TWI290775B - Lighting system with high and improved extraction efficiency - Google Patents

Lighting system with high and improved extraction efficiency Download PDF

Info

Publication number
TWI290775B
TWI290775B TW93128217A TW93128217A TWI290775B TW I290775 B TWI290775 B TW I290775B TW 93128217 A TW93128217 A TW 93128217A TW 93128217 A TW93128217 A TW 93128217A TW I290775 B TWI290775 B TW I290775B
Authority
TW
Taiwan
Prior art keywords
light
photonic crystal
emitting element
arrays
array
Prior art date
Application number
TW93128217A
Other languages
Chinese (zh)
Other versions
TW200611425A (en
Inventor
Ho-Shang Lee
Alexander Birman
Original Assignee
Global Fiberoptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Fiberoptics Inc filed Critical Global Fiberoptics Inc
Priority to TW93128217A priority Critical patent/TWI290775B/en
Publication of TW200611425A publication Critical patent/TW200611425A/en
Application granted granted Critical
Publication of TWI290775B publication Critical patent/TWI290775B/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

In an epitaxial structure of a solid state lighting system, electrical current injection into the active element is used to excite the photon radiation. Therefore, the present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active element in the fundamental waveguide mode. At least one photonic crystal region with different characteristics located either outside or inside of current injection region extracts photons from the waveguide layer(s), which thus enhances the light extraction rate of the solid-state lighting system.

Description

1290775 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光元件’特別是指一種高亮度 之固態發光元件及其製造方法。 【先前技術】 近來固態發光元件的急速進展,特別是高亮度發光二 極體(High-brightness Light Emitting Diode;簡稱 HB-LED) 過去十年來的發展,已打開了應用發光二極體作為一般日 常照明使用的一扇大門。且由於發光二極體在效率、使用 壽命、輸出亮度等方面的亮麗表現,使得發光二極體已普 遍應用於交通號誌燈、剎車燈、行動電話、戶外號誌等各 個領域。因此,一般相信,發光二極體技術的急速發展將 會衝擊下一個十年間的照明市場。此外,利用發光二極體 技術,亦將顯著地降低能源的粍損。 發光二極體亮度表現的重點主要在於其内部量子效率 (quantum efficiency)和光取出率(extraction efficiency)。在 提昇内部量子效率方面5使用南品質的原材料和先進的蠢 晶技術,例如以分子束蟲晶(Molecular Beam Epitaxy, MBE )、有機金屬化學氣相沈積(Metal-Organic Chemical Vapor Deposition,MOCVD )等方式易於製出具有可調控能 隙(band gap)的複合量子井(multiple Quantum Wells;簡稱 MQWs)結構,而可以幾乎使内部量子效率達到100%。 反觀在提昇光取出率上,則缺乏相關的改良進步,而 需要進一步的研究。光取出率牵涉到發光晶體所發出的光 1290775 進入至與其相接觸的 此,提昇光取出率的’ ^或透先衣乳樹脂(epoxy)。因 , 、、困難處在於發光晶體相對於所接觸的 的折射係數,化鍺(Ga— 界角則為26。。若僅考慮翠一界 ,,光線僅能由此臨界角***出,因此,造成在單一界 面射入空氣中的光取出率僅 ^千惶2·2义,射入^虱樹脂的光取出 ^ ^ ’其餘光線則再反射回作動層(咖ve la㈣或其他 界面而形成浪費。 雖然,例如美國專利第5779924號專利案以薄膜光柵 I式提昇LED產生光的光取出率,美國專利第6323〇63號 利案以反轉之截頭金字塔結構改變晶片的幾何構造提昇 發光二極體產生光的光取出率,美國專利帛奶⑽號專 利案及美國專利第2G_415G 1專利案以光子晶體 (Photonic crystal;簡稱pc)結構提昇光取出率,但是至今仍 無法完全適用於各式發光二極體。 因此,如何提高發光二極體的光取出率是業者不斷努 力的目標之一。 【發明内容】 本發明提供-種高亮度的固態發光系統,以提昇光取 出率,且提昇從作動單元光電效應所產生光的向外光 射。 在固悲务光系統的磊晶結構中,將電流注入作動單 1290775 元中可以激發光子輻射。較佳地,該輻射是以單一模態 (single mode)或低階模態(l〇w-order modes)來限制捕集(trap) 。該被限制捕集的輻射較佳地是利用光子晶體結構來汲取 (extract)。本發明揭示了數種不同的光子晶體結構使光取出 率達到最佳化。在一實施例中,使用複數具有不同參數的 光子晶體。該等參數例如可為陣列圖像、與作動單元射出 光的方向有關的晶格方向(orientation)、晶格常數(iattice constant),以及在陣列中的基元(element)大小和元素物質的 反射率(index of refraction)。 【實施方式】 為了更清楚的描述本發明高光取出率之固態發光系統 ’首先介紹一適合實現光子晶體之磊晶結構,然後於此磊 晶結構上增加一光子晶體結構。而且為了簡化說明,在本 發明的說明中特定的元件是以相同的編號來表示。 圖1說明了無該光子晶體結構時的一具有磊晶結構的 半導體基體。所有的磊晶層是形成於一基板110之上。 基板110的材料例如可為黃光或紅光之發光系統所使用 的砷化鍺,紫外(UV)光、綠光或藍光之發光系統所使用的 藍寶石(sapphire)、氮化鎵(GaN),或碳化矽(Sic)等。 磊晶層121是一可使電子與電洞覆合(c〇nibination)並發 射光的一作動單元121。作動單元丨21的磊晶結構可以是雙 異質結構(double heterostructure)、複合量子井,或是複合 量子點(multiple Quantum Wells ;簡稱 MQDs)結構,而可 得到最佳的内部產生光的量子效率。 1290775 電洞和電子在作動單元121覆合產生的光,大部分被 波導層122、123限制捕集在作動單元121、波導層和 波導層123内。通常因為作動單元121的厚度太薄而不能 單獨存在地做為一波導核心(wavegUide c〇re),因此在本發 明中,額外地增加了一或二厚度適當且光折射係數接近於 波導核心的波導層。波導層122、123的折射係數高於厚度 分別地超過50 nm的披覆層(cladding layer) 124和披覆芦 131。 择 未被限制捕集到的光則如習知的發光二極體一般地射 出並離開元件本身至外界或是被元件之半導體結構本身再 吸收。波導層122、123是允許光在單一模態或少數幾個較 低階的模態中行進。因此,波導層122、123各別的厚度, 依作動單元121的厚度以及磊晶的結構而定,約在2〇 至250 nm之間,而且一般在作動單元121的厚度足夠厚時 是可退化的(degenerated)。如果波導支援若干具有非常不同 的傳播常數的模態時,則其光子晶體的光取出是無效率的 ’因為光子晶體結構中的能帶邊緣只能對應一個模態或少 數幾個模態。 磊晶層124A是一提供給超薄金屬層125作為過渡性層 體使用的接觸層124A。超薄金屬層125上連結銦錫氡化物 (Indium Tin Oxide;簡稱ITO)層126,超薄金屬層125與錮 錫氧化物層126是用來增加電流擴散的面積。該銦錫氧化 物層126是透明、可導電的,且折射係數約為18,並亦可 為具有抗反射的鍍層,可以降低對空氣界面的Fresnel反射 1290775 或疋封裝後對環氧樹脂界面的反射。一般說來,由於半導 體的高反射係數會造成在半導體磊晶和空氣之間的界面產 生咼Fresnel反射,例如在氮化鍺系材料和空氣的界面間造 成17%的反射損失,而在以砷化鍺空氣的界面間造成3〇% 的反射損失。因此,該銦錫氧化物層126扮演著影響光線 射出的重要角色。當然,其他折射係數低於半導體的折射 係數且透明可導電之物質,均可使用來取代銦錫氧化物層 126以增加電流擴散並降低Fresnel反射。 為了使光在空氣與其他層體間界面的反射最小,銦錫 氧化物層126的厚度須控制等於λ/(4χ nit。)nm ,人是產生光 的波長’ nit。表示銦錫氧化物層之折射係數。例如產生的光 波長疋640 nm ’銦錫氧化物層的厚度是89 nm ;產生 的光波長是470 nm時,銦錫氧化物層126的厚度是65 nm ,且為了涵蓋深紫外光(ultra_uv)至近紅外光的波長範圍, 姻锡氧化物層126的厚度最好是在3〇 nm到300 nm之間。 在本發明的一些情況中,銦錫氧化物層126和超薄金屬層 125疋可省略的,而且不會影響光取出率,但是由於磊晶與 空氣間界面的高反射卻會伴隨較低的光輸出。 在所有的磊晶層或光子晶體形成後,形成一金屬電極 127。注入電流經由金屬電極127流至作動單元121而激發 電子躍遷並產生光。為了減少光穿過基板11〇造成的損耗, 配置一朝向金屬電極127的布拉袼反射鏡133(Distributed Bragg Reflector ;簡稱DBR)以反射光,當然此布拉格反射 鏡133在不影響固態發光系統的發光功效的狀況下可被省 1290775 略。緩衝層132形成在布拉格反射鏡133與坡覆層Η〗之 間。上述的磊晶層均可為N_type或是p_type,但在作動單 元121上方的蟲晶層的P_type或N_type,必須與下方的蟲 晶層的N-type與IMype互補對應形成。 圖2說明了如何結合一作為波導結構以限制捕集作動 單元121所產生光的第-結# !與—作為光取出結構以汲 取在第一結構i中被限制捕集之光的第二結構2以提昇固 態發光系統的效能。在-實施例中,光取出結構包含一光 子晶體結構。在本實施例中的光取出結構是在從如圖"斤 示的結構上開始製作的,並藉此改進元件的發光效果。該 光子晶體結構包含複數向下進入如圖i所示的固態發光系 統的磊晶結構中的一 4b磊晶層的;、、η 一日層的孔洞201。該等孔洞201較 佳地排列形成二維陣列的圖像,本發明揭示不同圖像以使 光取出率最佳化。 在-如圖4Α所示的實施例中,一電極312區域叠置於 光子晶體之一部份上。由電極和一連接至電極電流源(圖未 :㈣供之注入電流經由銦錫氧化物層126擴散至整個光 ^晶體區域。在另—如圖4Β所示的實施财,光子晶體所 的先取出區域大體上是被電流注入區域所隔開。較佳地 ’,圖2中的該等孔洞2CH是以化學㈣㈣㈣方式形成 ,/、深度可控制在到達披覆層124、波導層122,或是亦可 =圖2中虛線203穿過作動單元121或波導層123。若作動 广121 出的疋可見光,則每_孔洞加的直徑須介於 nm至300 nm,光子晶體中兩相鄰孔洞加中心之距離( 10 1290775 如圖2中所示的距離a),即其晶格常數,則是介於8〇麵 至J00 _,且此曰曰“各常數會隨著產生光的波長及光子晶體 的帶數(band number)增加而增加。由限制捕集到的光子 所引發且自作動單元丨21延伸至披覆層124的電場會與該 光子晶體結構相互作用。光子晶體結構中的參數如晶格常 數和孔洞直徑,在特定的數值下,將阻礙光子存在於在該 作動單7G 121内,而使光子從晶圓的表面射出,如圖2中 產生的光215所示。 圖2所不之孔洞201是晶圓表面向下形成,而當採用 晶圓連結(wafer bonding)技術時,這些孔洞是植入於披覆層 131或是波導層123,或甚至經由作動單元121延至波導層 122和披覆層124。晶圓連結技術是藉由移除原來的初始基 板110,然後連結一新的基板至磊晶結構最上層來反轉晶圓 ,例如銦錫氧化物層126等蠢晶層被省略時連結至接觸層 124 〇 若新基板的能隙較作動單元121寬,作動單元121產 生的光則不會明顯的被新基板吸收,所以光可由固態發光 系統的兩側向外射出,舉例來說,以砷化鍺為初始基板, 能隙較大的磷化鎵(GaP)基板則可作為新基板。 圖3A至3D從晶圓(wafer)尺度到孔洞尺度的放大示意 圖,並說明了光子晶體圖像、電極與孔洞201的相對關係 。圖3A所示之晶圓300可以切割成多數晶片3丨〇,每一晶 片(chip)310的表面圖像則由圖3B所表示,每一晶片310的 邊長在50至500 μηι之間。在晶片31〇中,電極312是由 11 1290775 在晶圓表面縱橫向交錯連結的可導電條紋物所形成,並可 將電流均勻的分散。如圖3B的格狀圖像所示,電極312界 定出複數栅格316,每一柵格316是由二橫向導電條紋物與 二縱向導電條紋物彼此連接所構成,而柵格316可為方形 或矩形。每一柵格316圍覆一相對應的光子晶體單體 (cell)315。圖3C是一柵格316的放大圖式,電極312中的 導電條紋物的寬度(如圖3C中所示的寬度d)是1至1〇〇 μιη ,因為每一光子晶體單體315由相對應的柵格316所圍覆 ,所以一晶片(chip)3 10可具有多數光子晶體單體315。光 子晶體單體315之邊長介於1至100 μηι之間。在每一光子 晶體單體315中的孔洞201分佈態樣是如圖3D所示之三角 形陣列分佈。孔洞201分佈態樣亦可為其他方式,例如方 形、矩形、多邊形,或是Archimedean-like晶格等。關於 Archimedean-like晶格的詳細描述,請參閱S. David等人於 Optical Society of America,Optics Letters,vol. 25,no. 14, July 200,pp2-4 發表之論文”Wide angularly isotropic photonic bangaps obtained from two-dimensional photonic crystals with Archimedean-like tilings”。 在如圖4A所示的一實施例中,銦錫氧化物層126用來 擴散由電極312所提供的注入電流至所有光子晶體區域, 電流注入區域(例如發射區域)涵蓋整個光子晶體區域(例如 光取出區域)。 在如圖4B所示的另一實施例中,鄰近電極處下方並沒 有孔洞201。電流利用一連接至電極的電流源(圖未示)注入 12 1290775 。銦錫氧化㈣126和超薄金屬層125可以保持或移除, 而在本實施财,該銦錫氧化㈣126是被移除的。電流 主要是從電極312注入,並流經作動單元ΐ2ι而至靠近基 板110的另-電極322。具有孔洞201的光子晶體區域具有 較而的電阻而使得電流以其他路徑流通,因此,電流並沒 有、I過;5¾晶結構中光子晶體的部分區域。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting element, particularly to a high-luminance solid-state light-emitting element and a method of fabricating the same. [Prior Art] Recently, the rapid development of solid-state light-emitting elements, especially the development of High-brightness Light Emitting Diode (HB-LED) over the past decade, has opened the application of light-emitting diodes as a general daily life. A door used for lighting. And because of the bright performance of the light-emitting diode in terms of efficiency, service life, output brightness, etc., the light-emitting diode has been widely used in various fields such as traffic lights, brake lights, mobile phones, and outdoor signs. Therefore, it is generally believed that the rapid development of LED technology will impact the lighting market in the next decade. In addition, the use of LED technology will also significantly reduce energy losses. The focus of the luminance of the LED is mainly due to its internal quantum efficiency and extraction efficiency. In the improvement of internal quantum efficiency, 5 use South quality raw materials and advanced stupid crystal technology, such as Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapor Deposition (MOCVD), etc. The method is easy to produce a composite quantum well (MQWs) structure with a controllable band gap, and can almost achieve an internal quantum efficiency of 100%. On the other hand, in terms of improving the light extraction rate, there is a lack of relevant improvement progress, and further research is needed. The light extraction rate involves the light 1290775 emitted by the luminescent crystal entering into contact with it, increasing the light extraction rate of '^ or epoxidizing resin. The difficulty lies in the refractive index of the luminescent crystal relative to the contact, and the enthalpy (the Ga-border angle is 26.) If only the Cuiyi boundary is considered, the ray can only be emitted within this critical angle. The light extraction rate that is injected into the air at a single interface is only 惶2惶2·2, and the light that is injected into the resin is taken out ^^ 'the rest of the light is reflected back to the active layer (ca ve la (4) or other interface to form waste Although, for example, in U.S. Patent No. 5,779,924, the thin film grating type I enhances the light extraction rate of light generated by the LED, U.S. Patent No. 6,323,63 changes the geometry of the wafer by the inverted truncated pyramid structure to enhance the light emission. The light extraction rate of the polar body produces light. The patents of the US patents (10) and the 2G_415G 1 patents enhance the light extraction rate by photonic crystal (PC) structure, but still cannot be fully applied to various types. Therefore, how to improve the light extraction rate of the light-emitting diode is one of the goals of the industry. [Invention] The present invention provides a high-brightness solid-state light-emitting system, The light extraction rate is increased, and the outward light emission of the light generated by the photoelectric effect of the actuating unit is increased. In the epitaxial structure of the solid light system, the current is injected into the actuating unit 1290775 to excite photon radiation. Preferably, The radiation is trapped in a single mode or a l〇w-order modes. The restricted trapped radiation is preferably extracted using a photonic crystal structure ( The invention discloses several different photonic crystal structures to optimize the light extraction rate. In one embodiment, a plurality of photonic crystals having different parameters are used. The parameters may be, for example, array images, and actuation. The orientation direction, the lattice constant, and the size of the element in the array and the index of refraction of the elemental material in the direction in which the unit emits light. A solid-state light-emitting system with a high light extraction rate of the present invention will be described more clearly. First, an epitaxial structure suitable for realizing a photonic crystal is introduced, and then a photonic crystal junction is added to the epitaxial structure. In order to simplify the description, the specific elements in the description of the present invention are denoted by the same reference numerals. Figure 1 illustrates a semiconductor substrate having an epitaxial structure without the photonic crystal structure. All epitaxial layers are formed. The material of the substrate 110 can be, for example, arsenic arsenide used in a yellow or red light emitting system, sapphire used in an ultraviolet (UV) light, green light or blue light emitting system, Gallium nitride (GaN), or bismuth carbide (Sic), etc. The epitaxial layer 121 is an actuating unit 121 that can cover electrons and holes and emit light. The epitaxial structure of the actuating unit 丨21 may be a double heterostructure, a composite quantum well, or a multiple quantum umb ( MQDs) structure, and the quantum efficiency of the optimal internally generated light can be obtained. 1290775 The light generated by the lamination of the holes and electrons in the actuating unit 121 is mostly trapped in the actuating unit 121, the waveguide layer and the waveguide layer 123 by the waveguide layers 122, 123. Generally, since the thickness of the actuation unit 121 is too thin to be used as a waveguide core alone, in the present invention, one or two additional thicknesses are appropriately added and the light refractive index is close to the waveguide core. Waveguide layer. The waveguide layers 122, 123 have a refractive index higher than a cladding layer 124 and a shrouded 131 having a thickness exceeding 50 nm, respectively. The unrestricted light is generally emitted as a conventional light-emitting diode and exits the component itself to the outside or is reabsorbed by the semiconductor structure of the component itself. The waveguide layers 122, 123 allow light to travel in a single mode or a few lower order modes. Therefore, the thickness of each of the waveguide layers 122, 123 depends on the thickness of the actuator unit 121 and the structure of the epitaxial layer, between about 2 〇 and 250 nm, and is generally degradable when the thickness of the actuator unit 121 is sufficiently thick. (degenerated). If the waveguide supports a number of modes with very different propagation constants, the light extraction of the photonic crystal is inefficient because the band edges in the photonic crystal structure can only correspond to one mode or a few modes. The epitaxial layer 124A is a contact layer 124A that is provided to the ultra-thin metal layer 125 as a transitional layer. An ultra-thin metal layer 125 is bonded to an indium tin oxide (ITO) layer 126. The ultra-thin metal layer 125 and the antimony oxide layer 126 are used to increase the area of current diffusion. The indium tin oxide layer 126 is transparent, electrically conductive, and has a refractive index of about 18, and may also be an anti-reflective coating that reduces Fresnel reflection to the air interface 1290775 or encapsulates the epoxy interface. reflection. In general, due to the high reflection coefficient of the semiconductor, 咼Fresnel reflection occurs at the interface between the epitaxial layer of the semiconductor and the air, for example, 17% of the reflection loss between the interface of the tantalum nitride material and the air, and arsenic A 3% reflection loss is caused between the interfaces of the enthalpy of air. Therefore, the indium tin oxide layer 126 plays an important role in influencing light emission. Of course, other materials having a lower refractive index than the refractive index of the semiconductor and transparent and electrically conductive can be used in place of the indium tin oxide layer 126 to increase current spreading and reduce Fresnel reflection. In order to minimize the reflection of light at the interface between air and other layers, the thickness of the indium tin oxide layer 126 must be controlled to be equal to λ/(4 χ nit.) nm, and the wavelength at which humans produce light 'nit. Indicates the refractive index of the indium tin oxide layer. For example, the wavelength of light generated 疋 640 nm 'the thickness of the indium tin oxide layer is 89 nm; when the wavelength of light produced is 470 nm, the thickness of the indium tin oxide layer 126 is 65 nm, and in order to cover the deep ultraviolet light (ultra_uv) The thickness of the tin oxide layer 126 is preferably between 3 〇 nm and 300 nm in the wavelength range to the near-infrared light. In some cases of the present invention, the indium tin oxide layer 126 and the ultra-thin metal layer 125 can be omitted without affecting the light extraction rate, but the high reflection due to the interface between the epitaxial and air is accompanied by a lower Light output. After all of the epitaxial layer or photonic crystal is formed, a metal electrode 127 is formed. The injection current flows to the actuation unit 121 via the metal electrode 127 to excite the electron transition and generate light. In order to reduce the loss caused by the light passing through the substrate 11, a distributed Bragg reflector (DBR) facing the metal electrode 127 is disposed to reflect the light. Of course, the Bragg mirror 133 does not affect the solid state lighting system. Under the condition of luminous efficacy, it can be omitted by 1290775. The buffer layer 132 is formed between the Bragg mirror 133 and the slope layer. The above epitaxial layer may be N_type or p_type, but the P_type or N_type of the crystal layer above the actuating unit 121 must be formed in correspondence with the N-type and IMype of the underlying insect layer. 2 illustrates how a first structure can be incorporated as a waveguide structure to limit the light generated by the capture actuator unit 121 and as a light extraction structure to capture the second structure of the light trapped in the first structure i. 2 to improve the performance of solid state lighting systems. In an embodiment, the light extraction structure comprises a photonic crystal structure. The light-extracting structure in this embodiment is fabricated from the structure as shown in the figure, and thereby improves the light-emitting effect of the element. The photonic crystal structure comprises a plurality of holes 4 of the 4b epitaxial layer which are downwardly entered into the epitaxial structure of the solid state light-emitting system as shown in FIG. The holes 201 are preferably arranged to form an image of a two-dimensional array, and the present invention discloses different images to optimize the light extraction rate. In the embodiment shown in Figure 4A, an electrode 312 region is superimposed on a portion of the photonic crystal. The electrode and a current source connected to the electrode (Fig. 4: (4) are supplied with an inrush current to diffuse through the indium tin oxide layer 126 to the entire optical crystal region. In another embodiment, as shown in Fig. 4, the photonic crystal is first. The extraction regions are substantially separated by current injection regions. Preferably, the holes 2CH in FIG. 2 are formed in a chemical (four) (four) (four) manner, and /, the depth can be controlled to reach the cladding layer 124, the waveguide layer 122, or It is also possible that the broken line 203 in Fig. 2 passes through the actuating unit 121 or the waveguide layer 123. If the 疋 visible light is widely emitted, the diameter of each hole must be between nm and 300 nm, and two adjacent holes in the photonic crystal. The distance from the center (10 1290775 as shown in Figure 2), that is, its lattice constant, is between 8 至 and J00 _, and the 各 "each constant will follow the wavelength of the generated light and The band number of the photonic crystal increases and increases. The electric field induced by the photon trapped by the trapped photon and extending from the actuating unit 丨21 to the capping layer 124 interacts with the photonic crystal structure. Parameters such as lattice constant and hole diameter are specific In the numerical value, photons are prevented from being present in the actuating sheet 7G 121, and photons are emitted from the surface of the wafer, as shown by the light 215 generated in Fig. 2. The hole 201 in Fig. 2 is the wafer surface downward. Formed, and when a wafer bonding technique is employed, the holes are implanted in the cladding layer 131 or the waveguide layer 123, or even extend to the waveguide layer 122 and the cladding layer 124 via the actuator unit 121. Wafer bonding The technique is to invert the wafer by removing the original initial substrate 110 and then connecting a new substrate to the uppermost layer of the epitaxial structure. For example, when the stray layer such as the indium tin oxide layer 126 is omitted, it is bonded to the contact layer 124. If the energy gap of the new substrate is wider than the actuation unit 121, the light generated by the actuation unit 121 is not significantly absorbed by the new substrate, so the light can be emitted from both sides of the solid-state illumination system, for example, starting with arsenic arsenide. The substrate, a gallium phosphide (GaP) substrate with a large energy gap can be used as a new substrate. Figures 3A to 3D are enlarged views from the wafer scale to the hole scale, and illustrate photonic crystal images, electrodes and holes 201. The relative relationship. The wafer 300 shown in FIG. 3A can be cut into a plurality of wafers 3, and the surface image of each chip 310 is represented by FIG. 3B, and the length of each wafer 310 is between 50 and 500 μm. In the wafer 31, the electrode 312 is formed by electrically conductive strips which are staggered in the longitudinal direction and the transverse direction of the wafer surface, and can uniformly disperse the current. As shown in the grid image of Fig. 3B, the electrode 312 is defined. A plurality of grids 316, each grid 316 is formed by two lateral conductive strips and two longitudinal conductive strips connected to each other, and the grid 316 may be square or rectangular. Each grid 316 encloses a corresponding photonic crystal cell 315. 3C is an enlarged view of a grid 316 in which the width of the conductive strips in the electrode 312 (the width d as shown in FIG. 3C) is 1 to 1 〇〇 μιη because each photonic crystal unit 315 is phased. The corresponding grid 316 is surrounded, so a chip 3 10 can have a majority of photonic crystal cells 315. The side length of the photonic crystal monomer 315 is between 1 and 100 μηι. The distribution pattern of the holes 201 in each of the photonic crystal cells 315 is a triangular array distribution as shown in Fig. 3D. The distribution pattern of the holes 201 can also be other ways, such as a square, a rectangle, a polygon, or an Archimedean-like lattice. For a detailed description of the Archimedean-like lattice, see S. David et al., Optical Society of America, Optics Letters, vol. 25, no. 14, July 200, pp2-4, "Wide angularly isotropic photonic bangaps obtained From two-dimensional photonic crystals with Archimedean-like tilings". In an embodiment as shown in FIG. 4A, indium tin oxide layer 126 is used to diffuse the implant current provided by electrode 312 to all photonic crystal regions, and the current injection region (eg, the emission region) covers the entire photonic crystal region (eg, Light extraction area). In another embodiment as shown in Figure 4B, there are no holes 201 below the adjacent electrodes. The current is injected into 12 1290775 using a current source (not shown) connected to the electrodes. Indium tin oxide (tetra) 126 and ultra-thin metal layer 125 may be maintained or removed, and in the present implementation, the indium tin oxide (tetra) 126 is removed. The current is primarily injected from the electrode 312 and flows through the actuator unit ΐ2 to the other electrode 322 of the substrate 110. The photonic crystal region having the holes 201 has a relatively high resistance so that the current circulates in other paths, and therefore, the current does not have, I pass; a partial region of the photonic crystal in the 53⁄4 crystal structure.

在本實施例中,該電流注入區域本質上是被可從波導 中取出光的光子晶體區域所隔開。其優點是可避免在光子 晶體區域中的载體(電洞或電子)因為位於或接近孔洞表 面的缺陷或損耗而漏失。電# 312(見圖3)中的導電條紋物 的寬度及其彼此之距離經過最佳化後,可使得位於其下的 作動區域射出足夠的光子,並允許在導電條紋物間運動的 光子抵達光子晶體單體,並從固態發光系統中射出而無顯 著的,收。而且’本實施例中是更可以以提昇的電流密度 注入晶片中而不會過加熱半導體層。 在晶片内部,光子晶體單體和電極的幾何形狀可以以 不同的方式排列而得到固態發光系統最佳的光電表現。如 圖5A所不,此例是光子晶體圍繞以六角形設置的一六邊單 體501的一例子。六邊單體5〇1被二分別具有不同三角形 圖像方向505b(見圖5C)、506b(見圖5B)的光子晶體結構 503、504所圍繞。在一實施例中,圖5A是一類似於圖仙 的曰曰片,其中’在一電極510(類似於圖4B中的電極3 12)下 方並無孔洞。銦錫氧化物層用來連接電極51〇和其下方的 磊晶層。該銦錫氧化物層的形狀為六角形,並定義出六邊 13 1290775 單體501的區域。較佳地’在該鋼錫氧化物層下方無孔洞 存在。六角形的單體使光子晶體在所有的方向上與光子更 有效率的產生交互作用。在該六邊單體5〇1的中心是一電 極。電流由電極510注入,延著在該六邊單體5〇1的姻錫 氧化物層擴散,並進人其下的作動單元和作動單元下的蠢 晶層’最後再到-不同於該電極51〇㈣極。當電子電洞 於覆合於如圖5Α所示的點Α時(類似於圖2中的作動單元 1)從點A會射出光,且同時光會被波導結構所限制捕 集。所限制捕集光可以延波導層任何方向傳播。 依據光與三角形光子晶體結構的交互作用原理,當光 以垂直於等邊三角形任-邊之方向人射時,其與光子晶體 的交互作用最有效率。如圖5B # 口 5C巾,當光行進方向為 方向505b和506b時,光垂直入射於由光子晶體的基元 (elements)組成的線段5〇5a和線段5〇以所構成的等邊三角 形時,光與光子晶體的交互作用最有效率,且有最高的光 取出率。在光子晶體内部,當入射光與垂直方向有些微的 偏差(deviation)時,較長的行進長度(traveHng length)的光可 以被取出。對於一個完美的三角形光子晶體系統而言,有 效的入射角度約為30度(如圖5A中的角度0)。從幾何上來 看,由點光源A射出的光可分為6個節區(sect〇r)。例如, 在節區中的光將由該光子晶體結構5〇3所汲取,如圖5A中 的點B。相反的,在節區外的光會穿過光子晶體結構$⑽並 由光子晶體結構504所汲取,如圖5A中的點c。大體上而 吕,光子晶體結構503和光子晶體結構5〇4中陣列的排列 14 1290775 方式是㈣的,但是彼此相對旋轉約30度,並形成互補方 向(c〇mplementary 〇dentati〇n),如圖 π 和 % 所示。 藉由二或二以上具有相同或大體上相同的晶格常數的 先子晶體結構來加強具有方向依_性的纽取,則行進 -或少數不同波導模態且尚未被波導結構再吸收的光,可 以幾乎完全的汲取。相似的互補方向亦可以是非三角形, iU ^ ^ ^ if ^ , ^ Archimedean-like tiles # ^ 光子晶體結構’而為熟習此項技藝人士所能輕易推廣。另 外、,使用具有互補方向的光子晶體結構以提高光取出率, 亦適用於其他具有角度依賴的光取出率的光子晶體結構陣 列’例如正方形、矩形、多邊形,和Arch—like晶格In this embodiment, the current injection region is essentially separated by a region of photonic crystals from which light can be extracted from the waveguide. This has the advantage of avoiding the loss of carriers (holes or electrons) in the photonic crystal region due to defects or losses at or near the surface of the hole. The width of the conductive strips in Electrical #312 (see Figure 3) and their distance from each other are optimized to allow sufficient photons to be emitted from the active area below and allow photons to move between the conductive strips to arrive The photonic crystal monomer is emitted from the solid state lighting system without significant. Moreover, in the present embodiment, it is more possible to implant the wafer with an increased current density without overheating the semiconductor layer. Inside the wafer, the geometry of the photonic crystal cells and electrodes can be arranged in different ways to achieve the best optoelectronic performance of the solid state lighting system. As shown in Fig. 5A, this example is an example in which a photonic crystal surrounds a hexagonal body 501 disposed in a hexagonal shape. The hexagonal cells 5〇1 are surrounded by photonic crystal structures 503, 504 having different triangular image directions 505b (see Fig. 5C) and 506b (see Fig. 5B), respectively. In one embodiment, Figure 5A is a cymbal similar to that of Figure 1, in which there is no hole under one electrode 510 (similar to electrode 3 12 in Figure 4B). An indium tin oxide layer is used to connect the electrode 51 and the epitaxial layer underneath. The indium tin oxide layer is hexagonal in shape and defines a region of hexagonal 13 1290775 monomer 501. Preferably, no voids are present beneath the steel tin oxide layer. Hexagonal monomers allow photonic crystals to interact more efficiently with photons in all directions. At the center of the hexagonal monomer 5〇1 is an electrode. The current is injected by the electrode 510, and spreads along the samarium oxide layer of the hexagonal monomer 5〇1, and enters the underlying actuating unit and the stray layer under the actuating unit 'finally again~ different from the electrode 51 〇 (four) pole. When the electron hole is overlaid on the spot shown in Fig. 5A (similar to the actuating unit 1 in Fig. 2), light is emitted from the point A, and at the same time the light is trapped by the waveguide structure. The limited trapped light can propagate in any direction of the waveguide layer. According to the interaction principle of light and triangular photonic crystal structure, when light is incident perpendicular to the direction of the equilateral triangle, its interaction with the photonic crystal is most efficient. 5B, when the light traveling direction is the directions 505b and 506b, when the light is perpendicularly incident on the line segment 5〇5a and the line segment 5〇 composed of the elements of the photonic crystal, the equilateral triangle is formed. The interaction of light and photonic crystals is the most efficient and has the highest light extraction rate. Inside the photonic crystal, when the incident light is slightly deviated from the vertical direction, a longer travel length (traveHng length) of light can be taken out. For a perfect triangular photonic crystal system, the effective angle of incidence is approximately 30 degrees (angle 0 in Figure 5A). Geometrically, the light emitted by the point source A can be divided into six sections (sect〇r). For example, light in the pitch will be extracted by the photonic crystal structure 5〇3, as shown by point B in Figure 5A. Conversely, light outside the junction will pass through the photonic crystal structure $(10) and be extracted by the photonic crystal structure 504, as shown by point c in Figure 5A. In general, the arrangement of the array of photonic crystal structures 503 and photonic crystal structures 5〇4 is in the form of (iv), but rotated relative to each other by about 30 degrees, and forms complementary directions (c〇mplementary 〇dentati〇n), such as Figures π and % are shown. Light having a directional dependence by two or more precursor crystal structures having the same or substantially the same lattice constant, then traveling - or a few different waveguide modes and not yet reabsorbed by the waveguide structure Can be almost completely captured. Similar complementary directions can also be non-triangular, iU ^ ^ ^ if ^ , ^ Archimedean-like tiles # ^ photonic crystal structures, which can be easily promoted by those skilled in the art. In addition, a photonic crystal structure having a complementary direction is used to increase the light extraction rate, and is also applicable to other photonic crystal structure arrays having an angle-dependent light extraction rate, such as square, rectangular, polygonal, and Arch-like lattices.

等0 、在六邊形的銦錫氧化物層下的作動單元中,除了點A 以外’、他電子與電洞覆合處也可以產生光。需注意的是 ’該產生光的電子與電洞覆合處是被二或二以上的光子晶 體區域所包圍。 S說月本^ a月的一蟲晶結構的疊層,其包含作動單 兀波導層披覆層、布拉格層、接觸層和其他的層別。 此疊層支援-基模態和一些低階模態。這些模態在波導結 構中傳播時具有不同傳播常數和效率指數(他―η.)。 因此針肖4寺疋換癌而預先選定的一組光子晶體結構的 乡數可得到&回的光取出率,例如預先選定的陣列圖像、 晶格常數、晶袼方向和孔洞直徑。也就是說,—組具有預 先選定的光子晶體結構的光取㈣,對一特定模態而言, 15 1290775 是高於其他不同參數的光子晶體結構的光取出率。因此可 以設計出多個具有不同參數值的光子晶體結構群組,而每 一先子晶體結構群組是選用來使—特㈣態組態達到最佳 的光取出率。4 了使光取出率極大化,除了從基模態中沒 取光之外,亦需從低階模態甲汲取光。 在本發明中,數種具有不同參數值的光子晶體結構實 行於晶片中,以從其相對應的模態(包含基模態和低階模態) 中達成最有效率的光汲取。舉例來說,圖5A中的光子晶體 結構503彳以以數種具有不同的參數的光子晶體陣列^组 成,以使基模態和低階模態的光最有效率的取出。相同的 ’數種光子晶體陣列結構的方式亦可應用在光子晶體結構 5〇4。在光子晶體結構5〇3、5〇4中數種光子晶體陣列的幾 何排歹㈣目的是在最小的空間中,㈣最大的光取出率 。圖5D是圖5 A中光子晶體結構5〇3的局放大示$ _ q 明了光子晶體陣列531和光子晶體陣列532分別具有不同 的晶格常數,且是為不同的光子晶體陣列。 另一項影響不同模態的光取出率的參數是填入光子晶 體陣列中的折射係數。在光子晶體結構中的孔洞中亦可填 入具有與空氣、包圍或相鄰孔洞的光學介質(如晶片中的磊 晶層)不同折射係數的光學物質,而且同一光子晶體陣列中 可以填入具有不同折射係數的光學物質。 圖5A中固態發光系統,由於光子晶體區域不夠大,以 致於光無法完全被光子晶體結構取出,因此,如圖6中一 具有另一光子晶體結構的反射器507是被用來做為外部框 16 1290775 架的反射結構(第三結構)’以包圍六邊單體5〇1、光子晶體 結構503、5〇4。選用適當反射胃5〇7的晶格常數和孔洞直 徑以使光子晶體系光處於能隙(band gap)之内,如此可使未 被光子晶體結構503、504汲取的光子經由反射器5〇7反射 而再次進入光子晶體結構5〇3、5〇4。接著,被反射的光子 會再被光子晶體結構汲取,或者是為作動單元重新使用後 並射出,如圖6A中光路徑520所示。圖6D說明了反射器 507二角形陣列的幾何排列圖像,其中,反射器5〇7三角形 陣列的晶格常數是不同於(小於)圖6B中光子晶體結構5〇4 和圖6C光子晶體結構503的晶袼常數。 反射器507除了使用光子晶體結構外,亦可以使用金 屬層。圖7A至圖7E即說明了如何應用一金屬層設置在晶 片的周緣,以反射由晶片邊緣的波導離開的光。利用成像 及蝕刻的方式在晶圓701表面深蝕刻出複數溝渠7〇2a,並 將圖7A中的晶圓7〇1區分成複數個晶片7〇2,如圖7B的 放大示意圖所示。圖7C是一沿圖7B中剖面線7C-7C的剖 面示意圖。當溝渠製成後,一光阻層7〇3保留在磊晶結構 的最上層。參閱圖7D,以錢鍍、電子蒸鍍或其他鍍膜方式 將一或一以上具有良好的反射性的金屬層7〇4,如錄 (Nickel)、金(Gold)、銅(copper)和鈦(Titanium),沈積在溝 渠的底壁及側壁上及晶圓表面上。接著,以溶液溶解並剝 離移除位於晶圓表面上之金屬層,而留下位於溝渠内的金 屬層710,如圖7E所示之結構。因此,在波導或作動單元 中傳播的光將被金屬層710反射回光子晶體區域(圖未示)而 17 1290775 被進一步的汲取。如圖5A、圖6A、圖8A和圖9A所示固 態發光系統的晶片皆可使用如上述之金屬反射層。 固態發光系統中另一光子晶體組態如圖8A所示,複數 具有同一方向的六角形光子晶體單體801是被電流注入區 域810所包圍,並配置有一具有不同於六角形光子晶體單 體801 (配合參閱圖8C)方向的光子晶體結構的外部框架(配 合參閱圖8B)。在圖8 A所示固態發光系統中,亦可以增加 一外部框架802來反射未被取出的光進人光子晶體區域8〇1 。再者,上述六角形光子晶體單體801可以具有不同的方 向或其他參數。 上述的光子晶體單體801不必然的一定為六角形,亦 可使用矩形或其他形狀的光子晶體區域。參閱圖9,光子晶 體區域是使用複數具有不同方向的三角形光子晶體陣列的 的矩形區922(配合參閱圖9C)和矩形區924(配合參閱圖9B) 排列成行,如圖9A的攔912和欄914。而每一成對的具有 相同的參數的矩形區922是被另一具有與矩形區922不同 參數值的矩形區924所隔開。 神化鍺材枓的基板通常是用於黃光或紅光之發光系統 ’藍寶石、氮化鎵或碳化矽材枓的基板則用於uv光、綠光 或藍光之發光系統。為了產生多色光或混光,由不同基板 材料製成的晶片可使用在一單一的發光元件上。圖1 〇即揭 示了 一整合四晶片930的發光元件的示意圖,其中,至少 二晶片射出不同波長的光。藉由晶片依序射出不同波長的 光,可以混成並顯示不同色光。也就是說,這些晶片可以 18 1290775 調控並將其所發射的光,混合成所欲顯示顏色的光,如白 光。圖ίο所示的發光元件可以使用上述之結構或以上述製 程來製成,同時,晶片的數目亦可以少於四或大於四。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一剖視圖,說明一適合實現本發明之光子晶體 結構之具有波導的磊晶結構; 圖2是本發明咼壳度固態發光元件之一較佳實施例的 剖視圖,說明以複數孔洞穿過如圖丨所示磊晶結構的磊晶 層的配置態樣; 圖3A至圖3D是從晶圓尺度依序放大至個別孔洞尺度 的俯視示意圖,以說明本發明固態發光元件的電極與孔洞 的配置態樣; 圖4A是一剖面示意圖,說明電極覆蓋部份光子晶體區 域的配置態樣’其中’注入電流擴散至整個光子晶體區域 ,亦即電流注入區域涵蓋整個光子晶體區域; 圖4B是一剖面示意圖,說明電極注入區域實質上為光 子晶體區域所隔開的配置態樣; 圖5A是本發明中電極與孔洞的一較佳實施例的俯視示 意圖’說明晶片中的六邊單體被具有不同型態的光子晶體 19 1290775 結構所包圍; 圖5B和圖5C是圖5A的局部放大示意圖,說明具有不 同方向但大致相同的晶袼常數的光子晶體結構; #圖5D是g| 5A的局部放大示意圖,說明具有不同晶格 吊數但大致相同方向的光子晶體結構; —立圖6A疋本1¾明中電極與孔洞的另—較佳實施例的俯視 不思圖’言兒明晶片中的六邊單體被三種具有不同型態的光In the actuating unit under the hexagonal indium tin oxide layer, in addition to the point A, the electron and the hole can also generate light. It should be noted that the electron-emitting and hole-covered portions of the light are surrounded by two or more photonic crystal regions. S. A stack of a worm-like structure comprising a single layer of a waveguide layer, a Bragg layer, a contact layer, and other layers. This stacking supports the base mode and some low order modes. These modes have different propagation constants and efficiency indices (he-η.) when propagating in the waveguide structure. Therefore, the number of homes of a group of photonic crystal structures selected in advance for the cancer replacement can obtain the light extraction rate of the 'back, such as a pre-selected array image, lattice constant, crystal direction, and hole diameter. That is, the group has the light of the preselected photonic crystal structure (4), and for a particular mode, 15 1290775 is the light extraction rate of the photonic crystal structure higher than other different parameters. Therefore, a plurality of photonic crystal structure groups having different parameter values can be designed, and each of the pre-crystal structure groups is selected to achieve the optimum light extraction rate for the - (four) state configuration. 4 Maximize the light extraction rate, in addition to taking light from the fundamental mode, it is also necessary to take light from the low-order mode nail. In the present invention, several photonic crystal structures having different parameter values are implemented in the wafer to achieve the most efficient optical extraction from their corresponding modes, including the fundamental mode and the low order mode. For example, the photonic crystal structure 503 in Fig. 5A is composed of a plurality of photonic crystal arrays having different parameters to most efficiently extract light in a fundamental mode and a low order mode. The same pattern of several photonic crystal array structures can also be applied to the photonic crystal structure 5〇4. In the photonic crystal structure 5〇3, 5〇4, the geometry of several photonic crystal arrays (4) is aimed at the smallest space, (4) the maximum light extraction rate. Figure 5D is a partial enlarged view of the photonic crystal structure 5?3 of Figure 5A. The photonic crystal array 531 and the photonic crystal array 532 have different lattice constants, respectively, and are different photonic crystal arrays. Another parameter that affects the light extraction rate of different modes is the refractive index that is filled into the photonic crystal array. The holes in the photonic crystal structure may also be filled with an optical substance having a different refractive index from an optical medium (such as an epitaxial layer in a wafer) with air, surrounding or adjacent holes, and the same photonic crystal array may be filled with Optical materials with different refractive indices. In the solid-state lighting system of Fig. 5A, since the photonic crystal region is not large enough so that the light cannot be completely removed by the photonic crystal structure, a reflector 507 having another photonic crystal structure as shown in Fig. 6 is used as the outer frame. 16 1290775 The reflective structure (third structure) of the frame is surrounded by hexagonal cells 5〇1, photonic crystal structures 503, 5〇4. The lattice constant and the hole diameter of the appropriate reflection stomach 5〇7 are selected so that the photonic crystal system light is within the band gap, so that the photons not extracted by the photonic crystal structure 503, 504 can pass through the reflector 5〇7. Reflected again into the photonic crystal structure 5〇3, 5〇4. The reflected photons are then retrieved by the photonic crystal structure or re-used for the actuating unit and ejected as shown by light path 520 in Figure 6A. Figure 6D illustrates a geometrically aligned image of a prismatic array of reflectors 507, wherein the lattice constant of the triangular array of reflectors 5〇7 is different (less than) the photonic crystal structure 5〇4 of Figure 6B and the photonic crystal structure of Figure 6C. The crystal constant of 503. In addition to the photonic crystal structure, the reflector 507 can also use a metal layer. Figures 7A through 7E illustrate how a metal layer can be applied to the periphery of the wafer to reflect light exiting the waveguide at the edge of the wafer. The plurality of trenches 7〇2a are deeply etched on the surface of the wafer 701 by imaging and etching, and the wafers 7〇1 in Fig. 7A are divided into a plurality of wafers 7〇2 as shown in an enlarged schematic view of Fig. 7B. Fig. 7C is a schematic cross-sectional view taken along line 7C-7C of Fig. 7B. When the trench is formed, a photoresist layer 7〇3 remains in the uppermost layer of the epitaxial structure. Referring to FIG. 7D, one or more metal layers 7〇4 having good reflectivity, such as Nickel, Gold, Copper, and Titanium, are deposited by money plating, electron evaporation, or other coating methods. Titanium), deposited on the bottom and side walls of the trench and on the wafer surface. Next, the solution is dissolved and stripped to remove the metal layer on the surface of the wafer leaving the metal layer 710 located within the trench, as shown in Figure 7E. Therefore, light propagating in the waveguide or actuating unit will be reflected back to the photonic crystal region (not shown) by the metal layer 710 and further captured by 17 1290775. The metal reflective layer as described above can be used for the wafer of the solid state lighting system as shown in Figs. 5A, 6A, 8A and 9A. Another photonic crystal configuration in the solid state lighting system is shown in FIG. 8A. A plurality of hexagonal photonic crystal cells 801 having the same direction are surrounded by a current injection region 810, and are configured with a photocell 801 different from the hexagonal photonic crystal. (with reference to Figure 8C) the outer frame of the photonic crystal structure (see Figure 8B for cooperation). In the solid state lighting system of Fig. 8A, an outer frame 802 can also be added to reflect unextracted light into the photonic crystal region 8〇1. Furthermore, the hexagonal photonic crystal monomer 801 described above may have different orientations or other parameters. The photonic crystal monomer 801 described above is not necessarily hexagonal, and a rectangular or other shaped photonic crystal region may be used. Referring to FIG. 9, the photonic crystal region is arranged in a rectangular region 922 (see FIG. 9C) and a rectangular region 924 (see FIG. 9B) using a plurality of triangular photonic crystal arrays having different directions, as shown in FIG. 9A. 914. And each pair of rectangular regions 922 having the same parameters is separated by another rectangular region 924 having a different parameter value than the rectangular region 922. The substrate of the deified material is usually used for the illumination system of yellow or red light. The substrate of sapphire, gallium nitride or carbonized tantalum is used for the illumination system of uv light, green light or blue light. In order to produce multi-color or mixed light, wafers made of different substrate materials can be used on a single light-emitting element. Figure 1 is a schematic illustration of a light-emitting element incorporating a four-wafer 930 in which at least two wafers emit light of different wavelengths. Different colors of light can be mixed and displayed by sequentially emitting light of different wavelengths by the wafer. That is, these wafers can be adjusted by 18 1290775 and the light they emit can be mixed into light of the desired color, such as white light. The light-emitting elements shown in the drawings can be fabricated using the above structure or by the above process, and the number of wafers can be less than four or more than four. The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an epitaxial structure having a waveguide suitable for realizing the photonic crystal structure of the present invention; FIG. 2 is a cross-sectional view showing a preferred embodiment of the clamshell solid-state light-emitting device of the present invention, Illustrating a configuration of an epitaxial layer in which a plurality of holes pass through an epitaxial structure as shown in FIG. 3; FIGS. 3A to 3D are top plan views sequentially zoomed from a wafer scale to individual hole sizes to illustrate solid state light emission of the present invention. FIG. 4A is a schematic cross-sectional view showing a configuration of an electrode covering a portion of a photonic crystal region in which an injection current is diffused to the entire photonic crystal region, that is, the current injection region covers the entire photonic crystal. Figure 4B is a schematic cross-sectional view showing the electrode implantation region substantially separated by a photonic crystal region; Figure 5A is a top plan view of a preferred embodiment of the electrode and the hole in the present invention. The hexagonal monomers are surrounded by a photonic crystal 19 1290775 structure having different types; FIGS. 5B and 5C are partial enlarged views of FIG. 5A, A photonic crystal structure having different crystallinity constants in different directions is illustrated; #Fig. 5D is a partially enlarged schematic view of g| 5A, illustrating a photonic crystal structure having different lattice numbers but substantially the same direction; - Figure 6A A further preferred embodiment of the electrode and the hole is not overlooked. The hexagonal cells in the wafer are three different types of light.

子晶體結構所包圍,盆φ I a八中最外層的光子晶體結構做為- 反射器’以反射未被㈣的光子返回光子晶體結構; 圖6B和圖6C是圖6A的局部放大示意圖,說明二具有 不同方向但大致相同的晶格常數的光子晶體結構; 圖6D疋圖6A中該做為外部框架的反射器的光子晶體 局部放大不意圖,此圖說明該光子晶體結構的晶格 ㊉數,、圖6Β和圖6C的晶格常數是不相同的,· 圖7Α至7Ε說明本發明的另一實施例,其說明在晶片 周緣形成一金屬反射層的歷程; 〃圖8Α說明了本發明的另_具有複數光子晶體結構的實 ::例其中’光子晶體結構被電流注入區域和另一不同型 態的光子晶體結構所包圍; 圖8Β和圖8C是圖8Α的局部放大示意圖,說明二具有 不同方向但大致相同的晶格t數的光子晶體結構; 圖9A說明了本發明的 ^ 另一具有二不同型態的光子晶體 流注入區域包圍;、子曰曰體結構成行的排列’並被電 20 1290775 圖9B和圖9C是圖9A的局部放大示意圖,說明二具有 不同方向但大致相同的晶格常數的光子晶體結構;及 圖10是一由多數 組成的發光元件、不同色光的固態發光元件晶片所 1〒之不意圖。 21 1290775 【主要元件符號說明】 1 · . · 第一結構 110·· 基板 121·. 作動單元 122 · · 波導層 123 · · 波導層 124·· 彼覆層 124A · 蟲晶層 125 . · 超薄金屬層 126 · · 銦錫氧化物層 127 * * 金屬電極 131 · ·彼覆層 132 · · 緩衝層 133 ·, 布拉格反射鏡 2 · · · 第二結構 201 · · 孔洞 310 · · 晶片 312 · · 電極 315 · · 光子晶體單體 316·. 拇格 322 · · 電極 501 ·. 六邊單體 503 · ♦ 光子晶體結構 504 * * 光子晶體結構 507 · · 反射器 510 · · 電極 520 ·. 光路徑 531 * * 光子晶體陣列 532 · · 光子晶體陣列 701 · · 晶圓 702 ·. 晶片 702a · 溝渠 710 · · 金屬層 801 ♦ · 光子晶體單體 802 * * 外部框架 810 · · 電流注入區域 922 · * 矩形區 924 · · 矩形區 930 · · 晶片 22Surrounded by the sub-crystal structure, the photonic crystal structure of the outermost layer of the basin φ I a is used as a - reflector ' to reflect the photon crystal structure that is not (4) returned; FIG. 6B and FIG. 6C are partial enlarged views of FIG. 6A, illustrating a photonic crystal structure having different lattice constants in different directions; FIG. 6D is a partial enlargement of the photonic crystal of the reflector as an outer frame in FIG. 6D, which illustrates the lattice number of the photonic crystal structure. The cell constants of FIGS. 6A and 6C are different. FIGS. 7A to 7B illustrate another embodiment of the present invention, which illustrates a process of forming a metal reflective layer on the periphery of the wafer; FIG. 8A illustrates the present invention. The other _ has a complex photonic crystal structure: where the 'photonic crystal structure is surrounded by the current injection region and another different type of photonic crystal structure; FIG. 8A and FIG. 8C are partial enlarged views of FIG. Photonic crystal structure having different lattice directions of different directions but substantially the same; FIG. 9A illustrates another photonic crystal flow injection region surrounded by two different types of the present invention; The structure is arranged in rows and is electrically 20 1290775. FIGS. 9B and 9C are partial enlarged views of FIG. 9A illustrating two photonic crystal structures having different lattice constants in different directions; and FIG. 10 is a light emission composed of a plurality of The components and the solid-state light-emitting device wafers of different color lights are not intended. 21 1290775 [Description of main component symbols] 1 · · · First structure 110 · · Substrate 121 ·. Actuating unit 122 · · Waveguide layer 123 · · Waveguide layer 124 · · Cover layer 124A · Insect layer 125 · Ultrathin Metal layer 126 · · Indium tin oxide layer 127 * * Metal electrode 131 · · Cover layer 132 · · Buffer layer 133 ·, Bragg mirror 2 · · · Second structure 201 · · Hole 310 · · Wafer 312 · · Electrode 315 · · Photonic crystal monomer 316 ·. Thumb 322 · · Electrode 501 ·. Hexagonal 503 · ♦ Photonic crystal structure 504 * * Photonic crystal structure 507 · · Reflector 510 · · Electrode 520 ·. Light path 531 * * Photonic crystal array 532 · Photonic crystal array 701 · · Wafer 702 ·. Wafer 702a · Ditch 710 · · Metal layer 801 ♦ · Photonic crystal unit 802 * * External frame 810 · · Current injection area 922 · * Rectangular area 924 · · Rectangular area 930 · · Wafer 22

Claims (1)

1290775 十、申請專利範圍·· h 一種高亮度固態發光元件,包括·· 一作動單元 一第一結構 動單元限制捕集 ,依注入於其上的電流而產生光; /鄰近該作動單元,該第—結構和該作 ”亥作動單元所產生的光;及 第-結構,沒取該限制捕集於第一結構的光,該 °構包括複數具有不同參數的光子晶體陣列。 2·依據巾請專利範圍第1項所述之發光元件,其中,二或 二以上的該等光子晶體陣列具有不同的晶袼方向。/ 3·依據巾請專利範圍第1項所述之發光元件,其中,二或 一以上的該等光子晶體陣列具有互補的晶格方向。 4·依據中請專利範圍第1項所述之發光元件,其中,二或 二以上的該等光子晶體陣列具有不同的晶格常數。一 5·依據巾請專利範圍第4項所述之發光元件,其中,二或 一以上的該等光子晶體陣列具有不同的晶格方向。 6·依據申請專利範圍第丨項所述之發光元件,其中,該第 二結構包括三具有不同參數的光子晶體陣列,而其中至 少二光子晶體陣列具有不同的晶格方向,且至少二光子 晶體陣列具有不同的晶格常數。 依據申睛專利範圍第1項所述之發光元件,其中,該等 光子晶體陣列的其中之一包括複數基元,且該等基元的 連線形成複數個多邊形或Archimendean-like tiles。 8.依據申請專利範圍第1項所述之發光元件,其中,該等 光子晶體陣列的至少一些中的每一陣列包括複數基元, 23 1290775 /等基元的連線形成複數個多邊形或Archimendean-like tiles。 9.依射請專利範圍第8項所述之發光元件,其中,前述 的每-光子晶體陣列包括三角形、正方形,或矩形陣列 0 10·依據巾請專利範圍第8項所述之發光元件,其中,前述 的每一光子晶體陣列包括一等邊三角形陣列。 u.依據巾請專利範圍第H)項所述之發光元件,其中,該等 光子曰曰體陣列中的二或一些等邊三角形陣列是被轉向以 使得其晶格方向是彼此呈30度的夾角。 12.依據中請專利範圍第1項所述之發光元件,其中,該第 一、、、。構包括複數具有一或一以上不同於鄰近的光學介質 之折射係數的光學介質所構成的陣列。 13·依據申請專利範圍第12項所述之發光元件,其中,至少 二陣列的光學介質具有不同的折射係數。 14·依據申請專利範圍第12項所述之發光元件,其中,該第 一結構包括複數具有複數孔洞的陣列,該等孔洞位於該 第一結構、該作動單元,或鄰近該作動單元的一磊晶層 〇 1 5 ·依據申請專利範圍第丨項所述之發光元件,更包括一電 極’供電流注入至複數在該作動單元中或鄰近該作動單 凡的另一磊晶層中的電流注入區域,且該等電流注入區 域鄰近至少一些具有不同參數的該等光子晶體陣列。 1 6·依據申請專利範圍第15項所述之發光元件,其中,二. 24 1290775 二以上的該等光子晶體陣列具有不同的晶格方向。 1 7·依據申請專利範圍第丨5項所述之發光元件,其中,一戍 二以上的該等光子晶體陣列具有互補的晶袼方向。 18·依據申請專利範圍第15項所述之發光元件,其中,二或 一以上的該等光子晶體陣列具有不同的晶袼常數。 19·依據申請專利範圍第18項所述之發光元件,其中,二或 一以上的該等光子晶體陣列具有不同的晶格方向。 20.依據申請專利範圍第15項所述之發光元件,其中,該等 電流注入區域大體上被至少—些該等具有不同參數的光 子晶體所包圍。 21. 依?請專利範圍第2〇項所述之發光元件,纟中,該等 電流注入區域大體上被一第一區域的具有第一未數的光 ::體所包圍,且該第一區域被至少一第二區域的具有 /、苐—參數不同的第二參數的光子晶體所包圍。 22. 依據申請專利範圍第15項所述之發光元件,丨中,該等 陣列完全地分佈於該晶片。 23. 依據申請專利範圍第22項所述之發光元件,其中’該等 陣列是六角形。 八 ^ 24=rf專利範圍第22項所述之發光元件,丨中,該等 陣列在形狀上被拉長。 參數的第二參數的陣列所隔 25.==專利範圍第24項所述之發光元件,丨中,該等 成行排列,且在同行中至少-些成對的具有一第 …!陣列中的每一對是被至少一具有-不同於第- 開 25 1290775 26·依據申請專利範圍第i項所述之發光元件,更包括一第 三結構,該第三結構反射從該作動單元射出且通過該等 光子晶體陣列時未被吸收的光返回該等陣列。 27·依據申請專利範圍第26項所述之發光元件,其中,該第 三結構包括一光子晶體結構或一鏡面。 28·依據申請專利範圍第26項所述之發光元件,其中,該第 、、、口構包圍邊作動單元及/或該第一結構,使得從該作動 單元射出且通過該等光子晶體陣列時未被吸收的光被反 射回該等陣列。 29·依據申請專利範圍第i項所述之發光元件,其中,該第 -結構大體上含有一單一光學模態或少數低階光學模態 ’並且限制捕集由該(等)光學模態產生的光。 3〇.依據申請專利範圍第i項所述之發光元件,其中,該第 一結構包括至少一波導層。 31·依據巾請專利範圍第1項所述之發光it件,更包括至少 一具有六邊形的導體層,該導體層注入電流至複數在該 作動單元或一鄰近該作動單元的另一磊晶層中的電流注 入區域,至少一該等陣列形成一三角形圖像且包圍該等 電流注入區域。 2·依據巾4專利範圍第1項所述之發光元件,其中,該等 不同的參數包括二或二以上的下列參數:陣列圖像、晶 袼常數、陣列大小,和基元的折射係數。 33· 一種高亮度固態發光元件的製造方法,包含: 提供一半導體基體,該基體具有一當電流注入時可 26 1290775 發光之作動單元,及至少另—鄰近該作動單元的i晶層 在忒至少另一提供光子晶體陣列的磊晶層上,形成 至少一孔洞陣列;及 形成複數反射結構,每一反射結構包圍作動單元的 一部份和一些該等陣列的孔洞。 34·依據申請專利範圍第33項所述之製造方法,其中,該等 反射結構形成的方式為,提供—位於該基體上的光阻層 ,在光阻層的表面曝光顯影—具有複數缺口的圖像,二 刻該光阻層和該基體以形成複數溝渠,在該等溝渠的表 面上沈積力反射|,移除該力阻層和該光反射層附著 在該光阻層上的部分區域。 %-種高亮度固態發光元件,包含複數晶片,每— 括: 一作動單元,依注入於其上的電流而產生光; ,第-結構’鄰近該作動單元,該第—結構和該作 動單元限制捕集該作動單元所產生的光;及 * 一一第二結構,汲取該限制捕集於第一結構的光,該 第二結構包括複數具有不同參數的光子晶體陣列。 36.,據申請專利範圍第35項所述之發光元件,其中,該等 =片至少一些中的每一晶片“一供電流注入至複數在 :作動單元中的一部份或鄰近該作動單元的另一磊晶層 ,丨:電流注入區域的電極’且該等電流注入區域鄰近至 ^些具有不同參數的該等光子晶體陣列。 27 1290775 37·依據申請專利範圍第36項所述之發光元件,其中,該等 電流注入區域大體上被至少一些該等具有不同參數的光 子晶體所包圍。 38.依據申請專利範圍第37項所述之發光元件,其中,該等 電流注入區域大體上被一第一區域的具有第一參數的光 子晶體所包圍’且該第一區域被至少一第二區域的具有 與第一參數不同的第二參數的光子晶體所包圍。 3 9·依據申請專利範圍第36項所述之發光元件,其中,該等 陣列完全地分佈於至少一些該等晶片的每一晶片上。 40·依據申請專利範圍第39項所述之發光元件,其中,在該 等晶片中至少一些的每一晶片中的該等陣列是六角形。 .依射請專利範圍第39項所述之發光元件,其中,在該 專晶片中至少一些的每一 ,¾ H d? ΑΑ ^ rri ,. 曰日片中的该等陣列在形狀上被 拉長。 42. 依據申請專利範圍第41項所述之發光元件,其中 等晶片中至少一些的每一晶片 日日月f的5亥專陣列是成行為 ’且在該晶片中至少一此忐 — 二成對的具有一第一參數的肖 中的母一對在同一行中是被 〜饥王夕一具有一不同 一 數的第二參數的陣列所隔開。 43. 依據申請專利範圍第 些該等晶片中的每—晶片的:…件,其中,在 陣列具有不同的晶格方向。 。專先子曰曰 44·依據申請專利範圍第 一、 項所逑之發光元件,1由一 —以上的該等光子晶體 ’、,一 〗具有互補的晶袼方向。 28 1290775 45·依據申請專利範圍第35項所述之發光元件,其中,在一 二"亥專曰曰片中的每一晶片的二或二以上的該等光子晶體 陣列具有不㈤的晶袼常數。 46·依據中請專利範圍第45項所述之發光元件,其中,在- 些5亥等晶片中的每一晶片的二或二以上的該等光子晶體 陣列具有不同的晶袼方向。 47.依據中請專利範圍第^項所述之發光元件,其中,至少 1 °亥等晶片中的每一晶片更包括一第三結構,該第三 結構反射從該晶片的作動單元射出且通過該等光子晶體 陣列時未被吸收的光返回該晶片中該等陣列。 48·依據申請專利範圍第35項所述之發光元件,纟中,至+ 二該等晶片射出不同波長的光。 夕 35項所述之發光元件,其中 黃、綠和藍色光波長範圍内 ,該等 ’且射 49.依據申請專利範圍第 晶片射出的光在紅、 出多於一的色光。 291290775 X. Patent application scope·· h A high-brightness solid-state light-emitting element, comprising: an actuating unit, a first structural moving unit, limiting trapping, generating light according to a current injected thereto; / adjacent to the actuating unit, The first structure and the light generated by the "camera" unit; and the first structure, the light trapped in the first structure is not taken, and the structure includes a plurality of photonic crystal arrays having different parameters. The light-emitting element according to the first aspect of the invention, wherein the two or more of the photonic crystal arrays have different crystal orientations. The two or more of the photonic crystal arrays have complementary lattice directions. The light-emitting element of claim 1, wherein two or more of the photonic crystal arrays have different lattices. The light-emitting element of claim 4, wherein two or more of the photonic crystal arrays have different lattice directions. The illuminating element according to the item, wherein the second structure comprises three photonic crystal arrays having different parameters, wherein at least two photonic crystal arrays have different lattice directions, and at least two photonic crystal arrays have different lattices The light-emitting element of claim 1, wherein one of the photonic crystal arrays comprises a plurality of primitives, and the lines of the primitives form a plurality of polygons or Archimendean-like tiles. 8. The illuminating element of claim 1, wherein each of at least some of the arrays of photonic crystals comprises a plurality of primitives, and a line connecting 23 1290775 /etc. forms a plurality of polygons or Archimendean The illuminating element of claim 8, wherein the aforementioned per-photonic crystal array comprises a triangular, square, or rectangular array of 0. 10 according to the scope of the patent application. The light-emitting element, wherein each of the foregoing photonic crystal arrays comprises an equilateral triangle array. u. According to the patent scope of the towel, item H) The illuminating element, wherein two or some equilateral triangle arrays in the array of photonic steroids are steered such that their lattice directions are at an angle of 30 degrees to each other. 12. According to the first item of the patent scope The light-emitting element, wherein the first, the structure comprises an array of optical media having one or more refractive indices different from adjacent optical media. 13· According to claim 12 The light-emitting element, wherein at least two arrays of optical media have different refractive indices. The light-emitting component of claim 12, wherein the first structure comprises a plurality of arrays having a plurality of holes, The hole is located in the first structure, the actuating unit, or an epitaxial layer adjacent to the actuating unit. The light-emitting element according to the scope of the patent application, further comprising an electrode for injecting current into the plurality a current injection region in or adjacent to another epitaxial layer of the actuation unit, and the current injection regions are adjacent to at least some of the different parameters Such an array of photonic crystal. The light-emitting element according to claim 15, wherein the photonic crystal arrays of 242,290,775 or more have different lattice directions. The light-emitting element of claim 5, wherein more than one or more of the photonic crystal arrays have complementary crystal orientations. The light-emitting element according to claim 15, wherein two or more of the photonic crystal arrays have different crystal constants. The light-emitting element according to claim 18, wherein two or more of the photonic crystal arrays have different lattice directions. The illuminating element of claim 15, wherein the current injection regions are substantially surrounded by at least some of the photonic crystals having different parameters. 21. According to? In the illuminating device of the second aspect of the invention, the current injection region is substantially surrounded by a first region having a first unnumbered light:: and the first region is at least one The second region is surrounded by a photonic crystal having a second parameter having a different /, 苐-parameter. 22. The light-emitting element of claim 15, wherein the array is completely distributed over the wafer. 23. The illuminating element of claim 22, wherein the arrays are hexagonal. The illuminating element of claim 22, wherein the array is elongated in shape. The array of the second parameter of the parameter is separated by 25.== the illuminating element described in item 24 of the patent scope, which is arranged in rows, and at least some pairs in the same pair have a ...! Each of the pair of arrays is at least one having a light-emitting element as described in claim 1 of the invention, and a third structure, the third structure is reflected from the actuating unit. Light that is not absorbed when exiting and passing through the array of photonic crystals is returned to the arrays. The illuminating element of claim 26, wherein the third structure comprises a photonic crystal structure or a mirror surface. The light-emitting element according to claim 26, wherein the first, the, and the mouth structures surround the edge-actuating unit and/or the first structure such that when the actuating unit is emitted and passes through the photonic crystal array Unabsorbed light is reflected back to the arrays. The illuminating element of claim i, wherein the first structure substantially comprises a single optical mode or a few low-order optical modes ′ and limiting trapping is generated by the (equal) optical modality Light. The light-emitting element of claim i, wherein the first structure comprises at least one waveguide layer. 31. The illuminating unit of claim 1, further comprising at least one conductor layer having a hexagonal shape, the conductor layer injecting current to the plurality of lei in the actuating unit or adjacent to the actuating unit At least one of the arrays forms a triangular image and surrounds the current injection regions. 2. The illuminating element of claim 1, wherein the different parameters comprise two or more of the following parameters: an array image, a crystal constant, an array size, and a refractive index of the primitive. 33. A method of fabricating a high-brightness solid-state light-emitting device, comprising: providing a semiconductor substrate having an actuating unit capable of illuminating when a current is injected, and at least another i-layer adjacent to the actuating unit Another array of epitaxial layers providing a photonic crystal array is formed with at least one array of holes; and a plurality of reflective structures are formed, each reflective structure surrounding a portion of the actuating unit and a plurality of holes of the array. The manufacturing method according to claim 33, wherein the reflective structures are formed by providing a photoresist layer on the substrate exposed to the surface of the photoresist layer - having a plurality of gaps Image, the photoresist layer and the substrate are formed to form a plurality of trenches, and a force reflection is deposited on the surface of the trenches, and the force resist layer and a portion of the light reflective layer attached to the photoresist layer are removed . a high-brightness solid-state light-emitting element comprising a plurality of wafers, each of: an actuating unit that generates light according to a current injected thereto; a first structure adjacent to the actuating unit, the first structure and the actuating unit Limiting the light generated by the capture unit; and * a second structure that captures the light trapped in the first structure, the second structure comprising a plurality of photonic crystal arrays having different parameters. 36. The light-emitting element of claim 35, wherein each of the at least some of the wafers "sends a current to a plurality of: a portion of the actuating unit or adjacent to the actuating unit Another epitaxial layer, 丨: the electrode of the current injection region' and the current injection regions are adjacent to the array of photonic crystals having different parameters. 27 1290775 37. The illumination according to claim 36 An element, wherein the current injection regions are substantially surrounded by at least some of the photonic crystals having different parameters. The light-emitting element of claim 37, wherein the current injection regions are substantially A photonic crystal having a first parameter of a first region is surrounded by 'and the first region is surrounded by a photonic crystal of at least one second region having a second parameter different from the first parameter. 3 9. According to the patent application scope The illuminating device of item 36, wherein the arrays are completely distributed on each of at least some of the wafers. 40. According to claim 39 A light-emitting element, wherein the array of each of the wafers is at least one of a plurality of the wafers. The light-emitting element of claim 39, wherein at least one of the wafers is in the wafer. Each of the arrays is elongated in shape. The light-emitting element according to claim 41, wherein at least some of the wafers are in the form of a wafer. The 5 nautical array of each wafer day and day f is a behavior 'and at least one 忐 in the wafer - the pair of pairs in the pair having a first parameter are in the same row ~ The hunger is separated by an array of second parameters having a different number. 43. According to the scope of the patent application, each of the wafers of the wafers has a different lattice orientation in the array. According to the first and the illuminating elements of the patent application scope, 1 one or more of the photonic crystals ', one has a complementary crystal orientation. 28 1290775 45·According to the application Article 35 of the patent scope The light-emitting element, wherein two or more of the photonic crystal arrays of each of the wafers in the first and second films have a crystal constant of not (f). 46. The light-emitting element of the present invention, wherein two or more of the photonic crystal arrays of each of the wafers in the wafers have different crystal orientations. 47. According to the scope of the patent application The light-emitting element, wherein each of the wafers at least 1 ° further comprises a third structure that reflects light that is not absorbed when exiting from the actuating unit of the wafer and passing through the photonic crystal array The arrays are returned to the wafers. 48. According to the light-emitting element of claim 35, the wafers of the two to the second light emit light of different wavelengths. The light-emitting element according to item 35, wherein the wavelengths of the yellow, green and blue light wavelengths, and the light emitted by the wafer according to the patent application range are red, and more than one color light is emitted. 29
TW93128217A 2004-09-17 2004-09-17 Lighting system with high and improved extraction efficiency TWI290775B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93128217A TWI290775B (en) 2004-09-17 2004-09-17 Lighting system with high and improved extraction efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93128217A TWI290775B (en) 2004-09-17 2004-09-17 Lighting system with high and improved extraction efficiency

Publications (2)

Publication Number Publication Date
TW200611425A TW200611425A (en) 2006-04-01
TWI290775B true TWI290775B (en) 2007-12-01

Family

ID=39327587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93128217A TWI290775B (en) 2004-09-17 2004-09-17 Lighting system with high and improved extraction efficiency

Country Status (1)

Country Link
TW (1) TWI290775B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407054B (en) * 2008-09-17 2013-09-01 Advanced Optoelectronic Tech Lighting source assembly of light emitting diode and reflective sheet set
TWI505503B (en) * 2010-11-25 2015-10-21 Advanced Optoelectronic Tech Vertical led chip structure and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3068173B1 (en) * 2017-06-27 2020-05-15 Aledia OPTOELECTRONIC DEVICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407054B (en) * 2008-09-17 2013-09-01 Advanced Optoelectronic Tech Lighting source assembly of light emitting diode and reflective sheet set
TWI505503B (en) * 2010-11-25 2015-10-21 Advanced Optoelectronic Tech Vertical led chip structure and method of manufacturing the same

Also Published As

Publication number Publication date
TW200611425A (en) 2006-04-01

Similar Documents

Publication Publication Date Title
JP5237286B2 (en) Light emitting device comprising an array of emitters defined by a photonic crystal
US7439552B2 (en) Semiconductor light-emitting device and method for fabricating the same
CN103828073B (en) Light emitting diode and the method manufacturing this light emitting diode
JP4824293B2 (en) Photonic crystal light emitting device
CN102668135B (en) Light emitting diode
TWI377695B (en) Photonic crystal light emitting device with multiple lattices
CN101443923B (en) Optoelectronic semiconductor component
US20050173714A1 (en) Lighting system with high and improved extraction efficiency
US20090121241A1 (en) Wire bond free wafer level LED
KR20090049065A (en) Improvements in external light efficiency of light emitting diodes
US20080121917A1 (en) High efficiency white, single or multi-color light emitting diodes (leds) by index matching structures
KR101025980B1 (en) Method of manufacturing nitride-based semiconductor light emitting device
KR101228130B1 (en) Semiconductor light-emitting element, manufacturing method, and light-emiting device
TW202339302A (en) Contact structures of led chips for current injection
JP2011060966A (en) Light-emitting device
KR20110043282A (en) Light emitting device and method for fabricating the same
TWI290775B (en) Lighting system with high and improved extraction efficiency
KR20080028292A (en) Iii-nitride based light-emitting diode structure with monolithically integrated sidewall deflectors and method of thereof
CN220041889U (en) Semiconductor light emitting device
TWI786276B (en) Manufacturing method of light-emitting device