TWI324186B - Deposition processes using group 8 (viii) metallocene precursors - Google Patents

Deposition processes using group 8 (viii) metallocene precursors Download PDF

Info

Publication number
TWI324186B
TWI324186B TW92130099A TW92130099A TWI324186B TW I324186 B TWI324186 B TW I324186B TW 92130099 A TW92130099 A TW 92130099A TW 92130099 A TW92130099 A TW 92130099A TW I324186 B TWI324186 B TW I324186B
Authority
TW
Taiwan
Prior art keywords
integer
precursor
film
ca2hb2xc2
substrate
Prior art date
Application number
TW92130099A
Other languages
Chinese (zh)
Other versions
TW200420745A (en
Inventor
David M Thompson
Cynthia A Hoover
John D Peck
Michael Mark Litwin
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/685,777 external-priority patent/US6884901B2/en
Priority claimed from US10/686,254 external-priority patent/US6919468B2/en
Priority claimed from US10/685,785 external-priority patent/US7927658B2/en
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of TW200420745A publication Critical patent/TW200420745A/en
Application granted granted Critical
Publication of TWI324186B publication Critical patent/TWI324186B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Description

1324186 ⑴ 玖、發明說明 【發明所屬之技術域】 本申請案主張申請於2002年1〇月31日之美國臨時 申請案第6 0/ 4 2 2,94 6號;申請於2002年10月31日之 美國臨時申請案第60/422,947號;申請於2002年月 Η日之美國臨時申請案第60 / 42 6,2 84號;申請於2002 年11月18日之美國臨時申請案第60/ 42 7,46 1號;申請 於2003年2月7日之美國臨時申請案第60/Μ46,320號 ;2003年4月18日之美國臨時申請案第60/453,7]8號 ;申請於2003年4月18日之美國臨時申請案第 60/453,719號;和申請於2003年4月18日之美國臨時 申請案第6 0 / 4 5 3 5 7 1 7號。上述參考申請案之全部教示以 引用之方式合倂本文中。 【先前技術】 化學蒸氣沉積(CVD )法用於在半導體的製造或處理 期間在基材例如晶圓或其他表面上形成材料的薄膜。在 CVD中,一種CVD前驅物,也已知爲CVD化合物,被熱 、化學、光化學地分解或藉由電漿活化作用,以形成一種 具有所要組成物的薄膜。例如,蒸氣相C V D前驅物可與 被加熱到高於前驅物的分解溫度之溫度的基材接觸,以在 基材上形成金屬或金屬氧化物薄膜。 包括釕(Ru ),氧化釕(Ru〇2 )或鐵(Fe )的薄膜 具有良好導電性、高工作功能、爲化學和熱穩定的,抗層 -5- (2) 1324186 間化學擴散且與許多介電基材材料相容。Ru和Ru Ο 2薄膜 ,例如,已經硏究作爲半導體裝置例如DRAM (動態隨機 存取存儲器)裝置的薄膜電極材料。 從釕基前驅物製備之薄膜的例子敘述於:2 0 0 2年8 月27日頒予於Wade等人之美國專利第6,440,495號; 2000年6月13日頒予於 Vaartstra等人之美國專利第 6,074,945號;美國專利申請案公開2002/010282,公開 於2 0 0 2年8月1日’標題爲半導體積體電路的製造方法 ;J. Peck等人;諭文集之高等電容器電極的新穎奇前驅 物之化學蒸氣沉積’迅速熱和其他的短時間加工技術III ,電子、介電科學和技術’和高溫度材料章節,會刊第 2〇〇—]1冊第235 - 242頁’第201屆電化學協會會議記 錄。上述參考專利、公開專利申請案及論文之全部教示以 引用之方式合倂本文中。 雙(五配位(PentahaPto )環戊二烯基)釕(二茂釕 (ruthenocene))和對稱二乙基一取代之二茂釕(1,1-二乙基二茂釕)已硏究作爲藉由CVD技術形成釕基薄膜 之可能前驅物。 這些化合物已藉由幾種合成路徑製備。 —種形成二茂釕的已存在方法包括RuC13 · ΧΗ20與 環戊二烯的反應,在Zn存在下,以產生二茂釕、ZnCl2 和HC1,如圖1A中所示。一種相似的方法,使用乙基— 取代之環戊二烯,已被用於製備1’Γ -二乙基二茂钌, 如圖1 Β所示。通常,由這個方法獲得之產率爲約7 0 %。 (3) (3)1324186 如圖1 C所不’未輕取代之二茂釕也已藉由環戊二烯 、氯(環戊二稀基)雙(Ξ苯基膦)釕(U )和氫化鈉( NaH)在苯中的反應製備。氯(環戊二烯基)雙(三苯基 隣)釘(II )則驅物已耗由在乙醇中反應三氯化釕和三苯 基膦合成。 另一已硏九用於α成二茂釕的方法包括雙(烷基環戊 -稀基)鐵化合物與RUCl3 · XH2〇的金屬轉移反應和導 致低產率量1,1 ——烷基二茂釕 '三氯化鐵(F^Cj3 )和 難以分離之鐵種類之形成。 單取代/乙一戊§j ’例如1 __乙基二茂釕,在丨,.1二二 乙基一茂釕的合成期間以雜質形成。三級—丁基(環戊二 炼-基)(環戊一燃基)釘也已藉由反應雙(環戊二烯基) 釕 '氯化鋁和多磷酸的熱混合物,與三級—丁醇接著蒸 餾而製備。 3唐常’上述合成方祛時常與低產率、競爭二聚合反應 、錯合產物分離、危險試劑(例如,NaH )之特殊操作技 術有關。此外’如圖]A和】b所看到的,這些合成方法 包括兩個環戊二烯基環的_步驟加入和因此適合於製備未 '兹取代之二茂釘或對稱取代之丨,】一二乙基二茂釕。二 戊訂和1’ 1-二乙基二茂釕兩者具有較低蒸氣壓(於1〇〇 °C少於1 0托)。在室溫下,二茂釕爲固體和1 ’ 1 二乙 基二茂釕爲液體。 通常’較揮發性的CVD前驅物爲較佳,因爲其爲在 室溫下爲液體而非固體的前驅物。除此之外’所要之 -8- (4)1324186 CVD 生均 積方 金屬 [發 層或 /或 種不 取代 種選 種包 似環 少一 基部 前驅物在適當CVD條件下也爲熱可分解的 勻薄膜。 因此’存在繼續硏究釘基CVD前驅物和新 法之需要。也存在製備包括釕或其他第8族 之薄膜的方法之需要。 本發明通常係有關〜種 免…、 '里4材料如,例如 杈末之沉積方法,該材料1324186 (1) 玖, invention description [Technical field to which the invention belongs] This application claims to apply for U.S. Provisional Application No. 60/42 2,94 6 on January 31, 2002; application on October 31, 2002 US Provisional Application No. 60/422,947; application for US Provisional Application No. 60 / 42 6, 2 84 on the day of the month of 2002; application for the US Provisional Application No. 60/ on November 18, 2002 No. 4, No. 6, No. 1, No. 60/46,320, filed on February 7, 2003; US Provisional Application No. 60/453, 7] No. 8 on April 18, 2003; U.S. Provisional Application No. 60/453,719, filed on Apr. 18, 2003; and U.S. Provisional Application No. 60/4 5 3 5 7 1 7, filed on April 18, 2003. All teachings of the above-referenced applications are incorporated herein by reference. [Prior Art] A chemical vapor deposition (CVD) method is used to form a thin film of a material on a substrate such as a wafer or other surface during the manufacture or processing of a semiconductor. In CVD, a CVD precursor, also known as a CVD compound, is thermally, chemically, photochemically decomposed or activated by plasma to form a film having the desired composition. For example, the vapor phase C V D precursor can be contacted with a substrate heated to a temperature above the decomposition temperature of the precursor to form a metal or metal oxide film on the substrate. Films comprising ruthenium (Ru), ruthenium oxide (Ru〇2) or iron (Fe) have good electrical conductivity, high work function, are chemically and thermally stable, and chemically diffuse between the anti-layer-5-(2) 1324186 and Many dielectric substrate materials are compatible. Ru and Ru Ο 2 films, for example, have been studied as thin film electrode materials for semiconductor devices such as DRAM (Dynamic Random Access Memory) devices. An example of a film prepared from a ruthenium-based precursor is described in U.S. Patent No. 6,440,495 issued to Wade et al. on Aug. 27, 2002; U.S. Patent issued to Vaartstra et al. No. 6,074,945; U.S. Patent Application Publication No. 2002/010,282, filed on Aug. 1, 2002, the disclosure of which is incorporated herein by reference in its entirety, in its entirety, in Precursor chemical vapor deposition 'Rapid heat and other short-time processing techniques III, Electronics, Dielectric Science and Technology' and High Temperature Materials chapter, Journal No. 2 - 1 Book 235 - 242 '201 The meeting of the Electrochemical Association. The teachings of the above-referenced patents, published patent applications, and entireties are hereby incorporated by reference. Bis (pentaPto) cyclopentadienyl) ruthenocene and symmetrical diethyl-substituted ferrocene (1,1-diethyl fluorene) have been studied as A possible precursor for the ruthenium-based film is formed by CVD techniques. These compounds have been prepared by several synthetic routes. An existing method for forming hafnocene includes the reaction of RuC13·ΧΗ20 with cyclopentadiene in the presence of Zn to produce hafnocene, ZnCl2 and HCl, as shown in Fig. 1A. A similar method, using ethyl-substituted cyclopentadiene, has been used to prepare 1' Γ-diethyl fluorene, as shown in Figure 1 。. Generally, the yield obtained by this method is about 70%. (3) (3) 1324186 As shown in Figure 1 C, the non-lightly substituted ferrocene has also been made by cyclopentadiene, chloro(cyclopentadienyl)bis(indolylphenylphosphine) ruthenium (U) and Preparation of sodium hydride (NaH) in benzene. The chlorine (cyclopentadienyl) bis(triphenyl-)pyrene (II) precursor has been synthesized by the reaction of antimony trichloride and triphenylphosphine in ethanol. Another method for the use of alpha to hafnium includes a metal transfer reaction of a bis(alkylcyclopentanyl) iron compound with RUCl3.XH2? and results in a low yield of 1,1 -alkyl ferrocene钌 'Formation of ferric chloride (F^Cj3) and iron species that are difficult to separate. Monosubstituted/ethylidene §j ', such as 1 _-ethyl decyl fluorene, is formed as an impurity during the synthesis of hydrazine, .1 diethylene fluorene. Tertiary-butyl (cyclopentane-yl) (cyclopentane-based) nails have also been reacted by a thermal mixture of bis(cyclopentadienyl)phosphonium chloride and polyphosphoric acid, with tertiary Butanol is then prepared by distillation. 3 Tang Chang' The above synthetic formula is often associated with special operating techniques of low yield, competitive dimerization, separation of mismatched products, and hazardous reagents (eg, NaH). Furthermore, as seen in Figures A and b, these synthetic methods involve the addition of two cyclopentadienyl rings and are therefore suitable for the preparation of unsubstituted zirconium or symmetrically substituted ruthenium,] Monoethyl ferrocene. Both pentylene and 1' 1-diethyl fluorene have a lower vapor pressure (less than 10 Torr at 1 °C). At room temperature, the hafnocene is a solid and the 1' 1 diethylbifluorene is a liquid. Generally, a more volatile CVD precursor is preferred because it is a precursor that is liquid rather than solid at room temperature. In addition to the 'required -8- (4) 1324186 CVD raw average square metal [hair layer or / or seedless species selected bag-like ring less one base precursor is also thermally decomposable under appropriate CVD conditions Uniform film. Therefore, there is a need to continue to study nail-based CVD precursors and new methods. There is also a need for a process for preparing a film comprising ruthenium or other Group 8. The present invention is generally related to a kind of material, such as a deposition method of, for example, a sputum material, such as

箄 弟 8 ( VIII 弟8 ( VIII)族金_氧化物。私 對稱取代之— ,u方法包括 代之—戊金壩前驅物, -7 ~ ^ Λ 稽此形成材 之〜茂金屬前驅物以迦1 / 迺式 CpmCd# — + 自釕(Ru)、餓.(〇”和鐵(:.、 括至少〜個取代基D1的第〜 的金屬 戊一烯基(例如,茚基j^代之is戊 個取代基D,,的第二取二分’·和CP,爲 分(例如,茚基)。:^ α二錄基或 】和Dl,彼此不同且 X ;箄弟8 (VIII VIII brother 8 (VIII) gold _ oxide. The private symmetry replaces it - the u method includes the substitute - the pentylene dam precursor, -7 ~ ^ 稽 the formation of the metallocene precursor迦1 / 迺CpmCd# — + 钌 (Ru), hungry (〇) and iron (:., including at least ~ substituent D1 of the first metal pentylene group (for example, 茚基j^代The second is taken as a substituent D, and the second is taken as a part '· and CP, as a part (for example, fluorenyl). : ^ α 二录基 or 】 and Dl, which are different from each other and X;

CalHbiXcl ; C^Hb2Xc2 ( c= 〇) c a,HblxCalHbiXcl ; C^Hb2Xc2 ( c= 〇) c a, Hblx

Ca2Hb2Xc2〇CalHblXc]; 且能夠產 穎薄膜沉 (VIII ) 薄膜.、塗 族金屬及 解至少一 。不對稱 p Μ爲一 .C ρ 爲一 烯基,或 種包括至 環戊二烯 立地選自Ca2Hb2Xc2〇CalHblXc]; and can produce a film (VIII) film, a coating metal and at least one. The asymmetry p Μ is one. C ρ is an alkenyl group, or the species includes to cyclopentadiene.

Ca2Hb2Xc2 ( c= 〇 ) 〇c Ca2Hb2Xc2〇 ( C= 0 ) C alHb.Xcla|Hblxcl :及 (5) (5)1324186 其中 X爲鹵素原子或硝基(no2 ); a 1爲從2到8之整數; bl爲從0到2(al) +l-cl之整數; c 1爲從0到2 ( a 1 ) + 1 — b 1之整數; b 1 + c 1爲至少1 ; a2爲從0到8之整數; b2爲從.0到?( a2 ) +1 — c2之整數; c2爲從0到2 ( a2 ) +1- b2之整數。 在一具體實施例中,本發明係有關一種沉積薄膜之方 法。該方法包括分解不對稱二茂金屬或似二茂金屬化合物 的蒸氣之步驟,其中分解沉積爲熱、化學、光化學的或藉 由電漿活化作用且二茂金屬或似二茂金屬化合物具有如上 所述之通式CpMCp',藉此形成材料。 在一較佳具體實施例中,D 1爲 X ; C a 1 H b ] X c 1 ·Ca2Hb2Xc2 ( c= 〇) 〇c Ca2Hb2Xc2〇( C= 0 ) C alHb.Xcla|Hblxcl : and (5) (5) 1324186 where X is a halogen atom or a nitro group (no2); a 1 is from 2 to 8 Integer; bl is an integer from 0 to 2 (al) + l-cl; c 1 is an integer from 0 to 2 ( a 1 ) + 1 - b 1; b 1 + c 1 is at least 1; a2 is from 0 To an integer of 8; b2 is from .0 to? ( a2 ) +1 — an integer of c2 ; c2 is an integer from 0 to 2 ( a2 ) +1- b2 . In one embodiment, the invention is directed to a method of depositing a film. The method comprises the steps of decomposing a vapor of an asymmetric metallocene or a metallocene-like compound, wherein the decomposition is deposited thermally, chemically, photochemically or by plasma activation and the metallocene or halometallocene compound has The above formula CpMCp', thereby forming a material. In a preferred embodiment, D 1 is X; C a 1 H b ] X c 1 ·

Ca2Hb2XC2 ( C= Ο ) CalHblXcl ; C a 2 H b 2 X c 2 0 C a I H b ] X c ]'Ca2Hb2XC2 ( C= Ο ) CalHblXcl ; C a 2 H b 2 X c 2 0 C a I H b ] X c ]'

Ca2Hb2Xc2 ( C= O) OCalHblXcl ;或 Ca2Hb2Xc2〇 ( C = O ) CalHblXcl ; 其中 X 爲氟(F ),氯(Cl ),溴(Br ),碘(I )或( -10- (6) (6)1324186 a 1爲從2到8之整數; bl爲從〇到2(al) +l-cl之整數; cl爲從0到2(al) +1— bl之整數; b 1 + c 1爲至少1 ; a2爲從0到8之整數; b2爲從0到2 ( a2 ) +1 — c2之整數; c2爲從0到2(a2) +1— b2之整數,和 D丨,爲: X ; C a 丨 H b ] X c 1 ;Ca2Hb2Xc2 (C=O) OCalHblXcl; or Ca2Hb2Xc2〇(C=O) CalHblXcl; where X is fluorine (F), chlorine (Cl), bromine (Br), iodine (I) or ( -10- (6) (6 1324186 a 1 is an integer from 2 to 8; bl is an integer from 〇 to 2(al) + l-cl; cl is an integer from 0 to 2 (al) +1 - bl; b 1 + c 1 is At least 1 ; a2 is an integer from 0 to 8; b2 is an integer from 0 to 2 ( a2 ) +1 - c2 ; c2 is an integer from 0 to 2 (a2) +1 - b2, and D丨 is: X ; C a 丨 H b ] X c 1 ;

Ca2Hb2Xc2 ( C = 0 ) CalHblXcl ;Ca2Hb2Xc2 ( C = 0 ) CalHblXcl ;

Ca2Hb2.Xc2〇Ca|HblXcl;Ca2Hb2.Xc2〇Ca|HblXcl;

Ca2Hb2Xc2(C=0) OCajHblXcI’ 或 Ca2Hb2Xc2〇 ( C = 0 ) CalHblXcl ; 其中 X 爲 F、Cl ' Br、I 或 N〇2 ; a 1爲1到8之整數; bl爲從〇到2(al) +1— cl之整數; cl爲從0到2(al) +l-bl之整數; b 1 + c 1爲至少1 ; a 2爲從0到8之整數; b2爲從0到2(a2) +l—c2之整數; c2爲從0到2 ( a2 ) +1 - b2之整數。 一使用在本發明方法中的二茂金屬化合物的特定例子 -11 - (7) 1324186 爲1—甲基,1'—乙基二茂釕。Ca2Hb2Xc2(C=0) OCajHblXcI' or Ca2Hb2Xc2〇( C = 0 ) CalHblXcl ; where X is F, Cl ' Br, I or N〇2 ; a 1 is an integer from 1 to 8; bl is from 〇 to 2 (al +1 - an integer of cl; cl is an integer from 0 to 2 (al) + l-bl; b 1 + c 1 is at least 1; a 2 is an integer from 0 to 8; b2 is from 0 to 2 ( A2) an integer of +l-c2; c2 is an integer from 0 to 2 (a2) +1 - b2. A specific example of a metallocene compound used in the process of the present invention -11 - (7) 1324186 is 1-methyl, 1'-ethyl fluorene.

Cp或Cp'之至少一個可包括一或 ,C>2、d3、d4、D5、D2'、d3,、D4,, 上述化合物提供藉由CVD製備 薄膜的己存在方法之額外選項及彈性 例如’在室溫爲液體且具有高於習知 發現’例如,1 一甲基,1 ' 一乙基二茂 二乙基二茂釕之蒸氣壓。較高蒸氣壓 如增加生產率及較低薄膜製造成本。 環之改性在本發明化合物中之環戊二 修正該等性質例如溶解度、蒸氣壓、 反應路徑、還原/氧化電位、幾何學 度分佈。因此可選擇特定前驅物用於 和碳之外,許多本文所述之前驅物, 代之一茂金屬,不包不相+的原子且 成之材料通常沒有雜質。在一些其他 於有機取代基中可有利於金屬氧化物 形成。 發明的詳細說明 本發明前面和其他目的、特徵和 佳具體實施例之更明確的敘述將爲顯 式舉例說明的,其中在不同的圖中, 相同的零件。該等圖式不一定依比例 多額外取代基,例如 和 d5,。 Ru — 、〇s — 、F e —某 。一些該等化合物, 前驅物之蒸氣壓。傾 ;釕具有高於1,1 ' 一 存在經濟上之利益例 咸信經由環戊二烯基 烯基環的官能化作用 分解、燃燒和其他的 ,較佳位向和電子密 所要應用中。除了氫 例如,例如,烷基取 因此藉由其分解所形 例子中,氧原子存在 薄膜.、塗層或粉末之 優點從下列本發明較 而易知的,如所附圖 相同的參考文字係指 ’強調爲舉例說明本 -12- (8) (8)1324186 發明之原理。 本發明通常係有關一種用於製備薄膜、塗層或粉末之 方法。該方法包括分解至少一種不對稱取代之第8族( V I π )二茂金屬化合物的步驟’進一步敘述在下文中。如 使用在本文中術語、二茂金屬〃係指一種具有類似二茂鐵 之結構的夾層型結構之有機金屬配位化合物’其中咸信過 渡金屬爲π -鍵結(電子在延伸在環上和下之軌域移動) 至7? η —配位環,通常芳族部分’ CP和Cp',其中η表示 鍵結至過渡金屬之環部分中的碳原子數目。 在較佳具體實施例中’ CP和CP ·'二者獨立地選自環戊 二烯基或茚基(稠合苯基和環戊二烯基環)。如果環戊二 烯基環中的所有碳原子參與鍵結至過渡金屬.,則這些部分 敘述爲7? 5 —配位。因此二茂鐵之完全敘述將爲(77 5 - CU5)2Fe。 圖2A所示爲二茂金屬的相錯構形,其中Μ爲第.8族 (V ill )金屬,例如,釕、餓或鐵。二茂金屬也可具有交 會構形,如圖2B所示。如使用在本文中,分子式不意欲 敘述一種特定二茂金屬構形。 除了環戊二烯基之外的π n -配位部分在本文中係指 ''似環戊二烯基〃。額外相對離子基可存在於該化合物中 以平衡電荷且形成中性分子,如該技藝己知的。 可使用於本發明方法中之二茂金屬化合物具有通式 CpMCp,,其中M爲Ru、〇s或Fe和其中Cp和Cp,爲環戊 二烯基或似環戊二烧基(例如,茚基)部分。每一Cp和 -13- (9)1324186 C p '被取代且和C ρ和C p 1不同。 更特而言之,在每一 Cp和 (Η )原子分別被取代基,D 1和 D !和D Γ彼此不同且獨立地: X ; C a I H b 1 X c 1 1 Ca2Hb2Xc2 ( C = Ο ) Ca,HblXc Ca2Hb2Xc2〇Ca|HblXcl > Ca2Hb2Xc2 ( O) OCalHbi: Ca2Hb2Xc2〇 ( C = O ) CalHbl : 其中 、 x爲鹵素原子或硝基(no2 ) a 1爲從1到8之整數; b ]爲從 0 至[J 2 ( a 1 ) + 1 — c 1 cl 爲從 0 到 2 ( al ) +1 - bl b 1 + c 1爲至少1 ; a2爲從0到8之整數; b 2 爲從 0 至 IJ 2 ( a 2 ) + 1 — c 2 c2 爲從 0 到 2 ( a2 ) +1 - b2 如使用在本文中,整數範圍 支鏈的取代基D 1和D,。例如, 支鏈的Cl - C8烷基。 在本發明一具體實施例中,At least one of Cp or Cp' may include one or, C>2, d3, d4, D5, D2', d3, D4, which provides additional options and flexibility for the existing method of preparing a film by CVD. It is liquid at room temperature and has a vapor pressure higher than that of the conventionally known 'for example, 1-methyl, 1 '-ethyl-diethyldiethyldifluorene. Higher vapor pressures increase productivity and lower film manufacturing costs. Modification of the ring by cyclopentane in the compounds of the invention corrects such properties as solubility, vapor pressure, reaction pathway, reduction/oxidation potential, geometric distribution. Thus, a particular precursor can be selected for use in addition to carbon, and many of the precursors described herein, substituted for one metallocene, do not contain non-phase+ atoms and are generally free of impurities. Metal oxide formation may be facilitated in some other organic substituents. DETAILED DESCRIPTION OF THE INVENTION A more detailed description of the foregoing and other objects, features and embodiments of the invention will be set forth. These patterns are not necessarily proportional to many additional substituents, such as and d5. Ru — , 〇 s — , F e — some. Some of these compounds, the vapor pressure of the precursor. Pour; 钌 has a higher than 1,1 '. There is an economic advantage. The functionalization of the cyclopentadienyl alkenyl ring is decomposed, burned, and the like, preferably in the form of electrons and electrons. In addition to hydrogen, for example, an alkyl group is taken as an example of its decomposition, the presence of an oxygen atom in the form of a film, coating or powder is more readily known from the following invention, as the same reference text in the drawings Refers to 'emphasis to illustrate the principles of this -12-(8) (8) 1324186 invention. The invention is generally directed to a method for making a film, coating or powder. The method comprises the step of decomposing at least one asymmetrically substituted Group 8 (V I π ) metallocene compound ‘ further described below. As used herein, the term "metallocene" refers to an organometallic coordination compound of a sandwich type structure having a structure similar to ferrocene, in which the transition metal is a π-bond (electrons are extended on the ring and The lower orbital shift) to 7? η - the coordination ring, usually the aromatic moiety 'CP and Cp', where η represents the number of carbon atoms bonded to the ring portion of the transition metal. In a preferred embodiment, both 'CP and CP' are independently selected from cyclopentadienyl or fluorenyl (fused phenyl and cyclopentadienyl rings). If all of the carbon atoms in the cyclopentadienyl ring are involved in the bonding to the transition metal, then these moieties are described as 7-5-coordination. Therefore, the full description of ferrocene will be (77 5 - CU5) 2Fe. Figure 2A shows the phase-error configuration of a metallocene in which the ruthenium is a Group 8 (V ill ) metal, for example, ruthenium, hungry or iron. The metallocene may also have a cross-over configuration as shown in Figure 2B. As used herein, the formula is not intended to describe a particular metallocene configuration. The π n -coordination moiety other than the cyclopentadienyl group herein means ''like cyclopentadienyl hydrazine. Additional relative ionic groups may be present in the compound to balance the charge and form a neutral molecule, as is known in the art. The metallocene compound useful in the process of the invention may have the formula CpMCp, wherein M is Ru, 〇s or Fe and wherein Cp and Cp are cyclopentadienyl or cyclopentadienyl (eg, hydrazine) Base) part. Each Cp and -13-(9)1324186 C p ' is substituted and different from C ρ and C p 1 . More specifically, in each Cp and (Η) atom is substituted by a substituent, D 1 and D ! and D Γ are different from each other and independently: X ; C a IH b 1 X c 1 1 Ca2Hb2Xc2 ( C = Ο Ca,HblXc Ca2Hb2Xc2〇Ca|HblXcl > Ca2Hb2Xc2 ( O) OCalHbi: Ca2Hb2Xc2〇( C = O ) CalHbl : wherein x is a halogen atom or a nitro group (no2 ) a 1 is an integer from 1 to 8; b ] From 0 to [J 2 ( a 1 ) + 1 — c 1 cl is from 0 to 2 ( al ) +1 - bl b 1 + c 1 is at least 1; a2 is an integer from 0 to 8; b 2 is From 0 to IJ 2 ( a 2 ) + 1 — c 2 c2 is from 0 to 2 ( a2 ) +1 - b2 as used herein, the substituents D 1 and D of the integer range of branches. For example, a branched Cl - C8 alkyl group. In a specific embodiment of the invention,

Cp'部分中,至少一個氫 D !'置換。 SB r±n Β Θ . cl,及 之整數; 之整數; 之整數; 之整數。 包含在內。可採用直鏈和 〇】及/或D!'可爲直鏈和 D 1爲: -14 - X ; (10) (10)1324186 C a I H b 1 X C 1 >In the Cp' portion, at least one hydrogen D!' is replaced. SB r±n Β Θ . cl, and integers; integers; integers; integers. Included. Linear and 〇] and/or D!' can be used for straight chain and D 1 is: -14 - X ; (10) (10) 1324186 C a I H b 1 X C 1 >

Ca2Hb2Xc2 ( C = 0) Ca|HblXcl 1 C a 2 H b 2 X c 2 〇 C a I H b 1 X c 1Ca2Hb2Xc2 ( C = 0) Ca|HblXcl 1 C a 2 H b 2 X c 2 〇 C a I H b 1 X c 1

Ca2Hb2Xc2 ( C 二 O) OCa|HblXcl,及Ca2Hb2Xc2 (C 2 O) OCa|HblXcl, and

Ca2Hb2Xc2〇 ( C = 0) CalHblXcl 1 其中 X爲鹵素原子,例如氟(F )、氯(C】)、溴(Br 或碘(I ); a 1爲從2到8之整數; bl爲從0至!J2(al)+l-cl之整數; cl爲從0至U2(al)+l-bl之整數; bl+cl爲至少1; a2爲從0到8之整數; b2爲從0至〇2(a2)+l-c2之整數; c2爲從0至lj 2 ( a2 ) +1 — b2之整數;和 D】,爲: X ;Ca2Hb2Xc2〇(C=0) CalHblXcl 1 wherein X is a halogen atom such as fluorine (F), chlorine (C), bromine (Br or iodine (I); a 1 is an integer from 2 to 8; bl is from 0 To the integer of J2(al)+l-cl; cl is an integer from 0 to U2(al)+l-bl; bl+cl is at least 1; a2 is an integer from 0 to 8; b2 is from 0 to 〇 2 (a2) + l-c2 integer; c2 is an integer from 0 to lj 2 ( a2 ) +1 - b2; and D], is: X;

CalHblXcl >CalHblXcl >

Ca2Hb2Xc2 ( C = Ο ) Ca,HblXcl ; C a 2 Η b 2 X c 2 〇 C a I Η b ] X c 1 1Ca2Hb2Xc2 ( C = Ο ) Ca, HblXcl ; C a 2 Η b 2 X c 2 〇 C a I Η b ] X c 1 1

Ca2Hb2Xc2 ( C= O) OCa|HblXcI ;及Ca2Hb2Xc2 ( C= O) OCa|HblXcI ; and

Ca2Hb2Xc2〇 ( C= 0) CalHblXcl ' 其中 X爲鹵素原子; -15 - (11) (11)1324186 a 1爲從1到8之整數; bl爲從〇到2(al) +1— c]之整數; cl爲從0到2(al) +1— bl之整數; b 1 + c 1爲至少1 ; a2爲從0到8之整數; b2爲從0到2(a2) +l-c2之整數; c2爲從0至!j 2 ( a2 ) +1 — b2之整數。 在一實例中,D,選自: C a i H b 1 X c 1 >Ca2Hb2Xc2〇( C= 0) CalHblXcl ' where X is a halogen atom; -15 - (11) (11)1324186 a 1 is an integer from 1 to 8; bl is from 〇 to 2(al) +1—c] Integer; cl is an integer from 0 to 2 (al) +1 - bl; b 1 + c 1 is at least 1; a2 is an integer from 0 to 8; b2 is from 0 to 2 (a2) + l-c2 Integer; c2 is an integer from 0 to !j 2 ( a2 ) +1 — b2 . In one example, D is selected from the group consisting of: C a i H b 1 X c 1 >

Ca2Hb2Xc2 ( C — 0) CalhbjXcl ' Ca2Hb2Xc2〇C2iHblXc 丨;Ca2Hb2Xc2 (C-0) CalhbjXcl 'Ca2Hb2Xc2〇C2iHblXc 丨;

Ca2Hb2Xc2 ( C= O) OCa|Hb】Xcl ;或 Ca2Hb2Xc2〇 ( C= O) Ca,Hb)Xci ; 其中 X爲鹵素原子,例如F ' C] ' Br或I ; a 1爲從1到8之整數; bl爲從0到2(al) +l-cl之整數; c 1爲從0到2 ( a 1 ) + 1 - b 1之整數; b 1 + c 1等於或大於1 ; a2爲從0到8之整數; b2爲從0到2 ( a2 ) +1 - c2之整數; c2爲從0到2 ( a2 ) +1 — b2之整數; b2 + c2等於或大於1 ; 和ϋΓ選自: -16 - (12) (12)1324186 C a I H b 1 X c 1 'Ca2Hb2Xc2 (C=O) OCa|Hb]Xcl; or Ca2Hb2Xc2〇(C=O) Ca,Hb)Xci; wherein X is a halogen atom, such as F 'C] ' Br or I; a 1 is from 1 to 8 Integer; bl is an integer from 0 to 2(al) +l-cl; c 1 is an integer from 0 to 2 ( a 1 ) + 1 - b 1; b 1 + c 1 is equal to or greater than 1; a2 is from An integer from 0 to 8; b2 is an integer from 0 to 2 ( a2 ) +1 - c2 ; c2 is an integer from 0 to 2 ( a2 ) +1 — b2 ; b2 + c2 is equal to or greater than 1 ; : -16 - (12) (12)1324186 C a IH b 1 X c 1 '

Ca2Hb2Xc2 ( c = 0 ) CalHblXc]; C a 2 H b 2 X c 2 0 C a I H b ] X c 1 >Ca2Hb2Xc2 ( c = 0 ) CalHblXc]; C a 2 H b 2 X c 2 0 C a I H b ] X c 1 >

Ca2Hb2Xc2 ( C = 0) OCa|HblXcl,Ca2Hb2Xc2 ( C = 0) OCa|HblXcl,

Ca2Hb2Xc2〇 ( C = 0) CalHb]Xcl ' 其中 X爲鹵素·原子,例如F、c]、Br或I ; a 1爲從1到8之整數; b 1爲從0至!J 2 ( a 1 ) + ] - c 1之整數; : cl爲從0到2(al)+;l— bl之整數; b 1 + c 1等於或大於1 ; a2爲從0到8之整數; b2爲從0到2(a2)+l— c2之整數; c2爲從0到2 ( ) +1 - b2之整數; 2b2 +C.2等於或大於1。 在另一實例中,D i爲鹵素原子,X ’例如,F、C1、 Br或I ;和D】’選自:Ca2Hb2Xc2〇(C=0) CalHb]Xcl 'wherein X is a halogen atom, such as F, c], Br or I; a 1 is an integer from 1 to 8; b 1 is from 0 to !J 2 (a 1 ) + ] - an integer of c 1; : cl is an integer from 0 to 2 (al) +; l - bl; b 1 + c 1 is equal to or greater than 1; a2 is an integer from 0 to 8; b2 is from 0 To 2(a2)+l—the integer of c2; c2 is an integer from 0 to 2 ( ) +1 - b2; 2b2 +C.2 is equal to or greater than 1. In another example, D i is a halogen atom, X ' for example, F, C1, Br or I; and D]' is selected from:

CalHblXcl ;CalHblXcl ;

Ca2Hb2Xc2 ( C = 0) CaiHb】Xcl,Ca2Hb2Xc2 ( C = 0) CaiHb] Xcl,

Ca2Hb2Xc2〇CalHblXcl;Ca2Hb2Xc2〇CalHblXcl;

Ca2Hb2Xc2 ( C= 0) OCalHblXc): C a 2 H b 2 X c 2 〇 ( C = 0 ) C a I H b J X c 1 ; 其中 X爲鹵素原子; -17 - (13) (13)1324186 a 1爲從2到8之整數; b 1爲從0到2 ( a 1 )+ I — c 1之整數; cl爲從0到2(al) +l-bl之整數; b 1 + c 1等於或大於1 ; a2爲從0到8之整數; b2爲從0至!J2(a2)+l—c2之整數; c2爲從0到2 ( ά2 ) +1 — b2之整數; 2b2+c2等於或大於1。 本發明的二茂金屬化合物的結構式(C p M C p ')之例 子顯示在圖3中。, 任意地,本發明二茂金屬或似二茂金屬化合物的C ρ 和 CP'部分之一或二者進一步包括一或多個額外取代基, D >:。在一實例中,_ C ρ和C ρ '之至少一個爲多取代之環·戊二 烯基或茚基部分。_ 本發明之 CpMCp'二茂金屬化合物之一般化結構式顯 示在圖4中。D,和D"如上所述獨立地選擇。D2、D3、D4 、D 5、D ^、D 3'、D,,和D 5'獨立地選自: C a I H b 1 X c i : C a 2 H b 2 X c 2 ( C = 0 ) C a I H b i X c 】;Ca2Hb2Xc2 (C=0) OCalHblXc): C a 2 H b 2 X c 2 〇( C = 0 ) C a IH b JX c 1 ; wherein X is a halogen atom; -17 - (13) (13) 1324186 a 1 Is an integer from 2 to 8; b 1 is an integer from 0 to 2 ( a 1 ) + I — c 1 ; cl is an integer from 0 to 2 (al) + l-bl; b 1 + c 1 is equal to or More than 1; a2 is an integer from 0 to 8; b2 is an integer from 0 to !J2(a2)+l-c2; c2 is an integer from 0 to 2 ( ά2 ) +1 — b2; 2b2+c2 is equal to or Greater than 1. An example of the structural formula (C p M C p ') of the metallocene compound of the present invention is shown in Fig. 3. Optionally, one or both of the C ρ and CP' moieties of the inventive metallocene or halocene-like compound further comprise one or more additional substituents, D >:. In one example, at least one of _ C ρ and C ρ ' is a polysubstituted cyclopentadienyl or fluorenyl moiety. The generalized structural formula of the CpMCp' metallocene compound of the present invention is shown in Fig. 4. D, and D" are selected independently as described above. D2, D3, D4, D5, D^, D3', D, and D5' are independently selected from: C a IH b 1 X ci : C a 2 H b 2 X c 2 ( C = 0 ) C a IH bi X c 】;

Ca2Hb2Xc2OCalHblXcl ;Ca2Hb2Xc2OCalHblXcl;

Ca2Hb2Xc2 ( C = O) 〇CaiHblXcI,或 Ca2Hb2X〇2〇 ( C= 0) Ca|Hb]Xcl 其中 a ]爲從〇到8之整數; -18 - (14) 1324186 b 1爲從0到2 ( a 1 ) + 1 - c 1之整數; cl爲從0到2(al) +l-bl之整數; b 1 + c 1等於或大於1 ; a2爲從0到8之整數; b2爲從0到2(a2)+l-c2之整數; c2爲從0到2 ( a2 ) +1 — b2之整數; 2b2+c2等於或大於1。 可使用於本發明的釕基二茂金屬化合物之特殊例子顯 示在表1和在圖5中。 -19 - (15) 1324186 (15)Ca2Hb2Xc2 ( C = O) 〇CaiHblXcI, or Ca2Hb2X〇2〇( C= 0) Ca|Hb]Xcl where a ] is an integer from 〇 to 8; -18 - (14) 1324186 b 1 is from 0 to 2 ( a 1 ) + 1 - an integer of c 1 ; cl is an integer from 0 to 2 (al) + l-bl; b 1 + c 1 is equal to or greater than 1; a2 is an integer from 0 to 8; b2 is from 0 To an integer of 2(a2)+l-c2; c2 is an integer from 0 to 2 (a2) +1 - b2; 2b2+c2 is equal to or greater than 1. Specific examples of the mercapto-metallocene compound which can be used in the present invention are shown in Table 1 and in Figure 5. -19 - (15) 1324186 (15)

表1 1-甲基,Γ-乙基二茂釕 1,2-二甲基,Γ-乙基二茂釕 1-甲基,Γ-丙基二茂釕 卜甲基,Γ,3-二乙基二茂釕 .1-甲基,Γ-異丙基二茂釕 卜甲基,Γ,2-二乙基二茂釕 1-甲基,Γ-丁基二茂釕 1-甲基,Γ-乙基,3-丙基二茂釕 1-甲基]'-二級丁基二茂釕 1-甲基丙基,3-乙基二茂釕 ]-甲基,Γ-三級丁基二茂釕 卜乙基,Γ-甲基,3-丙基二茂釕 卜乙基,Γ-丙基二茂釕 甲基,Γ-乙基,2-丙基二茂釕. 1-乙基,r-異丙基二茂釕 卜甲基,Γ-丙基,2-乙基二茂釕 1-乙基,r-丁基二茂釕 1-乙基,Γ-甲基52-丙基二茂釕 μ乙基,r-二級丁基二茂釕 1-甲基,Γ-丙基二茂釕 . 1-乙基,1'-三級丁基二茂釕 1-甲基,乙基二茂釕 卜丙基3r-異丙基二茂釕 1,3-二甲基-Γ-乙基二茂釕 1-丙基4'-丁基二茂釕 1:2:Γ-二甲基-3'-乙基二茂釕 . 1-丙基,Γ-二級丁基二茂釕 1-丁基-Γ-乙醯基二茂釕. 1-丙基,Γ-三級丁基二茂釕 卜乙基-Γ-甲氧基二茂釕 卜異丙基,r-丁基二茂釕 1-乙基-Γ-甲氧基-2-乙氧基二茂釕 1 -異丙基J1-二級丁基二茂釕 1,2,3:4-四甲基-Γ-乙基二茂釕. 1-異丙基,Γ-三,极丁基二茂釕 1-乙醯基,:Γ-乙氧基二茂釕. 1-丁基,二級丁基二茂釕 1-二氟甲基-Γ-乙基二茂釕 1-丁基Γ-三級丁基二茂釕 卜三氟甲基,2,3,4-氟基-Γ-三氟甲基二茂釕 1-二級丁基二茂釕,Γ-三級丁基二茂釕 1-乙烯基-Γ-氟二茂釕 1,r,3-三甲基二茂釕 1-乙氧甲基-Γ:2'-二乙基二茂釕 ],Γ,2-三甲基二茂釕 1-乙基丙醯基二茂釕 U-二甲基,Γ-乙基二茂釕 1,Γ,2,4-三乙基-3:乙醯基二茂釕 - 20- (16) (16)1324186 可使用於本發明的二茂金屬化合物也包括類似於該等 表1或圖5所示化合物的餓基化合物和鐵基化合物。同樣 地,本發明的方法可用來形成包括其他的77 n配位之芳族 部分的二蔵金屬。 使用於本發明方法的適當二茂金屬化合物由大衛M &普生和 cynthia A.胡佛揭不在美國專利申請案中,名 稱爲不對稱第8族(VIII')二茂金屬化合物,與本案同時 申請之代理人訴訟案件號D — 2 ] 2 6 6,其全部教示以引用 之方;合併本文中。 製備使用於本發明方法中之二茂金屬化合物的適當合 成方法由大衛Μ ·湯普生和c y n t h i a A .胡佛揭示在美國/ 專利申請案.中’名.稱爲製造二茂金屬化合物的方法,與本 案同時申請之代理人訴訟案件號D - 2 1 2C,其全部教示 以引周之方式合倂本文中。 金屬鹽可爲金屬(111 )鹽,例如,例如,金屬鹵化 物(例如氯化物、.溴化物、碘化物、氟化物),金屬硝 酸鹽和其他適當的金屬鹽。Μ爲第8族(Vlil)金屬,例 如,Ru、〇S或Fe.。.通常,金屬鹽縮寫爲ΜΧη。.如使用在 本文中’ 易M.Xn不排除該等包括水合之水且如該技藝 已知的’可以式ΜΧη· #H2〇明確地表示("爲〇之外者 )的金屬鹽化合物。因此在特定例子中,使用在本文中之 縮寫FeX3包括可用以形成二茂鐵或似二茂鐵化合物的無 水以及水合鐵鹽。 金屬(Μ )鹽(X )可爲金屬(丨丨j )鹽,例如,例如 -21 - (17) (17)1324186 ’金屬鹵化物(例如,氯化物、溴化物 '碘化物' 氟化物 )’金屬硝酸鹽和其他適當的金屬鹽。金屬以式MXn明 確地表示或,如果存在水合之水,以ΜΧη· μΗ20表示, Μ爲Ru、Os或Fe。使用金屬鹽,例如,例如,Table 1 1-methyl, fluorenyl-ethyl decyl fluorene 1,2-dimethyl, fluorenyl-ethyl decyl fluorene 1-methyl, fluorenyl-propyl dimethyl sulfonium methyl, hydrazine, 3-diethyl Dimethyl hydrazine. 1-methyl, hydrazine-isopropyl bromomethyl, hydrazine, 2-diethyl fluorenyl 1-methyl, hydrazine-butyl ferrocene 1-methyl, hydrazine-ethyl , 3-propyl ferrocene 1-methyl]'-dibutyl butyl fluorenyl 1-methylpropyl, 3-ethyl decyl fluorene]-methyl, hydrazine-tertiary butyl ferrocene Ethyl, hydrazine-methyl, 3-propyl decyl bromide ethyl, fluorenyl propyl fluorenylmethyl, hydrazine-ethyl, 2-propyl decyl fluorene. 1-ethyl, r-isopropyl Methyl hydrazine, hydrazine-propyl, 2-ethyl fluorenyl 1-ethyl, r-butyl ferrocene 1-ethyl, hydrazine-methyl 52-propyl ferrocene, ethyl, r- Diethyl butyl ferrocene 1-methyl, hydrazine-propyl ferrocene. 1-ethyl, 1'-tertiary butyl fluorenyl 1-methyl, ethyl decyl propyl 3r-isopropyl二 钌 钌 钌 1,3-dimethyl-Γ-ethyl decyl 钌 1-propyl 4'-butyl ferrocene 1:2: Γ-dimethyl-3'-ethyl ferrocene. 1-propyl, fluorene-tert-butyl ferrocene 1-butyl-indole-ethenyl fluorenyl. 1-propyl, fluorene-tertiary butyl钌 乙基 乙基 乙基 乙基 乙基 甲 甲 甲 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Second butyl ferrocene 1,2,3:4-tetramethyl-fluorene-ethyl decyl quinone. 1-isopropyl, hydrazine-tris, butyl butyl fluorenyl 1-ethyl fluorenyl, Γ-ethoxy ferrocene. 1-butyl, butyl butyl fluorenyl 1-difluoromethyl- hydrazine-ethyl dimethyl fluorene 1-butyl hydrazine - tert-butyl butyl ferrocene Fluoromethyl, 2,3,4-fluoro-indenyl-trifluoromethyl octafluorene 1-secondary butyl ferrocene, fluorene-tertiary butyl ferrocene 1-vinyl-fluorene-fluoride 1,1,3,3,3-trimethylmenterene-1-ethoxymethyl-anthracene: 2'-diethyl fluorene], hydrazine, 2-trimethyl fluorenyl 1-ethyl propyl hydrazine U-dimethyl, Γ-ethyl dimethyl sulfonium 1, hydrazine, 2,4-triethyl-3: ethyl fluorenyl fluorene - 20- (16) (16) 1324186 can be used The metallocene compound of the present invention also includes a hungry compound and an iron-based compound similar to the compounds shown in Table 1 or Figure 5. Similarly, the process of the present invention can be used to form a ruthenium metal comprising other 77 n coordinated aromatic moieties. Suitable metallocene compounds for use in the process of the present invention are not disclosed in U.S. Patent Application, by David M & Pson and Cynthia A. Hoover, under the name asymmetric Group 8 (VIII') metallocene compound, At the same time, the agent's lawsuit case number D — 2 ] 2 6 6 is applied at the same time. All the teachings are quoted by the party; A suitable synthetic method for preparing a metallocene compound for use in the process of the present invention is disclosed by David Thompson and Cynthia A. Hoover in the U.S. Patent Application. The agent litigation case number D - 2 1 2C, which was applied at the same time as this case, is all incorporated in this article. The metal salt may be a metal (111) salt such as, for example, a metal halide (e.g., chloride, bromide, iodide, fluoride), a metal nitrate, and other suitable metal salts. The ruthenium is a Group 8 (Vlil) metal, for example, Ru, 〇S or Fe. Usually, the metal salt is abbreviated as ΜΧη. As used herein, 'M.Xn does not exclude such waters including hydration and is known in the art as a metal salt compound that can be clearly expressed ("other than 〇) . Thus, in a particular example, the abbreviation FeX3, as used herein, includes water-free and hydrated iron salts that can be used to form ferrocene or ferrocene-like compounds. The metal (Μ) salt (X) may be a metal (丨丨j) salt, for example, such as -21 - (17) (17) 1324186 'metal halide (for example, chloride, bromide 'iodide' fluoride) 'Metal nitrates and other suitable metal salts. The metal is clearly represented by the formula MXn or, if hydrated water is present, represented by ΜΧη·μΗ20, Μ is Ru, Os or Fe. Use a metal salt, for example, for example,

FeX3 · 77 HaO或FeX3以形成二茂鐵或似二茂鐵化合物。 配位體(L )通常爲一種電子對予體化合物。中性電 子對予體’例如’例如,在一實例中使用三苯基膦(pPh3 )。也可使用三環己基膦和通式PR3的其他膦,以及亞磷 酸三酯’P(OR)3,其中R爲苯基 '環己基、烷基或支 鏈院基’例如’三級一丁基。其他適當的電子對予體包括 胺' 磷酸酯、羰基化合物 '烯烴、聚烯烴、螫合膦 '螫合 胺和其他=FeX3 · 77 HaO or FeX3 to form a ferrocene or ferrocene-like compound. The ligand (L) is typically an electron pair donor compound. A neutral electron pair of a precursor 'e.g., for example, triphenylphosphine (pPh3) is used in one example. It is also possible to use tricyclohexylphosphine and other phosphines of the general formula PR3, as well as the phosphite triester 'P(OR)3, wherein R is a phenyl 'cyclohexyl group, an alkyl group or a branched chain group' such as a tertiary one base. Other suitable electron pair donors include amine 'phosphates', carbonyl compounds 'olefins, polyolefins, phosphine phosphines' amides and others.

Cp化合物爲上述CpMCp^化合物中的Cp部分.的前驅 物。較佳Cp化合物爲HCp ’例如,環戊二烧或茚。Cp成 分也可以環'戊—燒基或節基陰離子的鹽提供,例如,鉀環 戊—燒基(K C p )、納環戊一稀基(NaCp)、鍾環戊二稀 基(LiCp)和其他。在所本文所述的合成方法中與環戊二 烯基陰離子一起使用的適當陽離子包括三甲基甲砂院基( TMS ) ' Na、Li、K,Mg、Ca 和 T1。 至少一個Cp部分中的氣原子被基置換,如上所述 。HCp之特定例子包括,甲基環戊二烯、乙基環戊二烯、 正—丙基或異丙基環戊二烯 '正一丁基_、二級—丁基— 或三級一 丁基環戊二烯或鹵基-環戊二烯。The Cp compound is a precursor of the Cp moiety in the above CpMCp compound. Preferably, the Cp compound is HCp', for example, cyclopentane or oxime. The Cp component may also be provided as a salt of a pentane-alkyl group or a sulfhydryl anion, for example, potassium cyclopentyl-alkyl (KC p ), naphthoquinone (NaCp), and penta pentylene (LiCp). and other. Suitable cations for use with the cyclopentadienyl anion in the synthetic methods described herein include trimethyl sandstone (TMS) 'Na, Li, K, Mg, Ca and T1. The gas atoms in at least one of the Cp moieties are replaced by a radical, as described above. Specific examples of HCp include methylcyclopentadiene, ethylcyclopentadiene, n-propyl or isopropylcyclopentadiene 'n-butyl-, sec-butyl- or tertiary Cyclopentadiene or halo-cyclopentadiene.

Cp化合物也可被二一或多取代,例如,其可爲二— -22 - (18) (18)1324186 '三_、四—和五一取代之環戊二烯。取代基D2 , 〇3, D 4和D 5之特定例子如上所述。 Μ X n、L和H C P成分各自可以淨形式或可任意地包括 適當溶劑提供。可使用於發明方法中的較佳溶劑包括醇, 例如’例如’乙醇、甲醇、異丙醇和其他醇類。也可使用 乙酸乙醒、四氫卩夫喃(T H F )、飽和或不飽和烴、芳族雜 環、鹵烷、甲矽烷基化烴、醚、聚醚硫醚、酯、內酯、醯 胺、胺、聚胺·、腈、矽酮和其他的非質子溶劑。也可使用 溶劑的組合。. 通常’ MXn.、L和Cp的濃度如該技藝已知地選擇。 例如,MXn在適當溶劑中的莫耳濃度可在從約〇 1 M到淨 之範圍。L在適當溶劑中的莫耳濃度可在從約.〇 _;! M到淨 之範圍。C p在適當溶劑中的莫耳濃度可在從約〇」μ到淨 之範圍。如果使用淨膦,一般相信反應將會大量放熱。消 散每單位體積之實質量的反應熱之方法和系統在該技藝爲 已知的。 三種成分可以任何順序合倂.。在一實例中,金屬成分 和HCp成分同時加到L成分。在另一具體實施例中,金 屬成分和H C p成分合倂而形成一種混合物,.然後混合物 與L成分合倂,例如藉由把L成分加至入混合物中。在 另一具體實施例中,同時合倂所有的成分。 所使用之HCp對ΜΧη的典型莫耳比在從約50到約1 之範圍,較佳從約12到約2和最佳在從約7到約5之範 圍。典型地,L對Μ X η的莫耳比在從約8到約0,較佳從 -23- (19) (19)1324186 約6到約2和最佳從約5到約3.5之範圍。如果使用大 量過量之HCp成分,則迫使反應形成(Cp ) 2M產物。 &應溫度較佳是在所使用之溶劑的沸點或反應混合物 的沸點附近。其他適當的溫度可以例行實驗決定。通常, 反應'可在從反應組成物的凝固點以上到約沸點範圍的溫度 進行。例如,反應可在從約-1 0 0。(:到約.1 5 〇 °c範圍的溫 度進行。. 反應的時間通常視溫度和各種反應物的濃度而定.,且 可在例如,從約5分鐘到約9 6小時之範圍。 以MX,,L和HCp的反應形成之中間產物成分可以式 CpMLfX表示,其中.f = 1或2。 在一實例中,以該技藝已知的方法單離CpMLfX,例 如,爲一種固體。中間化合物,CpMLfX,然後與Cp,化合 物反應:較佳在溶劑存在下。CpM匕合物較佳包括上述本 發明化合物之 Cp'部分的陰離子。抗衡離子可包括三甲基 甲矽烷基(TMS ) 、Na、Li、K、Mg、Ca、T.1。可使用的 環戊二烯基化合物之特定例子包括(但是不限制於)乙基 環戊二烯化鈉或鋰、甲基環戊二烯化鈉或鋰.、異丙基環戊 二烯化鈉或鋰和其他。也可使用 Cp '部分的:二-或多一取 代之陰離子(例如,二一,三一,四一或五—取代之環 戊二烯基陰離子)。也可使用未經取代之茚、環聚一烯烴 '多環不飽和烴、雜環、芳族環的陰離子,如上所述。 在一特定實例中,中間化合物爲CpRu ( PPh3 ) 2C1。 其與Cp切鹽反應。推薦之Cp%鹽包括NaCp^ LiCp1、 -24 - (20) 1324186 (Cp1) 2Mg、TMS(Cp')和(Cp,)丁1。 適當丨谷劑的例子包括苯、甲苯、二甲苯 '戊焼 '己院 、石油醚、芳族雜環 '飽和或不飽和烴、鹵烷 '甲砂院基 化之烴、醚、聚醚、硫醚、酯、內酯、醯胺、胺' 聚胺、 腈、砂酮、和其他。 通常’ Cp f成分在溶劑中的莫耳濃度可在從約〇 ·〗μ到 約3 · 5 Μ之範圍’較佳在從約〇 . 5 Μ到約2. 5 Μ之範圍和最 佳在從約1 . 4到·約1 . 8 Μ之範園· ρ 典型地’ C〆相對於CpMLfX的莫耳比在從約到約 1,較佳從約6到約1和最佳從約】.6到約! 2之範圍。 在另一實例中,不單離中間產物CpMLfX·。其形成溶 液之後,Cp'化合物,例如上述的鹽,加至包括.CpMLiX. 的溶液中。 C p ·成分和中間產物 C p M L f X (單離或沒有單離)之間 的反應在例如通常如上述之溫度進行且導致Cp M C p,產物 的形成。反應的時間通常視溫度和各種反應物的濃度而定 ’且可在從約1 5分鐘到約6天能之範圍。 當合成CpRuCp'類型的結構時,其中—個環包含酮、. 酯或醚官能性質’一般較佳爲具有較大數目的酮、醋或醚 的環視爲Cp'環,且其加至中間產物作爲TMS鹽。 反應的產物’ CpMCp1’可藉由在該技藝已知的方法 卓離和純化,例如’例如,溶劑(例如己院)萃取接著蒸 餾' 昇華或色層分析法或直接藉由蒸飽、昇華或色層分析 法。也可使用再結晶作用、超離心作用和其他的技術。或 -25- (21) (21)1324186 者,產物可在沒有進一步單離和或純化作用下以反應混合 物使用》 一種形成本發明化合物的方法以圖6所示的化學反應 描述。在圖6所示之方法中,MC13· βΗ20、三苯基膦和 D 取代之環戊二烯在乙醇中 '回流下反應,形成中間化 合物CpM(PPh3) 2C1,其然後與D,' —取代之環戊二烯化 鈉反應形成CpMCp^。The Cp compound may also be substituted by two or more, for example, it may be di--22-(18)(18)1324186 'tri-, tetra-, and penta-substituted cyclopentadiene. Specific examples of the substituents D2, 〇3, D4 and D5 are as described above. The Μ X n , L and H C P components may each be provided in neat form or optionally in a suitable solvent. Preferred solvents which can be used in the process of the invention include alcohols such as, for example, 'ethanol, methanol, isopropanol and other alcohols. It is also possible to use ethyl acetate, tetrahydrofurfuran (THF), saturated or unsaturated hydrocarbons, aromatic heterocyclic rings, haloalkanes, alkylation hydrocarbons, ethers, polyether sulfides, esters, lactones, decylamines. , amines, polyamines, nitriles, fluorenones and other aprotic solvents. A combination of solvents can also be used. The concentrations of 'MXn., L and Cp are typically selected as known in the art. For example, the molar concentration of MXn in a suitable solvent can range from about 〇 1 M to the net. The molar concentration of L in a suitable solvent may range from about .〇 _;! M to the net. The molar concentration of Cp in a suitable solvent can range from about 〇"μ" to the net. If a net phosphine is used, it is generally believed that the reaction will be exothermic. Methods and systems for dissipating substantial mass of reaction heat per unit volume are known in the art. The three ingredients can be combined in any order. In one example, the metal component and the HCp component are simultaneously added to the L component. In another embodiment, the metal component and the H C p component are combined to form a mixture. The mixture is then combined with the L component, for example, by adding the L component to the mixture. In another embodiment, all ingredients are combined at the same time. The typical molar ratio of HCp to ΜΧη used ranges from about 50 to about 1, preferably from about 12 to about 2 and most preferably from about 7 to about 5. Typically, the molar ratio of L to Μ X η ranges from about 8 to about 0, preferably from -23-(19) (19) 1324186 from about 6 to about 2 and most preferably from about 5 to about 3.5. If a large excess of HCp is used, the reaction is forced to form a (Cp) 2M product. The temperature should preferably be near the boiling point of the solvent used or the boiling point of the reaction mixture. Other suitable temperatures can be determined experimentally by routine experimentation. Generally, the reaction 'can be carried out at a temperature from above the freezing point of the reaction composition to about the boiling point range. For example, the reaction can range from about -1 to 0. (: to a temperature in the range of about 1.25 ° C. The reaction time is usually determined depending on the temperature and the concentration of various reactants, and may range, for example, from about 5 minutes to about 96 hours. The intermediate component formed by the reaction of MX, L and HCp can be represented by the formula CpMLfX, wherein .f = 1 or 2. In one example, CpMLfX is isolated from the process known in the art, for example, as a solid. , CpMLfX, and then reacted with Cp, a compound: preferably in the presence of a solvent. The CpM composition preferably includes an anion of the Cp' moiety of the above compound of the present invention. The counter ion may include trimethylmethanyl (TMS), Na. , Li, K, Mg, Ca, T.1. Specific examples of cyclopentadienyl compounds which may be used include, but are not limited to, sodium cyclopentadienide or lithium, methylcyclopentadienylation Sodium or lithium., sodium isopropylcyclopentadienide or lithium and others. It is also possible to use a Cp' moiety: a di- or poly-substituted anion (for example, two, one, four or one) Cyclopentadienyl anion). Unsubstituted anthracene or cycloalkyne can also be used. The anion of a cyclosaturated hydrocarbon, a heterocyclic ring or an aromatic ring is as described above. In a specific example, the intermediate compound is CpRu(PPh3)2C1. It reacts with a Cp-cut salt. The recommended Cp% salt includes NaCp^LiCp1. -24 - (20) 1324186 (Cp1) 2Mg, TMS(Cp') and (Cp,) Ding 1. Examples of suitable glutinous agents include benzene, toluene, xylene 'pentaquinone', petroleum ether, aromatic Heterocyclic 'saturated or unsaturated hydrocarbons, haloalkanes, alkyl ethers, ethers, polyethers, thioethers, esters, lactones, decylamines, amines, polyamines, nitriles, ketenes, and others. The range of the molar concentration of the Cp f component in the solvent may range from about 〇·μμ to about 3 · 5 ', preferably from about 〇 5 Μ to about 2.5 Μ and the best in the range About 1.4 to about 1. 8 范 范 · 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型 典型6 to about! Range of 2. In another example, not only the intermediate product CpMLfX·. After it forms a solution, a Cp' compound, such as the above salt, is added to a solution comprising .CpMLiX. C p · composition and intermediate The reaction between the species C p ML f X (either singly or without singly) is carried out, for example, at temperatures generally as described above and results in the formation of Cp MC p, the product. The reaction time is usually determined by temperature and concentration of various reactants. 'and may range from about 15 minutes to about 6 days. When synthesizing a structure of the CpRuCp' type, one of the rings containing a ketone, an ester or an ether functional property is generally preferred to have a greater number of ketones. A ring of vinegar or ether is regarded as a Cp' ring, and it is added to an intermediate product as a TMS salt. The product of the reaction 'CpMCp1' can be distinguished and purified by methods known in the art, such as, for example, 'solvent (eg, hoist) extraction followed by distillation 'sublimation or chromatography, or directly by steaming, sublimation or Chromatography. Recrystallization, ultracentrifugation, and other techniques can also be used. Or -25-(21)(21)1324186, the product can be used as a reaction mixture without further isolation and purification. A method of forming a compound of the invention is described by the chemical reaction shown in Figure 6. In the method shown in Figure 6, MC13·βΗ20, triphenylphosphine and D-substituted cyclopentadiene are reacted under reflux in ethanol to form intermediate compound CpM(PPh3) 2C1, which is then substituted with D,'- The sodium cyclopentadienide reacts to form CpMCp^.

Cp及〆或Cp'之任一或兩個可包括額外取代基,Dx, 例如’例如,上述基團。C p及/或C p 1之任一或兩個可/ 或爲二―’三一’四—或五—取代之環戊二烯部分。 可甩以形成特殊的二一取代之不對稱二茂釕,也就是 ,:I 一甲基,1 ' 一乙基二茂釕或(甲基一環戊二烯基)乙 基環戊二烯基)釕)的合成流程顯示在圖7中。如圖7所 示’ RuC〗3 · ΧΗ20、三苯基麟和甲基環戊二烯在乙醇中、 回流下反應’以形成中間化合物氯(甲基環戊二烯)雙( 二苯基膦)釕(Π)或(t?5-C5H4C2H5) Ru(PPh3) 2C1 ’其然後與乙基環戊二烯化鈉反應而形成丨―甲基,:!,一 乙基二茂釘_。 可用以定性以上述合成方法形成的化合物之技術的例 子包括(但不限制於)分析氣相色層分析法、核磁共振( NMR )、熱重量分析(TGA )、誘發偶合電漿質譜分析法 (ICPMS ) ’蒸氣壓和黏度測量。 上述前驅物的相對蒸氣壓或相對揮發度可藉由在該技 藝已知的熱重量分析技術測量。平衡蒸氣壓也可被測量, -26- (22) (22)1324186 例如藉由從封閉容器抽空所有氣體,之後將化合物的蒸氣 引至容器及如該技藝已知的測量壓力。 沒有固定於特別機制,一般相信Cp和Cp '環之特定 官能基化以配製第8族(VIII )金屬茂的性質,例如溶解 度' 蒸氣壓、分解 '燃燒和其他的反應路徑、還原/氧化 電位、幾何學,較佳位向和電子密度分佈。例如,一般相 信較大的取代基D !及/或D > 1促成分子熵的增加且與先前 揭示的化合物比較’本文所述之二茂金屬化合物在室溫下 更有可能爲液態.。 在本發明方法中,上述二茂金屬化合物被分解且有機 部分被除去,導致第8族(VIII )金屬基或第8族(VIII )'金屬氧化物基的薄膜、塗層或粉末.之形成。 . 本文所述之在室溫爲液態的前驅物很適合於就地製備 粉末和塗層。例如,液態前驅物塗覆至基材,然後加熱到 足以分解前驅物的溫度,藉此除去有機基團及在基材上形 成金屬或金屬氧化物塗層。塗覆液態前驅物到基材可藉由 塗漆 '噴霧 '浸漬或藉由在該技藝已知的其他技術。加熱 可在烤箱中、使用熱槍、藉由電加熱基材或藉由其他如該 技藝已知的方法進行。分層塗層可藉由塗覆前驅物,及將 其加熱和分解,藉此形成第一層,接著塗覆至少一個1相 同或不同前驅物之其他塗料,和加熱而獲得。 液體二茂金屬前驅物例如上述也可霧化及噴霧在基材 上。可使用之霧化和噴霧裝置’例如噴嘴、噴霧器和其他 在該技藝爲已知者。 -27- (23) (23)1324186 在本發明較佳具體實施例中,二茂金屬或似二茂金屬 化合物,例如上述’使用於用於形成粉末、薄膜或塗層之 氣相沉積技術中。化合物可以單一來源前驅物使用或可與 一或多種其他的前驅物一起使用,例如,與藉由加熱至少 一個其他有機金屬化合物或金屬錯合物所產生的蒸氣一起 使用。超過一種二茂金屬前驅物,例如上述,也可使用於 所給定的方法中。. 沉積可在其他氣相成分存下進行。在本發明一具體實 施例中’薄膜沉積在至少一種非反應性載體氣體存在下進 行。非反應性氣體的例子包括惰性氣體,例如,氮、.氬、. 氦’以及其他在方法條件下不與前驅物反應的氣體。在其 他具體實施例中,薄膜沉積在至少一種反應性載體氣體存 在下進行。一些可使用之反應性氣體包括但是不限制於聯 胺、氧、氫、空氣、富氧空氣、臭氧(〇 3 ) '—氧化二氮 (N2 0 )、水蒸氣、有機蒸氣和其他。如該技藝已知的, 氧化氣體例如例如,空氣、氧、富氧空氣、〇3、,N20或 氧化有機化合物的蒸氣之存在有利於金屬氧化物薄膜的形 成。一般相信D】' D! '、Dx和Dx'有機基中存在氧原子也 有利於金屬氧化物的形成》 可進行本文中所述之沉積方法以形成包括單一金屬的 薄膜 '粉末或塗層,例如’ Os-薄膜,或包括單一金屬氧 化物(例如’ Ru〇2 )的薄膜、粉末或塗層β混合之薄膜 、粉末或塗層可被沉積’例如混合之金屬氧化物薄膜。可 形成混合的金屬氧化物薄膜’例如,藉由使用幾種有機金 -28- (24) 1324186 屬前驅物,其之至少一種係選自上述金屬茂或似二 化合物。 可進行氣相薄膜沉積以形成所要厚度(例如, 1 n m到I m m之範圍)的薄膜層。本文所述的前驅 可使用於製備薄膜,例如,具有從約1 Ο ηιη到約 範圍的厚度之薄膜。釕的薄膜,例如,可被認爲是 屬電極,特別是作爲邏輯P -道金屬電極.,和作爲 應用的電容器電極。 該方法也適合於製備分層薄膜,其中該等層之 層之相或組成物不同。分層薄膜的例子包括金屬-一半導體(MIS ) 和金屬—絕緣體一金屬(M.IM ) 在一具體實施例中,本發明係有關一種方法, 藉由熱、化學、光化學或電漿活化分解上述二茂金 二茂金屬前驅物(例如表1所示化合物之一)的蒸 此在基材上形成薄膜的步驟。例如,由化合物(較 溫下爲液體)所產生的蒸氣與具有足以引起二茂金 物分解和在基材上形成包括第8族(VIII )金屬或 (VIII )金屬氧化物之薄膜的溫度之基材接觸。 該等前驅物可使用於CVD中或,更特而言之 該技藝已知的金屬一有機化學蒸氣沉積(MOCVD 中。例如,上述的前驅物可使用於大氣壓,以及使 壓CVD方法中。該等化合物可使用於熱壁CVD, 中整個反應室被加熱的方法,以及使用於冷或暖 CVD,一種其中只加熱基材之技術。 茂金屬 在從約 物特別 10 0. n m 製造金 DRAM 至少二 絕緣體 〇 其包括 屬或似 氣,藉 佳在室 屬化合 第8族 ,用於 )方法 用於低 一種其 壁類型 -29- (25) (25)1324186 上述前驅物也可使用於電漿或光-輔助之CVD方法 中’其中分別來自電漿的能量或電磁能量,用於活化 CVD前驅物。化合物也可使用於離子束、電子束輔助之 CVD方法’其中’離子束或電子束分別地指向基材以供 應用於分解C V D前驅物之能量。也可使用雷射_輔助之 CVD方法’其中雷射光指向基材以產生CVD前驅物的光 致反應。 本發明方法可在各種CVD反應器中進行,例如,例 如’熱或冷壁反應器、電漿-輔助之、束-輔助之或雷射 -輔助之反應器,如該技藝已知的。 在CVD製造業期間在室溫下時常爲液態的前驅物爲 較佳及上述幾種不對稱二茂釕化合物具·_'有使其適合作爲 CVD前驅物的性質。1 —甲基5 r —乙基二茂釕,例如,具 有2 °c之熔點。· 1 -乙基,I'-異丙基二茂釕具有3 °c之熔 點;1—甲基,一異丙基二茂釕在室溫下爲液體。先前 使用的對稱1,^ _二乙基二茂釕,具有6 °c之熔點,而1 -乙基二茂釕具有1 2 °C之熔點。 可使用本發明方法塗佈的基材之例子包括固體基材例 如金屬基材,例如’ Al、Ni、Ti、Co、Pt、Ta ;金屬矽化 物,例如,TiSi2,CoSi2,NiSi2 ;半導體材料,例如,Si 、SiGe ' GaAs ' InP、鑽石、GaN、SiC ;絕緣體,例如, Si〇2 ' Si3n4、Hf〇2、Ta205、Al2〇3、鈦酸鋇總(BST); 屏障材料,例如,TiN、TaN ;或在包括材料組合的基材 上。此外,薄膜或塗層可在玻璃、陶瓷、塑膠 '熱固性聚 -30- (26) 1324186 合材料上和在其他塗層或薄膜層上形成。在較 例中,薄膜沉積在用於電子元件的製造或處理 在其他具體實施例中,基材用於支撐在氧化劑 溫下是穩定的低電阻率導體沉積物,例如, Ru〇2薄膜,或光學傳輸薄膜,例如’ Ru〇2。 可進行本發明的方法以在基材上沉積一種 平坦平面之薄膜。在一較佳具體實施例中,進 在用於晶圓製造或處理中的基材上沉積一薄膜 進行該方法以在包括特徵例如渠、孔或通路的 沉積一薄膜。此外,本發明的方法也可與在晶 理中的其他步驟(例如光罩、蝕刻和其他)整 _、 C V D或Μ O C V D薄膜可沉積至所要的厚度 髟成的薄膜可小於1微米厚,較佳少於5 0 0奈 於2 0 0奈米厚。也可產生小於5 0奈米厚的薄 具有在約2 0和約3 0奈米之間厚度的薄膜》· 上述不對稱二茂金屬化合物也可使用於本 中以藉由原子層沉積(ALD )或原子層成核作 技術形成薄膜,期間基材暴露於前驅物、氧化 體流的交替脈衝。後來的層沉積技術敘述於例 第6,287,965號,2001年9月2日頒予Kang 專利第6,34252 7 7號,2002年1月29日頒予 兩專利之教示全文以引用之方式合倂本文中。 例如,在一個 ALD循環中,基材被暴露 方式)於:a )惰性氣體;b )載送前驅物蒸氣 佳具體實施 的基材上。 在下、在高 Ru金屬或 具有平滑、 行該方法以 。例如,可 製圖基材上 圓製造或處 合。 。例如.,所 米和更佳少 膜,例如, 發明的方法 用(ALN ) 劑和惰性氣 如美國專利 等人和美國 Sherman ° (以逐步驟 之惰性氣體 -31 - (27) (27)1324186 ;c )惰性氣體;和d )氧化劑,單獨或與惰性氣體一起 。一般,每個步驟可如裝備所允許的一樣短(例如微米) 及如方法所需要的一樣長(例如’幾秒或分鐘。一個循環 的期間可短如微秒和長如分鐘。循環可重複一段從幾分鐘 到小時之範圍的週期。所得薄膜可爲奈米薄或較厚,例如 ,1 微米(mm ) 〇 本發明的方法也可使用超臨界液體進行。目前在該技 藝中已知的使用超臨界液體之薄膜沉積方法的例子包括化 學流體沉積(CFD );超臨界流體傳送—化學激積.·( SFT -CD );超臨界流體化學澱積(SFCD );和超臨界浸漬 沉積(SFID )。 CFD方法,例如,很適合於製備高純度薄膜和適·合於 覆蓋複雜表面和高長寬比特徵的充塡。CFD敘述於例如美 國專利第5,789,027號,1998年8月4日頒予Watkins等 人。使用超臨界液體形成薄膜也敘述在美國專利第 6,541,27 8 B2 號,2 003 年 4 月 1 日頒予 Morita 等。這二 個專利的教示全文以引用之方式合倂在本文中。 在本發明一具體實施例中,熱製圖基材暴露於一或多 種前驅物,例如·一或多種表1所示的前驅物,·例如,1 一 甲基’ 1'-乙基二茂釕,在溶劑(例如接近臨界或超臨界 液體,例如,接近臨界或超臨界co2)存在下。在c〇2的 情況中,溶劑液體提供於壓力約1 000 psig以上和至少約 30°C之溫度。 前驅物被分解而在基材上形成第8族(VIII )金屬薄 -32- (28) (28)1324186 膜。反應也從前驅物中之Cp和Cp'部分產生有機材料。 有機材料以溶劑液體溶解和容易地從基材移出。也可形& 金屬氧化物薄膜,例如藉由使用氧化體。 在一實施例中,沉積方法在罩住一或多個基材之反應 室中進行。基材藉由加熱整個室而加熱到所要的溫度,例 如’利用爐子。二茂金屬化合物的蒸氣可藉由(例如)施 用真空到室而產生。對於低沸點化合物,室可熱至足以引 起化合物的蒸發。當蒸氣與熱基材表面接觸時,其分解且 形成金屬或金屬氧化物薄膜。如上所述,二茂金屬或似二 茂金屬前驅物可單獨或以與一或多個成分,例如,例如, 其他有機金屬前驅物、惰性載體氣體或反應性氣體之組合. 使用。 ·, - · • ' · 於藉由本發明方法製.備薄膜中可使用之系統.的槪要圖 式顯示在圖8中。如圖8所示,原料指向氣體一摻合歧管 以產生供應到沉積反應器(其中進行薄膜生長)的方法氣 體°原料包括(但不限制於)載體氣體、反應性氣體、沖 洗氣體、前驅物,蝕刻/清潔氣體和其他。方法氣體組成 物之精確控制係使用質量一流量控制器(MFCs )、閥.、 壓力轉換器和其他如該技藝已知的裝置完成。 也顯示在圖8中者爲輸送離開沉積反應器,以及旁流 ’到真空泵之氣體的排氣歧管。減輕系統,真空泵下流, 用來除去任何來自排放氣體之危險物質。 沉積系統安裝就地分析系統,包括殘氣分析器,其允 許方法氣體組成物的測量。控制和數據獲得系統監視各種 -33- (29) (29)1324186 方法參數(例如,溫度、壓力、流速等)。 在圖9所顯示者爲裝置10的槪要圖式,其爲可用以 製備用於藉由本發明方法之薄膜沉積的方法氣體之適當裝 置的例子。裝置1 〇包括汽化器1 2,其中液體或固體前驅 物以該技藝已知的方法蒸發。前驅物的溫度,其決定其蒸 氣壓,以熱電偶監測和以加熱電阻絲控制。可用於化合物 的蒸氣壓對溫度之相互關係的適當數學方程式爲:Either or both of Cp and oxime or Cp' may include an additional substituent, Dx, for example, 'for example, the above group. Either or two of Cp and/or Cp1 may be or be a two-"three-one" tetra- or five-substituted cyclopentadiene moiety. It can be formed to form a special two-substituted asymmetric ferrocene, that is, I monomethyl, 1 'monoethyl fluorene or (methyl-cyclopentadienyl) ethylcyclopentadienyl The synthetic scheme of 钌) is shown in FIG. As shown in Figure 7, 'RuC〗 3 · ΧΗ20, triphenyl lin and methylcyclopentadiene are reacted in ethanol under reflux to form intermediate compound chlorine (methylcyclopentadienyl) bis(diphenylphosphine)钌(Π) or (t?5-C5H4C2H5) Ru(PPh3) 2C1 'which is then reacted with sodium ethylcyclopentadienide to form 丨-methyl, :!, monoethyl fused nail _. Examples of techniques that can be used to characterize compounds formed by the above synthetic methods include, but are not limited to, analytical gas chromatography, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), induced coupling plasma mass spectrometry ( ICPMS) 'Vapor pressure and viscosity measurement. The relative vapor pressure or relative volatility of the above precursors can be measured by thermogravimetric analysis techniques known in the art. The equilibrium vapor pressure can also be measured, -26-(22) (22) 1324186 by, for example, drawing all of the gas from the closed vessel, after which the vapor of the compound is directed to the vessel and the measured pressure as known in the art. Not specific to the special mechanism, it is generally believed that the specific functionalization of the Cp and Cp 'rings to formulate the properties of Group 8 (VIII) metallocenes, such as solubility 'vapor pressure, decomposition' combustion and other reaction pathways, reduction/oxidation potential , geometry, preferred orientation and electron density distribution. For example, it is generally believed that the larger substituent D! and/or D > 1 promotes an increase in the entropy of the component and is compared to the previously disclosed compound. The metallocene compound described herein is more likely to be liquid at room temperature. In the process of the present invention, the above metallocene compound is decomposed and the organic portion is removed, resulting in the formation of a film, coating or powder of a Group 8 (VIII) metal group or a Group 8 (VIII) ' metal oxide group. . The precursors described herein which are liquid at room temperature are well suited for the in situ preparation of powders and coatings. For example, the liquid precursor is applied to the substrate and then heated to a temperature sufficient to decompose the precursor, thereby removing the organic groups and forming a metal or metal oxide coating on the substrate. The application of the liquid precursor to the substrate can be impregnated by painting 'spray' or by other techniques known in the art. Heating can be carried out in an oven, using a heat gun, by electrically heating the substrate, or by other methods known in the art. The layered coating can be obtained by coating the precursor, and heating and decomposing it, thereby forming a first layer, followed by coating at least one other coating of the same or different precursors, and heating. Liquid metallocene precursors such as those described above can also be atomized and sprayed onto the substrate. Atomizing and spraying devices that can be used, such as nozzles, sprayers, and the like, are known in the art. -27- (23) (23) 1324186 In a preferred embodiment of the invention, a metallocene or a metallocene-like compound, such as the above, is used in vapor deposition techniques for forming powders, films or coatings. . The compound can be used as a single source precursor or can be used with one or more other precursors, for example, with steam generated by heating at least one other organometallic compound or metal complex. More than one metallocene precursor, such as those described above, can also be used in the given process. The deposition can be carried out in the presence of other gas phase components. In a particular embodiment of the invention, the film deposition is carried out in the presence of at least one non-reactive carrier gas. Examples of non-reactive gases include inert gases such as nitrogen, argon, ruthenium and other gases which do not react with the precursor under process conditions. In other embodiments, film deposition is carried out in the presence of at least one reactive carrier gas. Some reactive gases that may be used include, but are not limited to, hydrazine, oxygen, hydrogen, air, oxygen-enriched air, ozone (〇 3 ) '- nitrous oxide (N 2 0 ), water vapor, organic vapors, and others. As is known in the art, the presence of an oxidizing gas such as, for example, air, oxygen, oxygen-enriched air, helium 3, N20 or a vapor of an oxidizing organic compound facilitates the formation of a metal oxide film. It is generally believed that the presence of oxygen atoms in the D*'D!', Dx and Dx' organic groups also facilitates the formation of metal oxides. The deposition methods described herein can be performed to form a thin film 'powder or coating comprising a single metal, For example, an 'Os-film, or a film, powder or coating comprising a single metal oxide (eg, 'Ru〇2) film, powder or coating β can be deposited 'eg, a mixed metal oxide film. A mixed metal oxide film can be formed, e.g., by using several organic gold -28-(24) 1324186 precursors, at least one of which is selected from the above metallocene or dimeric compounds. A vapor phase thin film deposition may be performed to form a thin film layer of a desired thickness (for example, a range of 1 n m to 1 m m ). The precursors described herein can be used to prepare films, for example, films having a thickness ranging from about 1 Ο ηηη to about a range. The tantalum film, for example, can be considered as a genus electrode, particularly as a logic P-channel metal electrode, and as a capacitor electrode for application. This method is also suitable for preparing layered films in which the layers or compositions of the layers are different. Examples of layered films include metal-semiconductor (MIS) and metal-insulator-metal (M.IM). In one embodiment, the invention relates to a method for thermal, chemical, photochemical or plasma activation. The step of decomposing the above-mentioned halocene metallocene precursor (for example, one of the compounds shown in Table 1) to form a film on the substrate. For example, a vapor produced by a compound (which is a liquid at a warmer temperature) and a base having a temperature sufficient to cause decomposition of the metallocene and formation of a film comprising a metal of Group 8 (VIII) or (VIII) metal oxide on a substrate. Material contact. The precursors can be used in CVD or, more particularly, metal-organic chemical vapor deposition (MOCVD) known in the art. For example, the precursors described above can be used in atmospheric pressure, as well as in press CVD processes. Compounds can be used in hot wall CVD, where the entire reaction chamber is heated, and in cold or warm CVD, a technique in which only the substrate is heated. The metallocene is at least 10 0. nm from the fabrication of gold DRAM. A second insulator comprising a genus or a gas, which is used in the group 8 of the genus, for the method of lowering one of its wall types -29-(25) (25) 1324186. The above precursors can also be used for plasma Or light-assisted CVD methods in which energy or electromagnetic energy, respectively derived from plasma, is used to activate the CVD precursor. The compound can also be used in ion beam, electron beam assisted CVD methods where the ion beam or electron beam is directed to the substrate separately for application to the energy of the decomposition of the C V D precursor. A laser-assisted CVD method can also be used where laser light is directed at the substrate to produce a photoreactive reaction of the CVD precursor. The process of the present invention can be carried out in a variety of CVD reactors, such as, for example, 'hot or cold wall reactors, plasma-assisted, beam-assisted or laser-assisted reactors, as is known in the art. Precursors which are often liquid at room temperature during the CVD manufacturing process are preferred and several of the above asymmetric ferrocene compounds have properties which make them suitable as CVD precursors. 1-Methyl 5 r -ethyl fluorene, for example, having a melting point of 2 °c. · 1-Ethyl, I'-isopropyltetramethane has a melting point of 3 °c; 1-methyl, monoisopropyl fluorene is a liquid at room temperature. The previously used symmetric 1,2 _diethyl fluorene has a melting point of 6 ° C, while 1-ethyl ferrocene has a melting point of 12 ° C. Examples of the substrate which can be coated using the method of the present invention include solid substrates such as metal substrates such as 'Al, Ni, Ti, Co, Pt, Ta; metal tellurides such as TiSi2, CoSi2, NiSi2; semiconductor materials, For example, Si, SiGe 'GaAs 'InP, diamond, GaN, SiC; insulator, for example, Si〇2 'Si3n4, Hf〇2, Ta205, Al2〇3, barium titanate total (BST); barrier material, for example, TiN , TaN; or on a substrate comprising a combination of materials. In addition, the film or coating can be formed on glass, ceramic, plastic 'thermoset poly-30-(26) 1324186 composites and on other coatings or film layers. In a comparative example, thin film deposition is used in the fabrication or processing of electronic components. In other embodiments, the substrate is used to support low resistivity conductor deposits that are stable at oxidant temperatures, such as Ru〇2 films, or Optical transmission film, such as 'Ru〇2. The method of the present invention can be carried out to deposit a flat planar film on a substrate. In a preferred embodiment, a film is deposited on a substrate for wafer fabrication or processing to deposit a film in a feature, such as a channel, hole or via. In addition, the method of the present invention can also be deposited with other steps in the crystallography (such as reticle, etching, and the like), and the CVD or Μ OCVD film can be deposited to a desired thickness to form a film that is less than 1 micron thick. Good less than 5 0 0 Nai is 200 nm thick. It is also possible to produce thin films having a thickness of less than 50 nm and having a thickness of between about 20 and about 30 nm. The above asymmetric metallocene compound can also be used in the present invention for atomic layer deposition (ALD). Or atomic layer nucleation techniques to form a film during which the substrate is exposed to alternating pulses of precursor, oxidant flow. Subsequent layer deposition techniques are described in Example No. 6,287,965, issued to Kang Patent No. 6,34252 7 on September 2, 2001, and the teachings of the two patents dated January 29, 2002 are incorporated by reference. In this article. For example, in an ALD cycle, the substrate is exposed to: a) an inert gas; b) carrying a precursor vapor on a substrate that is specifically implemented. Underneath, at high Ru metal or with smooth, line the method. For example, a circle can be fabricated or fabricated on a substrate. . For example, the rice and the better film, for example, the method of the invention (ALN) agent and inert gas such as the US patent et al. and the United States Sherman ° (with step-by-step inert gas -31 - (27) (27) 1324186 ;c) an inert gas; and d) an oxidizing agent, alone or together with an inert gas. In general, each step can be as short as the equipment allows (eg, micron) and as long as the method requires (eg, 'several seconds or minutes. One cycle can be as short as microseconds and as long as minutes. The cycle can be repeated A period of time ranging from a few minutes to an hour. The resulting film may be thin or thicker, for example, 1 micron (mm). The process of the invention may also be carried out using a supercritical liquid. Currently known in the art. Examples of thin film deposition methods using supercritical liquids include chemical fluid deposition (CFD); supercritical fluid transport-chemical agglomeration (SFT-CD); supercritical fluid chemical deposition (SFCD); and supercritical immersion deposition ( SFID) CFD methods, for example, are well suited for the preparation of high purity films and are suitable for filling complex surfaces and high aspect ratio features. CFD is described, for example, in U.S. Patent No. 5,789,027, issued to Watkins on August 4, 1998. Et al. The use of a supercritical liquid to form a film is also described in U.S. Patent No. 6,541,27,8 B2, issued to Morita et al. on Apr. 2, 003. The teachings of the two patents are incorporated by reference. In one embodiment of the invention, the thermal mapping substrate is exposed to one or more precursors, such as one or more precursors as shown in Table 1, for example, 1-methyl '1' - Ethyl fluorene, in the presence of a solvent such as a critical or supercritical liquid, for example, near critical or supercritical co2. In the case of c 〇 2, the solvent liquid is provided at a pressure above about 1 000 psig and at least A temperature of about 30 ° C. The precursor is decomposed to form a thin film of Group 8 (VIII) -32-(28) (28) 1324186 on the substrate. The reaction is also produced from the Cp and Cp' portions of the precursor. Organic material. The organic material is dissolved in a solvent liquid and easily removed from the substrate. It is also possible to form a metal oxide film, for example by using an oxidant. In one embodiment, the deposition method covers one or more substrates. The substrate is heated in a reaction chamber. The substrate is heated to a desired temperature by heating the entire chamber, for example, 'using a furnace. The vapor of the metallocene compound can be produced, for example, by applying a vacuum to the chamber. For low boiling compounds, The chamber can be hot enough to cause the combination Evaporation of a substance. When a vapor contacts a surface of a thermal substrate, it decomposes and forms a metal or metal oxide film. As described above, the metallocene or metallocene-like precursor may be used alone or in combination with one or more components. For example, a combination of other organometallic precursors, an inert carrier gas, or a reactive gas. Use, -, -, - - A schematic representation of a system that can be used in a film prepared by the method of the present invention. In Figure 8. As shown in Figure 8, the feedstock is directed to a gas-blending manifold to produce a process gas supply to the deposition reactor where film growth occurs, including but not limited to carrier gas, reactive gas , flushing gas, precursors, etching/cleaning gases and others. The precise control of the process gas composition is accomplished using mass-flow controllers (MFCs), valves, pressure transducers, and other devices known in the art. Also shown in Figure 8 is an exhaust manifold that delivers gas leaving the deposition reactor and bypassing the vacuum pump. The mitigation system, the vacuum pump downflow, is used to remove any hazardous materials from the exhaust gases. The deposition system installs an in situ analysis system, including a residual gas analyzer that allows measurement of the method gas composition. The control and data acquisition system monitors various -33- (29) (29) 1324186 method parameters (eg, temperature, pressure, flow rate, etc.). Shown in Figure 9 is a schematic representation of apparatus 10, which is an example of a suitable apparatus that can be used to prepare a process gas for film deposition by the method of the present invention. Apparatus 1 includes a vaporizer 12 in which a liquid or solid precursor is vaporized by methods known in the art. The temperature of the precursor, which determines its vapor pressure, is monitored by a thermocouple and controlled by a heating wire. The appropriate mathematical equations for the relationship between vapor pressure versus temperature for a compound are:

1 η P s a t — A — B / T 其中lnPsat爲飽的蒸氣壓自然對數,a和B實驗式或 理論衍生之常數,及T爲絕對溫度(Kelvin )。 載體氣體,例如氮,係從氣體來源1 4 (例如,氣槽 )供應到汽化器12。所要的載體.氣體之流速以MFC 1 6控 制。載體氣體的壓力以壓力計1 8測量。閥2 0.和22用以 控制供應到汽化器1 2的氣體流速。閥2 4和2 6用以控制 汽化前驅物和排出汽化器的載體氣體之流速。關閉旁通閥 2 8將載體氣體引向汽化器丨2。針閥3 0,位於汽化器.1 2 的下流’用來控制汽化器內側總壓和供應到沉積反應器 3 2的方法氣體之流速。 假定離開汽化器之氣體完全飽和(也就是部壓等於蒸 氣壓)’前驅物的流速可使用載體氣體流速:、總壓和前驅 物蒸氣壓測定。 圖10爲一種沉積反應器32的槪要圖式。包括載體氣 體及蒸氣相前驅物之方法氣體經由入口 34引入。多重入 口或孔也可用於方法氣體、蒸氣或超臨界液體分開的注射 -34- (30) (30)1324186 薄膜沉積在基材3 6上。固定縫隙間隔保持在入口 3 4 的底部和基材3 6的上端之間。基材3 6受載於鉬敏感器 3 8 °敏感器3 8爲圓片,能夠固定樣品,例如,具有高至 3 〃之直徑。反應器可修正以在較大基材(例如,在2 0 0 或3 00微米(mnl )晶圓)上沉積薄膜。 敏感器溫度使用熱電偶· 4〇測量,和以鎢一鹵素燈42 控制。沉積反應器壓力使用電容測壓計4 4監測。在薄膜 沉積期間,基材.3 6加熱到所要的溫度,和使與方法氣接 觸體。一真空泵係用以減少沉積反應器內的壓力。 .1 η P s a t — A — B / T where lnPsat is the natural logarithm of saturated vapor pressure, a and B experimental or theoretically derived constants, and T is the absolute temperature (Kelvin). A carrier gas, such as nitrogen, is supplied to the vaporizer 12 from a gas source 14 (e.g., a gas tank). The desired carrier gas flow rate is controlled by MFC 16. The pressure of the carrier gas was measured by a pressure gauge 18. Valves 2 0 and 22 are used to control the flow rate of the gas supplied to the vaporizer 12. Valves 24 and 26 are used to control the flow rate of the vaporized precursor and the carrier gas exiting the vaporizer. Closing the bypass valve 28 directs the carrier gas to the vaporizer 丨2. The needle valve 30, located in the downstream of the vaporizer .12, is used to control the total pressure inside the vaporizer and the flow rate of the process gas supplied to the deposition reactor 32. It is assumed that the gas leaving the vaporizer is fully saturated (i.e., the partial pressure is equal to the vapor pressure). The flow rate of the precursor can be determined using the carrier gas flow rate: total pressure and precursor vapor pressure. FIG. 10 is a schematic diagram of a deposition reactor 32. A process gas comprising a carrier gas and a vapor phase precursor is introduced via inlet 34. Multiple inlets or wells can also be used for separate injections of method gases, vapors or supercritical fluids. -34- (30) (30) 1324186 Thin films are deposited on substrate 36. The fixed gap spacing is maintained between the bottom of the inlet 3 4 and the upper end of the substrate 36. The substrate 36 is loaded on the molybdenum sensor. The 8 8 sensor 38 is a wafer capable of holding the sample, for example, having a diameter of up to 3 〃. The reactor can be modified to deposit a thin film on a larger substrate (eg, on a 200 or 300 micron (mnl) wafer). The temperature of the sensor is measured using a thermocouple · 4 , and controlled by a tungsten-halogen lamp 42. The deposition reactor pressure was monitored using a capacitance manometer 4 4 . During film deposition, the substrate .36 is heated to the desired temperature and the gas is contacted with the process gas. A vacuum pump is used to reduce the pressure within the deposition reactor. .

在其他例.子·.中,反應室備有就地分析及/或自動方法 控制和數據獲得。也可提供方法管路和室壁等溫控制..V 通常,沉積反應器32中的壓力在從約〇.〇1托到76-〇 托的範圍’較佳在從約0 · 1托到約7 6 0托之範圍和最佳在 從約1托到約5 0托之範圍》 通常,薄膜沉積在從約7 5 °C到約7 〇 〇 °C之範圍,較佳 在從約2 5 0 °C到4 5 (TC的範圍的溫度進行。 如該技藝已知的,氧化氣體,例如,例如,空氣、氧 、富氧空氣、臭氧(03)、一氧化二氮(N20 )或氧化有 機化合物的蒸氣之存在,有利於金屬氧化物薄膜的形成。 也可使用其他有利於形成金屬氧化物薄膜之技術,如該技 藝已知的。氧化劑分壓通常在從約0到約5 0托之範圍。 氧化劑對前驅物的莫耳比可在從0到〗0,000的範圍。 上述前驅物可用以製備包括單一金屬的薄膜,例如, -35- (31) (31)1324186 0 s —薄膜,或包括單一金屬氧化物(例如,Ru ◦ 2 )的薄 膜。也可沉積混合的薄膜,例如混合之金屬氧化物薄膜。 該等薄膜係,例如,藉由使用幾種有機金屬前驅物,其之 至少一種選自上述二茂金屬或似二茂金屬化合物。 也可形成金屬薄膜,例如,藉由沒有使用載體氣體、 蒸氣或其他氧的來源。 該等以本文所述之方法形成的薄膜可藉由該技藝已知 的技術定性,例如,藉由X光繞射(XRD )、歐皆譜學、 X射線光電子發射光譜(XPS )、原子力顯微鏡檢查法( AFM )、掃描電子顯微鏡檢查法、和在該藝術中已·知的其 他技術。也可藉由該技藝已知的方法測量薄膜的電阻率和 熱穩定性。 '' .···..·. 【實例方式】 實例 - 實例1 步驟 A . 5升五-頸圓底燒瓶安裝通過中央頸之機械攪拌槳。 其然後裝入乙醇(2 · 0升)和P P h 3 ( 4 2 0克,1 .6莫耳)。 二個500毫升三頸燒瓶經由Teflon ® (全氟化聚合物, 杜邦公司)導管經過正移位泵連接到5升四一頸燒瓶的二 頸。5升燒瓶之其餘頸安裝冷凝器。加熱套放置在5升燒 瓶之下和攪拌溶液且加熱到回流。在回流時所有的三苯基 膦都溶解在乙醇中。系統在回流時以氮沖洗3 0分鐘。 -36- (32) (32)1324186 在此期間,一個500毫升圓底燒瓶裝入RuC】3. ΧΗ20 (]〇〇克,0.40莫耳)、乙醇(300毫升)和Teflon®( 全氟化聚合物,杜邦公司)塗佈之磁性攪拌棒。乙醇溶液 立刻顯現棕/橘色。爲了溶解所有的RuC13 · ΧΗ20必需 加熱溶液。此溶液藉由***一連接到1 一 2磅/表壓平方 吋(Psig )氮來源的針經過中隔和進入溶液內及藉由以另 一針刺入中隔以使減輕過量壓力來以氮噴射3 0分鐘。· 製造乙腈/乾冰浴和另一5 0.0毫升燒瓶浸.久此浴內。 新鮮蒸餾之甲基環戊二烯(190克,2 7 0毫升,2.4莫耳, 在氮氣下新鮮蒸餾)然後以套管進入冷卻燒瓶內。 ; 三苯基膦和三氯化釕的乙醇溶液之氮噴射完成之後, 二個5 0 0毫升燒瓶的內含物以正移位泵於獨立速率栗進... 5 . 〇升燒瓶內,以使5分鐘之後完成兩個加入.。爲了完成 此事,以4 5毫升/分鐘的速率泵進乙基環.戊二烯和以5 0 毫升/分鐘的速率泵進乙醇三氯化§了。 加入完成之後,使溶液回流額外2小時。在此時間期 間可看到小的橘色結晶累積在2升燒瓶壁上的溶液之液面 (meniscus)上。 步驟B . 攪拌2小時之後從5升燒瓶分開二個正移位栗和 Teflon ® (全氟化聚合物,杜邦公司)管。蒸餾側臂連接 燒瓶的其中一個頸和經由蒸餾除去約1升之乙醇。中止機 械攪拌和橘色結晶沉降於燒瓶底。溶液冷卻到室溫經3小 -37 - (33) (33)丄324186 時。然後藉由***一件具有連接至其終端之粗過濾器板的 玻璃管從燒瓶移出溶液和使用減壓以拉引溶液經過過濾器 板和拉出燒瓶之外。結晶以庚烷(3 0 0毫升)洗滌及以相 似的方式除去庚烷。進行三次洗滌。In other examples, the reaction chamber is equipped with in situ analysis and/or automatic method control and data acquisition. Method piping and chamber wall isothermal control can also be provided..V Typically, the pressure in the deposition reactor 32 ranges from about 〇.〇1 to 76-〇. Preferably, from about 0. 1 to about. The range of 760 Torr and preferably ranges from about 1 Torr to about 50 Torr. Generally, the film is deposited in a range from about 75 ° C to about 7 ° C, preferably from about 2 5 0 ° C to 4 5 (temperature in the range of TC. As known in the art, oxidizing gases such as, for example, air, oxygen, oxygen-enriched air, ozone (03), nitrous oxide (N20) or oxidation The presence of a vapor of an organic compound facilitates the formation of a metal oxide film. Other techniques for forming a metal oxide film can also be used, as is known in the art. The oxidant partial pressure is typically from about 0 to about 50 Torr. The range of the oxidant to the precursor may range from 0 to 0.000. The above precursor may be used to prepare a film comprising a single metal, for example, -35- (31) (31) 1324186 0 s - film, Or a film comprising a single metal oxide (for example, Ru ◦ 2 ). It is also possible to deposit a mixed film, such as a mixture. Metal oxide film. For example, by using several organometallic precursors, at least one of them is selected from the above-mentioned metallocene or a metallocene-like compound. A metal thin film can also be formed, for example, by No source of carrier gas, vapor or other oxygen is used. The films formed by the methods described herein can be characterized by techniques known in the art, for example, by X-ray diffraction (XRD), Eurasian spectroscopy X-ray photoelectron emission spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, and other techniques known in the art. The resistance of the film can also be measured by methods known in the art. Rate and thermal stability. '' . . . . . . . . . Example [Example] Example - Example 1 Step A. A 5-liter five-neck round bottom flask was installed through a mechanical stirring paddle of the center neck. 2 · 0 liters) and PP h 3 (420 μg, 1.6 m). Two 500 ml three-necked flasks were connected via a positive displacement pump via a Teflon ® (perfluorinated polymer, DuPont) tube. Two necks of a 5-liter four-neck flask The remaining neck of the 5 liter flask was fitted with a condenser. The heating mantle was placed under a 5 liter flask and the solution was stirred and heated to reflux. All triphenylphosphine was dissolved in ethanol at reflux. The system was flushed with nitrogen at reflux. 0 min. -36- (32) (32) 1324186 During this time, a 500 ml round bottom flask was charged with RuC] 3. ΧΗ20 (] gram, 0.40 mM), ethanol (300 ml) and Teflon® ( Perfluorinated polymer, DuPont's coated magnetic stir bar. The ethanol solution immediately appeared brown/orange. In order to dissolve all RuC13 · ΧΗ20, it is necessary to heat the solution. This solution is passed through a septum and into a solution by inserting a needle attached to a 1 lb/gauge square 吋 (Psig) nitrogen source and by pulsing the septum with another needle to reduce excess pressure. Spray for 30 minutes. · Manufacture of acetonitrile/dry ice bath and another 5 0.0 ml flask dipped in this bath for a long time. Freshly distilled methylcyclopentadiene (190 g, 270 ml, 2.4 mol, freshly distilled under nitrogen) was then cannulated into a cooled flask. After the nitrogen injection of the triphenylphosphine and antimony trichloride in ethanol solution is completed, the contents of the two 500 ml flasks are pumped at a separate rate with a positive displacement pump... 5 . So that after 5 minutes, two joins are completed. To accomplish this, the ethylcyclopentadiene was pumped at a rate of 45 ml/min and the ethanol trichlorination was pumped at a rate of 50 ml/min. After the addition was completed, the solution was refluxed for an additional 2 hours. During this time, small orange crystals were observed to accumulate on the meniscus of the solution on the wall of the 2-liter flask. Step B. After stirring for 2 hours, separate two positive displacement chestnuts and Teflon ® (perfluorinated polymer, DuPont) tubes were separated from the 5 liter flask. The distillation side arm was attached to one of the necks of the flask and about 1 liter of ethanol was removed via distillation. The mechanical agitation and orange crystals were stopped and settled at the bottom of the flask. The solution was cooled to room temperature over 3 hours -37 - (33) (33) 丄 324186. The solution was then removed from the flask by inserting a glass tube having a coarse filter plate attached to its terminal and a reduced pressure was used to pull the solution through the filter plate and out of the flask. The crystals were washed with heptane (300 mL) and the heptane was removed in a similar manner. Three washes were performed.

步驟C 以橡膠隔片封閉所有到燒瓶的開口及抽空燒瓶且以氮 再注滿三次。T H F ( 5 0 0毫升,無水)以套管進入燒瓶內 和開始機械攪拌。乙基環戊二烁鋰(5 0 0毫升,1 .2 Μ, 〇· 60莫耳)的THF溶液然後以套管進入5 ,升燒瓶內。內 含物加熱到回·流和攪拌4小時。 在回流4小時之後,中止攪拌和溶液轉移到2升一頸 圓底燒瓶中。此溶液在旋轉蒸發器上濃縮至約2 0.0毫升的 體積。黏稠液體然後轉移到2 5 0毫升圓底燒瓶中。 250毫升圓底燒瓶安裝具有維格羅(vigreux)凹痕和 ]0 0毫升儲存瓶接收器之短徑蒸餾連接管。在真空下蒸餾 液體和透明黃色液體,包含一些三苯基膦之甲基,], —乙基二茂釘(由G C M S測定)。黃色液體的旋帶蒸餾提 供84.6克(82%產率)之無三苯基膦的1~甲基,1,一乙 基二茂釕,>99%純度(GCMS,1HNMR),其餘雜質可 歸因於1’1,_二甲基二茂釕和1,1,—二乙基二茂釕。 TG Α硏究顯示這個液體具有少於〇 . 〇 i %非揮發性殘餘物 -38- (34) (34)1324186 實例2 2升三頸圓底燒瓶裝入Teflon ® (全氟化聚合物,杜 邦公司)攪拌棒、乙醇(1.0升)和PPh3 ( 2 63克,莫 耳’ 5當量)。250毫升滴液漏斗、150毫升加熱水套之 滴液漏斗和冷凝器連接到2升的燒瓶之三頸上。.注意兩個 滴液漏斗安裝允許其與圓底燒瓶氣壓隔離之Teflon ®閥 是重要的。橡膠隔片連接到1 5 0毫升加熱水套之滴液漏斗 的頂端。冷凝器的頂端安裝T連接管和連接到惰性大氣。 加熱套放置在2升3 -頸燒瓶之下和攪拌溶液且加熱到回 流°在回流時所有的三苯基膦都溶解在乙醇中。系統在回 流時以氮沖洗3 0分鐘。 .在此期間,5 0 0毫升錐形瓶裝入Ru C13 · X H2.0 (. 5 0克 ’ 〇_2〇莫耳)、乙醇(150毫升,1當量)和Teflon ® ( & m化聚合物,杜邦公司)塗怖之磁性攪拌棒。乙醇溶液 立刻顯現棕/橘色。爲了溶解所有的RUC]3· · ΧΗ20必需 溫和加熱溶液。此溶液倒進2 5 0毫升滴液漏斗內及滴液漏 斗安裝椽膠隔片。此溶.液藉由***連接到1— 2 psig氮來 源的針經過中隔和進入溶液內及藉由以另一針刺入中隔以 使減輕過量壓力來以氮噴射3 〇分鐘。 在15〇毫升加熱水套之滴液漏斗中製造甲醇/乾冰浴 。此滴液漏斗內部以噴射另一滴液漏斗相似的方式用氮沖 洗30分鐘。甲基環戊二烯(96.2克’ 1.2莫耳,6當量’ 在氮大氣下蒸餾二次)通過橡膠隔片以套管加入冷卻的滴 液漏斗內。 -39- (35) (35)1324186 在2升-圓底燒瓶沖洗3小時之後,打開二個隔離滴 液漏斗和系統其餘部份的Teflon ®閥及同時地開始逐滴 加入二個溶液。經20分鐘期間二個溶液皆加至乙醇pph3 溶液中。在整個期間溶液在回流下。溶液很快地顯現深橘 棕色。加入完成之後,使溶液回流額外2小時。在此時間 期間可看到CpRu ( PPh3 ) 2C1的小橘色結晶累積在2升燒 瓶壁上的溶液之液面上。 ~件具有連接至其終端之粗多孔過濾器板的導管連接 至正移位泵。管之多孔端浸漬於反應器中及所有的液體泵 出2升圓底燒瓶。在這個階段中從反應器移除滴液漏斗。 一側安裝K -頭蒸餾連接管和另一側安裝橡膠隔片。抽空 燒瓶且.以氮再注滿三次。在氮氣下‘工‘作,.無水甲苯(1 . 0 升)通過橡膠隔片以套管進入5升燒瓶內。暗不透明溶液 加熱到回流及打開K -頭蒸餾連接管以蒸餾掉一部份溶劑 。收集餾出液直到頭溫度到達1 〇9°C (注意在不.同實驗中 :此消耗不同體積的溶劑-典型地400 — 600毫升的液體 是重要的)。溶液然後冷卻到回流以下。 燒瓶然後裝入額外甲苯以獲得約600毫升甲苯之體積 。甲苯之乙基環戊二烯化鋰漿料(35克,〇:35莫耳,400 毫升)然後以套管進入反應盆內。在此加入之後溶液於 8 〇°C攪拌4小時。在這個階段中從手套箱移出.燒瓶及使用 κ-頭蒸飽連接管移除大部分甲苯。 其餘液體(約400毫升)傾析至1 .〇升圓底燒瓶內。 此圓底燒瓶安裝具有維格羅凹痕之短徑蒸餾連接管和蒸餾 -40 - (36) 1324186 。從維格羅管柱收集之液體再次使用 餾及獲得4 4克透明黃色液體,1一 ,>99% 純度(GCMS) 。 TGA 硏究 少於0.0 1 %非揮發性殘餘物。 實例3 如下製備(乙基環戊二烯化)鋰 底燒瓶裝入 T e f 1 〇 η · ® (全氟化聚合 棒。活栓連接管.、具有熱壁和橡膠隔 在燒瓶之三頸上。氮/真空歧管連接 燒瓶且以氮再注滿三次。無水甲苯( 通過橡膠隔片進入燒瓶內和開始攪拌 接到具有n a 1 gene管的加套燒瓶的外 °C )循環流過加套燒瓶之外壁。一旦 蒸餾之乙基環戊二烯(在維格羅管柱 以套管進入燒瓶內(1 2 7克,1 , 3 5莫 保持在〇°C以下的溫度之速率(約2 加入正一丁基鋰(8 0 0晕;升,在己院 耳)。在加入正一丁基鋰期間細白色 烯化鋰)在溶液中變得明顯。 此物質能夠以懸浮液使用或經由 離成固體使用。 實例4 旋帶蒸餾在真空下蒸 书基,丨’—乙基二茂釕 ’顯示這個液體具有 。2升三—頸加套圓 物’杜邦公司)攪拌 片的熱壁連接管安裝 到活栓連接管及拈空 1 · 0升)然後以套管 。冷卻流體循環器連 套且冷卻液體(^ i 5 甲苯到達一1.0 °C,新 上之中央部分蒸餾) 耳)。當攪拌時,以 小時)慢慢地以套管 中的].614,1.2 8 莫 沉澱物(乙基環戊二 過濾和溶劑的移除單 -41 - (37) (37)1324186 在氮手套箱中,25 0毫升燒瓶裝入ΤΗF ( 50毫升,無 水’無抑制劑)、氯(乙基環戊二烯)雙(三苯基膦)釕 (II) (3.22 克,0.004 莫耳,1 當量)和 Teflon ® (全 氟化聚合物,杜邦公司)攪拌棒。攪拌溶液和慢慢加入異 丙基環戊—稀化鈉的酒紅(burgundy)色THF溶液( 0.20M’ 30毫升,u當量)。加入溶液之後顯現深紅色 。在30分鐘內,液面出現黃色。攪拌溶液過夜。 從溶液取出一等分(1..0毫升)且以GC/ MS分析。 觀察到與1 —乙基一]'一異丙基二茂釕一致之具有3〇 ]克 /莫耳的質量之峰。.也觀察到具有與烷基環戊二烯二聚物 二1 ’ I1 —二乙基二.茂釕、1 ’ 1 '—二異丙基二茂釕和三苯 基膦的存在一致的質量之其他峰’。. 然後在減壓下從燒瓶除去THF溶劑。2 5 0毫升燒瓶安 裝真空加套短徑蒸餾連接管,且在減壓(〜0.1托)下蒸餾 燒瓶之內含物。收集淡黃色液體(0.72克)。這個液體然 後經由色層分析法純化。使用矽凝膠之戊烷溶液。管柱具 有0 · 7 5 〃的直徑和 6 〃長度。經由色層分析法單離0 · 5 3 克之99+%純1—乙基-1'—異丙基二茂釕(41 %產率) 實例5 在氮手套箱中,250毫升燒瓶裝入THF(50毫升,無 水,無抑制劑)、氯(甲基環戊二烯)雙(三苯基膦)釕 (II) ( 5.02 克,0.0 07 莫耳,1 當量)和 Tef]on® (全氟 -42- (38) (38)1324186 化聚合物’杜邦公司)攪拌棒。攪拌溶液和慢慢加入異丙 基環戊二烯化鈉的酒紅(burgundy)色THF溶液(0_20M ’ 50毫升’ ι·5當量)。加入溶液之後顯現深紅色。在30 分鐘內’液面出現黃色。攪拌溶液過夜。 從溶液取出一等分(1.0毫升)且以GC/MS分析。 觀察到與1_甲基一 Γ—異丙基二茂釕—致之具有28 7克 /莫耳的質量之峰.。也觀察到具有與烷基環戊二烯二聚物 、1’ Γ—二甲基二茂釕、1,],一二異丙基二茂釕和三苯 基膦的存在一致的質量之其他峰。 然後在減壓下從燒瓶除去T H F溶劑。2 5 0毫升燒瓶安 .衣..具i加甚短徑蒸館連接管’且在減壓(〜〇·].托.)下蒸 餾燒·瓶之內含物。收集淡黃色液體·( 1 . 7 8克)。這個液體 然後經由色層分析法純化。使用矽凝膠之戊烷溶液。管柱. 具有〇_ 75〃的直徑和6〃長度。經由色層分析法單離1 ·〇3 : 克之98 + %純1-甲基一〗’ -異丙基二茂釕(53%產率) 實例6 在氮手套箱中,250毫升燒瓶中裝入雙(丙基環戊二 烯)鎂(5.15克,0.02莫耳,1當量)、氯(甲基環戊二 烯)雙(三苯基膦)釕(II) (5.02克,〇.007莫耳,] 當量)和Teflon ® (全氟化聚合物,杜邦公司)攪拌棒 。甲苯(1 2 0毫升,無水,無抑制劑)以套管進入2 5 0毫 升圓底燒瓶內且攪拌內含物。加入溶劑之後,溶液顯現溁 -43- (39) (39)1324186 紅色。 然後在減壓下從燒瓶除去甲苯溶劑。在減壓下除去甲 苯溶劑及燒瓶安裝短徑蒸餾連接管。收集餾出液及GC/ MS顯示來自短徑蒸餾主要切段爲8 8 7 %純1_丙基厂― 乙基二茂釕。 實例7 測量釕前驅物的蒸氣壓。在硏究之溫度範圍內(2 5 _ 7〇°C ) ’ ( MeCp ) ( EtCp ) Ru 的蒸氣壓爲(EtCp ) .2Ru 的蒸氣s的至少兩倍。 使闱手套箱和惰性大氣,約1克的(MeCp ) ( EtCp )Ru放置在汽化器內。在.沉積·之前,在室溫下以超音波 淸理基材p : 該等基材首先以H20,接著]:I ·· 5 — NH4〇h : H7C>2 :H?_0的溶液,然後最以後HA沖洗間隔!分鐘。然後 使用氮乾燥基材。使用裝備有磁性連接轉移臂之裝卸—鎖 完成樣品引入和從反應器移除。 一旦基材負載,和放置在加熱器上,以下列序列進行 薄膜沉積。首先,該等基材加熱到所需要的溫度。該等樣 品然後暴露在包含前驅物(等)和任何共反應% ( ^ $ 口氧^ 化劑)之方法氣體中。使兩超局純度(Ujjp),大於 99.9 99 %,氮作爲載體和淸除氣體。使用UHp氧作爲氧 化氣體。使用UHP氮汽化前驅物,(甲基環戊二燦)— (乙基環戊二烯)釕。 -44 - (40) (40)1324186 實例8 釕薄膜沉積在氧化矽(Si02 ) /矽(Si )基材上,.使 甩一種例如圖9和1 0所示的裝置。反應條件及結果槪述 在表2中。在所有這些實驗期間,氣體的總流速於每分鐘 750標準立方公分(seem),和前驅物流速爲0.4 seem。 基材的溫度係以麻薩諸塞州Concord之 WiI】iamson公司 製造的雙重一波長高溫計測量。反應器裡的壓力使用能夠 測量0.1至LI 1 0 00托且由麻薩諸塞州Andover製造之MKS 儀器加熱B a r a i r ο η電量式m ο η 〇 m e t e r測'定。縫隙係指在 方法氣體入口管和欲塗佈基材之間的距離,以吋表示。依 照表2中的比例調節氧流速和其餘氣體爲氮。02 ·對前驅 物之比例爲氧之流速除以方法氣體中前驅物的莫耳流速。 如表2所見,基材暴露在完全方法氣體混合物(蒸氣、02 反應物氣體、N 2載體氣體)的時間在1 5和6 0分鐘之間 改變。 · -45 - 1324186Step C All openings to the flask were closed with a rubber septum and the flask was evacuated and refilled three times with nitrogen. T H F (500 ml, anhydrous) was introduced into the flask in a cannula and mechanical stirring was started. A solution of ethylcyclopentaquinone lithium (500 ml, 1.2 Μ, 〇 60 mol) in THF was then cannulated into a 5 liter flask. The contents were heated to reflux and stirred for 4 hours. After refluxing for 4 hours, the stirring was stopped and the solution was transferred to a 2-liter one-neck round bottom flask. This solution was concentrated on a rotary evaporator to a volume of about 20.0 ml. The viscous liquid was then transferred to a 250 ml round bottom flask. A 250 ml round bottom flask was fitted with a short diameter distillation connection tube with a vigreux dent and a 0 0 ml storage bottle receiver. The liquid and clear yellow liquid were distilled under vacuum, containing some of the methyl, triphenylphosphine methyl,], ethyl octagonal nails (determined by G C M S). The spin-belt distillation of the yellow liquid provided 84.6 g (82% yield) of triphenylphosphine-free 1-methyl, 1, monoethyl fluorene, >99% purity (GCMS, 1H NMR), and the remaining impurities were It is attributed to 1'1, dimethyl dimethyl fluorene and 1,1,-diethyl fluorene. The TG study showed that this liquid had less than 〇. 〇i % nonvolatile residue -38- (34) (34) 1324186 Example 2 A 2 liter three-necked round bottom flask was charged with Teflon ® (perfluorinated polymer, DuPont) Stir bar, ethanol (1.0 L) and PPh3 (2 63 g, Mo's 5 equivalents). A 250 ml dropping funnel, a 150 ml heated water jacket dropping funnel and a condenser were attached to the three necks of a 2-liter flask. It is important to note that the two dropping funnels are fitted with a Teflon® valve that allows it to be isolated from the pressure of the round bottom flask. The rubber septum was attached to the top of the dropping funnel of a 150 ml heated water jacket. The top end of the condenser is fitted with a T connection tube and connected to an inert atmosphere. The heating mantle was placed under a 2-liter 3-neck flask and the solution was stirred and heated to reflux. All triphenylphosphine was dissolved in ethanol at reflux. The system was flushed with nitrogen for 30 minutes during reflow. During this time, the 500 ml Erlenmeyer flask was charged with Ru C13 · X H2.0 (. 50 g '〇 2〇 Moel), ethanol (150 ml, 1 equivalent) and Teflon ® ( & m Polymer, DuPont) coated magnetic stir bar. The ethanol solution immediately appeared brown/orange. In order to dissolve all of the RUC]3··20, it is necessary to gently heat the solution. This solution was poured into a 250 ml dropping funnel and a drip dispenser was fitted with a silicone septum. This solution was sprayed with nitrogen for 3 minutes by inserting a needle connected to a 1-2 psig nitrogen source through the septum and into the solution and by puncturing the septum with another needle to relieve excess pressure. A methanol/dry ice bath was made in a dropping funnel of 15 ml of heated water jacket. The inside of the dropping funnel was flushed with nitrogen for 30 minutes in the same manner as another dropping funnel. Methylcyclopentadiene (96.2 grams ' 1.2 moles, 6 equivalents distilled twice under nitrogen atmosphere) was piped through a rubber septum into a cooled dropping funnel. -39- (35) (35) 1324186 After rinsing in a 2 liter-round bottom flask for 3 hours, open two separate dropping funnels and the rest of the system of Teflon® valve and simultaneously add two solutions dropwise. Both solutions were added to the ethanol pph3 solution over a 20 minute period. The solution was refluxed throughout the period. The solution quickly appeared dark orange brown. After the addition was completed, the solution was refluxed for an additional 2 hours. During this time, small orange crystals of CpRu (PPh3) 2C1 were observed to accumulate on the liquid surface of the solution on the wall of the 2-liter flask. The conduit having a coarse porous filter plate attached to its terminal is connected to a positive displacement pump. The porous end of the tube was immersed in the reactor and all of the liquid was pumped out of a 2 liter round bottom flask. The dropping funnel was removed from the reactor at this stage. Install the K-head distillation connection tube on one side and the rubber septum on the other side. The flask was evacuated and refilled three times with nitrogen. Under nitrogen, 'anhydrous toluene (1.0 liter) was passed through a rubber septum into a 5 liter flask. The dark opaque solution is heated to reflux and the K-head distillation connection tube is opened to distill off a portion of the solvent. The distillate was collected until the head temperature reached 1 〇 9 ° C (note that in the same experiment: this consumes different volumes of solvent - typically 400 - 600 ml of liquid is important). The solution is then cooled to below reflux. The flask was then charged with additional toluene to obtain a volume of about 600 ml of toluene. A lithium ethylcyclopentadienide slurry (35 g, hydrazine: 35 moles, 400 ml) of toluene was then introduced into the reaction pot as a cannula. After the addition, the solution was stirred at 8 ° C for 4 hours. At this stage, the flask was removed from the glove box and most of the toluene was removed using a κ-head steaming connection. The remaining liquid (about 400 ml) was decanted into a 1. liter round bottom flask. This round bottom flask was fitted with a short diameter distillation connection tube with a Vigre dent and a distillation -40 - (36) 1324186. The liquid collected from the Vigre column was re-distilled and obtained 4 4 g of a clear yellow liquid, 1 , > 99% purity (GCMS). TGA study less than 0.01% non-volatile residue. Example 3 A lithium bottom flask prepared as follows (ethylcyclopentadienide) was charged with T ef 1 〇η · ® (perfluorinated polymeric rod. The live plug connection tube., with hot wall and rubber on the neck of the flask. The nitrogen/vacuum manifold was attached to the flask and refilled with nitrogen three times. Anhydrous toluene (passing through the rubber septum into the flask and beginning to agitate to the outer °C of the jacketed flask with the na 1 gene tube) was circulated through the jacketed flask. Outside the wall. Once distilled ethylcyclopentadiene (in the Vigrow column with a cannula into the flask (1 2 7 grams, 1 , 3 5 Mo maintained at a temperature below 〇 ° C) (about 2 join n-Butyllithium (800° halo; liter, in the yard). The fine white alkylene oxide during the addition of n-butyllithium) becomes apparent in solution. This material can be used as a suspension or via a suspension. It is used as a solid. Example 4 Spin-belt distillation steams the book base under vacuum, 丨 '-ethyl ferrocene' shows that this liquid has. 2 liters of three-neck plus rounds 'DuPont' hot-wall connecting tube of the stirring piece Install to the stem connection tube and hollow 1 · 0 liters) and then use the casing. Cooling fluid And the liquid cooling jacket is connected (^ i 5 a toluene reaches 1.0 ° C, the central portion of the new distillation) ears). When stirring, in an hourly) slowly in the casing of the .614, 1.2 8 Mo precipitate (ethyl cyclopentane filtration and solvent removal single-41 - (37) (37) 1324186 in nitrogen gloves In a box, a 25 ml flask was charged with ΤΗF (50 ml, anhydrous 'no inhibitor'), chloro (ethylcyclopentadienyl) bis(triphenylphosphine) ruthenium (II) (3.22 g, 0.004 mol, 1 Equivalent) and Teflon ® (perfluorinated polymer, DuPont) stir bar. Stir the solution and slowly add isopropylcyclopenta-salted sodium burgundy THF solution (0.20M' 30 ml, u Equivalent). Dark red after the addition of the solution. In 30 minutes, the liquid surface appeared yellow. Stir the solution overnight. Take an aliquot (1..0 ml) from the solution and analyze by GC/MS. Observed with 1 - B一一] 'Isopropyl ferrocene consistently has a mass of 3 〇] g / mol. Also observed with alkyl cyclopentadiene dimer two 1 'I1 - diethyl two . The other peaks of the same quality of the presence of 1 ' 1 '-diisopropyl fluorenone and triphenylphosphine.. Then the THF was removed from the flask under reduced pressure. The 250 ml flask was fitted with a vacuum-applied short-diameter distillation connection tube, and the contents of the flask were distilled under reduced pressure (~0.1 Torr). A pale yellow liquid (0.72 g) was collected. This liquid was then analyzed by chromatography. Purification by method. A pentane solution of ruthenium gel was used. The column has a diameter of 0 · 7 5 和 and a length of 6 。. It is separated from 0 · 5 3 g of 99+% pure 1-ethyl-1' by chromatography. - isopropyl ferrocene (41% yield) Example 5 In a nitrogen glove box, a 250 ml flask was charged with THF (50 mL, anhydrous, no inhibitor), chloro (methylcyclopentadiene) bis (three Phenylphosphine) ruthenium (II) (5.02 g, 0.007 mol, 1 eq.) and Tef]on® (perfluoro-42- (38) (38) 1324186 polymer "DuPont" stir bar. Stirring solution And slowly add isopropylcyclopentadienide in burgundy-colored THF solution (0-20 M '50 ml' ι·5 eq.). After adding the solution, it appears dark red. In 30 minutes, the liquid surface appears yellow. The solution was stirred overnight. One aliquot (1.0 ml) was taken from the solution and analyzed by GC/MS. It was observed with 1-methyl-indole-isopropyl钌 - resulting in a mass of 28 7 g / mol. Also observed with alkyl cyclopentadiene dimer, 1 ' Γ dimethyl dimethyl fluorene, 1,], one or two different The other peaks of the same quality of propyl hafnocene and triphenylphosphine were present. Then the THF solvent was removed from the flask under reduced pressure. 2 50 ml flask was fitted with a cloth. 'And under reduced pressure (~〇·]. tray.) Distillate the contents of the bottle. Collect a light yellow liquid (1.78 g). This liquid was then purified by chromatography. A pentane solution of hydrazine gel was used. Column. It has a diameter of 〇 75 和 and a length of 6 。. Separated by chromatography 1 · 〇 3 : gram 98 + % pure 1-methyl 〗 〖 -isopropyl isopropyl bismuth (53% yield) Example 6 in a nitrogen glove box, 250 ml flask Into bis(propylcyclopentadienyl)magnesium (5.15 g, 0.02 mol, 1 equivalent), chloro (methylcyclopentadienyl) bis(triphenylphosphine) ruthenium (II) (5.02 g, 〇.007 Mohr,] Equivalent) and Teflon ® (perfluorinated polymer, DuPont) stir bar. Toluene (120 ml, anhydrous, no inhibitor) was placed in a 250 ml round bottom flask with a cannula and the contents were stirred. After the addition of the solvent, the solution appeared 溁-43-(39) (39) 1324186 red. The toluene solvent was then removed from the flask under reduced pressure. The toluene solvent was removed under reduced pressure and the flask was mounted with a short diameter distillation connection. The distillate was collected and GC/MS showed that the main section from the short diameter distillation was 8 8 7 % pure 1-propyl plant - ethyl ferrocene. Example 7 The vapor pressure of the ruthenium precursor was measured. The vapor pressure in the temperature range (2 5 _ 7 〇 ° C ) ' ( MeCp ) ( EtCp ) Ru is at least twice the vapor s of (EtCp ) .2Ru. Approximately 1 gram of (MeCp) ( EtCp ) Ru was placed in the vaporizer with an inert glove atmosphere. Prior to deposition, the substrate p was ultrasonically treated at room temperature: the substrates were first treated with H20, then:::I.·5 - NH4〇h: H7C>2:H?_0, then The most HA rinse interval afterwards! minute. The substrate is then dried using nitrogen. Sample introduction and removal from the reactor are accomplished using a loading and unloading lock equipped with a magnetically coupled transfer arm. Once the substrate is loaded and placed on the heater, film deposition is performed in the following sequence. First, the substrates are heated to the desired temperature. The samples are then exposed to a process gas comprising a precursor (etc.) and any co-reaction % (^ $ Oxygenating Agent). The two super-purity (Ujjp) is greater than 99.9 99%, nitrogen is used as a carrier and the gas is removed. UHp oxygen is used as the oxidizing gas. UHP nitrogen vaporization precursor, (methylcyclopentane) - (ethyl cyclopentadienyl) hydrazine. -44 - (40) (40) 1324186 Example 8 A tantalum film was deposited on a cerium oxide (SiO 2 ) / cerium (Si) substrate, such as the apparatus shown in Figures 9 and 10. The reaction conditions and results are summarized in Table 2. During all of these experiments, the total flow rate of the gas was 750 standard cubic centimeters per minute (seem) and the precursor flow rate was 0.4 seem. The temperature of the substrate was measured using a dual one-wavelength pyrometer manufactured by WiI, iamson Corporation, Concord, Mass. The pressure in the reactor was measured using a MKS instrument capable of measuring 0.1 to LI 100 Torr and manufactured by Andover, Mass., B a r a i r ο η electric quantity m ο η 〇 m e t e r. The gap is the distance between the method gas inlet tube and the substrate to be coated, expressed as 吋. The oxygen flow rate and the remaining gas were adjusted to nitrogen according to the ratio in Table 2. 02 • The ratio of precursor to the flow rate of oxygen divided by the molar flow rate of the precursor in the process gas. As seen in Table 2, the time during which the substrate was exposed to the complete process gas mixture (vapor, 02 reactant gas, N 2 carrier gas) varied between 15 and 60 minutes. · -45 - 1324186

<N漱 驄 第一次嘗試,沒有看得見的沉積 ,第一次成功的沉積 高溫計輸出振動,指示薄膜生長 均勻性好於運轉(b) 沒有看得見的沉積 瑯 1 1 1 1 4H 騷制 trn 沉積薄膜 沉積薄膜 藉由增加縫隙來增加均勻性 1 藉由減少〇2/前驅物比到約50來增加均勻性1 _1 在較低溫度和較高壓力下生長Ru薄膜 重複(d)以看看前驅物是否在運轉(e)期間消失 〇2/前驅 .物的比 500 500 縫隙, 吋 1—^ CS (N P-i CN CS (N CN P Η 240 360 360 S m 280 360 沉積時間 ,分鐘 § iT) iTi iT) 運轉 3 S -46- (42) 1324186<N漱骢 first attempt, no visible deposition, first successful deposition pyrometer output vibration, indicating film growth uniformity better than operation (b) no visible deposition 琅 1 1 1 1 4H Sao trn deposited thin film deposited film to increase uniformity by increasing the gap 1 Increase uniformity by reducing 〇2/precursor ratio to about 50 1 _1 Growth of Ru film repeat at lower temperature and higher pressure (d To see if the precursor disappears during operation (e) 〇 2/precursor. The ratio of the product is 500 500 crevice, 吋1—^ CS (N Pi CN CS (N CN P Η 240 360 360 S m 280 360 deposition time) , minutes § iT) iTi iT) operation 3 S -46- (42) 1324186

沉積薄膜之厚度以橫截面掃描電子顯微鏡檢查法( S EM )測量。薄膜電阻,和對應電阻率,使用4 —點探針 測量。以各種技術確定元素組成,包括能量分散光譜學( EDS )和XPS。圖1 1和12顯示來自運轉(d )的樣品75 度傾斜之橫截面圖,藉由掃描電子顯微鏡檢查法收集。發 現以運轉(d )條件形成的薄膜具有有關厚度均勻性和電 阻率之良好性質。釕薄膜爲約2 0 0奈米(nm )厚。以4 點探針方法測量薄膜電阻爲〇 . 1 1 Q / s q。此產生.2 2 u Ω cm的電阻率。以能量分散光譜學(EDS )獲得的光譜分 散,顯示在圖〗3中,確認釕的薄膜存在於Si02/ Si基材 上。 預期例却藉由減少沉,積時間,也可產生較薄薄膜,例 如,2 0到3 0 n m厚。 實例9The thickness of the deposited film was measured by cross-sectional scanning electron microscopy (S EM ). The sheet resistance, and the corresponding resistivity, were measured using a 4-point probe. Elemental composition is determined by a variety of techniques, including energy dispersive spectroscopy (EDS) and XPS. Figures 1 and 12 show cross-sectional views of the 75 degree tilt of the sample from run (d), collected by scanning electron microscopy. It was found that the film formed under the condition of operation (d) has good properties regarding thickness uniformity and resistivity. The tantalum film is about 200 nanometers (nm) thick. The sheet resistance was measured by the 4-point probe method as 〇 1 1 Q / s q. This produces a resistivity of .2 2 u Ω cm. The spectral dispersion obtained by energy dispersive spectroscopy (EDS) is shown in Fig. 3, confirming that the film of ruthenium is present on the SiO 2 /Si substrate. It is expected that thinner films can be produced by reducing the sinking time, for example, 20 to 30 nm thick. Example 9

實驗運轉a - f (敘述於實例8 )和額外運轉1 — 3 2顯 示在表3中。使用例如圖9和10所述之備進行實驗。如 表3中所見,基材包括Si〇2./ Si、氧化鋁和製圖晶圓。所 有的薄膜沉積實驗使用每分鐘1〇〇標準立方公分(seem ) 的氮流通過前驅物汽化器進行。縫隙用於運轉c - f及運 轉1 — 3 2爲2吋。(運轉a _ b與以一吋縫隙進行)。汽 化器壓力在運轉1 5和1 8爲2 5 0托和在所有其他情形中爲 50托。 -47- 1324186Experimental runs a - f (described in Example 8) and additional runs 1 - 3 2 are shown in Table 3. Experiments were performed using, for example, the preparations described in Figures 9 and 10. As seen in Table 3, the substrate comprised Si〇2./Si, alumina, and patterned wafers. All film deposition experiments were performed using a nitrogen stream of 1 〇〇 standard cubic centimeter per minute through a precursor vaporizer. The gap is used to operate c - f and the operation 1 - 3 2 is 2 吋. (Run a _ b with a gap). The carburetor pressure is 25 Torr at 1 5 and 18 and 50 Torr in all other cases. -47- 1324186

ε嗽 註釋 旺 m q ήτΧ line q. _ y 衫S 1 u 搬邑 第一次成功生長 高溫計振動,指示薄 膜生長 沒有看得見的生長 0 (¾"鷗跋 O ✓ ΜΊ §i^ 騷狯鬆艄 其生長看似快於2 I托運轉 沒有看得見的生長 s m 生長Ru薄膜 生長Rii薄膜 藉由增加縫隙來增加均勻性 藉由減少02/前驅物比到約50來增加均勻性| 在較低溫度和較高壓力下生長RU薄膜 重重複(d)以看看前驅物是否在運轉(e)期間消 失 增加壓力 1以新負載之前驅物及改變輸送管重複(d)和⑴! 以(EtCp)2Ru前驅物重複⑴。 以350C的基材溫度重複⑵ ~s M田 1ι is (N imn 〇輯 1 ·· 銶_ 使用(EtCp)2Ru之與(4)相同的參數 · 以5分鐘運轉時間重複(4) 睢 i潤 Η Φ 爲靈 S w it :i 键!〇 ◎名 S职 付潞 jfeOJ r^> 〇] ε| z$S 维p Ο 〇 〇 〇 〇 〇 〇 〇 〇 〇 Ο 〇 〇 卜 o 駕s s 〇 〇 〇 ο 〇 〇 o m Ή 鬯R 關 ο ΓΟ ΓΜ CN CS CS CN <Ν CN rs S ^ ο 糊乸 ο ?. 〇 v〇 m 〇 v〇 cn 〇 VO CO 〇 〇〇 CN S ΓΟ S m 〇 IT) (^) tn 〇 ΓΟ Ο ι〇 m 〇 in 〇 o cn 狴馘 ο m § v-i »〇 m r—Η V) ; 前驅物 (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru | (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (EtCp)2Ru (EtCp)2Ru (MeCp)(EtCp)Ru (EtCp)2Ru |(MeCp)(EtCp)Ru (MeCp)(EtCp)Ru 運轉# rt JD 〇 X5 ο Cm OJ m 寸 »〇 VO OO嗽嗽注旺mq ήτΧ line q. _ y shirt S 1 u Moved the first successful growth of the pyrometer vibration, indicating that the film growth has no visible growth 0 (3⁄4" Gull O ✓ ΜΊ §i^ Sao Songsong艄 its growth appears to be faster than 2 I tray operation without visible growth sm growth Ru film growth Rii film increases uniformity by increasing the gap by reducing the 02/precursor ratio to about 50 to increase uniformity | The RU film is grown at low temperature and higher pressure and repeats (d) to see if the precursor disappears during operation (e). Increase the pressure 1 to drive the new load and change the transfer tube to repeat (d) and (1)! EtCp) 2Ru precursor repeat (1) Repeat at 350C substrate temperature (2) ~ s M field 1ι is (N imn 〇 1 · · 銶 _ using (EtCp) 2Ru with the same parameters as (4) · Run in 5 minutes Time repeat (4) 睢i Run Η Φ for the spirit S w it : i key! 〇 ◎ name S pay 潞 jfeOJ r^> 〇] ε| z$S dimension p Ο 〇〇〇〇〇〇〇〇〇 Ο 〇〇 o s s 〇〇 〇〇 Ή Ή 关 关 关 关 CS CS CS CS CN CS CS CN <Ν CN rs S ^乸ν〇m .v〇cn 〇VO CO 〇〇〇CN S ΓΟ S m 〇IT) (^) tn 〇ΓΟ Ο ι〇m 〇in 〇o cn 狴馘ο m § vi »〇 Mr-Η V) ; Precursor (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru | (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp) Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (EtCp)2Ru (EtCp)2Ru (MeCp)(EtCp)Ru (EtCp)2Ru |(MeCp)(EtCp)Ru (MeCp)(EtCp)Ru # rt JD 〇X5 ο Cm OJ m inch »〇VO OO

-48 - (44)1324186 註釋 沒有明顯的優點 ☆μ G職 邮踺 非常粗糙 薄膜生長看起來 很差 汽化器錯誤(250 托) s DU 壓力對成核密度和生長速率的影響 義 Φ餡 激S 51 _ 求溶 jn Κπ mm il灑 η φ ®b ι/-) 1 m 德 Λ e 粜 1? p r 戴踹 Μ暴 tiS S t=. ΓΤ^Γ 1舔 於20托室壓和較低基材溫度下操作的 效果 使用來自(c)之參數的Ru02的測定成核1 密度 1如(6)以Dave湯普生的喼咽處理之基材, 在高於前述運轉2級大小之室壓(2托i 到200托池根據運轉(13)增力[]02比完 成Ru沉積 |以在20托之室壓重複(13) 騮。 a® Egon ii B s绷 VKr U__ _ -¾¾¾ s堪兜 _z$暖 在較高室壓下風乾(ad)重複(17)可能縮 短的時間間隔 Csl 〇 1、 ο 〇 〇 〇 〇 〇 Ο ο 〇 S I 喊蟲 〇 f «Η ο 产一 ο 〇 〇 〇 〇 t—Η 〇 寸 ο ο r—Η 〇 Bit ㈣袁 麵 CN <Ν CS <Ν 〇 <N (Ν 輯 麵 〇 m Ο m ΓΛ m S ΓΟ CN m m 1-*Η v〇 CO 〇 in cn 寸 CO cn m 膨Φ κη § <N 卜 r-H m yn (N 前驅物 (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru |(MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru . (MeCp)(EtCp)Ru 運轉# as Ο t—^ CN m 寸 r-H r—< Ό r- 00 -49- 1324186-48 - (44)1324186 Note No obvious advantages ☆μ G job post very rough film growth looks very poor vaporizer error (250 Torr) s DU pressure on nucleation density and growth rate meaning Φ stuffing stimulate S 51 _ seeking solution jn Κπ mm il sprinkle η φ ®b ι/-) 1 m 德Λ e 粜1? pr wear 踹Μ ti tiS S t=. ΓΤ ^ Γ 1 舔 in 20 Torr pressure and lower substrate temperature The effect of the lower operation uses the determination of Ru02 from (c) the nucleation 1 density 1 such as (6) the substrate of the Dave Thompson's pharyngeal treatment, at a chamber pressure higher than the above-mentioned operation level 2 (2 托i To 200 trays according to the operation (13) to increase the force [] 02 ratio to complete the Ru deposition | to repeat the chamber pressure at 20 Torr (13) a. a® Egon ii B s stretch VKr U__ _ -3⁄43⁄43⁄4 s 兜 pocket_z$ Warming in higher chamber pressure air drying (ad) repetition (17) possible shortening time interval Csl 〇1, ο 〇〇〇〇〇Ο ο 〇SI shouting insects f «Η ο production one ο 〇〇〇〇t- 〇 ο ο ο r Η 〇 it it 四 四 四 四 四 四 四 四 四 四 四 四 四 & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm CO cn m expansion Φ Κη § <N 卜rH m yn (N precursor (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru |(MeCp)(EtCp)Ru ( MeCp)(EtCp)Ru(MeCp)(EtCp)Ru(MeCp)(EtCp)Ru(MeCp)(EtCp)Ru . (MeCp)(EtCp)Ru Run# as Ο t—^ CN m 寸rH r—< Ό r- 00 -49- 1324186

®Γε 撇 m 好的沉積 沉積看起來很好 好的沉積 鎰 έ 賊 < 塑 相似於 20030311 A, 稍爲更薄 厚薄膜生長 相似於 20030312A, 稍爲更薄 變化不多 非常好的沉積, 在周圍較厚 s tm 於20托室壓和2分鐘沉積時間重複 (17) 以高02流動氧化釕層的薄膜沉積 於2托室壓下重複(20) 重複(13) 用(EtCp)2Ru前驅物重複(22) g Λ Μ m Ο CN 1 尝Μ gl 嚙職 mm 編案晶圓上沉積厚Ru薄膜 iALD Ru沉積在製圖晶圓和其他基材上 ft 令\ 籐 U W\ 鹎 m s ^ 1?囪 •s ϋ 聽璣 以於80C的汽化器重複(27) 以(MeCpEtCp)Ru前驅物於80C重複 (27) 以(MeCpEtCp)Ru前驅物於90C重複 (29) 在較低基材溫度之最大沉積率 繼續降低基材溫度 睇 〇 〇 〇 〇 〇 o 〇 〇 §·· § § 冢. 氧的流動 ,sccni 〇 〇 〇 〇 〇 o s 〇 (N 〇 1—^ 〇 CN Ο <Ν 〇 CN 〇 CN 1 〇 S : mtj 變纪 l^-R 〇 (Ν S (N (N (N oi (N ΓΟ (N 寸 oi 〇i <N CN (ΝΪ m 寸 CS si ^ 〇 m (Ν 沄 寸 〇 m m o m ΓΛ σ\ η ΓΟ m cn m ΓΛ cn CN ro m C^i CO 〇 m 〇 On CS 沉積時間, 分鐘 <N m to ο ο ΓνΪ wo κη ο 〇 前驅物 (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (EtCp)2Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (EtCp)2Ru (EtCp)2Ru —___1 (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru 運轉# σ\ ro <Ν 〇〇 <N Os (N <N ΓΟ -50- (46) (46)1324186 運轉11中之ALD實驗在如下進行。製圖之晶圓基材 暴露在一種包含(1)氮沖洗;(2)氮和前驅物;(3) 氮沖洗;和(4 )氮和氧之方法氣體流。實驗的總循環時 間(全部4個步驟),運轉n爲1〇秒(步驟1和3爲3 秒,第2和4步驟爲2秒)°方法循環(全部4個步驟) 重複1 0 8 0次,全部期間爲18〇分鐘。所得薄膜厚度爲約 6 5 n m ° 在運轉2 6中,以同樣方式進行ALD ’總沉積時間爲 1 2 0分鐘。沉積之材料不被.合倂’但是由直僅範·圍彳A 5 〇 到3 0 0 n m之不連續奈米晶體組成。 . * * 實例1 0 ' 測量使用〗-甲基=广—乙基二茂釕沉積之薄膜的性質 且與使用1,1二乙基二茂釕所產生之薄膜比較。 使用例如如上所述之裝置將薄膜沉積在3 一吋晶圓上 。晶圓溫度爲3 3 0 °c,前驅物汽化溫度爲7 0 — 9 0 °C ’室壓 爲2托,氧流速爲2 0 0 s c c m ’氮流速爲5 5 0 s c c. m,沉積 時間爲5分鐘,及薄膜生長速率爲I 〇 - 60奈米/分鐘。 薄膜電阻以四-點探針測量’垂直於主平面和5 間隔(主平面=0 m m )。 結果顯示在圖14、15和16中。 圖 14 敘述從(EtCp) 2Ru 和(EtCp) (MeCp) Ru 沉 積之薄膜的測量薄膜電阻,爲汽化器溫度的函數。改變汽 化器溫度,而所有其他實驗條件(溫度、壓力等)固定。 -51 - (47) (47)1324186 該等數據於基材的中心測量。此圖顯示使用(EtCp )( MeCp ) Ru沉積的薄膜呈現較低薄膜電阻,與 (EtCp ) Au沉積之薄膜比較。此可歸因於在相同的汽化. 器溫度下’ (EtCp) (MeCp) Ru在方法氣體中的較高濃 度’與(EtCp ) 2ru比較。咸信這種前驅物濃度的差異是 由蒸氣壓差異產生。 以橫截面SEM測量之晶圓裂解和薄膜厚度顯示在圖 】5中。在相同條件下,經過相同時段,從1 一甲基,丨,— 乙基二茂1了產生之薄膜厚於該等使用],1,-二乙基二茂 釘形成之薄膜。這個結果也歸因於1 -甲基,1,-乙基二 茂釕的較高蒸氣壓。 這些薄膜的電阻率,顯示在圖.16.中,係使用薄膜電.. 阻和厚度之測量値計算。 X光繞射數據也被獲得且指示在SEM數據所觀察之 結晶由Ru組成。此外,收集X光射線電子光譜數據作爲 薄膜深度的函數。該等數據指示氧存在接近薄膜表面和氧 存在於薄膜的量減少,如一者較深入薄膜內。其顯示在— 深度氧存在於使用1 一甲基,1,-乙基二茂釕產生之薄膜 少於從1,I1—二乙基二茂釕形成之薄膜。 同等物 而由參考其較佳具體實施例已特別地顯示及敘述本發 明’熟習該項技術者應了解各種形式和細節之改變可在沒 有離開由申請專利範圍包含的本發明範圍中進行。 -52- (48) 1324186 【圖式簡單說明】 圖1A敘述一種形成未經取代之二茂釕的先前技藝合 成路徑。 圖1B敘述一種形成i,r —二乙基二茂釕的先前技 藝合成路徑。® Γε 撇m Good deposition deposits look good and good deposits thieves < plastic similar to 20030311 A, slightly thinner thick film growth similar to 20030312A, slightly thinner changes not much better deposition, around Thickness s tm at 20 Torr pressure and 2 minutes deposition time repeat (17) Thin film deposition of ruthenium oxide layer with high 02 flow is repeated at 2 Torr (20) Repeat (13) Repeat with (EtCp) 2Ru precursor ( 22) g Λ Μ m Ο CN 1 Μ gl gl mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm ϋ listen to the 80C vaporizer repeat (27) with (MeCpEtCp)Ru precursor at 80C repeat (27) with (MeCpEtCp)Ru precursor at 90C repeat (29) continue to decrease at the lowest deposition rate at lower substrate temperatures Substrate temperature 睇〇〇〇〇〇o 〇〇§·· § § 冢. Oxygen flow, sccni 〇〇〇〇〇os 〇(N 〇1—^ 〇CN Ο <Ν 〇CN 〇CN 1 〇S : mtj 变纪 l^-R 〇(Ν S (N (N oi (N N (N N (N N N N &i < N CN (ΝΪ m inch CS si ^ 〇m (Ν 〇 〇mmom ΓΛ σ\ η ΓΟ m cn m ΓΛ cn CN ro m C^i CO 〇m 〇On CS deposition time, minutes <N m to ο ο ΓνΪ wo κη ο 〇 precursor (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru(MeCp)(EtCp)Ru(MeCp)(EtCp)Ru(EtCp)2Ru(MeCp)(EtCp)Ru(MeCp)(EtCp)Ru(MeCp)(EtCp)Ru (EtCp)2Ru (EtCp)2Ru —___1 (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru (MeCp)(EtCp)Ru Run# σ\ ro <Ν 〇〇<N Os (N <N ΓΟ -50- (46) (46) 1324186 The ALD experiment in Run 11 was performed as follows. The patterned wafer substrate was exposed to one containing (1) nitrogen purge; (2) nitrogen and precursor; a nitrogen purge; and (4) a nitrogen and oxygen process gas stream. The total cycle time of the experiment (all 4 steps), the operation n is 1 〇 seconds (3 seconds for steps 1 and 3, 2 seconds for steps 2 and 4) ° method cycle (all 4 steps) repeat 1 0 8 0 Times, all periods are 18 minutes. The resulting film had a thickness of about 6 5 n m ° in operation 26, and the ALD 'total deposition time was 120 minutes in the same manner. The deposited material is not composed of 倂 倂 but is composed of discontinuous nanocrystals of straight van 彳 彳 A 5 〇 to 300 nm. . * * Example 1 0 'Measurement use〗 - The properties of the film deposited by methyl-Germanium-Ethyl lanthanum and compared to the film produced using 1,1 diethyl ferrocene. The film is deposited on a 3-inch wafer using, for example, a device as described above. The wafer temperature is 3 30 °c, the precursor vaporization temperature is 700-190 °C, the chamber pressure is 2 Torr, the oxygen flow rate is 2 0 0 sccm, and the nitrogen flow rate is 5 50 sc c. m. It was 5 minutes and the film growth rate was I 〇 - 60 nm / min. The sheet resistance was measured by a four-point probe 'perpendicular to the principal plane and 5 intervals (main plane = 0 m m ). The results are shown in Figures 14, 15 and 16. Figure 14 depicts the measured sheet resistance as a function of vaporizer temperature for films deposited from (EtCp) 2Ru and (EtCp) (MeCp) Ru. The vaporizer temperature was changed while all other experimental conditions (temperature, pressure, etc.) were fixed. -51 - (47) (47)1324186 These data are measured at the center of the substrate. This figure shows that films deposited using (EtCp)(MeCp) Ru exhibit lower sheet resistance compared to (EtCp) Au deposited films. This can be attributed to the higher concentration of '(EtCp)(MeCp) Ru in the process gas compared to (EtCp) 2ru at the same vaporizer temperature. The difference in the concentration of this precursor is due to the difference in vapor pressure. Wafer cracking and film thickness as measured by cross-sectional SEM are shown in Figure 5. Under the same conditions, the film produced from 1-methyl, hydrazine, and ethyl octafluorene was thicker than the film formed by the use of 1,2-diethyl ferrocene after the same period of time. This result is also attributed to the higher vapor pressure of 1-methyl, 1,2-ethyl fluorene. The resistivity of these films, shown in Fig. 16., is calculated using the measurement of film resistance and thickness. X-ray diffraction data was also obtained and indicated that the crystals observed in the SEM data consisted of Ru. In addition, X-ray ray electronic spectral data is collected as a function of film depth. These data indicate that the presence of oxygen is close to the surface of the film and that the amount of oxygen present in the film is reduced, as one is deeper into the film. It is shown that - deep oxygen is present in the monomethyl group, and the film produced by 1,2-ethyl decanofluorene is less than the film formed from 1,1 -diethyl fluorene. The present invention has been particularly shown and described with reference to the preferred embodiments thereof. It is understood by those skilled in the art that various changes in form and detail may be made without departing from the scope of the invention as included in the appended claims. -52- (48) 1324186 [Simple Description of the Drawings] Figure 1A illustrates a prior art synthesis path for forming an unsubstituted ferrocene. Figure 1B depicts a prior art synthetic route for the formation of i,r-diethylmentifluorene.

圖1 c敘述一種用以形成未經取代之二茂釕的另一先 前技藝方法。· 圖2 A顯示相錯構形之二茂金屬的分子式。. 圖2 B顯示交會搆形之二茂金屬的分子式。, 圖3,琴不二取代之二茂金屬化合物的結構式。 圖4顯示可使用於本發明方法中的二茂金屬的一般化 結構式。 圖5顯示例証不對稱二茂釕化合物。Figure 1c illustrates another prior art method for forming an unsubstituted ferrocene. Figure 2 A shows the molecular formula of a metallocene in a phase-displacement configuration. Figure 2B shows the molecular formula of the dimetallocene in the crossover configuration. Figure 3 is a structural formula of a disubstituted metallocene compound. Figure 4 shows a generalized structural formula of a metallocene which can be used in the process of the present invention. Figure 5 shows an exemplary asymmetric hafnocene compound.

圖6敘述一種可用以形成可使用於本發明方法中之二 茂金屬前驅物的合成方法。 圖7顯示一種可用以形成1 一甲基3Γ—乙基二茂釕之 合成方法。 圖8爲一種敘述可用以進行本發明方法之具體實施例 的薄膜沉積系統之槪要圖式。 圖9爲一種可用以汽化液體或固體前驅物的裝置之槪 要圖式,在用於薄膜的化學蒸氣沉積之氣體慘合歧管中。 圖10爲一種可用於進行本發明具體實施例的薄膜沉 積反應器之槪要圖式 -53- (49) (49)1324186 圖11和12爲顯示由發明方法產生的釕薄膜之截面影 像的掃描電子顯微圖。 圖13爲一種使用本發明方法在Si02/Si基材上產生 的釕薄膜之能量分散光譜。 圖14爲一種使用1 一甲基,1'一乙基二茂釕前驅物沉 積之薄膜和使用1,Γ —二乙基二茂釕沉積之薄膜的測量 薄膜電阻以汽化器溫度之函數的作圖。 圖1 5爲從1 _甲基,1 ' 一乙基二茂釕前驅物沉積之薄 膜厚度以汽化器溫度之函數的作圖,與1 .,Γ -二乙基二 茂釕沉積之薄膜比較。 16爲使用1 -甲基,r —乙基二茂釕前驅物和!, ^ ~二乙基二茂釕沉積之薄膜的電阻率以汽化.·器 '溫度之函 數的作圖。 -54-Figure 6 illustrates a synthetic process that can be used to form a metallocene precursor that can be used in the process of the present invention. Figure 7 shows a synthetic process which can be used to form 1-methyl 3 oxime-ethyl decanofluorene. Figure 8 is a schematic illustration of a thin film deposition system that can be used to carry out specific embodiments of the method of the present invention. Figure 9 is a schematic representation of an apparatus for vaporizing a liquid or solid precursor in a gas miscible manifold for chemical vapor deposition of a film. Figure 10 is a schematic view of a thin film deposition reactor which can be used to carry out the embodiment of the present invention - 53-(49) (49) 1324186. Figures 11 and 12 are scanning images showing a cross-sectional image of a tantalum film produced by the inventive method. Electron micrograph. Figure 13 is an energy dispersive spectrum of a ruthenium film produced on a SiO 2 /Si substrate using the method of the present invention. Figure 14 is a graph showing the measurement of sheet resistance as a function of vaporizer temperature using a film deposited using a monomethyl, 1'-ethyl ferrocene precursor and a film deposited using ruthenium-diethyl fluorene. . Figure 15 is a plot of film thickness as a function of vaporizer temperature for a 1 -methyl, 1 'ethylidene lanthanum precursor deposited as compared to a film deposited with ruthenium-diethyl fluorene. 16 is the use of 1-methyl, r-ethyl ferrocene precursors and! The resistivity of the film deposited by ^ ~ diethyl ferrocene is plotted as a function of vaporization. -54-

Claims (1)

(1) (1)1324186 拾、申請專利範圍 1. 一種製備薄膜的方法,其包含在基材存在下分解 至少一種前驅物的步驟,其中該分解爲熱、化學、光化或 電漿—活化,且該前驅物具'有通式c p M C p % 其中 Μ爲選自Ru、Os和Fe的金屬; Cp爲包括至少一個取代基D !的第一取代之環.戊二烯 基或茚基部分: Cp'爲包括至少一個取代基D,'的第二取代之環戊二烯 基或茚基部分; 其中 Di 和 D〆不同;. .. D 1選自: X : C a I H h ] X c ] > 』Ca2Hb2Xc2 ( C= 0 ) Ca,HblXcl ; Ca2Hb2Xc2〇Ca]HblXcl · Ca2Hb2$c2 ( C-二 0) OCalHb丨Xc】;及 Ca2Hb2Xc2〇 ( C = 0 ) Ca,HblXC]; f 其中 X爲鹵素原子; a 1爲從2到8之整數; bl爲從0到2(al)+] — cl之整數; cl爲從〇到2(al) +l_bl之整數; -55 - (2) (2)1324186 b 1 + c 1爲至少1 ; a2爲從0到8之整數; b2爲從0到2 ( a2 ) +1 - c2之整數; c2爲從0到2 ( a2 ) +1 - b2之整數;及 DI -^ΞΕ t±r · 1培P · X ; C 2 ) H b ] X C 1 ' Ca2Hb2Xc2 ( C = O ) Ca,HblXc,; Ca2Hb2Xc.2〇Ca 丨 HblXcl; CaaHbaXcaCC^O) OCaiHb】Xci’ 及 Ca2Hb2Xc2〇(C=0) Ca|HblXcI, _ 其中 X 爲 F、Cl、Br 或 I ; a 1爲1到S之整數; . b 1爲從0到2 ( a 1 ) + 1 - c 1之整數; cl爲從0到2 ( a 1 ) + 1 - b 1之整數; b 1 + c ]等於或大於1 ; a2爲從0到8之整數; b 2爲從0到2 ( a 2 ) + ] — c 2之整數; c.2爲從0到2 ( a2 ) +1 — b2之整數;及 b2 + c2等於或大於1, 藉此在基材上形成一種薄膜。 2.如申請專利範圍第1項的方法,其中一或二個之 Cp和Cp'部分包括至少一個額外取代基,Dx,其選自: -56 - X (3) X (3)1324186 C a 1 H b 1 X c 1 ' Ca2Hb2Xc2 C C = 0 ) Ca,Hb)Xcl ; C a 2 H b 2 X c 2 0 C a I H b 1 X c 1 ' Ca2Hb2Xc2 ( C = 0 ) OCalHblXcl ;及 ' Ca2Hb2Xc2〇 ( C= 0) CalHblXcl ; 其中, X 爲 F、Cl、Br 或 I ; a 1爲0到8之整數; b 1爲從0到2 ( a 1 ) + 1 — c 1之整數; c 1爲從0到2 ( a 1 ) + 1 — b 1之整數; 丨 b卜卜c 1等於或大於.1 a2爲從0到8之整數; b2爲從0到2 ( a2 ) +1 — c2之整數; c2爲從0到2 ( a2 ) +1 - b2之整數;及 b 2 + c 2等於或大於1。 3. 如申請專利範圍第1項的方法,其中該前驅物係 被汽化且蒸氣直接進入罩住基材之沉積反應器內。 · 4. 如申請專利範圍第I項的方法,其中基材爲·製圖 晶圓。 5. 如申請專利範圍第1項的方法,其中該前驅物的 蒸氣與載體氣體合倂。 6. 如申請專利範圍第1項的方法,其中該前驅物的 蒸氣與選自氧 '臭氧和一氧化二氮的氧化成分混合。 -57 - (4) rI324186 7. 如申請專利範圍第1項的方法,其中該前驅物爲 甲基,1'—乙基二茂釕。 8. 如申請專利範圍第1項的方法,其中薄膜包括至 少一種選自釕金屬、餓金屬、鐵金屬' 氧化釕、氧化餓和 氧化鐵之材料。 9. 如申請專利範圍第1項的方法,其中該分解係在 Λ 接近臨界或超臨界液體之溶劑液體存在下進行。 10. 如申請專利範圍第]項的方法,其中薄膜係藉由 連續的化學蒸氣沉積、原子層成核作用或原子層沉積作用 而在基材上形成。 -58 -(1) (1) 1324186 Pickup, Patent Application 1. A method of preparing a film comprising the step of decomposing at least one precursor in the presence of a substrate, wherein the decomposition is thermal, chemical, actinic or plasma-activated And the precursor has 'the general formula cp MC p % wherein Μ is a metal selected from the group consisting of Ru, Os and Fe; Cp is a first substituted ring comprising at least one substituent D ! pentadienyl or fluorenyl Part: Cp' is a second substituted cyclopentadienyl or indenyl moiety comprising at least one substituent D, ' wherein Di and D are different; . . . D 1 is selected from: X : C a IH h ] X c ] > 』Ca2Hb2Xc2 ( C= 0 ) Ca,HblXcl ; Ca2Hb2Xc2〇Ca]HblXcl · Ca2Hb2$c2 ( C-2 0) OCalHb丨Xc】; and Ca2Hb2Xc2〇( C = 0 ) Ca,HblXC]; Wherein X is a halogen atom; a 1 is an integer from 2 to 8; bl is an integer from 0 to 2 (al) +] - cl; cl is an integer from 〇 to 2 (al) + l_bl; -55 - ( 2) (2) 1324186 b 1 + c 1 is at least 1; a2 is an integer from 0 to 8; b2 is an integer from 0 to 2 ( a2 ) +1 - c2 ; c2 is from 0 to 2 ( a2 ) + 1 - the integer of b2; and DI -^ΞΕ t ±r · 1P P · X ; C 2 ) H b ] XC 1 ' Ca2Hb2Xc2 ( C = O ) Ca, HblXc,; Ca2Hb2Xc.2〇Ca 丨HblXcl; CaaHbaXcaCC^O) OCaiHb】Xci' and Ca2Hb2Xc2〇(C =0) Ca|HblXcI, _ where X is F, Cl, Br or I; a 1 is an integer from 1 to S; . b 1 is an integer from 0 to 2 ( a 1 ) + 1 - c 1 ; cl is An integer from 0 to 2 ( a 1 ) + 1 - b 1 ; b 1 + c ] is equal to or greater than 1; a2 is an integer from 0 to 8; b 2 is from 0 to 2 ( a 2 ) + ] — c An integer of 2; c.2 is an integer from 0 to 2 (a2) +1 - b2; and b2 + c2 is equal to or greater than 1, thereby forming a film on the substrate. 2. The method of claim 1, wherein one or two of the Cp and Cp' moieties comprise at least one additional substituent, Dx, selected from the group consisting of: -56 - X (3) X (3) 1324186 C a 1 H b 1 X c 1 ' Ca2Hb2Xc2 CC = 0 ) Ca, Hb) Xcl ; C a 2 H b 2 X c 2 0 C a IH b 1 X c 1 ' Ca2Hb2Xc2 ( C = 0 ) OCalHblXcl ; and ' Ca2Hb2Xc2〇 ( C = 0) CalHblXcl ; where X is F, Cl, Br or I; a 1 is an integer from 0 to 8; b 1 is an integer from 0 to 2 ( a 1 ) + 1 - c 1 ; From 0 to 2 ( a 1 ) + 1 — an integer of b 1 ; 丨b Bu c 1 is equal to or greater than .1 a2 is an integer from 0 to 8; b2 is from 0 to 2 ( a2 ) +1 — c2 An integer; c2 is an integer from 0 to 2 ( a2 ) +1 - b2 ; and b 2 + c 2 is equal to or greater than 1. 3. The method of claim 1, wherein the precursor is vaporized and the vapor directly enters a deposition reactor that houses the substrate. 4. The method of claim 1, wherein the substrate is a patterned wafer. 5. The method of claim 1, wherein the vapor of the precursor is combined with a carrier gas. 6. The method of claim 1, wherein the vapor of the precursor is mixed with an oxidizing component selected from the group consisting of oxygen 'ozone and nitrous oxide. -57 - (4) rI324186 7. The method of claim 1, wherein the precursor is methyl, 1 '-ethyl ferrocene. 8. The method of claim 1, wherein the film comprises at least one material selected from the group consisting of base metals, starved metals, ferrous metals 'yttria, oxidized hunger and iron oxide. 9. The method of claim 1, wherein the decomposition is carried out in the presence of a solvent liquid close to a critical or supercritical liquid. 10. The method of claim 5, wherein the film is formed on the substrate by continuous chemical vapor deposition, atomic layer nucleation or atomic layer deposition. -58 -
TW92130099A 2002-10-31 2003-10-29 Deposition processes using group 8 (viii) metallocene precursors TWI324186B (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US42294702P 2002-10-31 2002-10-31
US42294602P 2002-10-31 2002-10-31
US42628402P 2002-11-14 2002-11-14
US44632003P 2003-02-07 2003-02-07
US45371903P 2003-04-18 2003-04-18
US45371803P 2003-04-18 2003-04-18
US45371703P 2003-04-18 2003-04-18
US10/685,777 US6884901B2 (en) 2002-10-31 2003-10-16 Methods for making metallocene compounds
US10/686,254 US6919468B2 (en) 2002-10-31 2003-10-16 Asymmetric group 8 (VIII) metallocene compounds
US10/685,785 US7927658B2 (en) 2002-10-31 2003-10-16 Deposition processes using group 8 (VIII) metallocene precursors

Publications (2)

Publication Number Publication Date
TW200420745A TW200420745A (en) 2004-10-16
TWI324186B true TWI324186B (en) 2010-05-01

Family

ID=52358424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92130099A TWI324186B (en) 2002-10-31 2003-10-29 Deposition processes using group 8 (viii) metallocene precursors

Country Status (1)

Country Link
TW (1) TWI324186B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248648A1 (en) * 2007-04-06 2008-10-09 Thompson David M Deposition precursors for semiconductor applications

Also Published As

Publication number Publication date
TW200420745A (en) 2004-10-16

Similar Documents

Publication Publication Date Title
TWI552997B (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
EP2069373B1 (en) Organometallic precursor compounds
JP5202952B2 (en) Organometallic compound and process for its production
US20090209777A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
TW201116643A (en) Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing
TW200948819A (en) Organometallic compounds, processes and methods of use
TW201414741A (en) Deposition precursors for semiconductor applications
JP2009510074A (en) Organometallic compounds and methods of use thereof
KR20070107124A (en) Organoaluminum precursor compounds
TW200844252A (en) Method for the deposition of a ruthenium containing film
KR20080061381A (en) Organometallic compounds and methods of use thereof
US7927658B2 (en) Deposition processes using group 8 (VIII) metallocene precursors
TWI756699B (en) New group v and vi transition metal precursors for thin film deposition
US7723535B2 (en) Organometallic precursor compounds
US20090200524A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
JP2007526250A (en) Organometallic compounds with high nucleation density
JP4542506B2 (en) Vapor Deposition Method Using Group 8 (VIII) Metallocene Precursor
TWI324186B (en) Deposition processes using group 8 (viii) metallocene precursors
US20080032503A1 (en) High nucleation density organometallic compounds
TWI672390B (en) Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
CN100543178C (en) Use the deposition method of 8 families (VIII) metallocenes precursor
TWI377208B (en) Organometallic compounds and processes for preparation thereof
TW200413558A (en) Zirconium complex used for the CVD method and preparation method of a thin film using thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees