TWI278364B - Method of producing metal nanoparticles - Google Patents

Method of producing metal nanoparticles Download PDF

Info

Publication number
TWI278364B
TWI278364B TW94112641A TW94112641A TWI278364B TW I278364 B TWI278364 B TW I278364B TW 94112641 A TW94112641 A TW 94112641A TW 94112641 A TW94112641 A TW 94112641A TW I278364 B TWI278364 B TW I278364B
Authority
TW
Taiwan
Prior art keywords
metal
ion solution
carrier
silver
metal ion
Prior art date
Application number
TW94112641A
Other languages
Chinese (zh)
Other versions
TW200637674A (en
Inventor
Fuh-Sheng Shieu
Yi-Hao Pai
Hong-Jen Lin
Original Assignee
Univ Nat Chunghsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chunghsing filed Critical Univ Nat Chunghsing
Priority to TW94112641A priority Critical patent/TWI278364B/en
Publication of TW200637674A publication Critical patent/TW200637674A/en
Application granted granted Critical
Publication of TWI278364B publication Critical patent/TWI278364B/en

Links

Abstract

The present invention provides a method of producing metal nanoparticles, in which a metal compound is firstly completely dissolved into a solvent to form metal ion solution; subsequently, the metal ion solution is uniformly coated onto a carrier; finally, by means of proper electron source, electrons are made to collide with the metal ions on the carrier so that the reduction reaction can be initiated to obtain the metal nanoparticles.

Description

1278364 【發明所屬之技術領域】 本發明係關於一種製造奈米粒子的方法,特別關於一種製造 奈米金屬粒子的方法。 【先前技術】 奈米科技無疑是本世紀最受矚目的新興領域。尤其近年 來,各國競相投入大筆經費研發新製程或新材料,更說明了它的 重要性。然而,目前之奈米技術在許多方面皆遭遇瓶頸,亟待突 • 破。 目前製備奈米粒子的方法包括化學方法與物理方法,如氧化 還原法(redox method)、光化學法(photochemical method)、電化學 法(electrochemical method)、氣體蒸鍍法(gas evap〇rati〇n meth〇d) 及雷射剝離法(laser ablation technique)。但這些製程有許多缺點, 例如,粒徑控制不易、奈米粒子保存期限短、粒徑分散性不佳以 及設備成本高等。 有鑑於此,本發明人積極開發奈米金屬粒子之新製程,經不 φ 斷試驗終獲致本發明方法,並解決上述之問題。 【發明内容】 本發明之主要目的在於提供一種製造奈米金屬粒子的方法, 其具有製造過程容易、應用範圍廣及成本低等優點。 本發明之另一目的在於提供一種製造奈米金屬粒子的方法, 使製得之金屬粒子具高分散性、粒徑分佈均勻且容易保存。 為達成上述目的,本發明製造奈米金屬粒子的方法包括:(a) 將一金屬化合物完全溶解於一溶劑,形成一金屬離子溶液;(13)將 1278364 該金屬離子溶液均勻塗佈於一載體上;(c)提供一電子源,使電子 撞擊該載體上的金屬離子以發生還原反應。 上述金屬化合物可為金屬鹽類或金屬錯合物;其中之金屬可 為但不限於鉑(Pt)、金(Au)、鈀(Pd)、銀(Ag)、銅(Cu)、鈦(Ti)、鋅 (Zn)、鐵(Fe)、鎳(Ni)、锆(Zr)或鋁(A1)。例如,四氯化鉑(ptcl4)、 四氯化金(A11CI4)、硝酸銀(AgN〇3)、硫酸鋼(CuS〇4)、硝酸亞鐵 (FeN〇3)等。溶劑可為超純水、去離子水或其他適當溶劑。載體較 佳為具有沾附金屬離子溶液之特性,包括高分子基材、陶瓷薄膜、 碳基材、不織布、碳布等。 上述之金屬離子溶液可藉由浸潰(dipping meth〇d)、旋轉塗佈 法(spin coating)、喷塗方法(spray c〇ating)或其他適當方法均勻 塗佈於該載體上。塗佈程序最好於室溫下進行。通常,金屬離子 溶液完成塗佈後,還需加以乾燥。 /上述之電子源可為穿透式電子顯微鏡電子搶、掃喊電子顯 微鏡電子搶、直流電源或其他可提供電子之裝置。 本發明之其他舰及優點可於以下詳細說明中進一步了解。 【實施方式】 列步驟:〜㈣咖_子之—__,主要包括飞 的離=化學鹽嶋與適當溶劑均勻混合,配製成適當濃度 ㈨_子溶液㈣塗佈在不織布 他可_子溶液的„上;接著_或其二== h 1278364 離子>谷液的載體乾燥,完成試片之準備。 00將試片置入掃瞄式電子顯微鏡腔體、穿透式電子顯徼鏡 腔體或其他可以提供電子來源之相關設備中,將電子顯微鏡之電 子才层所提供之電子束撞擊至試片表面,對試片表面之離子進行還 原作用,形成奈米金屬粒子。1278364 FIELD OF THE INVENTION The present invention relates to a method of producing nanoparticle, and more particularly to a method of producing nano metal particles. [Prior Art] Nanotechnology is undoubtedly the most attractive emerging field in this century. Especially in recent years, countries have been competing to invest large sums of money to develop new processes or new materials, which shows its importance. However, the current nanotechnology has encountered bottlenecks in many aspects and needs to be broken. Current methods for preparing nanoparticles include chemical methods and physical methods, such as redox method, photochemical method, electrochemical method, gas evaporation method (gas evap〇rati〇n) Meth〇d) and laser ablation technique. However, these processes have a number of disadvantages, such as difficulty in particle size control, short shelf life of nanoparticles, poor particle size dispersion, and high equipment costs. In view of this, the inventors actively developed a new process for the preparation of nano metal particles, and finally obtained the method of the present invention without solving the problem, and solved the above problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for producing nano metal particles, which has the advantages of easy manufacturing process, wide application range, and low cost. Another object of the present invention is to provide a method for producing nano metal particles which has high dispersibility, uniform particle size distribution and easy storage. In order to achieve the above object, the method for producing nano metal particles of the present invention comprises: (a) completely dissolving a metal compound in a solvent to form a metal ion solution; and (13) uniformly coating the 1278364 metal ion solution on a carrier. (c) providing an electron source for causing electrons to strike the metal ions on the carrier to undergo a reduction reaction. The metal compound may be a metal salt or a metal complex; the metal may be, but not limited to, platinum (Pt), gold (Au), palladium (Pd), silver (Ag), copper (Cu), titanium (Ti) ), zinc (Zn), iron (Fe), nickel (Ni), zirconium (Zr) or aluminum (A1). For example, platinum tetrachloride (ptcl4), gold tetrachloride (A11CI4), silver nitrate (AgN〇3), sulfuric acid steel (CuS〇4), ferrous nitrate (FeN〇3), and the like. The solvent can be ultrapure water, deionized water or other suitable solvent. The carrier preferably has the characteristics of adhering to the metal ion solution, including a polymer substrate, a ceramic film, a carbon substrate, a non-woven fabric, a carbon cloth, and the like. The above metal ion solution may be uniformly coated on the carrier by dipping meth〇d, spin coating, spray coating or other suitable method. The coating procedure is preferably carried out at room temperature. Usually, after the metal ion solution is coated, it needs to be dried. / The above-mentioned electron source can be electronically robbed by a transmission electron microscope, swept electronic micro-mirror, DC power supply or other devices that can provide electronics. Other ships and advantages of the present invention will be further appreciated in the detailed description which follows. [Embodiment] Column steps: ~ (four) coffee _ sub-__, mainly including the fly from the chemical salt 均匀 and the appropriate solvent evenly mixed, formulated into the appropriate concentration (nine) _ sub-solution (four) coated in non-woven cloth _ sub-solution „上;下_ or its two== h 1278364 Ion> The carrier of the solution is dried to complete the preparation of the test piece. 00 Place the test piece into the scanning electron microscope cavity, the penetrating electronic display cavity In a related device that can provide an electron source, an electron beam provided by an electron layer of an electron microscope is struck against the surface of the test piece, and ions on the surface of the test piece are reduced to form nano metal particles.

上过v脉(b)之塗佈程序可採用浸潰法(dipping method)、旋轉 塗佈法(spin coating)或喷塗法(spray c〇ating)。第2圖為浚潰法示意 圖,圖中龍2UX適當速歧人離子驗Η巾,相適#速度取 出,即得到沾附離子溶液之載體較佳為#速操作,粗箭 機。33上’使料_再_子賴%齡載㈣上 文 塗法之示意圖,載體41立於喷嘴43前方適當距離 子溶液42喷餘龍41H 自㉟嘴43將離 說明本發明之製減魏,町鱗二健實辦述如下The coating procedure for the v vein (b) may be a dipping method, a spin coating method or a spray coating method. Fig. 2 is a schematic diagram of the smashing method. In the figure, the dragon 2UX is suitable for the speed of the ion-detecting smear, and the appropriate speed is obtained, that is, the carrier with the ionic solution is preferably a speed operation, a rough arrow machine. 33 on the 'make material _ re- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , the town scales two health statements are as follows

iSMJL (al)以電子天秤量秤化學鹽類粉末iSMJL (al) is an electronic balance weighing chemical salt powder

Wt·% 水(邮,99毫升)於燒杯中均句混合,配製成重=),與超純 之銀離子溶液。 里白为壤度1 (bl)以浸潰法將離子溶_自塗佈在高分子 (b2)以烘箱將沾附離子溶液的載體乾燥,完々上。 (cl)將試片置入掃猫式電子顯微鏡腔體中片之準備 電子搶所提供之電子束撞擊至試片表面,對試片表、子顯微鏡$ 行還原作用,形成銀奈米金屬粒子D還原反應式銀離子進 '(1 )所示。Wt·% water (mail, 99 ml) was mixed in a beaker to prepare a weight =), and an ultrapure silver ion solution. In the white, the soil is 1 (bl), and the ion-dissolving method is applied to the polymer (b2), and the carrier to which the ion solution is adhered is dried in an oven and finished. (cl) placing the test piece into the slice of the scanning electron microscope cavity. The electron beam provided by the electron capture is struck onto the surface of the test piece, and the test piece and the submicroscope are reduced to form silver nano metal particles. D reduction reaction silver ions are shown in '(1).

Ag+ + ^Ag -Π) 7 I278364 第5圖為1机%_子賴於高分子騎塌原後 工/、子顯微鏡所拍攝到的明視野(BF)影像圖,平均粒徑為 8〜4lnm。第6圖為!辦%銀離子溶液於高分子基材上還原後, 穿透式電子顯微鏡所拍攝到的選區繞射(SAD)影像圖 艮极子結晶性為單晶,成長方向優選方向為[2〇〇]。 又 于、了以尚77子基材作為載體外,亦可使用其他材質。例如, ^圖為lwt.%銀離子溶液於碳基材上㈣_〇η)還原後,由二 鲁^電子顯微鏡所拍攝到的明視野(BF)影像圖,平均粒經為^牙 =具高分散性,且_範圍—致。第8圖為i wt %銀離子溶液 ;奴布基材上(carbon d0th)還原後,由場發射掃瞄式電子顯微鏡所 拍攝到的表面形貌影像圖,平均粒徑為7〜8nm,均具高分散性, 且粒徑範圍一致。 ^ 第9圖則為lwt·%銀離子溶液於碳布基材上(carb〇nel的红)還 原後’再經過氧化處理,以x-ray分散光譜分析儀(EDS)對銀粒子 表面進行定性分析,結果顯示奈米銀粒子(Ag)被氧化,形成銀的 氧化物(AgzO)’其中Cu與C的訊號分別來自於試片座與碳布基材。 Φ 實施例2 重覆上述步驟,但以CuS〇4之粉末取代AgNOs,配製成重量 百分濃度lwt·%的銅離子溶液;再以旋轉塗佈法將離子溶液均勻 塗佈在高分子薄膜載體上;藉由穿透式電子顯微鏡之電子搶所提 供之電子束撞擊至試片表面;最後得到奈米級銅粒子。 苐10圖為1 wt·%之銅離子溶液於高分子基材上還原後,以 穿透式電子顯微鏡所拍攝到的明視野(BF)影像圖,平均粒徑為 6〜7nm,均具高分散性,且粒徑範圍一致。 1278364 «變mtr方法可知,心㈣離子賴錢,便可輕 齡料雜,實為—簡料實狀技術。 ^ μ r較佳為可輕易沾麟子雜之材質;至於 ,、、、、、物=子冷液之材質’可藉由物理或化學處理增加表面沾 性。物理處理方式包括離子轟擊、電改質、熱處理等; 化學方式包括有機或無機溶液之塗佈、親離子鍵的植人、化學腐 钱等。例如’在不易沾__基板上_子溶液,以接觸角量 測儀拍攝影像,可發現驗在_純上呈半^將塑膠基板Ag+ + ^Ag -Π) 7 I278364 Fig. 5 is a bright field (BF) image taken by a sub-microscope after the polymer is captured, and the average particle size is 8~4lnm. . Figure 6 is! After the reduction of the % silver ion solution on the polymer substrate, the crystal diffraction of the selected area diffraction (SAD) image taken by the transmission electron microscope is single crystal, and the preferred direction of growth is [2〇〇] . Further, other materials may be used in addition to the 77 substrate as a carrier. For example, the figure is the bright field (BF) image taken by the Erlu electron microscope after the reduction of the lwt.% silver ion solution on the carbon substrate (4)_〇η, the average grain diameter is ^ teeth = Highly dispersible, and _ range. Figure 8 is the i wt % silver ion solution; after the reduction of carbon d0th on the substrate, the surface topography image taken by the field emission scanning electron microscope, the average particle size is 7~8nm, both Highly dispersible and consistent in particle size range. ^ Figure 9 is a 1 wt.% silver ion solution on a carbon cloth substrate (red of carb〇nel) and then oxidized to characterize the surface of silver particles by x-ray dispersive spectroscopy (EDS) Analysis showed that the nano silver particles (Ag) were oxidized to form silver oxide (AgzO), where the signals of Cu and C were derived from the test piece holder and the carbon cloth substrate, respectively. Φ Example 2 Repeat the above steps, but replace the AgNOs with the powder of CuS〇4, and prepare a copper ion solution with a weight percentage of lwt·%; then uniformly apply the ion solution to the polymer film by spin coating. On the carrier; an electron beam provided by an electron capture by a transmission electron microscope impinges on the surface of the test piece; finally, nano-sized copper particles are obtained.苐10 is a bright field (BF) image taken by a transmission electron microscope after a 1 wt·% copper ion solution is reduced on a polymer substrate, and the average particle diameter is 6 to 7 nm, both of which are high. Dispersibility and consistent particle size range. 1278364 «The method of changing mtr shows that the heart (four) ions can be used for a long time, and it can be a simple technology. ^ μ r is preferably a material that can be easily immersed in the lining; as for the material of the subcooling liquid, the material can be increased by physical or chemical treatment. Physical treatment methods include ion bombardment, electro-thermification, heat treatment, etc.; chemical methods include coating of organic or inorganic solutions, implantation of ion-ion bonds, chemical rot, and the like. For example, 'on the substrate _ _ sub-solution on the substrate, the image is taken by the contact angle measuring instrument, and the plastic substrate can be found on the _ pure

表面以Αι·離子轟擊後,影像中離子溶液與基材表面呈現較大面積 接觸,顯示吸附效果明顯提昇。 ' 本發明利用電子束或可以提供電子來源之相關設冑,將金屬 離子還原形成金屬奈綠子,此—製程相當㈣、應用範圍廣而 成本低。此外,製得之金屬粒子更具有高分散性、粒徑分佈均勻 且容易保存等優點。 本發明之奈米金屬粒子經過氧化處理後,可形成氧化物粒 子。例如,二氧化鈦(Ti〇2)、氧化鋅(Ζη0)、氧化銀(Ag2〇)、氧化 銅(CuO)、氧化鍅(Zr〇2)、氧化鎳(Ni⑺或氧化鋁(Al2〇3)等。After the surface was bombarded with Αι· ions, the ionic solution in the image showed a large area contact with the surface of the substrate, indicating that the adsorption effect was significantly improved. The present invention utilizes an electron beam or a related device that can provide an electron source to reduce metal ions to form a metal natriuretic seed. This process is equivalent to (4), has a wide application range, and has low cost. In addition, the obtained metal particles have the advantages of high dispersibility, uniform particle size distribution, and easy storage. The nano metal particles of the present invention are oxidized to form oxide particles. For example, titanium dioxide (Ti〇2), zinc oxide (Ζη0), silver oxide (Ag2〇), copper oxide (CuO), cerium oxide (Zr〇2), nickel oxide (Ni(7) or alumina (Al2〇3), and the like.

本發明除可應用於一般傳統產業,包括觸媒製造業、紡織工 業、金屬產業、非金屬產業等;對於奈米科技產業,包括生物晶 片製造業、燃料電池電極(MEA)製造業、化妝品業、生醫材料業等, 亦可應用本發明技術。 1278364 【圖式簡單說明】 第1圖為本發明製造奈米金屬粒子之流程圖; 第2圖為浸潰法之示意圖; 第3圖為旋轉塗佈法之示意圖; 第4圖為喷塗法示意圖; 第5圖為高分子基材上之銀奈米粒子之明視野(BF)影像圖; 第6圖為高分子基材上之銀奈米粒子之選區繞射(SAD)影像圖; • _..........… -......— — -...- ....................................— - -................................— -....· - -......................................... 第7圖為碳基材上之銀奈米粒子之明視野(BF)影像圖; 第8圖為碳布基材上之銀奈米粒子之表面形貌影像圖; 第9圖為碳布基材上之銀奈米粒子經過氧化處理後之x-ray能量分 散光譜圖; 第10圖為高分子基材上之銅奈米粒子之明視野(BF)影像圖。 【圖式元件符號說明】 載體 21 離子溶液 22 沾附離子溶液之載體 23 載體 31 離子溶液 32 旋塗機台 33 載體 41 離子溶液 42 喷嘴 43The invention can be applied to general traditional industries, including catalyst manufacturing, textile industry, metal industry, non-metal industry, etc.; for nanotechnology industry, including biochip manufacturing, fuel cell electrode (MEA) manufacturing, cosmetics industry The technology of the present invention can also be applied to the biomedical materials industry and the like. 1278364 [Simple description of the drawings] Fig. 1 is a flow chart of the invention for producing nano metal particles; Fig. 2 is a schematic view of the dipping method; Fig. 3 is a schematic view of the spin coating method; Schematic diagram; Figure 5 is a bright field (BF) image of silver nanoparticles on a polymer substrate; Figure 6 is a diffraction pattern of a silver-nanoparticle on a polymer substrate (SAD) image; _............. -......— —...- ........................ .................. - - -................................ -. ...· - -......................................... Figure 7 A bright field of view (BF) image of the silver nanoparticle on the carbon substrate; Fig. 8 is a surface topography image of the silver nanoparticle on the carbon cloth substrate; and Fig. 9 is a carbon cloth substrate The x-ray energy dispersion spectrum of the silver nanoparticle after oxidation treatment; Fig. 10 is a bright field of view (BF) image of the copper nanoparticle on the polymer substrate. [Illustration of Symbols of Schematic Components] Carrier 21 Ionic solution 22 Carrier impregnated with ion solution 23 Carrier 31 Ionic solution 32 Spin coater 33 Carrier 41 Ion solution 42 Nozzle 43

Claims (1)

1278364 申請專利範圍: h 一種製造奈米金屬粒子的方法,包括: (a) 將一金屬化合物完全溶解於一溶劑中,形成一金屬離子溶 液; (b) 將该金屬離子溶液均勻塗佈於一載體上; (c) 提供一電子源,使電子撞擊該載體上的金屬離子以發生還 原反應,並得到奈米金屬粒子。 2·如申請專利範圍第i項所述之方法,其令該金屬化合物為金屬鹽 類。 3 1 .如申請專利範圍第2項所述之方法,其中該金屬鹽類之金屬係選 自鉑(Pt)、金(Au)、鈀(Pd)、銀(Ag)、銅(Cu)、鈦(Ti)、鋅(Zn)、 鐵(Fe)、鎳(Ni)、鍅(Zr)及銘(A1)所組之群。 4·如申請專利範圍第i項所述之方法,其令該金屬化合物為金屬錯 合物。 5·如申請專利範圍第4項所述之方法,其中該金屬錯合物之金屬係 選自鉑(Pt)、金(Au)、鈀(Pd)、銀(Ag)、銅(Cu)、歛(Ti)、鋅(Zn)、 鐵(Fe)、鎳(Ni)、锆(Zr)及鋁(A1)所組之群。 6·如申請專利範圍第1項所述之方法,其中該金屬化合物為四氣化 麵(PtCl4)、四氣化金(AuC14)、硝酸銀(AgN03)、硫酸銅(cus〇4) 或硝酸亞鐵(Fe(N03)2)。 7.如申請專利範圍第1項所述之方法,其令該溶劑為超純水或去離 子水。 8·如申請專利範圍第丨項所述之方法,其中該載體具有沾附該金屬 離子溶液之特性。 9·如申請專利範圍第丨項所述之方法,其中該載體為高分子基材、 陶究薄膜、碳基材、不織布或碳布。 1278364 10. 如申請專利範圍第1項所述之方法,其中該金屬離子溶液係以浸 潰(dipping method)、旋轉塗佈法(spin coating)或喷塗方法(spray coating)均勻塗佈於該載體上。 11. 如申請專利範圍第1項所述之方法,其中該塗佈程序係於室溫下 進行。 12. 如申請專利範圍第1項所述之方法,其中該金屬離子溶液完成塗 佈後,並進行乾燥程序。 13. 如申請專利範圍第1項所述之方法,其中該電子源係穿透式電子 顯微鏡電子槍、掃瞄式電子顯微鏡電子搶或直流電源。1278364 Patent application scope: h A method for producing nano metal particles, comprising: (a) completely dissolving a metal compound in a solvent to form a metal ion solution; (b) uniformly coating the metal ion solution in a (c) providing an electron source for causing electrons to strike metal ions on the carrier to undergo a reduction reaction and obtaining nano metal particles. 2. The method of claim i, wherein the metal compound is a metal salt. The method of claim 2, wherein the metal of the metal salt is selected from the group consisting of platinum (Pt), gold (Au), palladium (Pd), silver (Ag), copper (Cu), Groups of titanium (Ti), zinc (Zn), iron (Fe), nickel (Ni), lanthanum (Zr) and Ming (A1). 4. The method of claim i, wherein the metal compound is a metal complex. 5. The method of claim 4, wherein the metal of the metal complex is selected from the group consisting of platinum (Pt), gold (Au), palladium (Pd), silver (Ag), copper (Cu), A group of (Ti), zinc (Zn), iron (Fe), nickel (Ni), zirconium (Zr), and aluminum (A1). 6. The method of claim 1, wherein the metal compound is a tetragassing surface (PtCl4), a gasified gold (AuC14), a silver nitrate (AgN03), a copper sulfate (cus〇4) or a nitrate Iron (Fe(N03)2). 7. The method of claim 1, wherein the solvent is ultrapure water or deionized water. 8. The method of claim 2, wherein the carrier has the property of adhering the metal ion solution. 9. The method of claim 2, wherein the carrier is a polymer substrate, a ceramic film, a carbon substrate, a non-woven fabric or a carbon cloth. The method of claim 1, wherein the metal ion solution is uniformly applied to the dipping method, spin coating or spray coating. On the carrier. 11. The method of claim 1, wherein the coating procedure is performed at room temperature. 12. The method of claim 1, wherein the metal ion solution is coated and dried. 13. The method of claim 1, wherein the electron source is a transmission electron microscope electron gun, a scanning electron microscope, or a DC power source.
TW94112641A 2005-04-20 2005-04-20 Method of producing metal nanoparticles TWI278364B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94112641A TWI278364B (en) 2005-04-20 2005-04-20 Method of producing metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94112641A TWI278364B (en) 2005-04-20 2005-04-20 Method of producing metal nanoparticles

Publications (2)

Publication Number Publication Date
TW200637674A TW200637674A (en) 2006-11-01
TWI278364B true TWI278364B (en) 2007-04-11

Family

ID=38645126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94112641A TWI278364B (en) 2005-04-20 2005-04-20 Method of producing metal nanoparticles

Country Status (1)

Country Link
TW (1) TWI278364B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455778B (en) * 2009-02-23 2014-10-11 Univ Vanung Method for producing metal nanoparticles bonded to substrate surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455778B (en) * 2009-02-23 2014-10-11 Univ Vanung Method for producing metal nanoparticles bonded to substrate surface

Also Published As

Publication number Publication date
TW200637674A (en) 2006-11-01

Similar Documents

Publication Publication Date Title
Hong et al. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity
Zhang et al. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction
Fu et al. Synthesis and electrocatalytic activity of Au@ Pd core-shell nanothorns for the oxygen reduction reaction
US9689085B2 (en) Underpotential deposition-mediated layer-by-layer growth of thin films
Murray et al. Shape-and size-selective electrochemical synthesis of dispersed silver (I) oxide colloids
KR101645661B1 (en) Hydrogen sensor based on platinum/palladium-graphene hybrid and method of fabricating the same
Renjith et al. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents
JP6116000B2 (en) Method for producing platinum core-shell catalyst and fuel cell using the same
Gowthaman et al. Displacement reduction routed Au–Pt bimetallic nanoparticles: a highly durable electrocatalyst for methanol oxidation and oxygen reduction
Huang et al. Truncated palladium nanocubes: synthesis and the effect of OH− concentration on their catalysis of the alkaline oxygen reduction reaction
JP2011006775A (en) Nanoporous metal surface modified with noble metal and surface modification by noble metal of nanoporous metal
Walter et al. “Beaded” bimetallic nanowires: Wiring nanoparticles of metal 1 using nanowires of metal 2
CN101165213B (en) Method for preparing nano-stick array electrode capable of self-assembling after dispersing
Sun et al. Catalytic properties of Pd nanoparticles supported on Cu 2 O microspheres for hydrogen peroxide electroreduction
TWI278364B (en) Method of producing metal nanoparticles
JP2011136993A (en) Platinum complex, and production method and application thereof
He et al. PdAg Bimetallic Nanoparticles Encapsulated in Porous Carbon Derived from UIO-66 as Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions
Sharifalhoseini et al. Direct growth of ZnO nanostructures on the Zn electroplated mild steel to create the surface roughness and improve the corrosion protection of the electroless Ni-P coating
Wan et al. Rapid electrochemical fabrication of porous gold nanoparticles for high-performance electrocatalysis towards oxygen reduction
CN107815703B (en) Hydrogen evolution activity cathode and preparation method thereof and electrolytic cell comprising the hydrogen evolution activity cathode
US20070044590A1 (en) Method for producing metal nanoparticle
Liu et al. Facile electrochemical dispersion of bulk Rh into hydrosols
Divya et al. Shape-controlled synthesis of palladium nanostructures from flowers to thorns: electrocatalytic oxidation of ethanol
Bhattarai et al. Direct observation of early stages of growth of multilayered dna-templated au-pd-au core-shell nanoparticles in liquid phase
Chu et al. Synthesis of Truncated‐Octahedral Pt–Pd Nanocrystals Supported on Carbon Black as a Highly Efficient Catalyst for Methanol Oxidation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees