TWI300647B - Method for controlling an electric motor to reduce emi - Google Patents

Method for controlling an electric motor to reduce emi Download PDF

Info

Publication number
TWI300647B
TWI300647B TW94119034A TW94119034A TWI300647B TW I300647 B TWI300647 B TW I300647B TW 94119034 A TW94119034 A TW 94119034A TW 94119034 A TW94119034 A TW 94119034A TW I300647 B TWI300647 B TW I300647B
Authority
TW
Taiwan
Prior art keywords
phase
angle
motor
conduction
conduction angle
Prior art date
Application number
TW94119034A
Other languages
Chinese (zh)
Other versions
TW200616310A (en
Inventor
James B Eskritt
Joel E Kuehner
Original Assignee
Int Rectifier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Rectifier Corp filed Critical Int Rectifier Corp
Priority claimed from US11/149,101 external-priority patent/US7202622B2/en
Publication of TW200616310A publication Critical patent/TW200616310A/en
Application granted granted Critical
Publication of TWI300647B publication Critical patent/TWI300647B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

1300647 九、發明說明:1300647 IX. Description of invention:

t發明戶斤屬之技術領域I 相關申請案之交互參照 本申請案聲明2004年6月10曰申請之美國專利臨時申 5 請案第 60/578,511 號,題目為 CONDUCTION ANGLE CONTROL REDUCES EMI之利益及優先權,且進一步為 2〇〇3年4月28日申請之美國專利申請案第10/425,091號,題 目為 ELECTRONICALLY CONTROLLED POWER STEERING SYSTEM FOR VEHICLE AND METHOD AND SYSTEM 10 FOR MOTOR CONTROL,此申請案聲明2002年5月1曰申請 之美國專利臨時申請案第60/377,296號,題目為 ELECTRONICALLY CONTROLLED POWER STEERING SYSTEM FOR VEHICLE及2002年4月30日中請之美國專利 臨時申請案第60/376,617號,題目為SYSTEM AND 15 METHOD FOR CONTROLLING ELECTRIC MOTOR WITH VARIABLE PHASE ADVANCE/CONDUCTION ANGEL之 利益及優先權,其每一個之完整揭示在此被納為參考。 發明領域 本發明係有關於電動馬達驅動,特別是用切換將dc電 20位轉換為一個或多個相位之脈波電流以驅動該馬達的轉換 器被驅動之電動馬達。該馬達例如可為具有Hall(霍爾)感測 器以控制變換之一dc無刷馬達。 本發明進一步有關於一動力操縱裝置,其產生輔助操 縱動力利用電動馬達所驅動之泵產生的油壓來驅動一車輛 1300647 之操縱機構。 本發明進一步有關於減少用於控制一電動馬達的一馬 達驅動器中之EMI(電磁干擾)。 t先前技術】 5 發明背景 第1圖顯示來自一 dc匯流排之一典型的三相馬達驅動 器。該馬達可為一DC無刷馬達,具有一永久磁鐵轉子與一 靜子,包含以切換脈波相位驅動信號被饋送之靜子線圈。 該dc匯流排電提供至一換流器10〇,其包含三個半橋,包含 10電晶體(如MOSFET,EGBT,二極裝置)以車輛ah,AL, BH,BL與CH,CL形成閘作用。該等高與低側裝置每一個 以並聯跨過該匯流排被連接,且每一裝置之輸出包含三個 相位U,V與W之一。每一切換裝置被一控制器2〇〇控制, 其接收來自電動馬達3〇〇之霍爾信號而控制變換時間。該等 15閘驅動AH,AL,BH,BL與CH,CL被提供至換流器100之 各切換器。 例如在第2圖之典型的馬達驅動器中,一霍爾為每一相 位由該馬達被提供,其中一個被顯示。每一閘驅動高與低 信號只有一個被顯示。在典型之應用中,該等描點圖信號 2〇提供一信號用於控制該換流器中之切換器的切換及因而控 制馬達變換。第2圖顯示之典型的馬達驅動器具有12〇。之傳 導角度。如顯示者,該等閘驅動器之脈波寬度可如第2圖之 低閘驅動信號顯示地被調變(PWM)。該閘驅動信號事件在 霍爾轉變發生時發生,且該閘驅動信號之任一相位推進僅 l3〇〇647 破該馬達中之霍爾效應感測器的位置之物理移位獨一地被 决疋。該傳導角度被強迫為120。或180。。該等半橋之輸出 2有效電壓藉由改變該PWM之工作週期而被控制。該脈波 寬度調變可在低側或在高側,或均在高側與低側二者被完 5 在第2圖中只有一相位被顯示。其他二相位被移位120。。 第3圖顯示具有j 8〇。傳導角度之典型馬達驅動器的另TECHNICAL FIELD OF THE INVENTION RELATED APPLICATIONS This application claims the benefit of the benefit of CONDUCTION ANGLE CONTROL REDUCES EMI from US Patent Provisional Application No. 60/578,511, filed on June 10, 2004. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; U.S. Patent Provisional Application No. 60/377,296, filed on May 1, the entire disclosure of which is hereby incorporated by reference in its entirety, the entire disclosure of which is incorporated herein by reference to the entire disclosure of the entire disclosure of the disclosure of The benefits and priorities of the SYSTEM AND 15 METHOD FOR CONTROLLING ELECTRIC MOTOR WITH VARIABLE PHASE ADVANCE/CONDUCTION ANGEL, the complete disclosure of each of which is incorporated herein by reference. FIELD OF THE INVENTION The present invention relates to electric motor drives, and more particularly to electric motors that are driven by a converter that switches dc power 20 bits into one or more phase pulse currents to drive the motor. The motor may for example be a dc brushless motor with a Hall sensor to control the transformation. More particularly, the present invention relates to a power steering device that produces an operating mechanism that assists in the operation of power by a pump driven by an electric motor to drive a vehicle 1300647. The invention further relates to reducing EMI (electromagnetic interference) in a motor drive for controlling an electric motor. t Prior Art 5 Background of the Invention Figure 1 shows a typical three-phase motor driver from one of the dc bus bars. The motor can be a DC brushless motor having a permanent magnet rotor and a stator including a stator coil that is fed with a switching pulse phase drive signal. The dc busbar is supplied to an inverter 10〇, which comprises three half bridges, including 10 transistors (such as MOSFET, EGBT, and two-pole devices) to form gates for vehicles ah, AL, BH, BL and CH, CL. effect. The contour and low side devices are each connected in parallel across the bus bar, and the output of each device includes one of three phases U, V and W. Each switching device is controlled by a controller 2 that receives the Hall signal from the electric motor 3 to control the switching time. The 15 gate drivers AH, AL, BH, BL and CH, CL are supplied to the switches of the inverter 100. For example, in the typical motor driver of Figure 2, a Hall is provided by the motor for each phase, one of which is displayed. Only one of each gate drive high and low signals is displayed. In a typical application, the trace signals 2 provide a signal for controlling the switching of the switches in the converter and thereby controlling the motor change. Figure 2 shows a typical motor drive with 12 turns. The guiding angle. As shown, the pulse width of the gate drivers can be modulated (PWM) as shown in the low gate drive signal of Figure 2. The gate drive signal event occurs when a Hall transition occurs, and any phase advancement of the gate drive signal is only l3〇〇647. The physical shift of the position of the Hall effect sensor in the motor is uniquely determined. Hey. The conduction angle is forced to 120. Or 180. . The output 2 effective voltage of the half bridges is controlled by changing the duty cycle of the PWM. The pulse width modulation can be performed on the low side or on the high side, or both on the high side and the low side. 5 Only one phase is shown in Fig. 2. The other two phases are shifted by 120. . Figure 3 shows that there is j 8〇. Conduction angle of a typical motor drive

例。類似地,該等高或低側信號可被脈波寬度調變,或 一者均可被脈波寬度調變。 飕云,若 10 15example. Similarly, the contoured or low side signals can be modulated by the pulse width or one can be modulated by the pulse width. Jinyun, if 10 15

Γ甲勁抬就之相位推進為所欲的,此僅利 昝X馬達中之隹爾效應感測器的位置之物理移位獨一地被 =件。此即,為獲得-相位推進,該馬達巾之感測器位置 必須以某些角度被向前移動,視所欲之相位推進而定。此 相位推進為固定的且在電氣上為非可變的。 本發明之—目標為要提供—設顧於達成可變的相位 進及/或料角度而不須機械上改變該馬相獲得相位 進=改變該傳導角度,因而得到改善馬達控制之結果。 藉由供應來自油栗之操作油至被連結至該操縱機構的 力氣缸《助車輛之方向盤的操作之動力操縱裝置為習 該油紐-電動馬達以符合正被—動力氣缸產生 馬達旋轉速度_助操縱動力加以驅動。 之 位'σ已被'^方向盤提供之操縱扭矩的大小與方向 丑矩的—扭矩棒與改變其開口大小以符合該扭矩棒之扭 小與方向的__控制閥被納人該操縱軸内。此油塵 ,在該油泵無動力“間之㈣线巾被提供,且 20 1300647 其致使符合該操縱扭矩之一輔助操縱動力由該動力氣缸被 產生。 電動馬達之驅動控制根據方向盤之操縱角速度被實 施。該操縱角速度根據配合方向盤已被提供之操縱角度感 5 測裔的輸出被獲付’及邊電動馬達之目標旋轉速度根據此 操縱角率被設定。電壓被供應至該電動馬達使得此目標旋 轉速度可被達成。 作為該電動馬達’三相無刷馬達普通地被使用。該三 相無刷馬達包含一靜子,其包含場線圈用於u相位、v相位 10與W相位;一轉子具有一固定永久磁鐵,其接收來自該等場 線圈之排斥磁場;以及霍爾感測器用於檢測此轉子之旋轉 位置。二個霍爾感測器以配合該等U相位、V相位與w相位 之電氣角度的120度間隔被提供。 該三相無刷馬達依照普通情形中之慣常的120度控制 15系統被驅動。此U0度動力系統在第13圖中被顯示。被該等 U相位、V相位與w相位之霍爾感測器輸出之該等霍爾信號 彼此在相位上以120度被偏離。電力在輪流對應於該等u相 位、V相位與W相位之120度電氣角度的一期間之際被傳送 而與該等u相位、v相位與w相位之霍爾信號同步。在12〇 20度電力傳導期間之際用供應至每一個場線圈的驅動電流之 PWM(脈波寬度調變)控制來改變該無刷馬達之旋轉速度變 成可能的。 第14圖顯示在三相無刷馬達中轉子之旋轉速度與輸出 扭矩間之關係。如第14圖顯示者,其被習知該輸出扭矩隨 1300647 著該旋轉速度提高而減少。由下面顯示之與該馬達有關的 公式(1)可被了解者,若該馬達之旋轉速度(α))提高,流至 馬達之電流隨著該馬達產生之感應電壓kw(亦被習知為後 向emf)之提高而減少,結果為與該電流⑴成比例之輸出扭 5 矩變得較小。 V=IR+Ldi/dt+k ω...................................... (1) 其中L=馬達電感、di/dt為電流變化率、及ν代表對馬達之 電壓、I為流至馬達之電流、R為馬達之電阻、k為一常數、 及w代表馬達之旋轉速度。 10 慣常之電動馬達特別是運用該驅動換流器之切換器的 脈波寬度調變(PWM)者之問題為該等切換器之高頻次切換 形成大量電磁干擾(EMI)放射的結果,其會干擾如音頻與視 訊設備、收音機及電腦之其他設備的操作。此在如汽車之 很多應用中特別麻煩,其中EMI會干擾收音機設備、汽車 15 引擎管理糸統、以及汽車外部之其他系統。此外,政府單 位已實施管制,要求EMI放射低於目前通常是以頻率訂定 之位準。 【發明内容】 發明概要 20 本發明所解決之問題為用馬達控制器減少EMI。依據 本發明,DC無刷馬達之傳導角度減少在動力級之切換事件 數而減少電磁放射量。此允許較小且成本較低之EMI元件 的使用,並允許該控制器符合管制規定。 DC無刷馬達因所涉及之切換電壓與電流而產生大量 1300647 電磁干擾。每一應用有操作環境與相關管制所決定之EMI 限制。EMI濾波元件典型地被納入馬達驅動設計中嘗試遵 守該等EMI限制。該等濾波元件之尺寸與成本被遵守該等 限制所要求之衰減量加以決定。該等濾波元件(尤其是如感 5應器之系列元件)的另一關鍵設計限制為其DC電阻。高電阻 形成超額之熱與施用至該馬達之電壓損失。 此處所描述之技術已被發展,其中如DC無刷馬達之一 馬達藉由改變其傳導角度及相位推進被控制。此對照於傳 統控制策略的是,其中其傳導角度及相位推進分別被固定 ίο於與〇,且其馬達速度被脈波寬度調變控制。利用傳 導角度控制下,該速度控制器調整該變換邊緣之時間位置 而非-PWM波形之工作週期。此形成少很多之切換事件及 因而減少EMI的結果。 一種用於達成會減少EMI產生之—馬達驅動系統中的 15 -可變純推進及/或—可變傳導角度之线與方法在此 被描述。 依據本發明,一種用於減少在一電動馬達之控制被一 切換換流器供應而被—DC匯流排饋送的刪放射之方法, 其包含:控制-傳導角度期間之一相位推進,該馬達之相 20位在此期間之際被該換流器饋送動力以控制該傳導角度來 控制該馬達之速度,而減少該換流器之切換作業次數及因 而減少EMI。 本發明之進一步目標為要提供一種系統與方法,其使 用任一之可變相位推進、可變傳導角度與脈波寬度調變以 1300647 適當地調節一電動馬達之速度以獲得-所欲之扭矩特徵。 本發明提供之優點為相位推進及/或傳導角度之提高 可就任一特定扭矩得到較高之可達成的速度。此即,其= 力被提高。進一步言之,傳導角度之提高會減少扭矩紋波。 本备明之上面與其他目標利用一種用於控制具有至少 感測态輪出用於決定在一馬達旋轉之際控制決定一傳導 時間的一傳導角度之一切換換流器的切換之切換瞬間的方 法被達成,該方法包含:接收該感測器輸出;以及在下一 個決定該切換瞬間之感測器輸出前以一相位角推進連接北 k排至馬達相位驅動輸入的該切換轉換器之一切換器 的一切換接通時間。 近年來,對三相無刷馬達之中低範圍中的較高旋轉速 度已有需求。然而為符合此需求,由於有必要重新檢查該 一相無刷馬達之控制系統及重新評估該三相無刷馬達本身 15之設計,不可避免地必須有成本之劇烈上升。因之,本發 明之目的在於提供能獲得在該電動馬達之中低扭矩範圍中 的高旋轉感測器且其不會導致製造成本之劇烈上升的一種 動力操縱裝置。 用於達成前述目標之本發明為一種動力操縱裝置,其 2〇利用被一電動馬達驅動之一泵所產生的油壓來產生輔助操 縱動力,該切換瞬間具有一傳導角度,電力在此際被提供 到至少一馬達相位,該動力操縱裝置包含一旋轉角度檢測 器用於檢測一操縱作業構件之一操縱角速度;一驅動目標 值旋轉速度設定裝置用於設定與該操縱角速度感測器之一 11 1300647 輸出信號有關的該電動馬達之一驅動目標值旋轉速度;一 驅動信號產生器用於產生一驅動信號來驅動該電動馬達; 以及一角度5又&amp;裝置用於針對根據該驅動目標值旋轉速产 設定裝置所設定之驅動目標值旋轉速度被該旋轉角度檢測 5器所檢測的旋轉角度決定一相位推進角度而改變該電感角 度。如上述者,此動力操縱裝置產生減少&lt;ΕΜΙ。 依據上述之構造,該驅動信號被設定符合該電動馬達 (如一無刷馬達)之該驅動目標值旋轉速度而以傳導角度依 之被改變。 10 例如若該電動馬達為三相無刷馬達,以該三相無刷馬 達依據該120度傳導角度方法被驅動,電力開始傳送至該等 U相位、V相位與W相位之場線圈的時機為對應於該等口相 位、V相位與W相位的旋轉速度檢測器(如一霍爾感測器)之 輸出信號可變地被設定。由於被該電動馬達供應之電流(該 μ電力通過時間或傳導角度)提高藉由為該高速_範圍°的 該驅動目標值設定-比較大相位推進角度為可能的,該馬 達產生電壓(向後emf)變小而提高該輪出扭矩。 依據本發明,在該中低扭矩範圍提高旋轉速度而不須 整個劇烈地改變該馬達之設計或該系統之設計變成可能 20的。因之,其成本將不會劇烈地提高。 由於施用控制而為所要求之馬達旋轉速度設定適合的 相⑽進角度(所要求之最小相位推進角度)為可能的,控制 在取小相位推進角度控制中之主要問題(如永久磁性之降 低或效率之降低)也變成可能的。 12 1300647 其亦^服藉由保持該驅動信號之相位推進角度為固定 的以使PWM控制生效用於在某一相位推進角度之一期間 内通過電力。在此情形巾,為實現該pwM控制在該切換設 施(如-個場效應電晶體)中之熱損失變成一問題。依據本發 5明,亚非此PWM控制纟該相位推進角度的期間之際被實 施,而是電力通過之期間藉由改變該相位推進角度而被改 變,其後果為不須考慮切換損失之提高,且控制該熱損失 之任何可能之提高變成可能的。進一步言之,此形成減少 EMI之結果。 10 進一步έ之,依據本發明,該相位推進角度設定設施 在喊電力通過邊電動馬達為在不飽和狀態之時間不管該驅 動目標值而設定某一固定的相位推進角度,而是根據在該 電力通過該電動馬達為在飽和狀態之時間用該驅動目標設 定装置被設定。 15 依據此構造,符合該驅動目標值之一相位推進角度可 只在該120度電力通道已被飽和後(例如可被設定於〇度)及 在例如該低速旋轉控制與中低旋轉控制之電動馬達可被控 制的120度電力通過期間内藉由實施PWM控制而被設定。 一旦該120度傳導角度期間已被飽和(100%PWM工作週 20 期),進一步之馬達控制藉由改變該相位推進角度、以該馬 達在飽和狀態(即100%PWM工作週期)之該相位推進區域 内***作而被完成。 本發明之其他特色與優點由下列本發明之描述參照該 等附圖而變得明白的。 13 1300647 圖式簡單說明 而更詳細地被說明, 本發明將參照附圖利用詳細描述 其中:The phase of the armor is lifted to the desired direction. This is only the physical displacement of the position of the Muir effect sensor in the X motor. That is, in order to obtain - phase advancement, the sensor position of the motorized towel must be moved forward at certain angles depending on the desired phase advancement. This phase advancement is fixed and electrically non-variable. The present invention is directed to providing a variable phase and/or material angle without mechanically changing the phase of the horse to obtain a phase in which the angle of conduction is changed, thereby resulting in improved motor control. By supplying the operating oil from the oil chestnut to the force cylinder connected to the steering mechanism, the power steering device for operating the steering wheel of the vehicle is the oil-electric motor to match the positive-power cylinder to generate the motor rotation speed _ Help the steering force to drive. The position 'σ has been supplied by the steering wheel to the size and direction of the steering wheel - the torque rod and the size of the opening to match the twisting and direction of the torque rod __ control valve is included in the steering shaft . The oil dust is supplied in the unpowered (four) wire towel of the oil pump, and 20 1300647 causes one of the steering torques to be assisted by the power cylinder to be generated by the power cylinder. The driving control of the electric motor is controlled according to the steering angular speed of the steering wheel. The steering angular velocity is obtained according to the steering angle that the steering wheel has been supplied with the steering angle sense 5 and the target rotational speed of the electric motor is set according to the steering angular rate. The voltage is supplied to the electric motor to make the target The rotational speed can be achieved. As the electric motor, a three-phase brushless motor is generally used. The three-phase brushless motor includes a stator including field coils for u phase, v phase 10 and W phase; a fixed permanent magnet that receives a repulsive magnetic field from the field coils; and a Hall sensor for detecting the rotational position of the rotor. Two Hall sensors are used to match the U phase, the V phase, and the w phase A 120 degree interval of electrical angle is provided. The three-phase brushless motor is driven according to the usual 120 degree control 15 system in the normal case. This U0 degree The force system is shown in Figure 13. The Hall signals output by the Hall sensors of the U-phase, V-phase and w-phase are offset from each other by 120 degrees in phase. The power corresponds to the When the u phase, the V phase, and the 120 degree electrical angle of the W phase are transmitted for a period of time, they are synchronized with the Hall signals of the u phase, the v phase, and the w phase. When used during the 12 〇 20 degree power transmission period It is possible to change the rotational speed of the brushless motor by PWM (pulse width modulation) control of the drive current supplied to each field coil. Fig. 14 shows the rotational speed and output torque of the rotor in the three-phase brushless motor. The relationship between the two is shown in Figure 14, which is known to reduce the output torque as the rotational speed is increased by 1300647. The formula (1) associated with the motor shown below can be known if the motor The rotation speed (α) is increased, and the current flowing to the motor decreases as the induced voltage kw (also known as the backward emf) generated by the motor increases, and the result is an output twist 5 moment proportional to the current (1). Become smaller. V=IR+Ldi/dt+k ω...... ................................ (1) where L = motor inductance, di / dt is the rate of change of current, and ν represents the voltage to the motor, I is the current flowing to the motor, R is the resistance of the motor, k is a constant, and w represents the rotational speed of the motor. 10 Conventional electric motor, especially the switch using the drive converter The problem of pulse width modulation (PWM) is that the high frequency switching of these switches results in a large amount of electromagnetic interference (EMI) radiation, which can interfere with the operation of other devices such as audio and video equipment, radios and computers. This is particularly troublesome in many applications such as cars, where EMI can interfere with radio equipment, car engine management systems, and other systems outside the car. In addition, government units have implemented controls that require EMI emissions to be lower than currently set at a frequency. SUMMARY OF THE INVENTION The problem addressed by the present invention is to reduce EMI with a motor controller. According to the present invention, the conduction angle of the DC brushless motor reduces the number of switching events in the power stage to reduce the amount of electromagnetic radiation. This allows for the use of smaller and less expensive EMI components and allows the controller to comply with regulatory requirements. The DC brushless motor generates a large amount of 1300647 electromagnetic interference due to the switching voltage and current involved. Each application has an EMI limit determined by the operating environment and associated controls. EMI filter components are typically incorporated into motor drive designs to attempt to comply with such EMI limitations. The size and cost of such filter elements are determined by the amount of attenuation required to comply with such limits. Another key design of such filtering components (especially a series of components such as sensing devices) is limited to their DC resistance. The high resistance creates excess heat and voltage loss applied to the motor. The technique described herein has been developed in which a motor such as a DC brushless motor is controlled by changing its conduction angle and phase advancement. This is in contrast to the conventional control strategy in which the conduction angle and phase advancement are respectively fixed and 〇, and the motor speed is controlled by the pulse width modulation. With the conduction angle control, the speed controller adjusts the time position of the transformed edge instead of the duty cycle of the -PWM waveform. This results in a much smaller switching event and thus a reduction in EMI. A line and method for achieving a 15-variable pure propulsion and/or - variable conduction angle in a motor drive system that reduces EMI generation is described herein. According to the present invention, a method for reducing the emission of an electric motor controlled by a switching converter and being fed by a -DC bus, comprising: phase-propulsion during one of the control-conduction angles, the motor Phase 20 is fed by the inverter during this period to control the conduction angle to control the speed of the motor, reducing the number of switching operations of the converter and thereby reducing EMI. It is a further object of the present invention to provide a system and method for appropriately adjusting the speed of an electric motor to achieve a desired torque using either variable phase propulsion, variable conduction angle and pulse width modulation at 1300647. feature. The present invention provides the advantage that an increase in phase propulsion and/or conduction angle results in a higher achievable speed for any particular torque. That is, its = force is increased. Further, an increase in the conduction angle reduces the torque ripple. The foregoing and other objects of the present disclosure utilize a method for controlling a switching instant of switching of an inverter having at least one of a conduction angle for determining a conduction time during a motor rotation for controlling at least one of the sensing states. Accommodated, the method includes: receiving the sensor output; and propelling one of the switching converters that connect the north k row to the motor phase drive input at a phase angle before the next sensor output that determines the switching instant One switch-on time. In recent years, there has been a demand for higher rotational speeds in the low range among three-phase brushless motors. However, in order to meet this demand, it is inevitable that there must be a drastic increase in cost due to the necessity of re-examining the control system of the one-phase brushless motor and re-evaluating the design of the three-phase brushless motor itself. Accordingly, it is an object of the present invention to provide a power steering apparatus which can obtain a high rotation sensor in a low torque range among the electric motors and which does not cause a drastic increase in manufacturing cost. The present invention for achieving the foregoing object is a power steering apparatus that uses an oil pressure generated by a pump driven by an electric motor to generate an auxiliary steering power having a conduction angle at which power is Provided to at least one motor phase, the power steering device includes a rotation angle detector for detecting a steering angular velocity of a steering member; and a driving target value rotational speed setting device for setting one of the steering angular velocity sensors 11 1300647 One of the electric motors associated with the output signal drives a target value rotational speed; a drive signal generator for generating a drive signal to drive the electric motor; and an angle 5 &amp; means for rotating the fast production according to the drive target value The driving target value rotation speed set by the setting means is determined by the rotation angle detected by the rotation angle detecting means 5 to change the inductance angle by a phase advancing angle. As described above, this power steering device produces a reduction &lt; According to the above configuration, the drive signal is set to conform to the drive target value rotational speed of the electric motor (e.g., a brushless motor) and is changed in accordance with the conduction angle. 10 For example, if the electric motor is a three-phase brushless motor, the three-phase brushless motor is driven according to the 120-degree conduction angle method, and the timing at which power is transmitted to the field coils of the U-phase, V-phase, and W-phase is An output signal of a rotational speed detector (such as a Hall sensor) corresponding to the equal port phase, V phase, and W phase is variably set. Since the current supplied by the electric motor (the μ power passage time or the conduction angle) is increased by setting the drive target value for the high speed range, it is possible to compare the large phase advance angle, the motor generates a voltage (backward emf) ) Smaller to increase the wheel torque. According to the present invention, it is possible to increase the rotational speed in the medium and low torque range without having to violently change the design of the motor or the design of the system. As a result, its cost will not increase drastically. It is possible to set the appropriate phase (10) feed angle (the minimum phase advance angle required) for the required motor rotation speed due to the application control, and control the main problem in the control of the small phase propulsion angle (such as the reduction of permanent magnetism or The reduction in efficiency) has also become possible. 12 1300647 It is also effective to keep the PWM control active for passing power during one of the phase propulsion angles by keeping the phase propulsion angle of the drive signal fixed. In this case, the heat loss in the switching facility (e.g., a field effect transistor) to achieve the pwM control becomes a problem. According to the present invention, the PWM control is implemented during the period of the phase advance angle, but is changed by changing the phase advance angle during the passage of the power, and the consequence is that the switching loss is not considered. And any possible increase in controlling this heat loss becomes possible. Further, this formation results in reduced EMI. Further, according to the present invention, the phase propulsion angle setting means sets a fixed phase propulsion angle regardless of the driving target value at the time of the unsaturated state when the shouting power passes the electric motor, but according to the electric power The drive motor setting means is set by the electric motor in the saturated state. According to this configuration, the phase advancement angle conforming to one of the driving target values may be only after the 120-degree power channel has been saturated (for example, may be set to a temperature) and in, for example, the low-speed rotation control and the low-low rotation control The motor can be set by performing PWM control during the 120-degree power passage that can be controlled. Once the 120 degree conduction angle period has been saturated (100% PWM duty cycle 20 periods), further motor control advances by the phase of the motor in a saturated state (ie, 100% PWM duty cycle) by changing the phase advance angle. The area is operated and completed. Other features and advantages of the present invention will become apparent from the following description of the invention. 13 1300647 BRIEF DESCRIPTION OF THE DRAWINGS While explained in more detail, the present invention will be described in detail with reference to the accompanying drawings

馬達驅動控制方式提供可 變相位推進及/或傳導角度; 第5圖顯示各種可變相位推進、固定相位推進與傳導角 1〇度情形之馬達驅動信號的數個時間圖;以及 第6圖顯不依照本發明之—速度,其選擇性地使用可變 相位推進/傳導角度與脈波寬度調變。 第7圖為一概念圖,顯示依據本發明一例之一動力操縱 裳置的基本構成。 15 第8圖為一方塊圖,顯示上述之動力操縱裝置中的電氣 控制單元之功能性構成。 第9圖為一特徵圖,顯示該操縱角度速度與該目標旋轉 速度間之關際。 第10圖為解釋用於操作該電動馬達之動力驅動方法的 20 目的之圖。 第11圖為顯示該相位推進角度與該目標旋轉速度間之 關係圖。 第12圖為一特徵圖,顯示該電動馬達之該扭錶對該旋 轉速度之關際。 14 1300647 就解釋慣常之120度傳導角度系統 相無刷馬達之該旋轉速度與輸出扭 弟13圖為一時間圖 的目的被提出。 弟14圖為顯示該三 矩間之關係圖。 第15圖顯示在被脈波寬度調變之時㈣A DC匯流排 電流操作的-DC無刷馬達觀行之放射。 第圖,.、具不第15圖之馬達驅動器在不出現pWM切換The motor drive control mode provides variable phase propulsion and/or conduction angle; Figure 5 shows several time diagrams of motor drive signals for various variable phase propulsion, fixed phase propulsion and conduction angle 1 ; degrees; and Fig. 6 Not in accordance with the present invention, it selectively uses variable phase propulsion/conduction angle and pulse width modulation. Fig. 7 is a conceptual diagram showing the basic configuration of a power steering device according to an example of the present invention. 15 Fig. 8 is a block diagram showing the functional configuration of the electrical control unit in the power steering device described above. Fig. 9 is a characteristic diagram showing the relationship between the steering angular velocity and the target rotational speed. Fig. 10 is a view for explaining the purpose of the power driving method for operating the electric motor. Figure 11 is a graph showing the relationship between the phase advance angle and the target rotational speed. Fig. 12 is a characteristic diagram showing the rotation of the electric motor to the rotation speed. 14 1300647 Explain the customary 120 degree conduction angle system. The rotational speed of the phase brushless motor and the output twister 13 are presented as a time chart. Figure 14 shows the relationship between the three moments. Figure 15 shows the radiation of the -DC brushless motor operated at the time of the pulse width modulation (IV) A DC bus current operation. Figure 1, the motor driver with the 15th picture does not show pWM switching

下於70ADC匯流排電流操作,但使用相位推進以達成馬達 、速度控制。 10 【實施方式】 詳細說明 現在轉到第4圖,此圖顯示為一馬達相位之間驅動高與 問駆動低&gt;f5就以及來自該馬達之理想與實際霍爾信號。該 理想霍爾信號被放置,使得若⑽。傳導角度以〇。相位推進 15被使用,違等切換瞬間會在與該等霍爾信號轉變相同之時 =發生:此在第4圖中以虛線X被顯示。若無相位推進被提 t、《亥同驅動5就之該等切換瞬間會與該理想霍爾信號之 上= 彖重口。该貫際霍爾信號可由該理想霍爾信號以某 些量(其可為㈣大靜之料值賴置(被減))。一釋例 2〇 ^實際霍爾信號在第,中被顯示。第4圖顯示該問驅動 就在.亥理想雈爾轉變前之一些可變相位量與在該實際 霍爾信號轉變前之一些可變量被切換。 士第4與5圖頭示者,該傳導角度可在12〇。與⑽。間變 乂相位推進為可變的。該相位推進與該傳導角度雖然 15 1300647 ===的’,地_。 之一麟以吨料導角度 加可變推進之旦 所‘麵之H巾等於120。 5 10 可你推進Γ °㈣相位推進轉於―Μ推進量k加該 二二?相位推進與該傳導角度在第4圖被顯示 運用以將轉導期間移位,但該傳導角度維持為固定的。 如弟4圖中顯示者,該等閘驅動信號之該等切換瞬間不 ΐ皮ΓΓ霍轉變重合。—軟體法則可任意地相對於該 寺隹爾感測器邊緣放置該等切換瞬間、亦如第4圖顯示者, 脈波寬度調變是否被使用均可’依用途而定。調整該等相 位推進及/或料角度可被用以調節某些情形之速度或電 流’有無PWM均可。 為了提供該相位推進(此意為讀閘信號之切換轉變為 15在。亥雈爾j5说轉變之前),一軟體法則可使用該先前之霍爾 轉變以致使在下一個對應的霍爾信銳轉變前之推進。 如先前描述者,提高相位推進與傳導角度為一特定之 扭矩提供較高可達成之速度。此即,動力被提高。傳導角 度中之提高亦減少扭矩紋波。下列中之資料就處於13.5 20 伏特與2.48Nm扭矩的典型之電動馬達被記錄。 16 1300647Operates at 70ADC bus current, but uses phase advancement to achieve motor and speed control. 10 [Embodiment] Detailed Description Turning now to Fig. 4, this figure shows the driving high and the low pitch &gt; f5 between a motor phase and the ideal and actual Hall signals from the motor. The ideal Hall signal is placed such that if (10). The conduction angle is 〇. The phase advance 15 is used, and the moment of the switching is the same as the transition of the Hall signals = occurs: this is shown by the dotted line X in Fig. 4. If no phase advancement is raised, the switching moments of the same drive will be the same as the ideal Hall signal = 彖 heavy port. The continuous Hall signal can be offset (decimated) by the ideal Hall signal by a certain amount (which can be (4) a large static value). An example 2〇 ^The actual Hall signal is displayed in the middle. Figure 4 shows that the drive is just a few of the variable phase quantities before the ideal Haier transition and some of the variables before the actual Hall signal transition are switched. In Figures 4 and 5, the conduction angle can be 12 〇. With (10). The interphase 乂 phase advancement is variable. The phase advances with the conduction angle of 15 1300647 ===, the ground_. One of the linings has a ton of material and an adjustable angle. 5 10 Can you push Γ ° (4) Phase advancement to Μ Μ push amount k plus the 22? The phase advancement and the conduction angle are shown in Figure 4 to shift during the transduction, but the conduction angle remains fixed. As shown in Figure 4, the switching moments of the gate drive signals do not coincide with the skin transition. - The software law can arbitrarily place the switching instants relative to the edge of the temple sensor, as shown in Fig. 4, whether the pulse width modulation is used or not, depending on the application. Adjusting the phase advancement and/or material angle can be used to adjust the speed or current of certain conditions with or without PWM. In order to provide this phase advancement (this means that the switching of the read gate signal is converted to 15 before the Haier j5 says the transition), a software rule can use the previous Hall transition to cause the next corresponding Hall letter sharp transition. Advance before. As previously described, increasing the phase propulsion and conduction angle provides a higher achievable speed for a particular torque. That is, the power is increased. An increase in the conduction angle also reduces the torque ripple. The following information is recorded on a typical electric motor with a torque of 13.5 20 volts and 2.48 Nm. 16 1300647

表i 傳導 角度 120° 140° 160° 180° 相位 推進 速度 電流 效率 速度 電流 效率 速度 電流 效率 速度 電流 效率 0° 5° 2498 69.2 69.22 10° 2523 68.9 70.44 15° 2560 69.0 71.37 20° 2594 69.4 71.90 25° 2634 70.4 71.98 2790 74.1 72.48 30° 2681 72.0 71.63 2880 75.0 73.87 35° 2735 73.6 71.49 2954 76.2 74.58 40° 2785 75.8 70.68 3036 78.0 74.88 2790 74.7 71.85 45° 2848 78.3 69.97 3129 80.1 75.15 3027 78.0 74.70 50° 2905 81.5 68.61 3241 82.9 75.21 3274 82.4 76.48 55° 3342 86.4 74.41 3475 86.8 77.02 60° 3653 91.5 76.80 2742 73.2 72.11 65° 2975 76.1 75.21 70° 3219 80.5 76.93 75° 3425 85.4 77.15 80° 3676 91.9 76.95 在表I中,速度以RPM表示、電流為安培(A)、及效率 為百分比。該工作週期為100%,此即其有100%脈波寬度調 5 變(在傳導角度之際為完整的)。其溫度介於30與45°C間。未 被填入之登入值因其效率不良而被視為不可使用的。 表I中之資料被記錄以發展相位推進與傳導角度間之 關係,其會形成有用的馬達特徵之結果。該資料在相位推 17 進與傳導角度被改變時之效率趨 者,#扣一 μ、# π啕用的。如表中顯不 就u傳w度,—較高之相位推進形成較大效率之 / °就16G°傳導角度而言,該最佳之效率在40。- 60。之相 5Table i Conduction angle 120° 140° 160° 180° Phase propulsion speed Current efficiency Velocity Current efficiency Velocity Current efficiency Velocity Current efficiency 0° 5° 2498 69.2 69.22 10° 2523 68.9 70.44 15° 2560 69.0 71.37 20° 2594 69.4 71.90 25° 2634 70.4 71.98 2790 74.1 72.48 30° 2681 72.0 71.63 2880 75.0 73.87 35° 2735 73.6 71.49 2954 76.2 74.58 40° 2785 75.8 70.68 3036 78.0 74.88 2790 74.7 71.85 45° 2848 78.3 69.97 3129 80.1 75.15 3027 78.0 74.70 50° 2905 81.5 68.61 3241 82.9 75.21 3274 82.4 76.48 55° 3342 86.4 74.41 3475 86.8 77.02 60° 3653 91.5 76.80 2742 73.2 72.11 65° 2975 76.1 75.21 70° 3219 80.5 76.93 75° 3425 85.4 77.15 80° 3676 91.9 76.95 In Table I, the speed is expressed in RPM The current is ampere (A) and the efficiency is a percentage. The duty cycle is 100%, which means that it has a 100% pulse width modulation (complete at the conduction angle). Its temperature is between 30 and 45 °C. Login values that are not filled in are considered unusable due to their inefficiency. The data in Table I is recorded to develop the relationship between phase propulsion and conduction angle, which will result in useful motor characteristics. This data is used when the phase is pushed and the conduction angle is changed. #扣一 μ,# π啕. As shown in the table, the degree of u is transmitted, and the higher phase advances to form a larger efficiency. / The optimum efficiency is 40 in terms of the 16G° conduction angle. - 60. Phase 5

10 ^隹進發生(約55,最佳的)。就⑽。傳導角度而言,該最 L之效率在6〇。—8〇。之相位推進發生⑼乃。為最佳的)。就 4〇傳導角度而言,該最佳之效率在25。-55。之相位推進發 生(約50°為最佳的)。就12〇。傳導角度而言,該最佳之效率 在5 —50。之相位推進發生(約25。為最佳的)。 根據表I,下列之方式可被選用: P =相位推進 c =傳導角度 k=固定推進 a =可變推進(及額外之傳導角度) p = k+a,k&lt;p&lt;(k+60o) 15 c=120°+a5 120°&lt;c&lt;18〇° 0°&lt;a&lt;60°10 ^ hyperthyroidism occurs (about 55, the best). Just (10). In terms of conduction angle, the efficiency of the most L is 6〇. —8〇. The phase advancement occurs (9). For the best). The optimum efficiency is 25 in terms of the conduction angle of 4 turns. -55. The phase advances (about 50° is optimal). It’s 12 miles. The optimum efficiency is 5-50 in terms of conduction angle. The phase advancement occurs (about 25. It is the best). According to Table I, the following modes can be selected: P = phase propulsion c = conduction angle k = fixed propulsion a = variable propulsion (and additional conduction angle) p = k + a, k &lt; p &lt; (k + 60o) 15 c=120°+a5 120°&lt;c&lt;18〇° 0°&lt;a&lt;60°

P a k=15〇 120°之傳導:相位推進斗+0。=15。 140。之傳導:相位推進斗+2〇。= 35。 160。之傳導:相位推進=^+40。= 55。 20 180°之傳導:相位推進=k+60° = 75。 k=15°之固定相位推進根據表I被選用,而以總推進等 於該固定推進加該可變推進a。在此方式中,該可變推進亦 等於該額外之傳導角度。該固定推進將該傳導角度期間移 位,而該可變推進提高該傳導角度。 18 1300647 回顧表i中之資料,可觀察的是以此方式及k=i5。下, 就160°與180。傳導而言,該系統處於最大效率。在12〇。與 H〇°傳導與k=15°,系統為最大效率的百分之一内。 上述之方式具有之優點為簡單、有較高效率之結果、 5及提供放置該霍爾感測器使得數個切換瞬間將對齊該等霍 爾邊緣。此可改善該軟體法則之精度與簡單性。 第5圖顯示依據本發明之控制方式的數例。在第5八圖 中,該可變推進等於0。,其總相位推進等於固定相位推進k 及傳導角度等於120。。在第5B圖中,該可變相位推進介於〇 10與60。間。其總相位推進等於該固定推進k加可變推進a及其 傳導角度等於120°加該可變推進a。 在第5C圖中,該可變推進等於60。,其總相位推進等於 固定推進k加60°及其傳導角度等於18〇。。該等理想與可能 的實際霍爾信號就一單一該等U相位、V相位與W相位分別 15 在第5圖之頂部與底部被顯示。 藉由設定該固定推進k,其結果為不管該可變推進之量 為何,每一個對應的切換器(就每一傳導角度)之關閉瞬間為 在同一點。此即,切換器AH之關閉瞬間就該等三個傳導角 度之每一個為相同的。類似地,切換器AL之關閉瞬間就每 20 一方式為在相同時間,該等切換器BH,BL,CH與CL也類 似於此。此意即該等霍爾效應感測器可被在該描點圖底部 所顯示之該可能的實際霍爾信號所示地被定位,使得關閉 瞬間永遠與一霍爾轉變對齊。同樣的事情對其他二相位為 真的。此簡化在每一個半橋中控制該等驅動電晶體之軟體 19 1300647 法則,因而簡化控制變換之軟體。 第6圖顯示運用本發明之一速度控制。在高負載時,因 該轉換器之動力裝置中的切換所致之損失為顯著的。損失 在該等電晶體與該等二極體切換時發生。因而在脈波寬度 調變時有顯著之損失。由於這些損失,取代脈波寬度調變 的疋,當可變推進大於〇時,一完整之工作週期(1〇〇%pwM) 可被使用。如第6圖顯示之速度控制器可被提供其將該工作 週期留在100% ,但改變可變推進&amp;以調節馬達速度。 15 20 在第6圖中,包含-換流器謂之一閘驅動器被提供, 其提供泫等二相位至馬達3〇〇。該等霍爾信號被提供至一控 制裔200,其包括一整流子2〇〇A與一脈波寬度調變器 200B。整流子2〇〇A被提供_信號,其包含推進&amp;之可變數 i為馬達控制之推進的〇或某些數量。脈波寬度調變器 漏被提供-信號,其㈣紅作義,為小於嶋或 麵之工作週期的數量。依狀況而定,一切換器提供 等於〇之-可變推進或來自_控制器2之一可變推進至該整 流子。切換器亦提供-工作週期,如顯示地包含—控制哭工 包㈣叫週__卫作·至該脈波寬 度调交益。切換器400可被—軟體控制器控制且可包含一中 控制器1與2被提供-速度參考信號(二 哭被導Γ、疋_奴速度。—_信號侧由位置感測 被提供至該諸與2作為該實際馬達速度 ”亥所欲之速度以咖傳導角度與小於刚%工作週期 20 1300647 被到達時控制菇1被使用。若該馬達以12〇0傳導角度與1〇〇% 工作週期所抽動之電流太高,此方式亦被使用。因而,當 控制1被使用以改變該工作週期時,可變推進a如第6圖中顯 示地等於〇。 5 若被抽動之電流不太鬲,該所欲之速度無法以12〇0傳 導角度與100%工作週期被到達時,控制器2被使用。因之, 當控制器2被使用時,大於0之一可變推進1〇〇%脈波寬度 調變(在傳導角度之際為完整的)被提供至整流子2〇〇a。 控制器1可包括速度與電流控制二者。在該等二控制器 10 間切換時會需要磁滯。 本發明因之包含一種系統用於提高效率之馬達控制與 在任一特定扭矩之較高的作業速度而提高動力。進一步言 之’提高之傳導角度減少扭矩紋波。例如,就一典型之電 動馬達以1 Nm扭矩的實際測試結果顯示電流之75%提高而 15得到馬達速度中77%提高的結果。表II顯示一此實際測試結 果0P a k=15〇 120° conduction: phase propulsion bucket +0. =15. 140. Conduction: Phase propulsion bucket + 2 〇. = 35. 160. Conduction: Phase advancement = ^ + 40. = 55. 20 180° conduction: phase advancement = k + 60 ° = 75. The fixed phase propulsion of k = 15° is selected according to Table I, and the variable propulsion a is added with the total propulsion equal to the fixed propulsion. In this manner, the variable advancement is also equal to the additional conduction angle. The fixed advancement shifts the conduction angle period, and the variable advancement increases the conduction angle. 18 1300647 Looking back at the information in Table i, it is observable in this way and k=i5. Next, it is 160° and 180. In terms of conduction, the system is at maximum efficiency. At 12 o'clock. With H〇° conduction with k=15°, the system is within one percent of maximum efficiency. The above described approach has the advantage of being simple, with higher efficiency results, 5 and providing placement of the Hall sensor such that several switching instants will align the Hall edges. This improves the accuracy and simplicity of the software rule. Fig. 5 shows a few examples of the control method according to the present invention. In Figure 5, the variable propulsion is equal to zero. The total phase propulsion is equal to the fixed phase advancement k and the conduction angle is equal to 120. . In Figure 5B, the variable phase advancement is between 〇 10 and 60. between. Its total phase propulsion is equal to the fixed propulsion k plus variable propulsion a and its conduction angle is equal to 120° plus the variable propulsion a. In Figure 5C, the variable propulsion is equal to 60. The total phase propulsion is equal to a fixed propulsion k plus 60° and its conduction angle equals 18 〇. . The ideal and possible actual Hall signals are displayed as a single U phase, V phase and W phase 15 respectively at the top and bottom of Figure 5. By setting the fixed advance k, the result is that regardless of the amount of variable propulsion, the closing instant of each corresponding switch (for each conduction angle) is at the same point. That is, each of the three conduction angles is the same when the switch AH is turned off. Similarly, the switching instants of the switch AL are the same at every other time, and the switches BH, BL, CH and CL are similar thereto. This means that the Hall effect sensors can be positioned as indicated by the possible actual Hall signal displayed at the bottom of the trace such that the turn-off instant is always aligned with a Hall transition. The same thing is true for the other two phases. This simplification controls the software of the drive transistors in each of the half bridges, thus simplifying the software for controlling the transformation. Figure 6 shows the speed control using one of the present inventions. At high loads, the losses due to switching in the power unit of the converter are significant. Loss occurs when the transistors are switched with the diodes. Therefore, there is a significant loss in the pulse width modulation. Due to these losses, instead of the pulse width modulation, a full duty cycle (1〇〇% pwM) can be used when the variable propulsion is greater than 〇. The speed controller as shown in Figure 6 can be provided to leave this duty cycle at 100%, but change the variable propulsion &amp; to adjust the motor speed. 15 20 In Fig. 6, the inclusion-converter is provided as a gate driver that provides two phases to the motor 3〇〇. The Hall signals are provided to a controller 200 comprising a commutator 2A and a pulse width modulator 200B. The commutator 2A is provided with a signal containing the variable number i of the propulsion &amp; The pulse width modulator leakage is provided as a signal, which is (4) red, which is less than the number of duty cycles of the 嶋 or face. Depending on the situation, a switcher provides a variable boost or a variable from one of the controllers 2 to the rectifier. The switcher also provides a - duty cycle, as shown in the display - control the crying package (four) called Zhou _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The switch 400 can be controlled by a software controller and can include a controller 1 and 2 being provided with a speed reference signal (two crying guides, 疋 slave speeds. - _ signal side is provided by position sensing to the The 2 and 2 are used as the actual motor speed to control the speed of the coffee and the less than just the duty cycle of 20 1300647 is reached when the control mushroom 1 is used. If the motor is operated at 12〇0 with an angle of 1〇〇% The current drawn by the period is too high, and this mode is also used. Therefore, when the control 1 is used to change the duty cycle, the variable propulsion a is equal to 〇 as shown in Fig. 6. 5 If the current is not twitched控制器, when the desired speed cannot be reached at the 12〇0 conduction angle and the 100% duty cycle, the controller 2 is used. Therefore, when the controller 2 is used, one of the variables greater than 0 can be pushed 1〇〇. The % pulse width modulation (complete at the conduction angle) is provided to the commutator 2〇〇a. The controller 1 may include both speed and current control. This may be required when switching between the two controllers 10 Magnetic hysteresis. The present invention includes a system for improving efficiency. Controlling and increasing the power at higher operating speeds at any given torque. Further, 'increased conduction angle reduces torque ripple. For example, a typical electric motor with a torque of 1 Nm actually shows a current of 75 % is increased and 15 is the result of 77% increase in motor speed. Table II shows an actual test result of 0

表II 馬達速度(RPM) 負載扭矩 —----..... 120°傳導, 0°相位推進 180°傳導, 〜 6(Γ相位推進 1.0 ——----- 3360 5960 2.5 -------- .一 2530 3225 現在參照第7-12圖詳細地顯示有關一動力操縱***之 本發明的執行形式。 第7圖為一概念圖,表示依據本發明之例的一動力操縱 21 1300647 裝置之構成。此操«置以相關於車輛之操縱機糾被配 置,以一輔助操縱動力被提供而給予此機構i。 該操縱機構1例如包含一方向盤2被該操作員操作、一 操縱軸3被連結至此方向盤2、一小齒輪4被搞合於該操縱轴 5 3、及一齒條化與小齒輪4被耦合且以一齒條軸5在左右方向 伸展。在齒條軸5之二端部,繫桿6被接合,且該等繫桿科皮 連結至-關節臂7,其在左右支撐輪子凡與陳作為可操縱 之輪子。關節臂7被提供之方式為使得其繞著大王銷8旋 轉。上面之配置僅為釋例性的。其他形式之操縱齒輪與其 10他元件可如熟習本技藝者所習知般地被提供。 在上述之構造中,當方向盤***作且操縱軸3被旋轉, 该旋轉用小齒輪4與齒條軸5被轉換為沿著該輪子左右方向 之線性運動。此直線運動被轉換為繞著關節臂7之大王銷5 的旋轉量,此結果為該等左與右輪子的操縱被達 丄5 成。 在操縱軸3内,產生符合被添加至方向盤2之操縱扭矩 的方向與大小之一扭矩棒9及其開口會符合扭矩棒9之扭矩 的方向與大小之一油壓控制閥23被納入。 油壓控制閥23被連接至一動力氣缸2〇,其提供該輔助 20操縱動力至操縱機構1。動力氣缸20具有一活塞21其在内部 被1^供於齒條軸5上,及具有一對氣缸室2〇a與2〇b用該活塞 21被隔開。該等氣缸室2〇a與20b以油壓控制閥23分別透過 供應與回送路徑22a與22b被連接。 该油壓控制閥23在一油循環路徑24上進一步被提供, 22 1300647 此路徑通過一儲存筒25與一油泵26。油泵26被電動馬達 M(27)驅動,其抽動儲存於儲存筒25中之操作油,並將之供 應至油壓控制閥23。多餘之操作油由油壓控制閥23透過油 循環路徑24被送回儲存筒25。在扭矩以一方向被加壓至扭 5矩棒9之情形中,油壓控制閥23透過油供應或回送路徑22a 與22b供應操作油至動力氣缸之氣缸室2加或2〇1;)。在扭矩以 另一方向被加壓至扭矩棒9之事件中,其透過該等油供應或 回送路徑22a與22b之另一供應該操作油至氣缸室2〇a與2〇b 之另一個。 10 在沒有扭矩或很少扭矩被加壓至扭矩棒9之情形中,油 壓控制閥23將在所謂之均割大態中且該操作油以未被供應 至該動力氣缸地在油循環路徑24中循環。 當該操作油被供應至動力氣缸2〇的該等氣缸室其中之 -時,活塞21在該可操縱的輪子之寬度方向運動。結果為, 15 輔助操縱動力被加壓到齒條軸5。 油壓控制閥23之構造例在美國專利第4,624,283號詳細 地被揭不以引述·-例。 電動馬達27例如包括一個三相無刷馬達且用一電子控 制單元30透過一驅動電路28被控制。該驅動電路28例如包 μ括-電力電晶體橋電路。其供應來自一電瓶4〇之電力作為 電動馬達27之電源,此乃依照被一電子控制單元3〇提供之 該控制信號。 該電子控制單元30包括-微電腦,其在接收來自電舰 之電力供應之際被啟動。此微電腦包含一cpU3l,一ram 23 1300647 32為CPU提供工作區,一R0M 33具有被記憶之資料用於 CPU31之控制以及動作程式,及一匯流排34用於cpiJ31, RAM 32與ROM 33間之相互連接。 作為由操縱角度感測器11輸出之操縱角度資料被提供 5至電子控制單元30。操縱角度感測器11以相關於方向盤2被 提供。藉由在點火開關被啟動且引擎已在初始值“〇,,被起動 之時設定方向盤2之操縱角度,符合該操縱方向之符號的一 操縱角度資料被輸出。根據此操縱資料,CPU 31計算對應 其時間差分值之操縱速度。來自檢測流至電動馬達27之電 10流的一電流感測器12之一電流檢測信號與來自作為一轉子 位置感測器之霍爾感測器15用於檢測電動馬達27之轉子位 置的一檢測速度被提供至該電子控制單元3 〇。 此外,由車輪速度感測器13被輸出之一車輪速度信號 被給予電子控制單元30。該車輪速度感測器13可直接檢測 15該車輪速度(與車輛速度成比例),或該車輪速度可根據已相 關於該車輪被提供之車輪速度感測器13的輸出脈波計算而 被獲得。 電子控制單元30根據分別由操縱角度感測器u、電流 感測器12與車輪速度感測器13被給予之操縱角度資料、電 20 流資料與車輪速度資料來控制該電動馬達27。 第8圖為一方塊圖,顯示由功能立場所觀察之該電子控 制單元的構造。該電子控制單元30實質上擁有數個功能設 施其透過儲存於ROM 33中之程式用CPU 31執行而被實 現。因而電子控制單元30包含一操縱角度速度操作部41用 24 1300647 於根據操縱角度感測為11之輸出信號來計算操縱角度速度 與一目標旋轉速度设定部42根據車輪速度感測器13所檢測 之車輪速度以及操縱角度速度操作部41所計算之操縱角度 速度來設定電動馬達27之目標旋轉速度r。 5 此外,該電子控制單元30被提供一馬達驅動控制部45 其控制及驅動電動馬達27而達成如目標旋轉速度設定部似 如設定之目標旋轉速度R。馬達驅動控制部45根據電流感測 器12所檢測之馬達電流產生一驅動信號用於達成該目標旋 轉速度R並提供此驅動信號至該驅動電路。 10 電動馬達27被提供一靜子,其具有一ϋ相位場線圈 27U、一 V相位場線圈27V、與一W相位場線圈27W及一轉 子,其具有一固定永久磁鐵接收來自這些場線圈27U,27v 與27W之推斥場,而此轉子之旋轉角度被霍爾感測器^ 檢測。霍爾感測器15包含霍爾感測器15U,15V與15W,其 15配合該等U相位、v相位與w相位被提供。 目的要檢測流至電動馬達27之電流的電流感測 器12被 配備電流感測器咖,12V與窗,其分別檢測流至該_ 相位V相位與w相位之電流。電流感測器伽,與工頂 及隹爾感心15 u,15 V與15 w之輸出信號適當地被放大及 2〇被提供至馬達驅動控制部Μ。或者,電流感測扣可被施 作成被麵合至該DC匯流排之單-電流感測器。 帝驅動包路28包含一對場效應電晶體而與肌之一系列 :路對應於相位、_對場效應電晶體與几之一系列 包路對應於该¥相位及_對場效應電晶體侧與肌之一系 25 1300647 列電路對應於該W相位,而跨過電瓶4〇以並聯被耦合。 電動馬達27之U相位場線圈27U被連接於場效應電晶 體UH與UL間之一連接點、v相位場線圈27V被連接於場效 應電晶體VH與VL間之一連接點及w相位場線圈27W被連 5 接於場效應電晶體WH與WL間之一連接點。 馬達驅動控制部45在電氣角度的某一期間之際導致該 等場效應電晶體UL,VL與WL以此順序成為on狀態,同時 藉由為该4%效應電晶體UL,VL與WL提供由該等PWM脈 波組成之一驅動信號控制電動馬達27之旋轉。 1〇 特別疋,馬達驅動控制部45包含一PWM工作週期設定 部46用於設定該PWM工作週期對應於被目標旋轉速度設 定部42設立該目標旋轉速度R ; 一相位推進角度設定部47 用於設定該相位推進角度,其對應於被目標旋轉速度 設定部42類似地設定之目標旋轉速度;以及一驅動信號產 15生部48根據被相位推進角度設定部47設定之相位推進角度 △ 0以及被PWM工作週期設定部46設定之pWM工作週期 產生將被給予驅動電路28之場效應電晶體uh,UL·,, VL,WH與 WL。Table II Motor Speed (RPM) Load Torque—----..... 120° Conduction, 0° Phase Propulsion 180° Conduction, ~ 6 (Γ Phase Propulsion 1.0 ——----- 3360 5960 2.5 -- ------ .2530 3225 An embodiment of the present invention relating to a power steering system is now shown in detail with reference to Figures 7-12. Figure 7 is a conceptual diagram showing a power steering in accordance with an example of the present invention. 21 1300647 The construction of the device. The operation is arranged in accordance with the manipulator of the vehicle, and is provided to the mechanism i with an auxiliary steering power. The operating mechanism 1 includes, for example, a steering wheel 2 operated by the operator, The steering shaft 3 is coupled to the steering wheel 2, a pinion 4 is engaged with the steering shaft 53, and a racking is coupled with the pinion 4 and extends in a left-right direction with a rack shaft 5. In the rack shaft At the end of the two ends, the tie rods 6 are engaged, and the tie rods are joined to the articulated arm 7, which supports the wheels and the stalks as steerable wheels on the left and right. The articulated arm 7 is provided in such a way that Rotate around the king's pin 8. The above configuration is only for illustrative. Other forms of steering gear and The other elements can be provided as is well known to those skilled in the art. In the above configuration, when the steering wheel is operated and the operating shaft 3 is rotated, the rotating pinion 4 and the rack shaft 5 are converted along The linear motion of the wheel in the left-right direction. This linear motion is converted into the amount of rotation around the king pin 5 of the articulated arm 7, with the result that the manipulation of the left and right wheels is up to 50. In the steering shaft 3, One of the direction and magnitude of the torque rod 9 and its opening that conforms to the torque applied to the steering wheel 2 is generated. One of the directions and sizes of the torque of the torque rod 9 is incorporated. The oil pressure control valve 23 is connected. To a power cylinder 2, which provides the auxiliary 20 steering power to the operating mechanism 1. The power cylinder 20 has a piston 21 which is internally supplied to the rack shaft 5 and has a pair of cylinder chambers 2A and 2〇b is separated by the piston 21. The cylinder chambers 2a and 20b are connected to the oil supply control valve 23 through the supply and return paths 22a and 22b, respectively. The oil pressure control valve 23 is in an oil circulation path 24. Further provided, 22 1300647 this path through one The cartridge 25 and an oil pump 26. The oil pump 26 is driven by an electric motor M (27), which pulsates the operating oil stored in the cartridge 25 and supplies it to the oil pressure control valve 23. The excess operating oil is controlled by the oil pressure. The valve 23 is sent back to the storage cylinder 25 through the oil circulation path 24. In the case where the torque is pressurized to the twisted 5 moment bar 9 in one direction, the oil pressure control valve 23 supplies the operating oil to the oil supply or return paths 22a and 22b to The cylinder chamber of the power cylinder is 2 plus or 2〇1;). In the event that the torque is pressurized to the torque rod 9 in the other direction, it supplies the operating oil to the other of the cylinder chambers 2a and 2b through the other of the oil supply or return paths 22a and 22b. 10 In the case where there is no torque or little torque is applied to the torque rod 9, the oil pressure control valve 23 will be in the so-called slashing state and the operating oil is not supplied to the power cylinder in the oil circulation path. 24 cycles. When the operating oil is supplied to the cylinder chambers of the power cylinder 2, the piston 21 moves in the width direction of the steerable wheel. As a result, 15 the auxiliary steering power is pressurized to the rack shaft 5. An example of the construction of the oil pressure control valve 23 is disclosed in detail in U.S. Patent No. 4,624,283. The electric motor 27 includes, for example, a three-phase brushless motor and is controlled by an electronic control unit 30 through a drive circuit 28. The drive circuit 28 includes, for example, a power transistor bridge circuit. It supplies power from a battery 4 as the power source for the electric motor 27 in accordance with the control signal provided by an electronic control unit 3A. The electronic control unit 30 includes a microcomputer that is activated upon receiving power from the electric ship. The microcomputer includes a cpU3l, a ram 23 1300647 32 provides a working area for the CPU, a ROM 33 has a memory for the control of the CPU 31 and an action program, and a bus 34 is used for the cpiJ31, the RAM 32 and the ROM 33. Connected to each other. The steering angle data outputted from the steering angle sensor 11 is supplied 5 to the electronic control unit 30. The angle sensor 11 is manipulated to be provided in relation to the steering wheel 2. By setting the steering angle of the steering wheel 2 when the ignition switch is activated and the engine has been at the initial value "〇", the steering angle of the steering wheel 2 is output. According to the manipulation data, the CPU 31 calculates A steering speed corresponding to its time difference value. A current detecting signal from a current sensor 12 that detects the flow of electricity 10 flowing to the electric motor 27 is used with a Hall sensor 15 from a rotor position sensor. A detection speed for detecting the rotor position of the electric motor 27 is supplied to the electronic control unit 3. In addition, one of the wheel speed signals outputted by the wheel speed sensor 13 is given to the electronic control unit 30. The wheel speed sensor 13 can directly detect 15 the wheel speed (proportional to the vehicle speed), or the wheel speed can be obtained from an output pulse wave calculation that has been correlated with the wheel speed sensor 13 provided by the wheel. The electronic control unit 30 is based on The steering angle data, the electric 20 flow data and the wheel speed are respectively given by the steering angle sensor u, the current sensor 12 and the wheel speed sensor 13. To control the electric motor 27. Fig. 8 is a block diagram showing the construction of the electronic control unit as viewed from a functional stand. The electronic control unit 30 essentially has a plurality of functional facilities that pass through the program stored in the ROM 33. The electronic control unit 30 includes a steering angle speed operating portion 41 for calculating the steering angle speed and a target rotational speed setting portion 42 according to the output signal sensed by the steering angle 11 by 24 1300647. The wheel speed detected by the wheel speed sensor 13 and the steering angle speed calculated by the steering angle speed operating portion 41 set the target rotational speed r of the electric motor 27. In addition, the electronic control unit 30 is provided with a motor drive control unit. 45. Controlling and driving the electric motor 27 to achieve a target rotational speed R as set by the target rotational speed setting unit. The motor drive control unit 45 generates a drive signal for achieving the target based on the motor current detected by the current sensor 12. Rotating speed R and providing this drive signal to the drive circuit. 10 Electric motor 27 is provided with a stator, There is a phase field coil 27U, a V phase field coil 27V, a W phase field coil 27W and a rotor having a fixed permanent magnet for receiving a repeller field from the field coils 27U, 27v and 27W, and the rotor The angle of rotation is detected by the Hall sensor. The Hall sensor 15 includes Hall sensors 15U, 15V and 15W, which are provided in conjunction with the U phase, v phase and w phase. The current sensor 12 of the current of the electric motor 27 is equipped with a current sensor, 12V and a window, which respectively detect the current flowing to the phase V phase and the w phase. Current sensor gamma, and the top and the 隹The sense of heart 15 u, the output signals of 15 V and 15 w are appropriately amplified and supplied to the motor drive control unit 〇. Alternatively, the current sensing buckle can be configured as a single-current sensor that is bonded to the DC bus. The emperor drive package 28 includes a pair of field effect transistors and a series of muscles: the path corresponds to the phase, the _field effect transistor and the series of packages correspond to the phase and the field effect transistor side The 25 1300647 column circuit with one of the muscles corresponds to the W phase, and is coupled in parallel across the battery 4〇. The U-phase field coil 27U of the electric motor 27 is connected to one of the connection points between the field effect transistor UH and the UL, and the v-phase field coil 27V is connected to one of the connection points between the field effect transistors VH and VL and the w-phase field coil. 27W is connected to one of the connection points between the field effect transistor WH and WL. The motor drive control unit 45 causes the field effect transistors UL, VL and WL to be in the on-state in this order during a certain period of the electrical angle, while providing the VL and WL by the 4% effect transistor UL, One of the PWM pulse wave drive signals controls the rotation of the electric motor 27. In particular, the motor drive control unit 45 includes a PWM duty cycle setting unit 46 for setting the PWM duty cycle to establish the target rotational speed R corresponding to the target rotational speed setting unit 42. A phase advancement angle setting unit 47 is used for The phase advancement angle is set to correspond to the target rotational speed set similarly by the target rotational speed setting unit 42; and a drive signal generating unit 48 is based on the phase advancement angle Δ 0 set by the phase advancement angle setting unit 47 and The pWM duty cycle set by the PWM duty cycle setting unit 46 generates field effect transistors uh, UL·, VL, WH, and WL to be given to the drive circuit 28.

第9圖顯示該操縱角度速度與如目標旋轉速度設定部 20 42所设定之目標力疋轉速度間的關係圖。該目標旋轉速度R 被設定於下限R1與上限R2間,使得其在不長於有關該操縱 角度速度V(0)不長於VT(VT為一臨界值)之v(0)的零之範 圍内將單調地提高(該提高在此執行形式中為線性的)。 該目標旋轉速度設定部42根據如第3圖顯示之車輪速 26 1300647 度比起該彳呆縱角度速度B ( θ )各式地設定该目標旋轉速度 R的斜度。換言之,該臨界值ντ依照該車輪速度範圍各式 地被設定。更明確地說,當該車輪速度變得較高時(即該車 輛正較快地移動)時,該臨界值被設定較高。因之,該目標 5力疋轉速度R隨著該車輪速度變得較高而被設定較低’後果為 該輔助操縱動力變得較小。在此方式中,車輪速度反應式 控制為產生符合該車輛速度之適合的操縱輔助動力被實 施。 第10圖為一時間圖為解釋傳送電流用於驅動電動馬達 10 27之方法的目的被提出。第10⑻圖顯示被霍爾感測器1511 輸出之U相位霍爾信號及第10(b)圖顯示霍爾感測器15γ所 輸出之V相位霍爾信號。此外,第10⑷圖顯示霍爾感測器 15W輸出之W相位霍爾信號。 此外’第10(d)圖顯示被提供至場效應電晶體UH之驅動 15信號波形、第10(幻圖顯示被提供至場效應電晶體VH之驅動 信號波形及第10(f)圖顯示被提供至場效應電晶體WH之驅 動信號波形。 隨著電動馬達27之旋轉,U相位霍爾信號、V相位霍爾 信號與W相位霍爾信號採用每一個以12〇度電氣角度之相 20 位延遲的波形。 驅動信號產生部48產生該等驅動信號,其基本上遵循 該120度之動力傳送系統。換言之,被提供至場效應電晶體 UH之該驅動信號於該U相位霍爾信號前上升及在僅於藉由 添加該相位推進角度△ Θ至120度所獲得之電氣角度的期 27 1300647 間之際被維持於〇N狀態後其與一霍爾信號同步地被轉回 至〇FF狀態。類似地,被提供至場效應電晶體VH之該驅動 信號於該V相位霍爾信號前上升及在僅於藉由添加該相位 推進角度A 0至120度所獲得之電氣角度的期間之際被維 5持於0N狀恶後其與一霍爾信號同步地被轉回至OFF狀態。 相同之情形可對該場效應電晶體WH之該驅動信號被 敘述,且其在該W相位霍爾信號的前導邊緣前上升至〇N狀 態,及同時其僅於藉由添加該相位推進角度△ 0至12〇度所 獲得之電氣角度的期間之際被維持於ON狀態,隨後其與一 10霍爾信號同步地被轉回OFF狀態。 在這些控制正被實施之時,在該PWM工作週期設定部 46被設定之工作週期比值的脈波寬度控制信號被提供至場 效應電晶體UL,VL與WL。 相位推進角度設定部47係根據該目標旋轉速度r比起 15該霍爾信號用於設定該驅動信號之相位推進角度。只要 PWM工作週期設定部46設定小於100%之一 PWM工作週 期’相位推進角度設定部47設定該相位推進角度△ 0為〇。 此時,驅動信號產生部48產生遵循普通120度傳導角度系統 之一驅動信號。 20 當pWM工作週期設定部46設定一 100%PWM工作週期 且因之在其中該電氣通過因該PWM控制被飽和之狀態 中’相位推進角度設定部37依照該目標旋轉速度R各式地設 定該相位推進角度△ Θ。此時,驅動信號產生部48在該相 位比起該霍爾信號已用該相位推進角度△ 0被推進之時機 28 1300647 導I亥场效應電晶體·,V_WH成為〇N狀態。後果為, «力傳送時間(傳導角度)狀變成對應於12〇度加△ 0之時 間,而该動力傳送時間變成以對應於該相位推進角度 之時間加得較長。 5 為導致該等u相位、ν相位與w相位之該等驅動信號比 起η亥雈爾#旒以該相位推進角度△0被前推的時機成為 ON狀態’其僅須藉由使用一週期前之該滾動信號設定該等 U相位、v相位與w相位的ON時機。 第11圖顯示被相位推進角度設定部47設定之相位推進 10角度△ 0與被目標旋轉速度設定部42設定之目標旋轉速度 R間的關係。假設PWM工作週期設定部46以4000 rpm之目 標旋轉速度設定100%之PWM工作週期,而電動馬達27之最 高旋轉速度要求為5000 rpm。在此情形中,相位推進角度 設定部47相位推進角度△ 0之方式為在4〇〇〇 rpm至5000 I5 rPm之目標旋轉速度R區域中單調地由〇提高至60度。Fig. 9 is a view showing the relationship between the steering angular velocity and the target rotational speed set by the target rotational speed setting unit 2042. The target rotational speed R is set between the lower limit R1 and the upper limit R2 such that it is not longer than the range of zero (v) corresponding to the manipulated angular velocity V(0) not longer than VT (VT is a critical value) Monotonically increasing (the increase is linear in this execution form). The target rotation speed setting unit 42 sets the inclination of the target rotation speed R in accordance with the wheel speed 26 1300647 degrees as shown in Fig. 3 in comparison with the vertical speed speed B (θ). In other words, the threshold value ντ is set variously in accordance with the wheel speed range. More specifically, the threshold is set higher when the wheel speed becomes higher (i.e., the vehicle is moving faster). Therefore, the target 5 rotational speed R is set lower as the wheel speed becomes higher. The consequence is that the auxiliary steering power becomes smaller. In this manner, the wheel speed reactive control is implemented to produce a suitable steering assist power that is consistent with the speed of the vehicle. Fig. 10 is a timing diagram for the purpose of explaining the method of transmitting current for driving the electric motor 107. Fig. 10(8) shows the U-phase Hall signal outputted by the Hall sensor 1511 and the 10th (b) diagram shows the V-phase Hall signal output from the Hall sensor 15γ. In addition, the 10th (4)th diagram shows the W-phase Hall signal output from the Hall sensor 15W. Further, the '10th (d) diagram shows the driving 15 signal waveform supplied to the field effect transistor UH, the 10th (the magic image shows the driving signal waveform supplied to the field effect transistor VH, and the 10th (f) figure shows A drive signal waveform is supplied to the field effect transistor WH. With the rotation of the electric motor 27, the U phase Hall signal, the V phase Hall signal, and the W phase Hall signal are each 20 bits at an electrical angle of 12 degrees. Delayed waveform. The drive signal generating portion 48 generates the drive signals substantially following the 120 degree power transfer system. In other words, the drive signal supplied to the field effect transistor UH rises before the U phase Hall signal And after being maintained in the 〇N state only during the period of the period 27 1300647 obtained by adding the phase advance angle Δ Θ to 120 degrees, it is turned back to the 〇FF state in synchronization with a Hall signal. Similarly, the driving signal supplied to the field effect transistor VH rises before the V phase Hall signal and at a time when only the electrical angle obtained by adding the phase advance angle A 0 to 120 degrees is added. Weiwei 5 After 0N, it is turned back to the OFF state in synchronization with a Hall signal. In the same case, the driving signal of the field effect transistor WH can be described, and it is before the leading edge of the W phase Hall signal. It rises to the 〇N state, and at the same time it is maintained in the ON state only during the period of the electrical angle obtained by adding the phase advancement angle Δ0 to 12〇, and then it is synchronized with a 10 Hall signal. Turning back to the OFF state. At the time when these controls are being implemented, the pulse width control signals of the duty ratios set at the PWM duty cycle setting section 46 are supplied to the field effect transistors UL, VL and WL. The setting unit 47 is configured to set the phase advance angle of the drive signal based on the target rotation speed r. The PWM duty cycle setting unit 46 sets the PWM duty cycle to be less than 100%. 47, the phase advancement angle Δ 0 is set to 〇 At this time, the drive signal generating unit 48 generates a drive signal following one of the ordinary 120-degree conduction angle systems. 20 When the pWM duty cycle setting unit 46 sets a 1 The phase advancement angle Δ Θ is set in accordance with the target rotational speed R in the state in which the electrical passage is saturated by the PWM control, and the phase advancement angle Δ 各 is set in accordance with the target rotational speed R. The signal generating unit 48 is in a state of 〇N when the phase is compared with the timing at which the Hall signal has been advanced by the phase advancing angle Δ0. The V_WH becomes the 〇N state. The consequence is that the force transmission time ( The conduction angle is changed to correspond to the time of 12 加 plus Δ 0, and the power transmission time becomes longer by the time corresponding to the phase advance angle. 5 To cause the u phase, the ν phase, and the w phase The driving signals are in an ON state compared to the timing at which the phase advancement angle Δ0 is pushed forward by the η 雈 旒 旒 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The ON timing of the w phase. Fig. 11 shows the relationship between the phase advancement 10 set by the phase advance angle setting unit 47 and the target rotational speed R set by the target rotational speed setting unit 42. It is assumed that the PWM duty cycle setting portion 46 sets a PWM duty cycle of 100% at a target rotational speed of 4000 rpm, and the maximum rotational speed of the electric motor 27 is required to be 5000 rpm. In this case, the phase advancing angle setting portion 47 is formed such that the phase advancing angle Δ 0 is monotonously increased from 〇 to 60 degrees in the target rotational speed R region of 4 rpm to 5000 I5 rPm.

相位推進角度△ 0可被設定之方式為比起該目標旋轉 速度r可變成非線性改變地隨著目標旋轉速度r之提高或相 位推進角度△ 0之變化而線性地提高。其欲於相位推進角 度△ Θ之上限被設定於60度。若超過6〇度之相位推進角度 20 △ Θ被設定,該等場效應電晶體UH,UL,VH,VL,WH 與WL同步地被設定為接通的而毀損驅動電路28(場效應電 晶體UH,UL,VH,VL,WH與WL)之動力元件。 第12圖為一特徵圖,顯示扭矩對電動馬達27之旋轉速 度的關係。如上面公式(1)已顯示者,當旋轉速度ω提高時, 29 1300647 電動馬達電流i因所產生之該馬達產生的感應電壓kw而被 P中低,其結果為與此馬達電流成比例之該扭矩降低。 在此執行形式中,雖然電動馬達27之旋轉在達到4〇〇〇 rpm之中低速旋轉範圍中被Pwm控制加以控制,該pWM工 5作週期在高於4000 rPm之中高旋轉範圍為100%,而電動馬 達27之旋轉用相位推進角度控制被控制。結果為該動力傳 送以在相位推進角度控制被實施之中高速範圍中的相位推 進角度△ 0部分變得較長,而形成實際磁通密度降低及該 馬達產生感應電壓在高速旋轉變小之結果。因而,如第6圖 中顯示之於中低扭矩範圍獲得高旋轉速度變成可能的。 依據上面所顯示之此執行形式,利用設計良好之控制 於中低扭矩範圍獲得高旋轉速度變成可能的,而不須改變 電動馬達27之設計或規格。因之,獲得輔助操縱動力而不 導致製造成本之劇烈變化變成可能的。 有鑑於滿足符合目標旋轉速度尺之相位推進角度△ $ • M不須設定相位推進肖度△Θ於固定值地被設定的事實, Μ吏传在超額相位推進角度控制已被實施之情形中會發生 的問題(在該相位推進角度控制量已被提高的情形所涉及 扣之該馬達的磁性與效率下降之問題)最小化成為可能的。 ★比起雖然相位推進角度Α Θ可被固定於某-值,PWM ,制在相位推進角度△ 0為常數的期間之際被實施的情 熱損失可被防止^該驅動電路之熱設計亦可變得較易 貝^ ’原因為不必要考慮該等場效應電晶體之切換損失。 本^月之執行形式已在上面被解釋。然而本發明也可 30 1300647 以其他形式被施作。就算如此,在上面描述之執_彡式中, :控制在巾低職咖料行,相㈣進角度控制 在中南速歧轉被進行而僅在高速度旋轉範圍實施相 位推進角度控制亦為可能的。 5The phase advancing angle Δ 0 can be set to be linearly increased as the target rotational speed r becomes non-linearly changed as the target rotational speed r increases or the phase advancement angle Δ 0 changes. The upper limit of the phase advance angle Δ Θ is set to 60 degrees. If the phase advance angle 20 Δ 超过 is set to more than 6 degrees, the field effect transistors UH, UL, VH, VL, WH and WL are set to be turned on synchronously to destroy the drive circuit 28 (field effect transistor) Power components of UH, UL, VH, VL, WH and WL). Fig. 12 is a characteristic diagram showing the relationship of the torque to the rotational speed of the electric motor 27. As shown in the above formula (1), when the rotational speed ω is increased, the 29 1300647 electric motor current i is low in P due to the induced voltage kw generated by the motor, and the result is proportional to the motor current. This torque is reduced. In this embodiment, although the rotation of the electric motor 27 is controlled by the Pwm control in the low-speed rotation range up to 4 rpm, the pWM process has a high rotation range of 100% higher than 4000 rPm. The rotation of the electric motor 27 is controlled by the phase advance angle control. As a result, the power transmission is made longer in the phase advance angle Δ 0 in the high speed range in which the phase advance angle control is implemented, and the actual magnetic flux density is lowered and the induced voltage of the motor is reduced at high speed. . Thus, it is possible to obtain a high rotational speed as shown in Fig. 6 for the medium and low torque range. According to the embodiment shown above, it is possible to obtain a high rotational speed by well-designed control of the medium and low torque range without changing the design or specifications of the electric motor 27. As a result, it becomes possible to obtain an auxiliary steering power without causing drastic changes in manufacturing costs. In view of the fact that the phase advancement angle Δ $ • M that satisfies the target rotational speed scale is not required to set the phase advance 肖 degree ΔΘ to a fixed value, the rumor is that in the case where the excess phase propulsion angle control has been implemented The problem that occurs (in the case where the phase advancement angle control amount has been increased involves the problem of the magnetic and efficiency degradation of the motor) is minimized. ★ Although the phase advance angle Α Θ can be fixed to a certain value, PWM, the heat loss that is implemented when the phase advance angle Δ 0 is constant can be prevented. The thermal design of the drive circuit can also be changed. The reason is that it is unnecessary to consider the switching loss of these field effect transistors. The execution form of this month has been explained above. However, the invention is also applicable in other forms to 30 1300647. Even so, in the above-mentioned squatting mode, it is also possible to control the low-level coffee line in the towel, and the phase (four) angle control is performed in the middle-south speed profile and the phase advance angle control is only possible in the high-speed rotation range. of. 5

10 此外,各種設計修改亦可在上面已描述之項目範圍内 被做成。 上面之描述已說明用於驅動一馬達之方法與裝置,其 中馬達速度控㈣由使用—相位肖度推進及因而之改變的 傳‘角度被獲得。此㈣馬達驅動減少之職放射結果如 第15與16®之比|父將顯示者。該技術之效率可藉由比較在 PWM控制(第圖)與傳導角度控制(第圖)下同一操作點 之引導放射而被證明。 雖然較佳的是使用傳導角度控制以控制馬達作業及因 而減&gt;、ΕΜΙ放射,且特別是使得該傳導角度藉由改變該換 15流裔之每一切換器的前導變換邊緣之一相位推進而被控 制’例如於第6圖中顯示之例子中組合相位推進/傳導角度 控制與PWM亦為可能的。此形成在pWM作業之10 In addition, various design modifications can be made within the scope of the items already described above. The above description has described a method and apparatus for driving a motor in which motor speed control (4) is obtained by using a phase-degree dip advance and thus a change in the angle. This (iv) motor drive reduces the radiation output of the job as the ratio of 15th to 16th | the father will show. The efficiency of this technique can be demonstrated by comparing the guided emissions at the same operating point under PWM control (Fig.) and conduction angle control (Fig.). It is preferred to use conduction angle control to control motor operation and thus reduce &gt; ΕΜΙ radiation, and in particular to cause the conduction angle to be phased by one of the leading transition edges of each of the switches It is also possible to combine phase propulsion/conduction angle control and PWM in the example shown, for example, in the figure shown in FIG. This is formed in the pWM operation

際提高EMI 放射之結果,但可在某些應用中,特別是該等EMI界限未 被超過時受益。 第15圖顯示在7〇a DC匯流排電流作業而在PWM控制 下之一DC無刷馬達的被引導之放射。該等放射就特定之應 用與該EMI界限線被比較。其可被看出,在運用pwm控制 時,該低頻率放射高出該界限有15dB之多。The result of increased EMI emissions, but can benefit in certain applications, especially if such EMI limits are not exceeded. Figure 15 shows the guided radiation of a DC brushless motor under PWM control at 7 〇a DC bus current operation. These emissions are compared to the EMI limit line for a particular application. It can be seen that the low frequency radiation is 15 dB above this limit when using pwm control.

第16圖顯示同樣在7〇A DC匯流排電流作業但無PWM 31 1300647 切換發生。該被引導之放射現在亦符合該等低頻率界限, 顯示控制傳導角度且未運用PWM之優點。 雖然本發明已以有關其特定實施例被描述,很多其他 變化與修改及其他使用將變得對熟習本技藝者為明白的。 5所以,本發明不應受限於此間之特定揭示,而是僅以所附 之申請專利範圍被定義。 【圖式簡單說明】 第1圖顯示一馬達控制器之一般化方塊圖; 第2圖顯示一典型之習知技藝的馬達驅動控制方式; 弟3圖顯示另一習知技藝的馬達驅動控制方式; 第4圖顯示依照本發明之一馬達驅動控制方式提供可 變相位推進及/或傳導角度; 第5圖顯示各種可變相位推進、固定相位推進與傳導角 度h形之馬達驅動信號的數個時間圖;以及 15第6圖顯示依照本發明之一速度,其選擇性地使用可變 相位推進/傳導角度與脈波寬度調變。 第7圖為一概念圖,顯示依據本發明—例之一動力操縱 裝置的基本構成。 20 釘圖為-方塊圖,顯示上述之動力操縱裝置中的電氣 控制單元之功能性構成。 第9圖為4寸徵圖,顯不該操縱角度速度與該目標旋轉 速度間之關際。 第10圖為解釋用於操作該 目的之圖。 電動馬達之動力驅動方法的 32 1300647 第11圖為顯示該相位推進角度與該目標旋轉速度間之 關係圖。 第12圖為一特徵圖,顯示該電動馬達之該扭矩對該旋 轉速度之關際。 5 第13圖為一時間圖,就解釋慣常之120度傳導角度系統 的目的被提出。 第14圖為顯示該三相無刷馬達之該旋轉速度與輸出扭 矩間之關係圖。 第15圖顯示在被脈波寬度調變之時於7〇A DC匯流排 10電流操作的一DC無刷馬達所進行之放射。 第16圖顯示第15圖之馬達驅動器在不出現pwM切換 下於70ADC匯流排電流操作,但使用相位推進以達成馬達 速度控制。 【主要元件符號說明】 1· •操縱機構 12…電流感測器 2· 方向盤 12U,V,W…電流感測器 3· 操縱軸 13…車輪速度感測器 4· 小齒輪 15…霍爾感測器 5· 齒條轴 15U,V,W…霍爾感測器 5a •齒條 20…動力氣缸 6· 繫桿 20a,b···氣紅室 7· 關節臂 21…活塞 8· 大王銷 22a,b···路徑 9· 扭矩棒 23…油壓控制閥 11 •操縱角度感測器 24···油循環路徑 33 1300647 25…儲存筒 42···目標旋轉速度設定部 26…油泵 45…馬達驅動控制部 27…電動馬達 46···Ρλ¥Μ工作週期設定部 27U,V,W…場線圈 47···相位推進角度設定部 28…驅動電路 48…驅動信號產生部 30…電子控制單元 100…換流器 31 …CPU 200…控制器 32 …RAM 200’···控制器 33 …ROM 200Α…整流子 34…匯流排 200Β…脈波寬度調變器 40…電瓶 300…馬達 41…操縱角度速度操作部 400…切換器 34Figure 16 shows the same in the 7〇A DC bus current operation but no PWM 31 1300647 switching occurs. The guided radiation now also meets these low frequency limits, showing the advantage of controlling the conduction angle and not using PWM. While the invention has been described with respect to the specific embodiments thereof, many other changes and modifications and other uses will become apparent to those skilled in the art. 5 Therefore, the present invention should not be limited by the specific disclosure of the present invention, but only by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a generalized block diagram of a motor controller; Fig. 2 shows a typical motor drive control mode of a conventional technique; and Fig. 3 shows another conventional motor drive control mode Figure 4 shows variable phase propulsion and/or conduction angles in accordance with one of the motor drive control modes of the present invention; Figure 5 shows several motor drive signals for various variable phase propulsion, fixed phase propulsion and conduction angle h-shapes. Time diagram; and Figure 6 shows the speed at which one of the present invention selectively uses variable phase propulsion/conduction angle and pulse width modulation. Fig. 7 is a conceptual diagram showing the basic constitution of a power steering apparatus according to the present invention. 20 The nail map is a block diagram showing the functional configuration of the electrical control unit in the power steering device described above. Figure 9 is a 4-inch map showing the relationship between the angular velocity and the target rotational speed. Figure 10 is a diagram for explaining the purpose of this operation. 32 1300647 Fig. 11 is a diagram showing the relationship between the phase advance angle and the target rotational speed. Figure 12 is a characteristic diagram showing the torque of the electric motor at the turn-off speed. 5 Figure 13 is a time diagram, and the purpose of explaining the conventional 120 degree conduction angle system is proposed. Figure 14 is a graph showing the relationship between the rotational speed and the output torque of the three-phase brushless motor. Fig. 15 shows the radiation performed by a DC brushless motor operated at a current of 7 〇 A DC bus bar 10 when the pulse width is modulated. Figure 16 shows the motor driver of Figure 15 operating at 70ADC busbar current without pwM switching, but using phase advancement to achieve motor speed control. [Main component symbol description] 1· • Control mechanism 12... Current sensor 2· Steering wheel 12U, V, W... Current sensor 3· Control axis 13... Wheel speed sensor 4· Pinion 15... Hall sense Detector 5·Rack shaft 15U, V, W... Hall sensor 5a • Rack 20... Power cylinder 6· Tilt 20a, b··· Air red chamber 7· Joint arm 21... Piston 8· Dawang pin 22a, b···path 9·torque rod 23...hydraulic control valve 11 • steering angle sensor 24···oil circulation path 33 1300647 25...reservoir 42···target rotation speed setting unit 26...oil pump 45 ...motor drive control unit 27...electric motor 46···Ρλ¥Μ duty cycle setting unit 27U, V, W... field coil 47··· phase advance angle setting unit 28... drive circuit 48... drive signal generation unit 30... Control unit 100...converter 31 ...CPU 200...controller 32 ...RAM 200'···controller 33 ...ROM 200Α...commutator 34...bus bar 200Β...pulse width modulator 40...battery 300...motor 41 ...manipulating the angular velocity operation portion 400...the switch 34

Claims (1)

年月 日修(更)止伞. 96. 4. 02 .J300647 十、申請專利範圍: 第94119034號申請案申請專利範圍修正本 96.04.02. 1. 一種用於減少電動馬達之控制中的電磁干擾放射之方 法,該電動馬達係由被一切換換流器供應電力,而該換 5 流器係由一直流匯流排饋予電力,該方法包含下列步 驟: 10 1596. 4. 02 .J300647 X. Patent application scope: Application No. 94119034 A method of interfering with radiation, the electric motor being supplied with power by a switching converter, and the converter is fed to the power by a constant current bus, the method comprising the following steps: 10 15 控制步驟,用以控制一傳導角度期間之一相位推 進,該馬達之相位在此期間之際被該換流器饋予電力以 控制該傳導角度,其中控制該傳導角度期間之一相位推 進之步驟更包含將該傳導角度調整一相位角來控制該 馬達之速度,以及因而減少該換流器之切換作業次數, 以使電磁干擾(EMI)減少;該控制步驟更包含: 提供一信號至該換流器,其對控制該傳導角度之換 流器之一切換器決定一個切換瞬間; 在用於決定下一個切換瞬間之下一個信號之前,將 耦合該直流(DC)匯流排電壓至一馬達相位之該換流器 的一開關之一切換導通時間推進該相位角,以提供該相 位推進。 2.如申請專利範圍第1項所述之方法,進一步包含: 20 以一緩衝器提供至該馬達用於為控制該傳導角度 之該轉換器的一切換器決定該切換瞬間; 接收該感測器輸出;以及 在下一個決定該切換瞬間之感測器輸出前以一相 位角推進連接DC匯流排至一馬達相位驅動輸入的該切a control step of controlling phase advancement during a conduction angle during which the phase of the motor is fed by the inverter to control the conduction angle, wherein the step of controlling the phase advancement during the conduction angle is controlled Further comprising adjusting the conduction angle by a phase angle to control the speed of the motor, and thereby reducing the number of switching operations of the inverter to reduce electromagnetic interference (EMI); the controlling step further comprises: providing a signal to the exchange a current transformer that determines a switching instant for one of the inverters that controls the conduction angle; and couples the direct current (DC) bus voltage to a motor phase before determining a signal for the next switching instant One of the switches of the inverter switches the conduction time to advance the phase angle to provide the phase advancement. 2. The method of claim 1, further comprising: 20: providing a buffer to the motor for determining a switching instant of the switch for controlling the conduction angle; receiving the sensing Output; and advance the connection of the DC bus to a motor phase drive input at a phase angle prior to the next sensor output that determines the switching instant 35 130064735 1300647 10 20 年月曰另有修(幻正^ ^ A (iSL 換轉換器之一切換器的/切換接通時間。 3·如申請專利範圍第2項所述之方法,其中該控制該相位 推進之步驟包含用該相位角度之量提高該傳導角度。 4·如申請專利範圍第3項所述之方法,其中相位角度包含 一固定相位角度與一町變相位角度以控制該馬達之速 度。 5·如申請專利範圍第4項所述之方法,其中該可變相位角 度提高該傳導角度及該固定相位角度將該傳導時間暫 時地移位。 如 申請專利範圍第1項所述之方法 導角度之際將該切換器脈波寬度調變。 7.如申請專職圍第4項所述之方法,其中二交替地傳導 之切換器被配置於-個半橋中而被提供且進一步包含 用-相位角度推進每一切換器之切換接通時間。 •如申請專利範圍第7項所述之方法,其中該馬達為一個 達且三個半橋被提供,每—個包含交替地傳 …換…個包含—高側切換器及另一個包含一低 側切換器,以及進-步包含用一相位角度換 器之切換接通時間。 刀換 9 10·如申請專利範圍第9項所述之方法 度推進等於約15。。 ’其中該固定相位角 S 36 ,Ι3Θ0647 η 有修(更)正貢110 20 曰 曰 曰 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The method includes the method of increasing the conduction angle by the amount of the phase angle. The method of claim 3, wherein the phase angle comprises a fixed phase angle and a phase angle of the one to control the speed of the motor. The method of claim 4, wherein the variable phase angle increases the conduction angle and the fixed phase angle temporarily shifts the conduction time. The method of claim 1 is as described in claim 1 The switch pulse width is modulated. 7. The method of claim 4, wherein the two alternately conducted switches are provided in one half bridge and are further provided with - The phase angle advances the switching on time of each switch. The method of claim 7, wherein the motor is one and three half bridges are provided, each of which includes alternately transmitting... One The high-side switch and the other include a low-side switch, and the step-by-step includes a switch-on time with a phase angle changer. Knife change 9 10 · The method described in claim 9 The propulsion is equal to about 15. 'In which the fixed phase angle S 36 , Ι3Θ0647 η has repair (more) Zhenggong 1 10 15 20 11. 如申請專利範圍第4項所述之方法,其中該該固定相位 角度被提供使得該切換器之關閉瞬間以與該傳導角度 量獨立地與該感測器輸出之轉變對齊。 12. 如申請專利範圍第1項所述之方法,進一步包含在ι〇〇〇/0 之工作週期於該傳導角度之際的脈波寬度調變。 13·如申請專利範圍第1項所述之方法,進一步包含在下列 (a)與(b)之選項間選用以控制該馬達速度: (a) 在該傳導角度之際改變該相位角度與100〇/〇工作 週期脈波寬度調變;以及 (b) 在該傳導角度之際用〇相位角度與用脈波寬度調 變改變該工作週期。 14·如申請專利範圍第13項所述之方法,進一步包含若一所 欲之速度可在120。傳導角度與小於1〇〇%工作週期被到 達,則選用(b)。 15·如申請專利範圍第13項所述之方法,進一步包含若被該 馬達所抽動之一電流以120。傳導角度與ι00%工作週期 超過一預設界限,則選用(b)。 16·如申請專利範圍第13項所述之方法,進一步包含若_所 欲之無法在120。傳導角度與1〇〇%工作週期被到達且被 &quot;亥馬達所抽動之一電流低於一預設界限,則選用(a)。 17.如申請專利範圍第1項所述之方法,其中該控制之步驟 包含控制一 DC無刷馬達。 37The method of claim 4, wherein the fixed phase angle is provided such that the switching instant of the switch is aligned with the transition of the sensor output independently of the conduction angle. 12. The method of claim 1, further comprising modulating the pulse width at the conduction angle of the work cycle of ι〇〇〇/0. 13. The method of claim 1, further comprising selecting between the following options (a) and (b) to control the motor speed: (a) changing the phase angle to 100 at the conduction angle 〇/〇 duty cycle pulse width modulation; and (b) changing the duty cycle with the phase angle and the pulse width modulation at the conduction angle. 14. The method of claim 13, further comprising if the desired speed is at 120. When the conduction angle is less than 1〇〇% of the duty cycle is reached, use (b). 15. The method of claim 13, further comprising a current of 120 if twitched by the motor. (b) is used when the conduction angle and the ι00% duty cycle exceed a preset limit. 16. The method of claim 13, wherein the method of claim 13 further comprises: 120 if not desired. (a) is used when the conduction angle is reached with a 1% duty cycle and one of the currents drawn by the &quot;Hai motor is below a predetermined limit. 17. The method of claim 1, wherein the controlling comprises controlling a DC brushless motor. 37
TW94119034A 2004-06-10 2005-06-09 Method for controlling an electric motor to reduce emi TWI300647B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57851104P 2004-06-10 2004-06-10
US11/149,101 US7202622B2 (en) 2002-04-30 2005-06-09 Method for controlling an electric motor to reduce EMI

Publications (2)

Publication Number Publication Date
TW200616310A TW200616310A (en) 2006-05-16
TWI300647B true TWI300647B (en) 2008-09-01

Family

ID=38899507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94119034A TWI300647B (en) 2004-06-10 2005-06-09 Method for controlling an electric motor to reduce emi

Country Status (2)

Country Link
CN (1) CN101073193A (en)
TW (1) TWI300647B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482421B (en) * 2011-07-08 2015-04-21 Allegro Microsystems Llc Electronic circuit and method generating electric motor drive signals having phase advances in accordance with a user selected relationship between rotational speed of an electric motor and the phase advances

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20110340A1 (en) * 2011-06-13 2012-12-14 Spal Automotive Srl ELECTRIC DRIVE
CN103378800A (en) * 2012-04-18 2013-10-30 应广科技股份有限公司 Controller capable of improving operation efficiency of motor drive and method
CN102957367A (en) * 2012-06-08 2013-03-06 江苏新日电动车股份有限公司 DC (Direct Current) brushless constant-speed controller for electric vehicle
US9859956B2 (en) * 2012-08-24 2018-01-02 Qualcomm Incorporated Power supply control in wireless power transfer systems
TW201624909A (en) 2014-12-26 2016-07-01 Mobiletron Electronics Co Ltd Method and device for suppressing high voltage
CN105846413B (en) * 2015-01-12 2019-04-09 车王电子(宁波)有限公司 High voltage suppressing method and device
US10036359B2 (en) * 2016-05-19 2018-07-31 GM Global Technology Operations LLC Hybrid vehicle engine starter control systems and methods
FR3059168B1 (en) * 2016-11-18 2018-10-26 Valeo Equipements Electriques Moteur ROTATING ELECTRICAL MACHINE WITH IMPROVED YIELD
TWI671994B (en) * 2017-05-26 2019-09-11 茂達電子股份有限公司 Motor control system and motor control method
CN109039171B (en) * 2018-08-23 2020-04-28 浙江大学 High-speed permanent magnet brushless direct current motor control method based on variable conduction period
CN113872478B (en) * 2021-09-27 2024-01-16 佛山市顺德区美的电子科技有限公司 Motor rotation speed adjusting method, device, equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482421B (en) * 2011-07-08 2015-04-21 Allegro Microsystems Llc Electronic circuit and method generating electric motor drive signals having phase advances in accordance with a user selected relationship between rotational speed of an electric motor and the phase advances

Also Published As

Publication number Publication date
CN101073193A (en) 2007-11-14
TW200616310A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
TWI300647B (en) Method for controlling an electric motor to reduce emi
US7202622B2 (en) Method for controlling an electric motor to reduce EMI
US7180256B2 (en) Electronically controlled power steering system for vehicles and method and system for motor control
US7102314B2 (en) Brushless motor control apparatus having overheat protecting function
CN101953065B (en) Motor drive control device
US7701156B2 (en) Electric motor drive control system and control method thereof
KR101181068B1 (en) Control device for three-phase brushless motor
US9548684B1 (en) Current control in brushless DC motors
US20090243522A1 (en) Motor drive system
US20020070693A1 (en) High performance brush motor driver in conjuction with low cost sr motor driver
EP1318597A2 (en) Soft chopping for switched reluctance generators
US20110234130A1 (en) Motor control device
US10960919B2 (en) Control device and electric power steering device using same
US20010015631A1 (en) Control apparatus for electric vehicle
JP5406226B2 (en) Electric power steering device
JP2003319699A (en) Motor power steering unit
JP2003291832A (en) Power steering device
JP3885621B2 (en) Electric power steering device
JP5225709B2 (en) Switched reluctance motor controller
JP7424058B2 (en) motor control device
JP4749663B2 (en) Motor control device
KR100848185B1 (en) Method for controlling an electric motor to reduce emi
JP2005124305A (en) Two-phase modulation control type inverter device
CA2427274C (en) Electronically controlled power steering system for vehicle and method and system for motor control
CA2572343C (en) Electronically controlled power steering system for vehicle and method and system for motor control

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees