TWI299342B - Thermal-conductive material composition and method for preparing the same - Google Patents

Thermal-conductive material composition and method for preparing the same Download PDF

Info

Publication number
TWI299342B
TWI299342B TW93112798A TW93112798A TWI299342B TW I299342 B TWI299342 B TW I299342B TW 93112798 A TW93112798 A TW 93112798A TW 93112798 A TW93112798 A TW 93112798A TW I299342 B TWI299342 B TW I299342B
Authority
TW
Taiwan
Prior art keywords
thermally conductive
group
conductive material
composition
powder
Prior art date
Application number
TW93112798A
Other languages
Chinese (zh)
Other versions
TW200536885A (en
Inventor
Chen Hsin Lai
Mingshu Lee
Yahui Su
Pingsung Wang
Original Assignee
Taiwan Salt Company
Everwide Chemical Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Salt Company, Everwide Chemical Company filed Critical Taiwan Salt Company
Priority to TW93112798A priority Critical patent/TWI299342B/en
Publication of TW200536885A publication Critical patent/TW200536885A/en
Application granted granted Critical
Publication of TWI299342B publication Critical patent/TWI299342B/en

Links

Description

1299342 玫、發明說明 【發明所屬之技術領域】 、、本發明係有關於一種熱傳導性材料的組成與製造方 法’特別是有關於-種利用可水解反應的化合物,來提升材 料性能的熱傳導性材料的組成與製造方法。 【先前技術】 熱」直疋電子疋件工作時必須處理的問題,散埶問 題/已成為科技發展上關鍵技術的瓶頸。早期電子元件的散熱 ί徑均採用内部封裝的材質以將熱傳至表層,㈣較大的散 …、片以熱傳導的方式將㈣至發熱源的外部,並加裝讀片或 風扇來達到強制對流的效果。在這個散熱路徑上,相當多的 換而形成熱阻較大的介面,故必須使用適當的熱傳 導性材料,用以降低介面熱阻問題,並提昇散熱的效率 別是在構裝密度越來越高,發熱功率越來越大的今天’如何 讓電子元件有效的散熱更是相當重要的課題。 具有高熱傳導性質的導熱膠、導熱f或導熱片是解 述問題常用的介質。埶傳導栂奴柯 、上 ”、、料性材枓可以將發熱元件產生的教 =導到散熱元件上,避免發熱元件的工作溫度過高,影變 件的卫作效率與使用壽命。例如晶片與 路板、紹擠型散熱器之間’或是電阻、電容、 都需錢料熱膠、導㈣辑熱以㈣導性材料。 :头之熱傳導性材料係使用有機材料和具有導埶性 末“而成。常見的有機材料為:環氧樹脂、聚氣基甲、酸= 1299342 樹脂、壓克力樹脂和聚石夕氧燒樹脂等。而導熱性粉末可分成 金屬粉末、陶瓷粉末與其他類型粉末等三大系統,例如··銀、 氧化鋁、氮化鋁、氮化矽、氧化鎂、氮化硼、碳化矽、氧化 辞、二氧化鈦、二氧化石夕、人造鑽石、奈米碳管和氣相沉積 的碳纖維等。習知之熱傳導性材料係將上述導熱性粉末與有 機材料加以混合,而提高有機材料的熱傳導係數3〜2〇倍, 其熱傳導性的改善程度端視粉末的種類、粒徑大小、幾何形 狀或添加比例等而定。 7 在習知技術中,美國專利第4,722,521號,美國專利第 4,329,565號,美國專利第4,279,477號,美國專利第 4,292,223號,4,147,669號和美國專利4,〇83,622號提出: 以金屬粉末來提高有機材料的熱傳導係數。美國專利第 4,685,987號和美國專利第45602,678號提出:以金屬氧化物 來提高有機材料的熱傳導係數。美國專利第4,584,336號提 出·以混合氮化矽與室溫硬化型矽利康樹脂來提高有機材料 的熱傳導係數。美國專利4,588,768號提出:混合氮化矽與 高溫硬化型矽利康樹脂來提高有機材料的熱傳導係數。美國 專利第4,574,879號,美國專利第3,499,859號和美國專利 第4,763,158號提出··混合氮化硼與矽利康樹脂來提高有機 材料的熱傳導係數。美國專利第4,604,424號提出:使用氧 化辞或氧化鎂來提高矽利康橡膠的熱傳導係數。美國專利第 6,479,563號提出:使用35〜70%的無機粉末與壓克力型的 紫外光硬化樹脂摻混來提高紫外光硬化樹脂的熱傳導係 數。美國專利第4,855,002號提出··使用鋁或是氧化鋁的無 1299342 機粉末來提高厭氧膠的熱傳導係數。美國專利第6,〇4〇,362 號提出··使用外層包覆金屬氧化物或是金屬氮化物的金屬粉 末來製造導熱高分子。美國專利第5,008,307號提出:使用 氧化紹於鉑觸媒催化的矽利康樹脂系統。 由於有機材料的導熱係數遠小於導熱性粉末,所以就相 同種類的導熱材料而言,提高導熱係數最直接的方法就是提 南固態粉末的含量,相對地降低有機材料的比例。美國專利 第5,0 11,870號提出··使用不同粒徑分佈的氮化鋁來維持成 品的枯度同時提高固態粉末的添加量;美國專利第 4,292,223號提出:使用矽油來降低矽利康樹脂的粘度,提 高固態粉末的添加量;美國專利第6,255,257號提出··使用 不同粒徑分佈的固態粉末添加於矽利康油脂中,以製造導熱 膏;美國專利第5,352,724號提出:使用含量5%以下的有 機欽的化合物來降低矽利康樹脂系統粘度,提高固態粉末的 添加量。 但是,以上述之習知技術來製備高導熱材料有其下列之 三點限制: 1 ·由於液態的有機材料有其基本的粘度,固態的有機材 料本身更具有相當高的熔融粘度,故就摻混技術上而言,非 常難以混入很高比率的無機粉末。 2·使用稀釋劑來降低液態有機材料的粘度,或者是使用 可塑劑來降低固態有機材料的熔融粘度,將會使成品的許多 性質變差。 3 ·填充局含量的固態粉末到有機材料中,將導致所形成 1299342 物的粘度極鬲’因而喪失濕潤性與流動性。 此’非常需要發展—種熱傳導性材料的 法,藉以降低有機材料的枯度, 方 率;減少成品性質衰退的情況.二::機=末 及將有機材料的稀釋劑鱼m士 &得等月b力’以 w梓M與呵導熱粉末兩者的功能結合在一 起,同時改善產物的加工性能與成品性質。 【發明内容】 =明的目的就是在提供—種熱傳導性材料的組成愈 :::法,藉由混合有機材料、可水解反應的化合物和導熱 ’:m形成熱傳導性材料。此熱傳導性材料會吸收環境 的水氣而發生水解反應,生成新的高導熱產物,進-步提升 材料的導熱性質。 根據本發明之上述目的,提出一種熱傳導性材料的电 成。依照本發明較佳的實施例,此熱傳導性材料的組成至:丨、 包括:有機材料、可水解反應的化合物以及導熱性粉末。 另外,本發明亦提出兩種熱傳導性材料的製造方法。埶 傳導性材料的第-種製造方法係均句攪拌—液體的熱傳導 性材料的組成而形成一混合物。然後,可將此混合物在真* 壓力下脫泡-段預設時間’而製作成導熱膠、 ^ 類型的導熱材料》 、他1299342 玫,发明说明 [Technical field to which the invention pertains] The present invention relates to a composition and a manufacturing method of a thermally conductive material, particularly relating to a compound which utilizes a hydrolyzable reaction to improve the material properties of the thermally conductive material. The composition and manufacturing method. [Prior Art] Heat has to deal with the problems that must be dealt with when working with electronic components. The problem of divergence has become a bottleneck for key technologies in the development of science and technology. The heat dissipation of the early electronic components is based on the material of the internal package to transfer heat to the surface layer. (4) The larger the bulk, the heat transfer of the film (4) to the outside of the heat source, and the installation of a reading chip or fan to achieve the force The effect of convection. In this heat dissipation path, quite a lot of interfaces are formed to form a heat resistance, so it is necessary to use a suitable heat conductive material to reduce the interface thermal resistance problem and improve the efficiency of heat dissipation. High, heating power is getting bigger today's how to make electronic components effective heat dissipation is a very important issue. Thermally conductive adhesives, thermally conductive fins or thermally conductive sheets having high thermal conductivity are common media for solving problems.埶 Conducting 栂 栂 、 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Between the road board and the squeeze-type heat sink, either the resistor or the capacitor, the heat-sensitive adhesive is required, and the heat guide is used to guide the heat. (4) Conductive materials: The thermal conductive material of the head is made of organic materials and has guiding properties. At the end of the "made. Common organic materials are: epoxy resin, gas-based base, acid = 1299342 resin, acrylic resin and poly-stone oxide resin. The thermal conductive powder can be divided into three major systems: metal powder, ceramic powder and other types of powder, such as silver, aluminum oxide, aluminum nitride, tantalum nitride, magnesium oxide, boron nitride, tantalum carbide, oxidation, titanium dioxide. , sulphur dioxide, synthetic diamonds, carbon nanotubes and vapor deposited carbon fibers. The conventional thermal conductive material mixes the above thermal conductive powder with an organic material to increase the thermal conductivity of the organic material by 3 to 2 times, and the degree of improvement in thermal conductivity depends on the type, particle size, geometry, or addition of the powder. The ratio depends on the average. In the prior art, U.S. Patent No. 4,722,521, U.S. Patent No. 4,329,565, U.S. Patent No. 4,279,477, U.S. Patent No. 4,292,223, 4,147,669, and U.S. Patent No. 4, No. 83,622 The thermal conductivity of organic materials. U.S. Patent No. 4,685,987 and U.S. Patent No. 45,602,678 teach the use of metal oxides to increase the thermal conductivity of organic materials. U.S. Patent No. 4,584,336 teaches the use of mixed tantalum nitride and room temperature hardening type xankon resin to increase the thermal conductivity of organic materials. U.S. Patent No. 4,588,768 teaches the use of mixed tantalum nitride and high temperature hardened silicone resins to increase the thermal conductivity of organic materials. U.S. Patent No. 4,574,879, U.S. Patent No. 3,499,859, and U.S. Patent No. 4,763,158, the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the present disclosure. U.S. Patent No. 4,604,424 teaches the use of oxidized or magnesium oxide to increase the heat transfer coefficient of a keloid rubber. U.S. Patent No. 6,479,563 teaches the use of 35 to 70% of an inorganic powder blended with an acrylic type ultraviolet curable resin to increase the heat transfer coefficient of the ultraviolet curable resin. U.S. Patent No. 4,855,002 proposes the use of aluminum or alumina-free 1299342 machine powder to increase the heat transfer coefficient of anaerobic adhesives. U.S. Patent No. 6, 〇 4, 362, discloses the use of a metal powder coated with a metal oxide or a metal nitride in the outer layer to produce a thermally conductive polymer. U.S. Patent No. 5,008,307 teaches the use of a ruthenium resin system catalyzed by a platinum catalyst. Since the thermal conductivity of organic materials is much smaller than that of thermal conductive powders, the most straightforward way to increase thermal conductivity for the same type of thermally conductive materials is to increase the content of solid powder and relatively reduce the proportion of organic materials. U.S. Patent No. 5,0,11, 870 discloses the use of aluminum nitride of different particle size distributions to maintain the dryness of the finished product while increasing the amount of solid powder added; U.S. Patent No. 4,292,223 teaches the use of eucalyptus oil to reduce the lycopene resin. The viscosity of the solid powder is increased. U.S. Patent No. 6,255,257 discloses the use of solid powders of different particle size distributions to be added to the alikon oil to make a thermal paste; U.S. Patent No. 5,352,724 teaches the use of 5% or less. The organic compound of the compound is used to lower the viscosity of the Silicone resin system and increase the amount of solid powder added. However, the preparation of high thermal conductivity materials by the above-mentioned conventional techniques has the following three limitations: 1. Since the liquid organic material has its basic viscosity, the solid organic material itself has a relatively high melt viscosity, so it is doped. In terms of mixing technology, it is very difficult to mix a very high ratio of inorganic powder. 2. The use of thinners to reduce the viscosity of liquid organic materials, or the use of plasticizers to reduce the melt viscosity of solid organic materials, will degrade many properties of the finished product. 3. Filling the local content of the solid powder into the organic material will result in the viscosity of the formed 1299342 being extremely 鬲, thus losing wettability and fluidity. This is a very important need to develop a method of thermal conductivity materials, in order to reduce the dryness and rate of organic materials; reduce the decline of the properties of finished products. Second:: machine = end and the thinner of the organic material fish The same month b force ' combines the functions of both w梓M and heat-conducting powder, while improving the processing properties and finished product properties of the product. SUMMARY OF THE INVENTION The purpose of the invention is to provide a thermally conductive material by mixing an organic material, a hydrolyzable compound, and a heat conducting ':m. This thermally conductive material absorbs moisture from the environment and undergoes a hydrolysis reaction to form new high thermal conductivity products, which further enhances the thermal conductivity of the material. According to the above object of the present invention, an electric conduction of a thermally conductive material is proposed. According to a preferred embodiment of the present invention, the composition of the thermally conductive material is: 有机, including: an organic material, a hydrolyzable compound, and a thermally conductive powder. In addition, the present invention also proposes a method of manufacturing two kinds of thermally conductive materials.第 The first method of manufacturing a conductive material is to form a mixture of a mixture of a thermally conductive material of a liquid. Then, the mixture can be defoamed under a true pressure for a predetermined period of time to make a thermal conductive adhesive, a type of thermal conductive material, and he

熱傳導性材料的第二種製造方法係均勻混合一固體 熱傳導性材料的組成而形成-混合物。然後,利用適當的加 工方法製作成導熱膠、導熱片或其他類型的導熱材料D 1299342 因此,應用本發明可降低有機材料的粘度,而提高導熱 性粉末的添加比率,·減少成品性質衰退的情況;提高成品的 熱傳導能力;以及將有機材料的稀釋劑與導熱性粉末兩者的 功能結合在-起,同時改善產物的加工性能與成品性質。 【實施方式】 本發明所提出的熱傳導性材料,係由有機材料、可水解 反應的化合物和導熱性粉末混合而成。其主要特徵在於此孰 傳導性材料會吸收環境中的水氣而發生水解反應,生成新的 雨導熱係數產物,進而提升材料的導熱性質。 、、j發明之熱傳導性材料可應用於電腦中央處理器、溫度 感測器、馬達轉子以及其他f要熱傳導的應用領域。此熱傳 導f生材料可製作成接著劑(Adhesive)、塗料(c〇Ming)、複合 (Composite)材料、成型(M〇lding)材料、灌注(p〇出叫)材 料、膏狀滑脂(grease)與固態彈性體(Elast〇mer)等型態,其 可塗佈或者是成型在發熱元件的内部、周圍或是包裹住發】 疋件’以將發熱$件所產生的熱量傳導到外界,來維持發】 元件的工作效率與使用壽命。 、本發明之熱傳導性材料可用以形成導熱膠、導熱膏或; 導…、>!尤形成導熱膠而言,其有機材料可以利用不同的; t進行硬化反應,而達到接著與固定的目的。常見的反> «為’例如:室溫固化型、加熱固化型、濕氣固化型、) 氧口化!、糸外光固化型或可見光固化型等。而形成導熱) 之有機材料可翻環氧樹脂、聚胺基甲㈣、㈣樹脂、: 1299342 醯胺樹脂、壓克力樹脂或聚石夕氧燒樹脂等材質。就形成導熱 膏而言,能夠長期保持液態’以提供貼合與重複加工的特 性。而形成導熱膏之有機材料可選用環氧樹脂、聚胺基甲酸 酯、酚醛樹脂、聚醯胺樹脂、礦物油以及聚石夕氧烧等材質。 就形成導熱片而言,其有機材料在室溫下能夠長期保持固 態,以提供貼合與重複加工的特性。而形成導熱片之有機材 料可選用聚乙烯、聚丙烯、聚醯胺等熱塑性塑膠與橡膠、聚 胺基甲酸脂、聚矽氧烷橡膠等彈性體。 本發明所使用之可水解反應的化合物可以是矽烷、鈦酸 ㈣㈣μ ;本發明之導熱性粉末可制各種金屬、陶究 粉末與其他類別等系統;本發明之導熱性粉末可為銀、氧化 ::二銘二氮化硼、氮化石夕、碳化石夕、氧化鋅、氧化鎂、 纖維等。減石夕、人造鐵石、奈米碳管或氣相層積的碳 劑,再嘖扁擗…、、、王何料組成分散於有機 片m思(如金屬#或⑽、橡膠片)上形成導 片其中金屬片可兔Χ ψ 為2〇-95% , Α击一或銅片,有機溶劑之重量百分比 環己燒、甲苯算機溶劑可為煙類(例如:己烧、石油_ -氣三d代煙貌(例如:二氯甲炫、四氯化碳 趟類(例如:卜㈣(例> ··丙酮、丁酮、異佛_等: 醇類(例如:異二苯***、四氫呋喃、乙二醇二甲醚等) 酸乙醋、乙_ t ^、正丁醇、苯甲醇等)、酯類(例如: 〇 —醇二乙酿1 π 或多官能基的有機、…曰 二醇碳酸酯等)等或上述混/ 的有機溶劑(例如:乙二醇…、双丙綱醇等 1299342 或無機溶劑(例如:水、液態二氧化碳)。 以下以若干實施例來說明本發明: 〔實施例一;I ·· 本實施例係使用8.9%之雙酚F縮水甘油醚系列的環氧 域 ^ (例如·美裰 ReS〇!Uti〇n Perf〇rmance Pr〇ducts LLC 所支 產之型號五户的環氧樹脂)、2·2%之丁二醇縮水甘油 醚的環氧樹脂稀釋劑(例如:英國义如心广〇㈣化a/ 所生產之型號五户OD/Z 750的環氧樹脂稀釋劑)、〇·3%之胺_ 類硬化劑(例如·日本c心所&所生產之型號 咖禮的硬化劑)、7_6%之石夕烧(例如··美國A second method of making a thermally conductive material is to uniformly mix the composition of a solid thermally conductive material to form a mixture. Then, using a suitable processing method to form a thermal conductive paste, a thermal conductive sheet or other type of thermal conductive material D 1299342 Therefore, the application of the present invention can reduce the viscosity of the organic material, increase the addition ratio of the thermal conductive powder, and reduce the deterioration of the finished product property. Improving the heat transfer capability of the finished product; and combining the functions of both the diluent of the organic material and the thermally conductive powder, while improving the processability and finished product properties of the product. [Embodiment] The thermally conductive material proposed by the present invention is obtained by mixing an organic material, a hydrolyzable compound, and a thermally conductive powder. Its main feature is that the conductive material absorbs the moisture in the environment and undergoes a hydrolysis reaction to generate a new product of thermal conductivity of the rain, thereby improving the thermal conductivity of the material. The thermally conductive material invented by j can be applied to computer central processing units, temperature sensors, motor rotors, and other applications where heat transfer is required. The heat-conducting material can be made into an adhesive (adhesive), a coating (c〇Ming), a composite material, a molding material, a perfusion material, and a grease. And a type of solid elastomer (Elast〇mer) that can be coated or molded inside or around the heating element or encased in a member to transmit heat generated by the heat generating member to the outside. To maintain the working efficiency and service life of the components. The heat conductive material of the present invention can be used to form a thermal conductive paste, a thermal conductive paste or a conductive paste, and in particular, a thermal conductive adhesive can be used, and the organic material can be used for different hardening reactions to achieve the purpose of adhesion and fixation. . Common anti-> for 'for example: room temperature curing type, heat curing type, moisture curing type,) Oxygenation! , 糸 external light curing type or visible light curing type. The organic material forming the heat conduction can be made of epoxy resin, polyamine (4), (4) resin, 1299342 guanamine resin, acrylic resin or polyoxin resin. In the case of forming a thermal paste, it is possible to maintain a liquid state for a long period of time to provide the characteristics of lamination and rework. The organic material forming the thermal conductive paste may be selected from the group consisting of epoxy resin, polyurethane, phenolic resin, polyamide resin, mineral oil, and polyoxin. In the case of forming a thermally conductive sheet, the organic material can remain solid at room temperature for a long period of time to provide the characteristics of conformation and rework. The organic material forming the heat conductive sheet may be a thermoplastic such as polyethylene, polypropylene or polyamide, and an elastomer such as rubber, polyurethane or polyoxyalkylene rubber. The hydrolyzable reaction compound used in the present invention may be decane or titanic acid (tetra) (tetra) μ; the thermal conductive powder of the present invention can be used for various metals, ceramic powders and other types of systems; the thermal conductive powder of the present invention can be silver, oxidized: : Erming Boron Nitride, Nitride Xi, Carbonized Fossil, Zinc Oxide, Magnesium Oxide, Fiber, etc. Reduce the stone eve, artificial iron, carbon nanotubes or gas-phase laminated carbon agent, and then smash the sputum...,,, Wang, the composition of the material is dispersed in the organic film m (such as metal # or (10), rubber sheet) In the guide piece, the metal piece can be 2Χ-95%, slamming one or copper piece, the weight percentage of the organic solvent is cyclohexanol, and the toluene machine solvent can be smoke (for example: burned, oil_gas Three d generations of smoke (for example: dichloromethane, carbon tetrachloride oxime (for example: Bu (four) (examples > acetone, butanone, isophora, etc.: alcohols (for example: iso-diphenyl ether, Tetrahydrofuran, ethylene glycol dimethyl ether, etc.) Ethyl acetate, B-t^, n-butanol, benzyl alcohol, etc.), esters (for example: 〇-alcohol diethylene, 1 π or polyfunctional organic, ...曰An organic solvent such as a glycol carbonate or the like or a mixed organic solvent (for example, ethylene glycol ..., dipropionol or the like 1929342 or an inorganic solvent (for example, water, liquid carbon dioxide). Hereinafter, the present invention will be described by way of several examples: [Example 1; I ·· This example uses an epoxy domain of 8.9% bisphenol F glycidyl ether series (for example, Resin! Uti〇n Pe Rf〇rmance Pr〇ducts LLC is a model of five household epoxy resins), 2. 2% of butanediol glycidyl ether epoxy resin thinner (for example: the United Kingdom is full of heart and soul (four) a / The model of the five-factor OD/Z 750 epoxy resin thinner), 〇·3% of the amine _ hardener (for example, the Japanese type C heart & produced model of the ritual hardener), 7_6% Shi Xia (such as · United States

Co.所生產之型號厶仰扣的矽烷)、以及81%之氮化鋁粉末。 首先,以攪拌機將上述材質均勻攪拌混合。然後,將經 過攪拌之上述材質在lmm_Hg的真空壓力下脫泡約i小時, 便可製作成一熱硬化的單液型環氧樹脂。接著,將上述之環 氧樹脂在150°C下加熱㉟1小時,製備成直徑6〇mm,厚度 1mm的試片。然後,依照美國ASTM Ei53〇標準量測室溫鲁 的導熱係數,並依照美國ASTM D2196-86標準量測室溫的 枯度。 、 〔實施例二〕 卜本實施例係使用12·9%之雙酚F縮水甘油醚系列的環 氧樹脂(例如:美國及⑽/她·⑽〜咖顧膽户⑺办咖 所生產之型號五562的環氧樹脂)、5·5%之丁二醇縮水 甘油醚的環氧樹脂稀釋劑(例如:英國⑽/α/ · 12 1299342 所生產之型號75〇的環氧樹脂稀釋劑)、〇 %之胺類硬化劑(例如··日本c心⑽ca/ ^所生產 之型號尺的硬化劑)以及81%之氮化鋁粉末。 首先,以攪拌機將上述材質均勻攪拌混合。然後,將經 過攪拌之上述材質纟lmm_Hg的真空壓力下脫泡約i小時, 便可製作成一熱硬化的單液型環氧樹脂。接著,將上述之環 氧樹脂在150°C下加熱㉟i小時…製備成直徑6。顏,二又 度1mm的試片。然後,依照美國ASTM El53〇標準量測室Co. produces a model of decane, and 81% of aluminum nitride powder. First, the above materials were uniformly stirred and mixed by a stirrer. Then, the above-mentioned material which was stirred was defoamed under a vacuum pressure of 1 mm_Hg for about i hour to prepare a thermosetting single-liquid epoxy resin. Next, the above epoxy resin was heated at 150 ° C for 351 hours to prepare a test piece having a diameter of 6 mm and a thickness of 1 mm. Then, the thermal conductivity of the room temperature Lu is measured according to the ASTM Ei53 standard of the United States, and the dryness of the room temperature is measured in accordance with the American ASTM D2196-86 standard. [Example 2] The present embodiment uses an epoxy resin of 12.9% bisphenol F glycidyl ether series (for example, the model produced by the United States and (10)/she·(10)~ 咖胆胆(7) coffee shop) Epoxy resin thinner of 5,562 epoxy resin), 5.5% butanediol glycidyl ether (for example: 75 〇 epoxy resin thinner produced by British (10) / α / · 12 1299342), 〇% of an amine hardener (for example, a hardener of a model scale produced by Japan C (10) ca/^) and 81% of aluminum nitride powder. First, the above materials were uniformly stirred and mixed by a stirrer. Then, the above-mentioned material 纟lmm_Hg which was stirred was defoamed under vacuum pressure for about i hour to prepare a thermosetting single-liquid epoxy resin. Next, the above epoxy resin was heated at 150 ° C for 35 μm to prepare a diameter of 6. Yan, two and 1mm test piece. Then, according to the American ASTM El53 standard measurement room

恤的導熱係數,並依照美國ASTM D2196_86標準量測室溫 的粘度。 I 〔實施例三〕: 本實施例係使用9%之雙酚A縮水甘油醚系列的環氧 秘月日(例如·美國£)㈣Co.所生產之型號乃五及 的壤氧樹脂)、3 %之胺類硬化劑(例如··美國丑⑽仏所⑽ 所生產之型號々//謂⑹D-230的硬化劑)、6 %之矽烷(例如··曰本Shin_EtsuChemicaI Co·,Ltd·所么產之 型號ΚβΜ 04的矽烷)、2%之有機鈦化物(例如··美國五丄du Pont DE Nemours and Company 所 ± 轰之型號 Tyzor ΤηΒΤ 的 欽酸酯)、80%之氮化鋁粉末。 首先,以攪拌機將上述材質均勻攪拌混合。然後,將經 過搜拌之上述材質在lmm_Hg的真空壓力下脫泡約i小時, 便可製作成一熱硬化的雙液型環氧樹脂。在室溫下靜置3 天後’製備成直徑60mm,厚度imm的試片。然後,依照 13 1299342 美國ASTM El 530標準量測室溫的導熱係數,並依照美國 ASTM D2196-86標準量測室溫的粘度。 〔實施例四〕: 本實施例係使用1 5%之雙酚A縮水甘油醚系列的環氧 樹脂(例如:美國Dow C/zemz’ca/ Co·所生產之型號DJST? 337 的環氧樹脂)、5%之胺類硬化劑(例如:美國 Corpora//⑽所生產之型號/以为所以己的硬化劑)、以 鲁 及80%之氮化鋁粉末。 首先,以攪拌機將上述材質均勻攪拌混合。然後,將經 過攪拌之上述材質在1mm-Hg的真空壓力下脫泡約1小時, 便可製作成一熱硬化的雙液型環氧樹脂。在室溫下靜置3 天後’製備成直徑60mm,厚度 1mm的試片。然後,依照 美國ASTM E1530標準量測室溫的導熱係數,並依照美國 ASTM D2196-86標準量測室溫的粘度。 〔實施例五〕·· 本實施例係使用9%的壓克力寡聚合物(例如:美國The thermal conductivity of the shirt and the viscosity of the room temperature according to the American ASTM D2196_86 standard. I [Example 3]: This example uses a 9% bisphenol A glycidyl ether series of epoxy secret moon days (for example, the United States £) (four) Co. produced by the model is a five-phase resin), 3 % amine hardener (for example, the model produced by American Ugly (10) ( (10) / / / (6) D-230 hardener), 6% decane (such as 曰 S Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin Shin The model is 矽βΜ 04 decane), 2% organic titanium compound (for example, · 丄 Pont Pont DE Nemours and Company ± 之 model Tyzor Τ ΒΤ 钦 acid ester), 80% aluminum nitride powder. First, the above materials were uniformly stirred and mixed by a stirrer. Then, the above-mentioned material which has been subjected to soaking is defoamed under a vacuum pressure of 1 mm_Hg for about i hour to prepare a thermosetting two-component epoxy resin. After standing at room temperature for 3 days, a test piece having a diameter of 60 mm and a thickness of imm was prepared. Then, the thermal conductivity of the room temperature was measured in accordance with the 13 1299342 American ASTM El 530 standard, and the viscosity of the room temperature was measured in accordance with the ASTM D2196-86 standard. [Embodiment 4]: This example uses an epoxy resin of a 5% bisphenol A glycidyl ether series (for example, an epoxy resin of the model DJST? 337 manufactured by Dow C/zemz'ca/Co., USA). ), 5% of an amine hardener (for example: the model produced by Corpora//(10) in the United States/supplied as a hardener), and 80% aluminum nitride powder. First, the above materials were uniformly stirred and mixed by a stirrer. Then, the above-mentioned material which was stirred was defoamed under a vacuum pressure of 1 mm to Hg for about 1 hour to prepare a thermosetting two-component epoxy resin. After standing at room temperature for 3 days, a test piece having a diameter of 60 mm and a thickness of 1 mm was prepared. Then, the thermal conductivity of the room temperature was measured in accordance with the American ASTM E1530 standard, and the viscosity of the room temperature was measured in accordance with the ASTM D2196-86 standard. [Example 5]·· This example uses 9% of an acryl oligomer (for example, the United States)

Sartomer Company,1以.所±轰之型號SR 980的壓免力募取 合物)、5%的單官能基壓克力單體(例如··曰本桫 CTz㈣/cd Co.所生產之型號z的單官能基 壓克力單體)、1%的光起始劑(例如:德瑞士 CAa 5>a/a/〇; /加.之型號/的光起始劑)、丨〇%之矽 烷(例如··日本57π·/2-五Ca,所生產之型號 14 1299342 MM 503的石夕烧)、75%之氧化鋁粉末(例如··日本〜 Chemical Company Limited 所 ±產之墊號 ALM_43 的氡化 鋁)。 首先’在80C下以攪拌機將9%的壓克力募聚合物、5 %的單官能基壓克力單體、1 %的光起始劑均勻混合。然後, 將上述產物冷卻至室溫,再將矽烷與氧化鋁粉末加入上述產 物中均勻攪拌。接著,將經過攪拌之上述材質在Imm-Hg 的真空壓力下脫泡0·5小時,便可製作成一光硬化型壓克力 樹脂。然後,將上述所得的樹脂在365nm波長的紫外光下 曝光2000mJ/cm2,製備成直徑5〇mm,厚度m的試片。 然後,依照美國ASTM E1530標準量測室溫的導熱係數,並 依照美國ASTM D2196-86標準量測室溫的粘度。 〔實施例六〕: 本實施例係使用14%的壓克力寡聚合物(例如:美國 Sartomer Company,Inc·所!t轰之型散SR 98〇的壓先力募聚 合物)、9%的單官能基壓克力單體(例如:日本 Chemical Co·所±產之型號Light Acrylate L_A的單官能基 壓克力單體)、2%的光起始劑(例如··德瑞士 Ciba Specia& Chemical inc•之型號Dar〇cur n73的先起始劍)、75%之氧 化鋁粉朱(例如··日本 Sumit〇m〇 Chemica! c〇mpa^ Limifed 所生產之型號的氧化銘)。 首先’在80°C下以攪拌機將14%的壓克力寡聚合物、9 /的單S能基壓克力單體、2%的光起始劑均勻混合。然後, 15 1299342 將上述產物冷卻至室溫,再將氧化鋁粉末加入上述產物中均 勻攪拌。接著,將經過攪拌之上述材質在lmm_Hg的真空壓 力下脫泡0.5小時,便可製作成一光硬化型壓克力樹脂。然 後將上述所彳寸的樹脂在365nm波長的紫外光下曝光 2〇〇〇mJ/cm2 ’製備成直徑50mm,厚度l〇〇/zm的試片。最 後,依照美國ASTM E1530標準量測室溫的導熱係數,並依 照美國ASTM D2 196-86標準量測室溫的粘度。Sartomer Company, 1 by the type of SR 980, which is a force-free compound), 5% of a monofunctional acrylic monomer (such as · · · 曰 桫 CTz (four) / cd Co. a monofunctional acryl monomer of z), 1% of a photoinitiator (for example: German Swiss CAa 5 > a / a / 〇; / plus model / photoinitiator), 丨〇%矽 ( 例如 例如 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Aluminum telluride). First, 9% acrylic polymer, 5% monofunctional acrylic monomer, and 1% photoinitiator were uniformly mixed at 80 C with a stirrer. Then, the above product was cooled to room temperature, and then decane and alumina powder were added to the above product and uniformly stirred. Next, the above-mentioned material which was stirred was defoamed under a vacuum pressure of 1 mm-Hg for 0.5 hours to prepare a photocurable acrylic resin. Then, the resin obtained above was exposed to ultraviolet light at a wavelength of 365 nm at 2000 mJ/cm 2 to prepare a test piece having a diameter of 5 mm and a thickness m. Then, the thermal conductivity of the room temperature was measured in accordance with the American ASTM E1530 standard, and the viscosity of the room temperature was measured in accordance with the American ASTM D2196-86 standard. [Example 6]: In this example, 14% of acrylic oligopolymer (for example, Sartomer Company, Inc., USA) was used, and 9% of the polymer was used. Monofunctional acryl monomer (for example, monofunctional acryl monomer of the model Light Acrylate L_A manufactured by Chemical Co., Japan), 2% photoinitiator (for example, Ciba Specia&; Chemical inc• model DarDcur n73 first start sword), 75% alumina powder Zhu (for example, Japan Sumit〇m〇Chemica! c〇mpa^ Limifed model of the oxidation of the name). First, 14% of the acrylic oligomer, 9/ of the single S-energy acrylic monomer, and 2% of the photoinitiator were uniformly mixed at 80 ° C with a stirrer. Then, 15 1299342, the above product was cooled to room temperature, and alumina powder was added to the above product and uniformly stirred. Next, the above-mentioned material which was stirred was defoamed under a vacuum pressure of 1 mm_Hg for 0.5 hour to prepare a photocurable acrylic resin. Then, the above-mentioned resin was exposed to ultraviolet light of 365 nm wavelength at 2 〇〇〇 mJ/cm 2 ' to prepare a test piece having a diameter of 50 mm and a thickness of l 〇〇 / zm. Finally, the thermal conductivity of the room temperature is measured in accordance with the American ASTM E1530 standard, and the viscosity of the room temperature is measured in accordance with the American ASTM D2 196-86 standard.

〔實施例七〕 本實施例係使用15 %的矽油(例如:日本 心五Co·,LW·所生產之型號见p %的矽油)、 10%之有機鈦化物(例如:美國五/如乃五心所⑽以 所生產之型號7>z〇r 的鈦酸酯)、以及75%之 氮化鋁粉末。 首先’將上述材質均句擾拌混合。然後,將經過授拌之 上述材質在lmm-Hg的真空壓力下脫泡約1小時,將上述之 _ 液態材料倒入特疋形狀之模具内。然後’依照美國AST Μ Ε1530標準量測室溫的導熱係數,並依照美國astm D2196-86標準量測室溫的粘度。 〔實施例八〕: 本實施例係使用 25 % 的矽油(例如:日 Shin-EtsuChemical Co·,Ltd·所 I 轰之盤號 KF 96 的石夕治) 以及75%之氮化鋁粉末。 16 1299342 首先,將上述材質均勾授拌混合。然後,將經過攪拌之 上述糧一吨的真空•力下脫泡約!小時,將上述之 液態材料^較形狀之模㈣。㈣,㈣美國A· 犯3〇標準量測室溫的導熱係數,並依照美國astm D2196-86標準量測室溫的粘度。[Embodiment 7] In this embodiment, 15% of eucalyptus oil (for example, Nippon Shinjuku Co., model produced by LW· see p% oyster sauce) and 10% of organic titanium compound (for example, U.S. The five cores (10) are produced by Model 7 > z〇r titanate) and 75% of aluminum nitride powder. First, the above materials are mixed and mixed. Then, the above-mentioned material which was subjected to mixing was defoamed under a vacuum pressure of 1 mm-Hg for about 1 hour, and the above-mentioned liquid material was poured into a mold of a special shape. Then, the thermal conductivity of the room temperature was measured in accordance with the American AST Μ Ε 1530 standard, and the viscosity of the room temperature was measured in accordance with the American astm D2196-86 standard. [Embodiment 8]: In this example, 25 % of eucalyptus oil (for example, Shin-Etsu Chemical Co., Ltd., I., No. KF 96, Shihisa) and 75% of aluminum nitride powder were used. 16 1299342 First, the above materials are mixed and mixed. Then, degas the foam under the vacuum of one ton of the above-mentioned grain after stirring! In the hour, the above liquid material is compared with the shape of the mold (4). (4), (4) The United States A· commits 3 standard measurement of the thermal conductivity of room temperature, and measures the viscosity of room temperature according to the American astm D2196-86 standard.

實施例-與二為一對照組,三與四為一對照組,五與六 為一對照組,七與八為一對照組,實施例一、三、五、七為 -種利用可水解反應的化合物,來提升熱傳導性的材料組 成,實驗結果明顯的顯示,有添加可水解反應化合物的配方 組成,在經30天的環測後其導熱係數皆明顯的提高。 〔實驗結果〕:Examples - and two are a control group, three and four are a control group, five and six are a control group, seven and eight are a control group, and examples one, three, five, and seven are a kind of hydrolyzable reaction. The composition of the compound to enhance the thermal conductivity of the material, the experimental results clearly show that there is a formula of the addition of hydrolyzable compounds, the thermal conductivity of the compound after 30 days of ring test is significantly improved. [Experimental results]:

實施例 一 二 三 四 五 六 七 八 填充料 含量(%) 81 81 80 80 75 75 75 75 粘度 (Cps) 2.6E4 1.4E5 2.2E4 1.1E5 4.4E4 1.3E6 5.1E4 9.6E4 硬度 (Shore) 90(D) 95(D) 90(D) 92(D) 90(A) 65(A) 導熱 係數 氺1 (W/ 環測 0天 2.34 2.76 2.76 2.57 0.86 0.65 1.58 1.43 環測 3天 3.50 3.15 3.15 2.49 0.94 0.71 1.87 1.61 17 1299342 mK) 環測 7天 4.08 3.32 3.32 2.63 1.14 0.92 2.00 1.69 環測 30天 6.37 3.57 3.57 2.62 1.27 1.01 2.30 1.75 環測 30天 *2 5.76 2.47 * 1環測條件:溫度60°C,溼度95% % *2環測30天後再置於l〇〇°C下加熱24小時所得。 由上述本發明較佳實施例可知,相較於習知技術,本發 明之導熱材料具有以下優點·· (1)製程簡化:本發明技術係利用可水解反應的液態化 合物,將有機材料的稀釋劑與導熱性粉末兩者的功能結合在Example 1 2 3 4 5 6 7 8 Filler Content (%) 81 81 80 80 75 75 75 75 Viscosity (Cps) 2.6E4 1.4E5 2.2E4 1.1E5 4.4E4 1.3E6 5.1E4 9.6E4 Hardness (Shore) 90 ( D) 95(D) 90(D) 92(D) 90(A) 65(A) Thermal conductivity 氺1 (W/ ring measurement 0 days 2.34 2.76 2.76 2.57 0.86 0.65 1.58 1.43 Ring test 3 days 3.50 3.15 3.15 2.49 0.94 0.71 1.87 1.61 17 1299342 mK) Ring test 7 days 4.08 3.32 3.32 2.63 1.14 0.92 2.00 1.69 Loop test 30 days 6.37 3.57 3.57 2.62 1.27 1.01 2.30 1.75 Loop test 30 days*2 5.76 2.47 * 1 Ring test conditions: temperature 60 ° C, Humidity 95% % *2 After 30 days of ring test, it was further heated at l ° ° C for 24 hours. According to the preferred embodiment of the present invention, the heat conductive material of the present invention has the following advantages compared with the prior art. (1) Process simplification: the present invention utilizes a liquid compound capable of hydrolyzing to dilute an organic material. The function of both the agent and the thermal conductive powder is combined

起,可以同牯達到降低有機材料的黏度與提高導熱性粉末 的添加比率兩項目的。 、(2)性能提升:本發明技術使用可水解反應的化合物作 為有機材料的稀釋劑’可以避免—般稀釋劑會大幅地降低樹 脂性能的缺點。 ⑺㈣提高··本發明技術所使料可水解反應的化 =會透過水解反應,生成高熱傳㈣㈣產品,且產品在 過私十,其導熱能力會不斷的提高。 雖然本發明已將較佳之實施例揭露如± 用以限定本發明,扛h乱 八 可热習此技藝者在不脫離本發明 18 1299342 精神和範圍内,當可作各種之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 19From the same time, it can achieve the two items of reducing the viscosity of the organic material and increasing the addition ratio of the thermal conductive powder. (2) Performance improvement: The technique of the present invention uses a compound which can be hydrolyzed as a diluent for an organic material to avoid the disadvantage that the diluent can greatly reduce the performance of the resin. (7) (4) Improvements: The hydrolysis reaction of the material according to the present invention will produce a high heat transfer (4) (4) product through the hydrolysis reaction, and the product is in a private state, and its heat conductivity is continuously improved. While the present invention has been described in terms of the preferred embodiments, such as the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; The scope of the invention is defined by the scope of the appended claims. 19

Claims (1)

12993421299342 拾、申請專利範圍 1. 一種熱傳導性材料的組成,至少包括: 一有機材料,其中該有機材料的重量填充比例係實質 ’I於5%至50%之間; 一可水解反應的化合物,其中該可水解反應的化合物 的填充比例係實質介於2%至2〇%之間,該可水解反應的 化合物係選自於由矽烷以及鈦酸酯所組成之一族群;以及 隹 一導熱性粉末,其中該導熱性粉末的重量填充比例係 實質’丨於40%至90%之間,該有機材料、該可水解反應 的化合物與該導熱性粉末係均句混合在一起。 2 ·如申明專利範圍第1項所述之熱傳導性材料的組 成’其中該有機材料的形體係選自於由固態以及液態所組 成之一族群。 3·如申請專利範圍第1項所述之熱傳導性材料的組 成,其中該導熱性粉末係選自於由一金屬粉末、一陶究粉 末 第私末以及其任意混合粉末所組成之一族群,盆 中該第一粉末係選自於由人造鑽石、奈米碳管、氣相沉積 的碳纖維以及其任意混合粉末所組成之一族群。 4.如申請專利範圍第3項所述之熱傳導性材料的組 成’其中該金屬粉末係選自於由銀、銅、鎳、|呂以及其任 20 1299342 意混合粉末所組成 之 族群 申請專利範圍第3項所述之熱傳導性 成’其中該陶聽末係選自於由氧㈣、氮化紹 夕、 氧化鎂、氮㈣、碳切、氧化辞、二氧化鈇、二^;石夕 以及其任意混合粉末所組成之一族群。 6.如申請專利範㈣丨項所収熱料 成,係用以形成—導熱膏。 組 7. 如申請專利範圍第6項所述之熱傳導性材 成,其中形成該導熱膏之該有機材料係選自於由環I 脂、聚胺基甲酸S旨、_樹脂、聚醯胺樹脂 聚矽氧烷所組成之一族群。 8. 如申睛專利範圍第j項所述之熱傳導性材料 成,係用以形成一導熱膠。 、、 9. 如Μ專利制第8項所述之熱傳導性材料的食 ,、中該導熱膠用來進行—硬化反應的機構係選自於二 溫固化型、加熱固化型、濕氣固化型、厭氧固化:: 光固化型以及可見光固化型所組成之一族群。 、 10.如申請專利範圍第8項所述之熱傳導性材料的組 1299342 成,其中形成該導熱膠之該有機材料係選自於由環氧樹 脂、聚胺基甲酸酯、酚醛樹脂、聚醯胺樹脂、壓克力樹脂 以及聚梦氧烧所組成之一族群。 Π.如申請專利範圍第8項所述之熱傳導性材料的組 成’該導熱膠至少包括一硬化劑。 12.如申請專利範圍第8項所述之熱傳導性材料的組 成,該導熱膠至少包括一光起始劑。 、 13·如申請專利範圍第8項所述之熱傳導性材料的組 成,該導熱膠至少包括一催化剩。 14·如申請專利範圍第丨項所述之熱傳導性材料的組 成,其中該熱傳導性材料的組成係分散於一有機溶劑,用 以喷在一標的片上,而形成一導熱片,該有機溶劑的重量 百分比係實質介於20%和95%之間,該有機溶劑係選自 於由一烴類、一齒代烴烷、一酮類、一醚類、一醇類、一 酯類、一多官能基有機溶劑、一無機溶劑以及其任意混合 所組成之一族群,該烴類係選自於由己烷、石油醚、^二 烷、以及甲苯所組成之一族群,該齒代烴烷係選自於由二 氣甲烷、四氯化碳、以及氟三氣甲烷所組成之一族群,該 酮類係選自於由丙酮、丁酮、以及異佛爾酮所組成之一族 群,該醚類係選自於由***、苯***、四氫喃、以及乙 1299342 一醇二曱醚所組成之一族群,該醇類係選自於由異丙醇、 正丁醇以及苯甲醇等所組成之一族群,該酯類係選自於由 乙酸乙酯、乙二醇二乙酸酯、以及丙二醇碳酸酯所組成之 一族群,該多官能基有機溶劑係選自於由乙二醇一甲醚、 以及丙酮醇所組成之一族群,該無機溶劑係選自於由 欠以及液態二氧化碳所組成之一族群。 15·如申請專利範圍第丨項所述之熱傳導性材料的組 成,係用以形成一導熱固態彈性體。 16·如申請專利範圍第15項所述之熱傳導性材料的組 成’形成該導熱固態彈性體之該有機材料係選自於由矽利 康RTV、橡膠(Rubber)以及聚氨酯(PU)所組成之一族群。 17· —種熱傳導性材料的製造方法,至少包括: 均勻攪拌一熱傳導性材料的組成而形成一混合物,其 中該熱傳導性材料的組成至少包括: 一有機材料,其中該有機材料的重量填充比例係 實質介於5%至50%之間; 一可水解反應的化合物,其中該可水解反應的化 合物的填充比例係實質介於2%至20%之間,該可水 解反應的化合物係選自於由矽烷以及鈦酸酯所組成 之一族群;以及 和一導熱性粉末,其中該導熱性粉末的重量填充 23 1299342 比例係實質介於40%至90%之間;以及 將該混合物在一真空壓力下脫除氣泡一預設時間。 一有機材料 一可水解反應的化合物 一導熱性粉末。 a I8.如申請專利範圍第17項所述之熱傳導性材料的製 、方法其中該熱傳導性材料的組成更至少包括一麻几 劑。 硬化 、生I9.如申請專利範圍第17項所述之熱傳導性材料的製 造方法,其中該熱傳導性材料的組成更至少包括一光起始 ^ 20.如申請專利範圍第17項所述之熱傳導性材料的製 造方法,其中該熱傳導性材料的組成更至少包括— 劑。 惟化 ^ 21·如申請專利範圍第17項所述之熱傳導性材料的製 ^方去,其中該真空壓力為0· 1〜1 Omm-Hg。 ^ 22·如申請專利範圍第17項所述之熱傳導性材料的製 &amp;方法,其中該預設時間為0.2〜2小時。The invention relates to a composition of a thermally conductive material, comprising at least: an organic material, wherein the weight ratio of the organic material is between 5% and 50%; a hydrolyzable compound, wherein The compounding ratio of the hydrolyzable compound is substantially between 2% and 2%, and the hydrolyzable compound is selected from the group consisting of decane and titanate; and a thermal conductive powder Wherein the thermal filler powder has a weight filling ratio of substantially 40% to 90%, and the organic material, the hydrolyzable compound, and the thermally conductive powder are uniformly mixed. 2. The composition of the thermally conductive material as recited in claim 1, wherein the organic material is selected from the group consisting of a solid and a liquid. 3. The composition of the thermally conductive material according to claim 1, wherein the thermally conductive powder is selected from the group consisting of a metal powder, a ceramic powder, and any mixed powder thereof. The first powder in the pot is selected from the group consisting of synthetic diamonds, carbon nanotubes, vapor deposited carbon fibers, and any mixed powder thereof. 4. The composition of the thermally conductive material according to claim 3, wherein the metal powder is selected from the group consisting of silver, copper, nickel, lyon, and its 20 1299342 mixed powder. The thermal conductivity described in Item 3 is selected from the group consisting of oxygen (tetra), nitriding, magnesium oxide, nitrogen (tetra), carbon cutting, oxidizing, cerium oxide, bismuth; A group of any of the mixed powders. 6. If the hot material collected in the application patent (4) is used to form a thermal paste. The heat conductive material according to claim 6, wherein the organic material forming the thermal conductive paste is selected from the group consisting of a cyclic lipid, a polyaminocarboxylic acid, a resin, and a polyamide resin. A group of polyoxanes. 8. The heat conductive material described in item j of the scope of the patent application is used to form a thermal conductive adhesive. 9. The food of the thermally conductive material according to item 8 of the patent system, wherein the mechanism for performing the hardening reaction is selected from the group consisting of two-temperature curing type, heat curing type, and moisture curing type. Anaerobic curing: A group consisting of light curing type and visible light curing type. 10. The group of 1,129,342 thermally conductive materials according to claim 8, wherein the organic material forming the thermal conductive adhesive is selected from the group consisting of epoxy resins, polyurethanes, phenolic resins, and poly A group consisting of guanamine resin, acrylic resin and polyoxymethane. The composition of the thermally conductive material according to claim 8, wherein the thermally conductive adhesive comprises at least a hardener. 12. The composition of the thermally conductive material of claim 8, wherein the thermally conductive adhesive comprises at least a photoinitiator. 13. The composition of the thermally conductive material of claim 8, wherein the thermally conductive adhesive comprises at least a catalytic residue. 14. The composition of the thermally conductive material according to claim 2, wherein the composition of the thermally conductive material is dispersed in an organic solvent for spraying on a target sheet to form a thermally conductive sheet, the organic solvent The weight percentage is substantially between 20% and 95%, and the organic solvent is selected from the group consisting of a hydrocarbon, a monohydrocarbon, a ketone, an ether, an alcohol, a monoester, a poly a group consisting of a functional organic solvent, an inorganic solvent, and any mixture thereof, the hydrocarbon being selected from the group consisting of hexane, petroleum ether, dioxane, and toluene. From a group consisting of di-methane, carbon tetrachloride, and fluorotri-methane, the ketone is selected from the group consisting of acetone, methyl ethyl ketone, and isophorone, the ether group Is selected from the group consisting of diethyl ether, phenethyl ether, tetrahydrofuran, and ethyl 1293342 monohydric dimethyl ether, the alcohol is selected from the group consisting of isopropanol, n-butanol, and benzyl alcohol. a group of esters selected from the group consisting of ethyl acetate and ethylene glycol a group consisting of diacetate and propylene glycol carbonate, the polyfunctional organic solvent being selected from the group consisting of ethylene glycol monomethyl ether and acetol, the inorganic solvent being selected from A group of owed and liquid carbon dioxide. 15. The composition of the thermally conductive material of claim 3, for forming a thermally conductive solid elastomer. 16. The composition of the thermally conductive material according to claim 15 of the patent application 'The organic material forming the thermally conductive solid elastomer is selected from the group consisting of a Ricona RTV, a rubber, and a polyurethane (PU). Ethnic group. 17. A method of manufacturing a thermally conductive material, comprising: uniformly agitating a composition of a thermally conductive material to form a mixture, wherein the composition of the thermally conductive material comprises at least: an organic material, wherein the weight ratio of the organic material is Substantially between 5% and 50%; a hydrolyzable compound, wherein the hydrolyzable compound is substantially between 2% and 20%, and the hydrolyzable compound is selected from a group consisting of decane and titanate; and a thermally conductive powder wherein the thermally conductive powder has a weight filling ratio of 23 1299342 substantially between 40% and 90%; and the mixture is at a vacuum pressure Remove the bubble for a preset time. An organic material, a hydrolyzable compound, a thermally conductive powder. A. The method of producing a thermally conductive material according to claim 17, wherein the composition of the thermally conductive material further comprises at least one agent. The method for producing a thermally conductive material according to claim 17, wherein the composition of the thermally conductive material further comprises at least a light start. 20. The heat transfer as described in claim 17 A method of producing a material, wherein the composition of the heat conductive material further comprises at least a solvent. 2. The method of manufacturing the thermally conductive material described in claim 17 of the patent application, wherein the vacuum pressure is 0·1 to 1 Omm-Hg. The method of manufacturing a thermally conductive material according to claim 17, wherein the preset time is 0.2 to 2 hours.
TW93112798A 2004-05-06 2004-05-06 Thermal-conductive material composition and method for preparing the same TWI299342B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93112798A TWI299342B (en) 2004-05-06 2004-05-06 Thermal-conductive material composition and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93112798A TWI299342B (en) 2004-05-06 2004-05-06 Thermal-conductive material composition and method for preparing the same

Publications (2)

Publication Number Publication Date
TW200536885A TW200536885A (en) 2005-11-16
TWI299342B true TWI299342B (en) 2008-08-01

Family

ID=45069661

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93112798A TWI299342B (en) 2004-05-06 2004-05-06 Thermal-conductive material composition and method for preparing the same

Country Status (1)

Country Link
TW (1) TWI299342B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372614B (en) 2007-08-24 2011-06-08 清华大学 Carbon nano-tube array composite heat-conducting fin and manufacturing method thereof
TWI412583B (en) * 2010-06-02 2013-10-21 China Steel Corp Thermally conductive composite material
JP5920353B2 (en) * 2011-09-27 2016-05-18 日立化成株式会社 Boron nitride particles, epoxy resin composition, semi-cured resin composition, cured resin composition, resin sheet, exothermic electronic component, and method for producing boron nitride particles

Also Published As

Publication number Publication date
TW200536885A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
CN103180366B (en) Cyanate esters, curable resin composition containing cyanate esters and cured article thereof
CN106661191B (en) The manufacturing method of heat release component composition, heat release component, electronic device, heat release component
CN105264013B (en) Printed circuit board material resin combination and use its prepreg, resin sheet, clad with metal foil plywood and printed circuit board
TWI386460B (en) Curable silicone composition and cured product therefrom
TWI278392B (en) Thermally conductive composite sheet and manufacturing method thereof
WO2013008667A1 (en) Curable resin composition and process for producing cured products using same
KR101810315B1 (en) Adhesive composition for heat dissipation sheet, method of manufacturing the same, heat dissipation sheet including the same
CN101768363A (en) Method for preparing addition highly heat-conducting room temperature-curing silicon rubber
TW200934826A (en) Curable silicone composition and cured product thereof
CN108699340A (en) The manufacturing method of heat release component composition, heat release component, e-machine and heat release component
JP2007001266A (en) Epoxy resin inorganic composite sheet, and molded article
KR102540533B1 (en) light-weight polymer composition with excellent thermal conductivity and manufacturing method of the same and product using the same
CN110121531A (en) Resin composition for printed circuit board, prepreg, resin sheet, plywood, clad with metal foil plywood, printed circuit board and multilayer board
CN108713042A (en) The manufacturing method of Low thermal expansion member composition, Low thermal expansion member, e-machine and Low thermal expansion member
TWI299342B (en) Thermal-conductive material composition and method for preparing the same
TWI655238B (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
CN106084652B (en) Resin combination, resin sheet, resin cured matter and resin substrate
TW201927896A (en) Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
JP2005197609A (en) Heat radiating sheet
JP6834948B2 (en) Resin composition, resin sheet, cured resin, and resin substrate
JP6497196B2 (en) Resin composition, resin sheet, cured resin and resin substrate
JP6477206B2 (en) Resin composition, resin sheet, cured resin and resin substrate
CN109768019B (en) Heat radiating fin for power module and power module manufactured by same
TW200400111A (en) Heat-resistant label
JP7383971B2 (en) Resin compositions, cured resin products and composite molded bodies

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees