2 (en) Method of fabricating electrode assembly of sensor
TWI393880B (en) Method for sodium ion selective electrode, sodium ion selective electrode therefrom and sodium ion sensing device
TW201007164A (en) Potentiometric biosensor and the forming method thereof
TWI517466B (en) Resistive random-access memory sensor element
Weng et al. Enzymatic glucose biosensor based on TbYxOy electrolyte-insulator-semiconductor
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
Chen et al. Solid-state ion-selective pH sensor
TW200521239A (en) Penicillin G biosensor, systems comprising the same, and measurement using the systems
TW200804803A (en) Sensor for vitamin C measurement and measuring systems comprising the same
Hsieh et al. High-performance extended gate field-effect-transistor-based dissolved carbon dioxide sensing system with a packaged microreference electrode
TWI399538B (en) Calcium ion sensing units and fabrication method thereof, and sensing systems comprising the same
WO2020212535A1 (en) Extended gate transistor for sensing applications
CN111781266A (en) Electrochemical sensor, preparation method thereof and ion concentration detection system
Khanna Advances in chemical sensors, biosensors and microsystems based on ion-sensitive field-effect transistor
Khanna et al. Design and development of ion-sensitive field-effect transistor and extended-gate field-effect transistor platforms for chemical and biological sensors

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees