TWI273391B - Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof - Google Patents

Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof Download PDF

Info

Publication number
TWI273391B
TWI273391B TW93140774A TW93140774A TWI273391B TW I273391 B TWI273391 B TW I273391B TW 93140774 A TW93140774 A TW 93140774A TW 93140774 A TW93140774 A TW 93140774A TW I273391 B TWI273391 B TW I273391B
Authority
TW
Taiwan
Prior art keywords
sensing
magnetic
magnetic field
contact angle
servo motor
Prior art date
Application number
TW93140774A
Other languages
Chinese (zh)
Other versions
TW200622595A (en
Inventor
Jian-Guo Shia
Original Assignee
Jian-Guo Shia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jian-Guo Shia filed Critical Jian-Guo Shia
Priority to TW93140774A priority Critical patent/TWI273391B/en
Publication of TW200622595A publication Critical patent/TW200622595A/en
Application granted granted Critical
Publication of TWI273391B publication Critical patent/TWI273391B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

A servo motor having a non-contact angular sensing apparatus and the method for calculating twiddle factor thereof are disclosed in this invention. The servo motor comprises a stator, a rotor, an angular sensing apparatus and a control apparatus. The angular sensing apparatus comprises a magnetic device deposed in the rotor and two Hall devices deposed in the stator for sensing the variation of the magnetic field generated by the magnetic devices. The control apparatus is used to receive the feedback signals output from the Hall devices, processes the feedback signals by cooperating with the twiddle factor calculation method, and finally compares the processed feedback signals with external control signals to decide the driving signal output to the rotor. Thus a servo motor and a method capable of sensing the rotation angle without the limitation of rotation counts limit are provided.

Description

1273391 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種伺服馬達及旋轉因子計管方、去, 特別是指一種利用非接觸式角度感測監測裝置,使其可感 5 測監測之角度不受限制的伺服馬達,以及應用該具有角产 感測監測裝置之伺服馬達的旋轉因子計算方法。 【先前技術】 10 15 20 伺服馬達的應用在現今社會中極為廣泛,舉凡現有的 一 無線電遙控器、光碟機的讀寫頭、影印機或掃描器的驅動· 裝置’及汽車的電動窗或後照鏡中均是使用飼服馬達以達 到產品的功效。甚至在學術研究機構及業界研發單位中, 也多是使用伺服馬達進行對研究系統的機械控制。 市面上現有的伺服馬達種類繁多,功能不盡相同。例 如有些健馬達僅能對其輸人操作訊號,而沒有告知操作 者實際狀況的回饋機制。此一類的伺服馬達完全不能保噔 是否完全依據操作訊號而作動,因為大部份的健馬達^ 限於動力來源的功率大小而有一定的扭力&amp;,當一連動該 祠服馬達之負载的慣量超過或接近該扭力矩時,該祠服: 達的作動會受該負载的影響而不正常作動。 另卩刀的伺服馬達具有告知操作者實際狀況的回饋 機制’㈣1所示為—無線電遙控器習用的舰機,該饲 服機包括-馬$ !、一用於作角度感測監測的微調電位哭 5 5 10 15 1273391 時’可藉由該連動齒輪組3的連動旋轉該微謂電位器 二:該微調電位器2的電阻值。此時僅需測量 ^ 2的電阻值即可反推計算該馬達】或同料的旋㈣ 度0 然而,該微調電位器2作角度感測監測時,常 =的料而使其在實際應用上廣受限制。由於該微調電位 杰2疋以一導電板之間的接觸面積來決定電阻值,因此實 際應用時,會受到該等導電板之 貝 上最常使用在無線電遙控細幾中的; : 。如目前市面 u服铖甲的4调電位器2,i f 士 ( =㈣角度皆限制在180〜⑽度以内。雖然該限制可夢 = = *t組3的傳動比例,以擴大感測監測範‘ &quot; 。但一方面,隨著傳動比例增大,量測之於 密度下降’此時除非施加更衫的端電壓,及準確度更= =::二電壓計才能達到原有的精確度;此外,該接二 式的4 ό周電位器2受限於導綠且命士 會m ¥線長度有限的硬體結構束縛, :二:?地隨馬達1不停旋轉,使得馬達旋轉範圍仍 —度°甚而’電位器2隨不斷使用而磨損,亦_ :=Γ力。上述種種習知該伺服馬達的缺點使現有 之龍馬達的應用發展受到限制 的機構上。 ‘,,、法擴展應用到其它 【發明内容】 因此’本發明之目的即在提供一種具有非接觸式角度 感制旋轉裝置之飼服馬達,使得監測角度不受限制。 月之另目的在提供—種監測精度不因量測範圍 20 5 10 15 1273391 增大而減損。 本發明之又一目的在於提供一種具有角度感測監測旋 轉裝置之伺服馬達的旋轉因子計算方法。 於疋’本發明具非接觸式角度感測監測裝置之伺服馬 達包含一定子、一相對該定子繞自身軸線旋轉的轉子、一 角度感測監測裝置,及一控制裝置。 違角度感測監測裝置包括一與該轉子與定子其中之一 連動的磁性元件’及„與該轉子與定子其中另—連動的感 測兀件組。藉此使相對該感;則元件組而纟,該磁性元件繞 -基線並與該轉子同步旋轉,且該感測元件組用於感測該 磁性元件所產生的磁場變化。 。亥抆制裝置用於接受該角度感測監測裝置輸出的回饋 訊號’並比較回饋訊號與外部操控信號以決定輸出至該轉 子的驅動訊號。 而本發明具非接觸式角度感測監測裝置之伺服馬達的 旋轉因子計算方法係應用於-具非接觸式角度感測監測褒 置之伺服馬達,其中,該角度感測監測裝置包括—繞—美 線旋轉以產生磁場變化的磁性元件,及分別用於感測該ς 場變化的-第-感測元件及一第二感測元件,且該第—感 測元件與該基線的連線’及該第二感測元件與基線的料 之間夾角小於18…並定義一相當於該角度的預定徑 度’該旋轉因子計算方法包含下列步驟: a) 使該磁性元件旋轉一旋轉角度; b) 記錄該第一、第二感測元件測得的磁場變化; 20 5 10 15 20 1273391 _取-磁場指標,且該磁場指標介於步驟 變化之最大最小值之間; 用 d) 記錄該第—感測元件測得該磁場指標的相位; e) 記錄該第二感測元件測得該磁場指標的相位;及 f) 依據步驟d)及步驟e)的結果判斷該磁性元件 向及旋轉角度。 啊万 ,此外,本發明具非接觸式角度感測監測裝置之飼服 達的方疋轉因子计异方法係應用於一具非接觸式角度感測龄 測裝置之飼服馬達’其中’該角度感測監測裝置包括—I丨 一基線旋轉以產生磁場變化的磁性元件,及—用於感測^ 磁場變化的感測元件,該旋轉因子計算方法包含 驟: y g) 使該磁性元件旋轉一旋轉角度; h) 記錄該感測元件測得之磁場的量值; I) 圯錄该感測元件測得之磁場的微分值丨及 J) 依據步驟h)及步驟i}的結果判斷該磁性元件的旋轉因 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 茶閱圖2與圖3,本發明具有角度感測監測旋轉裝置之 伺服馬達之較佳貫施例包含_定子4、—相對該定子繞一基 線X旋轉的轉+ 5、一控制裝f 6,及一角度感測監測裝置 8 1273391 該角度感測監測裝置7在本較佳實施例中包括一設於 該轉子5的磁性元件71,及一設於該定子4的感測元件組 5 10 15 72。其中,該磁性凡件71在本較佳實施例中為一圍繞該轉 子5之轉軸,且南北極之連線垂直該基線X的環形永久磁 鐵:然而,在實際應用上亦可以任何可達成相同功效的磁 一牛71取代如長條狀永久磁鐵。該感測元件組在 本巍實施例中包括共設於該定子4的一第一感測元件721 第一感測元件722,且二者至該基線χ的距離相同,而 連接=第-感測元件721與該基線χ的第一連線723,及連 广第一感測元件722與基線χ的第二連線724之間的夾 角為120度。其中’該第-、第二連線723、724之間的夾 $僅為本奄明之較佳實施例而已,在實際應用上該第一、 第連線723、724之間的央角僅需小於j 8〇度即可應用本 發明具非接觸式角度感測監測裝置之词服馬達的旋轉因子 計算方法。 —^本較佳實施例中該第—、第二感測元件721、722為 —兀王相同,亚可輸出反應磁場之霍爾電&gt;1的霍®元件。 猎此’以磁性元件71與該轉子5同步地相對該感測元件 方疋轉%,可藉由該第一、第二感測元件721、722感 :該磁性元件71所產生的磁場變化。值得注意的是,該第 -、弟二感測元件721、722在實際應用上亦可分別為一電 磁感應線圈,雖然此時該第一、第二感測元件mm的 1為反應磁场之瞬時變化的感應電流,然而不論該感測 20 5 10 15 20 1273391 ==二輪出是反應磁場或反應磁場之瞬時變化,均可 旋轉因子計算方法。 之们服馬達的 參閱圖4’該控制裝置6包括一操作模、組61、 …2、-處理模、组63,及一驅動模組 = 61用於接受外部的操作訊號,可以是-連接至外仰: 置的排線或是-微型操作面板。監測模組62具有:用衷 於接收該第-、第二感測元件721、72 2:刀別用 =分=::…進一步將接收到的回饋訊_ 达至忒處理模組63,或直接將接收到的 回饋訊號傳送至該處理模組63。 丨的 用於63在本較佳實施例中為-訊號處理器,並 ^相饋訊號的作進—步的計算以得到該轉子 ==子,接著比較計算後的結果及外部的操作: 轉子5的驅動訊號。該驅動模組64則用 :輸出該處理模組63所決定之驅動訊號至該轉子5,= :應用上該驅動模組64輸出的驅動訊號需視該定子4及:( =二際型態而有所區別。例如,可以選擇輸出電J ,又机电相位、或輸出脈波信號以控制該轉+ 5對今— =的相對運動。要注意的是,由於該處理模組63所= 的步驟除了本發明呈 X月-非接觸式角度感測監測裝置之伺服馬 ^轉因子計算方法外,比較計算後的結果及外部的操 作δίΐ號,及決定輪ψ ’、 中所声h 轉子5的驅動訊號皆為習用技術 中所廣為人知的方法,故以下將不再贅述。 10 1273391 5 10 15 參閱圖5 ’本發明具非接觸式角度感測監測裝置之飼服 馬達的旋轉因子δ十异方法之第_較佳實施例是藉由該處理 模組63 (見圖4)來執行,其包含步驟8〇〜89。 步驟80是定義該第一、第二連線723、724之間的夾 角的徑度為-預定徑度①。在本較佳實施中該預定徑度①為 :/2。在實際應用上,該預定徑度①應視該第一、第二感測 tc件721、722相對該基線χ的配置而定。 步驟81是使該磁性元件71旋轉一旋轉角度心 配合參閱圖6與圖7,步驟82是記錄該第一感測元件 ⑵測得的磁場變化為一第一曲線725,及記錄該第二感測 兀件722測得的磁場變化為一第二曲,線726。其中,該第 一、第二曲線725、726公别&amp; 并、山 ,, ^ 刀別為一弦波。此外,由於該第 ―、第二感測元件721、722至該基線X的距離相當,因此 當該磁性元件71 -週之後,該第_、第二曲線725、m 之週期的最大最小值亦彼此對應。 20 步驟83是選取-磁場指標σ,且該磁場指標〇是介於言 ~、第二曲、線725、726之最大最小值之間的任意值。士 7 6所示,在大部份的情形下’該磁場指標σ在該第_、角 二曲線725、726上的同一個週期内分別有二個不同的; 點’也就是說,該第—、第二感測元件721、722在該磁: 兀件71㈣-週期内會分別測得該磁場指—二次。㈣ 應於圖7,為以下說明方便,將一個週期内該磁場指^ 值的位置分別以該磁場指標σ,及該磁場指“,,標示。此外 本步驟中同時定義該磁場指^,、σ,,之間的差值為” 11 1273391 τπ ° ν驟84是記錄該第一感測元件721頭一次測得該磁場 指標σ的一第一相位φ。而步驟85是記錄該第二感測元件 722頭—次測得該磁場指標σ的-第二相位cp。要注意的是, 判斷該第-、第二感測元件721、722是否測得該磁場指標 式在以下的說明U分別比對該磁場指標讀該第 一^二曲線725、726的量值。在實際做法上可藉由該監 測模組62(見圖4)預先求算該第一 '第二曲線725、726 ίο 15 20 每-點的微分值’或藉由該處理模組63 (見圖4)在 驟中求算。 步驟86是判斷該磁性元件71鄰近該第一、第二感測 兀件721、722的切線方向,其中包括下列子步驟: 乂驟861 —计异相位差δ等於該第一相位啦及該第二相位 Ψ的差值。其中,該相位差δ的單位為徑度。 、配合參閱圖11 5步驟862—判斷該相位差3是否不為 =。,大部份的情況下,該相位差s不為零,也就是該第 一、第二感測元件721、722不會同時測得該磁場指標 而在某些特殊狀況下,由於該磁場指標〇的選擇使得該徑 度差仿等於該預定徑度ω,此時該第一、第二感測元件 721、722有機會同時測得該磁場指標σ,且該相位差δ等於 令。在此特殊狀況下並無法利用值為零的相位差§進行以下 的子步驟的判斷,此時必需終止步驟86的執行並重覆步驟 3 86。也就是重新選取磁場指標口的值以使該徑度差历不等 於該預定徑度ω、重新定義該第一、第二相位φ、cp,及重= 12 1273391 步驟86的判斷。 步驟863—判斷該徑度差仿是否大於該預定彳呈度①。者 步驟862的判斷結果為該相位差δ不為零時,則該彳&lt;τ&lt;产差切 亦不等於該預定徑度ω。此時,依據該徑度差历相對於該預 定徑度ω的大小可分為二種可能,即徑度差仿介於〇與預定 徑度ω之間,及徑度差τπ介於預定徑度①與兀之間。以下子步 驟864及子步驟865分別針對所述二種不同現像進行判斷。 10 15 20 當徑度差e介於0與預定徑度欧間時又可依該磁性元 件71的起始位置而觀察到二類現像。參閱圖6與圖7,以 逆時鐘旋轉之磁性元件71朗第—類現像,該第_、第二 感測元件721、722在該磁性元件71起始旋轉後依序闕 該磁場指標σ,、σ,,,即在該魏元件71料_前,鮮 度差讀該預定徑度①所畫分的扇形範圍之間不相互重L: 同-類似的現像是,該第—感測㈣721在該磁性元件\ 疋轉得該磁場指標C'該第二感測元件722再 測知逵磁%指標σ,(相當於圖6 也就是在該磁性元件71起始 、立略錢移), a危 ▲ 疋轉則,該徑度差m與該預定 也度ω所旦分的扇形範圍相互 、 類現像中,該相位差3均小於等圖未示)°在此一 於2π/3。且該磁場指標σ,、 、疋仅度ω,也就是S小 第-相位祕至數值較大的該第=目動位方向是由數值較小的該 參閱圖8與圖9 ’同樣以 : 明第二類現像,在該磁性元# 71里方疋轉之磁性元件71說 元件722先測得該磁場指標=旋轉後’該第二感測 兹%指標σ’,,接著該第一感 13 ίο 15 20 1273391 測元件721才依序測得該磁場指“,、σ&quot;,且在該磁性_ 71起始旋轉前,該徑产差 ^ 兀件 _ 又差與该預定徑度ω所書分的屌裉ρ 圍之間已相互全部或部 :刀的扇形乾 略往前移在此-類現傻中 8中縱轴的位置 、見像中,該相位差δ必需介 物/3之間。需補充說 而”於2π/3與 旦儿 〇疋在貫際操作時必需將所有參數 篁化,故前述的範圍需透過數學式:2π—2心1… δ代換未知的代數^與前述第—類現像不同的是,此時今 磁场指標σ的移動方向是由數值較大的該第一 值較小的該第二相位φ。 數 因此,步驟864—判斷S是否小於等於①,即可辨別該磁 性元件71鄰近該第一、筮一 π、βϊ 一 μ ^ 弟—感測兀件721、722之切線方 向。同時配合步驟868—當5小於①時,定義該磁性元件”鄰 近該第-、第二感測元件721、722之切線方向為一第一切 線方向,反之,配合步驟869—當6大於_,定義該磁性元 件71鄰近該第一、第二感測元件721、722之切線方向為一 第二切線方向。 當徑度差历介於預定徑度①與冗之間時亦可依該磁性元件 71的起始位置不同而細分為二類現像。第一類現像與前述 類似,惟不同處在於,由於仿大於ω故此時該相位差§只會等 於該預定徑度ω。第二類現像亦與前述類似,比較圖8與圖 1〇,二圖中的第一、第二曲線725、726是完全相同的,差, 別僅在於二者選擇的磁場指標〇不同,故此時該相位差s必 需介於0與π-ω,及2π—ω—m與2π—m之間。需補充說明的 疋’在貝際操作時必需將所有參數量化,故前述的範圍需 14 1273391 迓過數学式 代換該未知的代數m 〇 因此,步驟865—判斷δ是否等於ω,即可辨別該磁性元 件71鄰近該第一、第二感測元件721、722之切線方向。同 時配合步驟868—當δ等於(〇時,定義該磁性元件71鄰近該第 一、第二感測元件721、722之切線方向為該第一切線方 向,反之,配合步驟869—當5不等於①時,定義該磁性元件 71鄰近該第一、第二感測元件721、722之切線方向為該第 -•切線方向。 10 15 20 筝閱圖5,步驟87是將已知的該磁性元件7ι之切線方 向換算為旋轉方向。在本較佳實施例中,該第一切線方向 為圖7上箭頭所指示之逆時鐘方向,反之’該第二切線方 向則為順時鐘方向。在實際應用上,則可依操作者的需求 而自行定義旋轉方向。 ^ 口 ’閱圖6、圖8、圖10或圖η,步驟88是換算哕 第一曲線725或該篦-油綠”。 &quot;線726之終止相位為該旋轉角度α。 終止二= 未 性元件-- 此,步驟80〜89可計瞀屮緯鉍工 &lt; 速精 轉向等绽轉因子。 人 ❺轉速、旋轉角度。c,及 茶閱圖12,本發明具非接 服馬達的旋轉因子叶曾方^度編測裝置之伺 卞开方法之弟二輕伟每么 處理模組63 ( g @ 1+ 貝轭例也疋藉由該 w〈見圖4)來執行,惟 實施例巾1在於’在本較佳 心件。因此,以下即是以該第-感测 15 5 10 15 20 1273391 兀件721 (見圖3)為例進行說明,然而在實際應用甲也可 使用該第二感測元件722 (見圖3),該旋轉因子計算方法 之第二較佳實施例包含下列步驟: 步驟90—是提供一量值相位對照表,也就是在。以 内,所有相位及與其對應的霍爾電慶。該量值相位對昭表 只與該磁性元件71及該感測元件組72 (見圖3)有關,所 以可在本發明具非接觸式角度感測監測聚置之飼服馬達紫 造出廠時㈣建於該處理㈣63 (見圖4),也可在初次使 =發明具非接觸式角度感測監測裝置之饲服馬達時重新 配合參閱圖13,步驟91—是使該磁性元件7ι 轉角度α並記錄旋轉方向。 Λ 步驟92—記錄該第一感測元# 721測得的磁場量值。 在貫際做法上是藉由該處理模組63 (見 該第—感測元件721輸出的霍爾電^己錄该 步驟93-記錄該第一感測…21測得的磁場微八旦 值。在貫際做法上可藉由該處理模組63 (見圖 :: %的結果進行微分,也可藉由該監測模组 2驟 _ 一感測—輸出的霍爾電壓v進行微= 乂由该處理杈組63 (見圖4 )記錄。 再 配合參閱圖14,步驟94—配合該霍爾電壓^ 對照表,及該磁性元件71旋轉方向可判斷可能 相位 始相位開始,例如起始相位為〇,依該磁 。自起 旋轉方向,可分別界定一正量值相位對照4 727及:同: 16 1273391 值相位對照表728,且經由比對該 正量值相位對照表727找到二相對應的:二二分別在該 &quot;亥負置值相位對照表728找 在 V,1,,。兴θ j为—相對應的相對電壓ν,,,、 5 10 15 20 舉该正$值相位對照表7 元件η旋轉方向為正,I 明,也就是該磁性 到可能的招位ψ、ψ,。 4相對電壓V,”&quot;得 步驟95—該相對電壓ν-具有 電壓V,,具有—第二斜率74,-土 针羊乃,而该相對 驟92的 , 一 10好互為正負值。比對步 驟的、、,。果,則可進-步得到絕對的相位 此外需補充說明的是,上述僅為本發明具非接觸式角 測監測裳置之祠服馬達的旋轉因子計算方法之好本 如熟悉此項技術人士能做之簡單聯想: 驟,: 法之部份參數定義為已知,以簡化計算步 Μ亦可達到與上述計算方法相同之目的。 綜上所述,本發明具非接觸式角度感測監測裳置 簡單,且其中非接觸式的角度感測監測裳置7 :供-種可感測監測的旋轉角度及旋轉圈數無限制的感測 監測方式。本發明具非接觸式角度感測監測裝置之伺服馬 達的旋轉因子計算方法不需配合額外的機械結構,而僅利 用該第-、第二感測元件721、722即可計算出轉速、旋轉 角度α,及轉向等旋轉因子,且不具有範圍的限制。故本發 明具非接觸式角度感測監測裝置之伺服馬達及其旋轉因子 計算方法確實可達到發明之功效。 惟以上所述者,僅為本發明之較佳實施例而已,去 §不 17 1273391 ,以此以本發明實施之範圍’即大凡財發明申請專利 视圍及發明說明内容所作之簡單的等效變化與: 屬本發明專利涵蓋之範圍内。 白乃 【圖式簡單說明】 圖1是一習知伺服機的立體組合圖; 圖2是本發明具有角度感測監測旋轉裝置之伺服馬達 的較佳實施例的立體組合圖; … 圖3是該較佳實施例的俯視圖; 圖4是該較佳實施例的電子方塊圖; ίο 圖5是應用該較佳實施例之旋轉因子計算方法第一較 佳實施例的流程圖; 圖6是該第一較佳實施例的理論圖,說明一徑度差小 於一預定徑度; 15 圖7是該第一較佳實施例的位置示意圖,配合圖6說 明一感測監測裝置之細部構件的相關位置; 圖: S是類似圖 6的理論圖,說明該徑度差小於該預定 徑度; 圖ί ?是類似圖 7的位置示意圖,配合圖8說明該感测 監測裝置之細部構件的相關位置; 20 圖10是類似圖6的理論圖,說明該徑度差大於該預定 徑度; 圖11是類似圖6的理論圖,說明該徑度差等於該預定 徑度; 圖12是應用該較佳實施例之旋轉因子計算方法第二較 18 1273391 佳實施例的流程圖; 圖13該第二較佳實施例的位置示意圖;及 圖14是該第二較佳實施例的理論圖。1273391 IX. Description of the Invention: [Technical Field] The present invention relates to a servo motor and a twiddle factor meter, and particularly to a non-contact angle sensing monitoring device, which makes it possible to sense 5 A servo motor whose angle of observation is not limited, and a twiddle factor calculation method using the servo motor having the angle sensing monitoring device. [Prior Art] 10 15 20 The application of servo motors is extremely extensive in today's society, such as the existing radio remote control, the head of the CD player, the drive/device of the photocopier or scanner, and the electric window or rear of the car. In the mirror, the feeding motor is used to achieve the product's efficacy. Even in academic research institutions and industry R&D units, servo motors are often used for mechanical control of the research system. There are many types of servo motors available on the market, and the functions are not the same. For example, some health motors can only input the operation signal, but do not inform the operator of the actual feedback mechanism. This type of servo motor can't guarantee whether it is fully operated according to the operation signal, because most of the motor is limited to the power of the power source and has a certain torque &amp;, when the inertia of the load of the motor is linked When the torque is exceeded or close to the torque, the action of the service will be affected by the load and will not operate normally. The servo motor of the other file has a feedback mechanism that informs the operator of the actual condition. (4) 1 shows the carrier of the radio remote control. The feeding machine includes - horse $!, a trimming potential for angle sensing monitoring. When crying 5 5 10 15 1273391, the micro-potential potentiometer 2 can be rotated by the interlocking of the interlocking gear set 3: the resistance value of the trimmer potentiometer 2. At this time, only need to measure the resistance value of ^ 2 to calculate the motor or the rotation of the same material (4). However, when the trimmer potentiometer 2 is used for angle sensing and monitoring, it is often used in practical applications. Shangguang is restricted. Since the trimming potential determines the resistance value by the contact area between the conductive plates, in practical applications, it is most commonly used in the radio remote control of the conductive plates; For example, the current 4-way potentiometer 2, if (4) angles are limited to 180~(10) degrees. Although this limit can be dreamed == *t group 3 transmission ratio to expand the sensing and monitoring range '&quot;. On the one hand, as the transmission ratio increases, the measurement decreases in density'. At this time, unless the terminal voltage of the shirt is applied, and the accuracy is more ==:: The voltmeter can achieve the original accuracy. In addition, the two-stage 4 ό potentiometer 2 is limited to the green structure and the life structure is limited. The hardware structure is limited. The second: the ground rotates with the motor 1 to make the motor rotate range. Still-degree ° even the 'potentiometer 2 wears out with continuous use, also _:= Γ force. The above-mentioned various shortcomings of the servo motor make the application development of the existing dragon motor limited. ',,, Expanded application to other [invention] Therefore, the object of the present invention is to provide a feeding motor with a non-contact angle sensing rotating device, so that the monitoring angle is not limited. The purpose of the month is to provide a monitoring accuracy. Due to the measurement range 20 5 10 15 1273391 A further object of the present invention is to provide a method for calculating a rotation factor of a servo motor having an angle sensing monitoring rotating device. The servo motor of the present invention having a non-contact angle sensing monitoring device includes a stator and a relative a rotor for rotating the stator about its own axis, an angle sensing monitoring device, and a control device. The angle-insensitive sensing device includes a magnetic element 'and the rotor and the stator coupled with one of the rotor and the stator. Another-linked sensing element set, thereby making the relative sense; the component group is 纟, the magnetic element is rotated around the baseline and synchronously with the rotor, and the sensing element group is used to sense the magnetic component The generated magnetic field change is used to receive the feedback signal output by the angle sensing monitoring device and compare the feedback signal with the external control signal to determine the driving signal output to the rotor. The present invention has a non-contact angle. The twiddle factor calculation method of the servo motor of the sensing monitoring device is applied to a servo motor with a non-contact angle sensing monitoring device Wherein, the angle sensing monitoring device comprises: a magnetic element that rotates to generate a magnetic field change, and a first-sensing element and a second sensing element respectively for sensing the change of the field, and the The first connection between the sensing element and the baseline and the second sensing element and the baseline material is less than 18... and defines a predetermined diameter corresponding to the angle. The twiddle factor calculation method comprises the following steps: a) rotating the magnetic element by a rotation angle; b) recording the magnetic field change measured by the first and second sensing elements; 20 5 10 15 20 1273391 _ taking the magnetic field index, and the magnetic field indicator is in the step change Between the maximum and minimum values; d) record the phase of the magnetic field indicator measured by the first sensing element; e) record the phase of the magnetic field indicator measured by the second sensing element; and f) according to step d) and step The result of e) determines the angle at which the magnetic element is oriented and rotated. In addition, the method for measuring the feeding factor of the non-contact angle sensing monitoring device of the present invention is applied to a feeding motor of a non-contact angle sensing device. The angle sensing monitoring device includes a magnetic element that rotates at a baseline to generate a magnetic field change, and a sensing element for sensing a change in the magnetic field, the method of calculating the twiddle factor comprising: yg) rotating the magnetic element Rotation angle; h) record the magnitude of the magnetic field measured by the sensing element; I) record the differential value of the magnetic field measured by the sensing element and J) determine the magneticity according to the results of step h) and step i} The above-described and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. 2 and FIG. 3, a preferred embodiment of the servo motor of the present invention having an angle sensing monitoring rotating device includes a stator 4, a rotation of the stator about a baseline X, and a control device f6. And an angle sensing monitoring device 8 1273391. The angle sensing monitoring device 7 includes a magnetic element 71 disposed on the rotor 5 and a sensing element group 5 10 disposed on the stator 4 in the preferred embodiment. 15 72. Wherein, in the preferred embodiment, the magnetic member 71 is a ring-shaped permanent magnet that surrounds the rotating shaft of the rotor 5, and the north-south line is perpendicular to the baseline X: however, in practice, any of the same can be achieved. The function of magnetic one cow 71 replaces a permanent magnet such as a long strip. The sensing element group includes a first sensing element 721 and a first sensing element 722 disposed in the stator 4 in the embodiment, and the distance between the two is the same as the baseline, and the connection=the first sense The angle between the measuring element 721 and the first line 723 of the baseline turns, and the second connecting line 724 of the widened first sensing element 722 and the baseline turns is 120 degrees. The clip between the first and second lines 723 and 724 is only a preferred embodiment of the present invention. In practical applications, the central angle between the first and second lines 723 and 724 is only required. The twiddle factor calculation method of the word service motor of the non-contact angle sensing monitoring device of the present invention can be applied less than j 8 degrees. In the preferred embodiment, the first and second sensing elements 721, 722 are the same as the 兀王, and the sub-can output the Hall electric field of the reactive magnetic field&gt;1. The magnetic element 71 is synchronized with the rotor 5 in synchronism with the rotor element 5, and the first and second sensing elements 721, 722 can sense the magnetic field generated by the magnetic element 71. It should be noted that the first and second sensing elements 721 and 722 can also be respectively an electromagnetic induction coil in practical applications, although at this time, the first and second sensing elements mm 1 are transients of the reaction magnetic field. The varying induced current, however, regardless of the sense of 20 5 10 15 20 1273391 == two rounds is the instantaneous change of the reaction magnetic field or the reaction magnetic field, the rotation factor calculation method. Referring to FIG. 4', the control device 6 includes an operation mode, a group 61, ..., a processing die, a group 63, and a driving module = 61 for receiving an external operation signal, which may be - connected To the external: set the cable or - micro operation panel. The monitoring module 62 has a purpose of receiving the first and second sensing elements 721, 72 2: the tool further uses the ==::... to further the received feedback message to the processing module 63, or The received feedback signal is directly transmitted to the processing module 63. The 用于 is used for the signal processor in the preferred embodiment, and the calculation of the input signal is performed to obtain the rotor == sub, and then the calculated result and the external operation are compared: 5 drive signals. The driving module 64 is configured to: output the driving signal determined by the processing module 63 to the rotor 5, =: the driving signal output by the driving module 64 is applied to the stator 4 and: (= two-dimensional type) For example, the output power J, the electromechanical phase, or the output pulse signal can be selected to control the relative motion of the turn + 5 vs. - =. It should be noted that due to the processing module 63 = In addition to the method for calculating the servo horse turning factor of the X-month non-contact angle sensing monitoring device, the method compares the calculated result with the external operation δίΐ, and determines the rim ', the sound h rotor 5 The driving signals are all well-known methods in the prior art, so they will not be described below. 10 1273391 5 10 15 Referring to FIG. 5 'The rotation factor δ of the feeding motor with the non-contact angle sensing monitoring device of the present invention is different. The preferred embodiment of the method is performed by the processing module 63 (see FIG. 4), which includes steps 8A to 89. Step 80 is to define between the first and second connections 723 and 724. The diameter of the angle is - predetermined diameter 1. In the preferred embodiment The predetermined diameter 1 is: /2. In practical applications, the predetermined diameter 1 should be determined according to the configuration of the first and second sensing tc members 721, 722 relative to the baseline 。. Step 81 is to make the magnetic The component 71 is rotated by a rotation angle. Referring to FIG. 6 and FIG. 7, step 82 is to record the change of the magnetic field measured by the first sensing component (2) to a first curve 725, and to record the second sensing component 722. The change of the magnetic field is a second curve, line 726. The first and second curves 725, 726 are common &amp; and, mountain, and ^ are not a sine wave. In addition, due to the first and second The distance between the sensing elements 721, 722 and the baseline X is equivalent, so that after the magnetic element 71 - week, the maximum and minimum periods of the period of the first and second curves 725, m also correspond to each other. 20 Step 83 is to select - The magnetic field index σ, and the magnetic field index 任意 is an arbitrary value between the maximum and minimum values of the words ~, the second 曲, and the lines 725 and 726. As shown in 士六六, in most cases, the magnetic field indicator σ has two different ones in the same period on the first and second angle curves 725 and 726; point 'that is, The first and second sensing elements 721 and 722 respectively measure the magnetic field finger-secondary in the magnetic: element 71 (four)-period. (4) In Figure 7, for the convenience of the following description, the magnetic field in one cycle The position of the value of the ^ is the magnetic field index σ, and the magnetic field is indicated by ",, and the difference between the magnetic field fingers ^, σ, is defined in this step." 11 1273391 τπ ° ν Recording a first phase φ of the first sensing element 721 to measure the magnetic field index σ for the first time, and step 85 is recording the second sensing phase of the second sensing element 722 to measure the magnetic field index σ. Cp. It is to be noted that it is determined whether the first and second sensing elements 721, 722 have measured the magnetic field index. The following description U reads the magnitudes of the first and second curves 725, 726, respectively, over the magnetic field index. In practice, the first 'second curve 725, 726 ί 15 15 20 differential value per point can be calculated in advance by the monitoring module 62 (see FIG. 4) or by the processing module 63 (see Figure 4) Calculate in the middle of the step. Step 86 is to determine the tangential direction of the magnetic element 71 adjacent to the first and second sensing elements 721, 722, including the following sub-steps: Step 861 - The difference of the phase difference δ is equal to the first phase and the first The difference between the two phases Ψ. The unit of the phase difference δ is the diameter. Referring to FIG. 11 5, step 862, it is determined whether the phase difference 3 is not =. In most cases, the phase difference s is not zero, that is, the first and second sensing elements 721, 722 do not simultaneously measure the magnetic field index, and under certain special conditions, due to the magnetic field index The choice of 〇 is such that the difference in diameter is equal to the predetermined diameter ω, and the first and second sensing elements 721, 722 have an opportunity to simultaneously measure the magnetic field index σ, and the phase difference δ is equal to the order. In this special case, the phase difference of zero is not used. § The following substeps are judged. At this time, the execution of step 86 must be terminated and step 386 is repeated. That is, the value of the magnetic field index port is reselected so that the path difference is not equal to the predetermined diameter ω, the first, second phase φ, cp, and the weight = 12 1273391 are determined. Step 863 - determining whether the deviation of the diameter difference is greater than the predetermined degree of presentation 1. If the result of the determination in step 862 is that the phase difference δ is not zero, then the 彳&lt;τ&lt;product difference is not equal to the predetermined diameter ω. At this time, according to the magnitude of the diameter difference with respect to the predetermined diameter ω, it can be divided into two possibilities, that is, the diameter difference is between 〇 and the predetermined diameter ω, and the diameter difference τπ is between the predetermined diameter Between 1 and 兀. Sub-step 864 and sub-step 865 determine the two different appearances, respectively. 10 15 20 When the diameter difference e is between 0 and the predetermined diameter, the second type of image can be observed depending on the starting position of the magnetic element 71. Referring to FIG. 6 and FIG. 7 , the magnetic element 71 is rotated in a counterclockwise manner, and the first and second sensing elements 721 and 722 sequentially align the magnetic field index σ after the magnetic element 71 starts rotating. , σ,,, that is, before the Wei element 71, the fan-shaped range of the score of the predetermined diameter 1 is not mutually heavy L: the same-like phenomenon, the first-sensing (four) 721 is The magnetic element \ 疋 turns the magnetic field index C', and the second sensing element 722 further detects the 逵 magnetic % index σ, (corresponding to FIG. 6 that is, at the beginning of the magnetic element 71, a slight shift), a In the case of a dangerous ▲ turn, the radius difference m and the fan-shaped range of the predetermined degree ω are divided into two, and the phase difference 3 is smaller than that shown in the figure (°), which is at 2π/3. And the magnetic field index σ,, 疋 is only ω, that is, the S-small phase-to-phase secret value is larger, and the value of the second-order moving direction is smaller by the value of the reference FIG. 8 and FIG. 9 ' In the second type of image, the magnetic element 71 in the magnetic element #71 says that the element 722 first measures the magnetic field index = the second sensed % index σ' after the rotation, and then the first sense 13 ίο 15 20 1273391 The measuring element 721 sequentially measures the magnetic field to mean ", σ &quot;, and before the magnetic _ 71 starts to rotate, the diameter difference ^ _ 差 差 差 差 差 差 差The 屌裉ρ circumference of the book has been all or part of each other: the fan shape of the knife is slightly moved forward. In this position, the position of the vertical axis of the 8th class, in the image, the phase difference δ must be medium /3 Between the two. It is necessary to add all parameters to the 2π/3 and the 〇疋 〇疋 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ^ Different from the first-class image, the moving direction of the magnetic field index σ is the second phase with the larger value of the first value. . Therefore, in step 864, it is determined whether S is less than or equal to 1, and the tangential direction of the magnetic element 71 adjacent to the first, first π, β ϊ μ 感-sensing elements 721, 722 can be discerned. At the same time, in conjunction with step 868 - when 5 is less than 1, the tangential direction of the magnetic element adjacent to the first and second sensing elements 721, 722 is defined as a first tangential direction, and vice versa, with step 869 - when 6 is greater than _ Defining a tangential direction of the magnetic element 71 adjacent to the first and second sensing elements 721, 722 is a second tangential direction. The magnetic difference may also be related to the magnetic diameter when the difference between the predetermined diameter 1 and the redundancy is The starting position of the element 71 is subdivided into two types of current images. The first type of image is similar to the foregoing, except that since the imitation is larger than ω, the phase difference § will only be equal to the predetermined diameter ω. Similarly, compared with the foregoing, comparing FIG. 8 with FIG. 1〇, the first and second curves 725 and 726 in the two figures are identical, and the difference is only because the magnetic field index 选择 selected by the two is different, so the phase difference is now s must be between 0 and π-ω, and between 2π-ω-m and 2π-m. 需' must be quantified in the operation of the shell, so the above range needs 14 1273391 Substituting the unknown algebra m 〇 therefore, step 865 - judgment Whether the breaking δ is equal to ω, the tangential direction of the magnetic element 71 adjacent to the first and second sensing elements 721, 722 can be discriminated. At the same time, step 868 is matched. When δ is equal to (〇, the magnetic element 71 is defined adjacent to the first First, the tangential direction of the second sensing elements 721, 722 is the first tangential direction, and conversely, the matching step 869 - when 5 is not equal to 1, defines the magnetic element 71 adjacent to the first and second sensing elements 721 The tangential direction of 722 is the first--tangential direction. 10 15 20 See Figure 5, step 87 is to convert the known tangential direction of the magnetic element 7 to the direction of rotation. In the preferred embodiment, the first The direction of the line is the counterclockwise direction indicated by the arrow on Figure 7, and the direction of the second tangential line is the clockwise direction. In practical applications, the direction of rotation can be defined according to the operator's needs. Referring to Figure 6, Figure 8, Figure 10 or Figure η, step 88 is to convert the first curve 725 or the 篦-oil green. The end phase of the line 726 is the rotation angle α. Terminating two = unexisting elements - Therefore, steps 80 to 89 can be counted as 瞀屮 铋 & &lt; Turn to other factors such as turning. People's speed, rotation angle, c, and tea. Figure 12, the rotation factor of the non-conducting motor of the present invention, Ye Zengfang, the editor of the device, the second method of the method The processing module 63 (g @ 1+ yoke example is also performed by the w < see Fig. 4), but the embodiment 1 is in the preferred embodiment. Therefore, the following is the first - The sensing 15 5 10 15 20 1273391 element 721 (see FIG. 3) is taken as an example. However, in the practical application, the second sensing element 722 (see FIG. 3) can also be used, and the second calculation method of the twiddle factor is used. The preferred embodiment comprises the following steps: Step 90 - is to provide a magnitude phase comparison table, that is, at . Within, all phases and their corresponding Halls are celebrated. The magnitude phase pair is only related to the magnetic component 71 and the sensing component group 72 (see FIG. 3), so that the feeding machine motor with the non-contact angle sensing and monitoring can be used in the present invention. (4) Built in the treatment (4) 63 (see Fig. 4), it can also be re-matched with reference to Fig. 13 when the motor is first invented for the non-contact angle sensing monitoring device. Step 91 - the magnetic element 7 Angle α and record the direction of rotation. Λ Step 92— Record the magnitude of the magnetic field measured by the first sensing element # 721. In a continuous manner, the processing module 63 (see the Hall-Electrical Device outputted by the first sensing element 721 records the step 93 - records the magnetic field micro-eight denier value measured by the first sensing ... 21 In a continuous manner, the processing module 63 can be differentiated by the result of the processing module 63 (see: %), or can be performed by the Hall voltage v of the monitoring module 2 _ a sensing-output micro = 乂Recorded by the processing group 63 (see Fig. 4). Referring again to Fig. 14, step 94 - matching the Hall voltage ^ comparison table, and the direction of rotation of the magnetic element 71 can determine the possible phase start phase, such as the starting phase For the 磁, according to the magnetic direction, the self-starting rotation direction can respectively define a positive value phase comparison 4 727 and: the same: 16 1273391 value phase comparison table 728, and find the two phases by comparing the positive value phase comparison table 727 Corresponding: 22 and 2 in the &quot;Hai negative value phase comparison table 728 find V, 1,, 。 θ j is - the corresponding relative voltage ν,,,, 5 10 15 20 to the positive $ value Phase comparison table 7 The direction of rotation of the component η is positive, I, that is, the magnetic to possible position ψ, ψ,. V, "&quot; has step 95 - the relative voltage ν - has a voltage V, has - a second slope 74, - the soil needle, and the relative step 92, a 10 good mutual positive and negative values. Comparison step In addition, the absolute phase can be obtained step by step. In addition, the above is only a good calculation method of the rotation factor of the motor of the present invention with non-contact angle measurement monitoring. Familiar with the simple associations that can be made by those skilled in the art: Step: The parameters of the method are defined as known, so that the calculation steps can be simplified to achieve the same purpose as the above calculation method. In summary, the present invention has non-contact. The angle sensing monitoring is simple, and the non-contact angle sensing monitoring device 7: the sensing angle of the rotation and the number of rotations of the sensing and monitoring are unrestricted sensing monitoring mode. The invention has non-contact The rotation factor calculation method of the servo motor of the angle sensing monitoring device does not need to cooperate with an additional mechanical structure, but only the first and second sensing elements 721, 722 can be used to calculate the rotation speed, the rotation angle α, and the steering, etc. Rotation factor, and The invention has the limitation of the range. Therefore, the servo motor with the non-contact angle sensing monitoring device of the present invention and the calculation method of the twiddle factor can achieve the effect of the invention. However, the above description is only the preferred embodiment of the present invention. To § not 17 1273391, in the scope of the implementation of the present invention, that is, the simple equivalent changes made by the patent application scope and the description of the invention are within the scope of the patent of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective assembled view of a conventional servo machine; FIG. 2 is a perspective assembled view of a preferred embodiment of a servo motor having an angle sensing monitoring rotating device of the present invention; FIG. 3 is a preferred embodiment of the present invention. Figure 4 is an electronic block diagram of the preferred embodiment; Figure 5 is a flow chart of a first preferred embodiment of a twiddle factor calculation method using the preferred embodiment; Figure 6 is a first preferred embodiment The theoretical diagram of the example illustrates that the difference in diameter is less than a predetermined diameter; 15 is a schematic view of the position of the first preferred embodiment, and the correlation of the detailed components of a sensing monitoring device is described with reference to FIG. Position: Figure S is a theoretical diagram similar to Figure 6, indicating that the difference in diameter is less than the predetermined diameter; Figure ί is a schematic view similar to Figure 7, with reference to Figure 8 illustrating the relative position of the detailed components of the sensing monitoring device 20 is a theoretical diagram similar to that of FIG. 6, illustrating that the difference in diameter is greater than the predetermined diameter; FIG. 11 is a theoretical diagram similar to that of FIG. 6, illustrating that the difference in diameter is equal to the predetermined diameter; FIG. The rotation factor calculation method of the preferred embodiment is a second embodiment of the first embodiment of the invention. FIG. 13 is a schematic diagram of the position of the second preferred embodiment; and FIG. 14 is a theoretical diagram of the second preferred embodiment.

19 1273391 【主要元件符號說明】 4 .............定子 5 .............轉子 6 .............控制裝置 61 ...........操作模組 62 ...........監測模組 63 ...........處理模組 64 ............驅動模組 7 .............角度感測監測裝置 71 ...........磁性元件 72 ...........感測元件組 721 ..........第一感測元件 722 ..........第二感測元件 723 ..........第一連線 724 ..........第二連線 725 ..........第一曲線 726 ..........第二曲線 727..........正量值相位對照表 728..........負量值相位對照表 80〜89......步驟 90〜95 ......步驟 α.............旋轉角度 ω.............預定徑度 w ............徑度差 σ、σ ’、σΜ磁場指標 φ.............第一相位 φ.............第二相位 δ.............相位差 ν.............霍爾電壓 V’、V’’ .....相對電壓 V’’’、V…相對電壓 ψ、Ψ,......相位 2019 1273391 [Description of main component symbols] 4 ............. Stator 5 .............Rotor 6 ........... .. control device 61 ...........operation module 62 ........... monitoring module 63 ........... processing module 64 ............Drive Module 7 . . . Angle Sensing Monitoring Device 71 ........... Magnetic Element 72 . ..... sensing element group 721 ..... first sensing element 722 .......... second sensing element 723 ... .......The first connection 724 ..........The second connection 725 ..........The first curve 726 ......... The second curve 727..........positive value phase comparison table 728..........negative value phase comparison table 80~89...step 90~ 95 ...Step α.............Rotation angle ω.............Predetermined diameter w ........ .... diameter difference σ, σ ', σ Μ magnetic field index φ............. first phase φ............. second phase δ .............phase difference ν............. Hall voltage V', V'' ..... relative voltage V''', V...relative voltage ψ, Ψ, ... phase 20

Claims (1)

1273391 十、申請專利範圍: 1 ·種具非接觸式角度感測監測裝置之伺服馬達,可依自外 郤輸入的刼作信號而作動,該伺服馬達包含: 一定子; 一轉子,相對該定子繞自身軸線旋轉; 一角度感測監測裝置,包括一與該轉子與定子1中之 :連動的磁性元件’及一與該轉子與定子其中另一連動的 感測兀件la,藉此使相對該感;則元件組 繞-基線並與該轉子同步旋轉,且該感測元件組詩= °亥磁性凡件所產生的磁場變化;及 &gt; 。控制裝置,用於接受該角度感測監測裝置輸出的回 饋心虎JE比較回饋訊號與外部操作信號以決定輸出至該 轉子的驅動訊號。 :據申明專利靶圍第i項所述之具非接觸式角度感測監測 ^置之词服馬達,其中,該感測元件組包括分別用於感測 :亥:场週期變化的_第一感測元件及一第二感測元件,且 5亥弟一感測元件與該基線的連線,及該第二感測元件與該 基線的連線之間的夾角小於1 80度。 3.依據中請專利範圍f 2項所述之具非接觸式角度感測監測 裝置之伺服馬達,其中,該第一、第二感測元件分別為一 可輸出反應磁場之霍爾電壓的霍爾元件。 4·料申請專利範圍第2項所述之具非接觸式角度感測監測 ^置之飼服馬達’其中’該第-感測元件與該基線的連 線及忒第一感測元件與該基線的連線之間的夹角為9〇 21 1273391 度。 5 ·依據申請專利範圊箆j 靶園弟1項所述之具非接觸式角度感測監測 裂置之飼服馬達,並Φ,分式、、日丨- ” 5亥感測凡件組包括一用於感測該 磁場週期變化的感測元件。 6·依據申請專利範圍帛5項所述之具非接觸式角度感測監测 ?之飼服馬達’其中,該感測元件為一可輸出反應磁場 之霍爾電壓的霍爾元件。 7·依射請專利範㈣i項所述之具非接觸式角度感測監例 裝置之伺服馬達’其中’該磁性元件為一環形永久磁鐵。 8 ·依據申請專利範圍第1項所述且 ^ 0β ^ ^ /、非接觸式角度感測監测 裝置之飼服馬達,其中,該控制農置包括一用於接受該角 度感測監測裝置的回饋訊辞的 川鏆λ唬的&amp;測模組,及一用於輸 動5虎至該轉子的驅動模組。 9. -種具非接觸式角度感測監測裝置之饲服馬達的旋轉因子 計异万法,其中,該角度感測監測裳置包括— 二產ΐ磁:變化的磁性元件,及分別用於感測該:場: 、弟感測凡件及一第二感測元件,且 件與該基線的連線,及該第二感 ^ 70 。、彳7L件兵基線的連線 夾角小於180度,並定義一相當 、曰 旋轉因子計算方法包含下列步驟: 度该 a) 使該磁性元件旋轉一旋轉角产· b) 記錄該第一、第二感測元件測得的磁場變化. 〇選取—磁場指標,且該磁場指標介於| 場變化之最大最小值之間; )〒的磁 22 1273391 d)。己錄.亥第_感〈則元件測得誃 ew? ^ ^ ^ 兹%指標的相位; _该弟二感測元件 诚本抓 兹%指標的相位;及 〇依據步驟d)及步驟e)的 及 因子。 σ果判断該磁性元件的旋轉 10.依據申請專利範圍第9項 裝置之饲服馬達的旋轉因子計算方:妾二, 下列判斷該磁性元件的旋轉方向的子步驟.,4f)包括 f-ι)計算步驟d)及步驟e)的差值; f-2)判斷步驟叫的結果是否不為零; )車又4 f])的結果是否大於該預定徑度; „ )-據乂驟f_3)的結果決定該磁性元件鄰近該第-、 弟二感測元件的切線方向;及 f-5)換算步驟f_4)的結果為該磁性元件的旋轉方向。 11 ·依據申請專利範圚筮Q 狀里 弟 員所述之具非接觸式角度感測監冽 衣置之伺服馬達的旋轉因子計算方法,其中,步驟d)更包 括比對·準值與該第一感測元件測得的量值,且步驟 更G括比對礼準值與該第二感測元件測得的量值。 ^據u利關第9項所述之具非接觸式角度感測監剛 $置之伺服馬達的旋轉因子計算方法’其中,步驟d)更包 括比對6亥才示準值與該第一感測元件測得的微分量值,且步 驟e)更包括比對该標準值與該第二感測元件測得的微 值。 13·依據申請專利範圍第9 裝置之伺服馬達的旋轉 工員所述之具非接觸式角度感測監消|J 因子計算方法,更包含步驟g)換算 23 1273391 磁場變化的相位為旋轉角度。 14 15 16. 據申請專利範圍第13項所述之具非接觸式角度感測監測 I置之伺服馬達的旋轉因子計算方法,更包含步驟h)換算 旋轉角度為轉速。 .種具非接觸式角度感測監測裝置之伺服馬達的旋轉因子 計算方法,其中,該角度感測監測裝置包括一繞一基線旋 轉以產生磁%變化的磁性元件,及—用於感測該磁場變化 勺感測元件,s玄旋轉因子計算方法包含下列步驟: g) 使該磁性元件旋轉一旋轉角度; h) 記錄該感測元件測得之磁場的量值; 〇記錄該感測元件測得之磁場的微分值;及 j)依據步驟h)及步驟i)的結果判斷該磁性S件的旋轉 依據申請專利範圍第1 $ ^ 項所述之具非接觸式角度感測監測 衣置之伺服馬達的旋轉闵 轉因子計算方法,其中,步驟j)包括 下列判斷該磁性元件絕對' t的相位的子步驟: j-Ι)依據步驟h)判斷 % 4磁性兀件在360度以内可能的 相位;及 ^ j-2)自該等可能位f A ι *中,依據步驟i)判斷絕對的相 位0 241273391 X. Patent application scope: 1 · A servo motor with a non-contact angle sensing monitoring device can be actuated according to a signal input from the outside, the servo motor comprises: a stator; a rotor, opposite to the stator Rotating about its own axis; an angle sensing monitoring device comprising: a magnetic element associated with the rotor and the stator 1 and a sensing element la coupled with the other of the rotor and the stator, thereby making the relative The sense; then the component group wraps around the baseline and rotates synchronously with the rotor, and the sensing component group changes the magnetic field generated by the magnetic component; and &gt;. And a control device configured to receive the feedback signal outputted by the angle sensing monitoring device and the external operation signal to determine a driving signal output to the rotor. According to the invention, the non-contact angle sensing monitoring device described in the item i of the patent target includes the motor for sensing, wherein the sensing element group includes _first for sensing: The sensing element and a second sensing element, and the line connecting the sensing element to the baseline and the line connecting the second sensing element to the baseline are less than 180 degrees. 3. The servo motor of the non-contact angle sensing monitoring device according to the scope of claim 2, wherein the first and second sensing elements are respectively a Hall voltage capable of outputting a reaction magnetic field. Element. 4. The non-contact angle sensing monitoring described in item 2 of the patent application scope is provided with a feeding motor "wherein the connection of the first sensing element to the baseline and the first sensing element and the The angle between the lines of the baseline is 9〇21 1273391 degrees. 5 · According to the patent application Fan Yi j target garden brother 1 non-contact angle sensing to monitor the split feeding motor, and Φ, fraction, day, 丨 - ” Included in the sensing element for sensing the periodic variation of the magnetic field. 6. The feeding motor of the non-contact angle sensing monitoring according to the scope of the patent application 帛 5, wherein the sensing element is A Hall element capable of outputting a Hall voltage of a reaction magnetic field. 7. A servo motor having a non-contact angle sensing monitoring device as described in item (4), wherein the magnetic element is a ring-shaped permanent magnet. 8 . The feeding motor according to claim 1 and the 0 0β ^ ^ /, non-contact angle sensing monitoring device, wherein the control farm includes a receiving device for receiving the angle sensing monitoring device The feedback module of the Sichuan-Yunnan 鏆, and a drive module for transporting the 5 tigers to the rotor. 9. - Rotation of the feeding motor with a non-contact angle sensing monitoring device The factor measurement method is different, wherein the angle sensing monitoring device includes: The second magnetic field: a varying magnetic component, and is used to sense the field: the field sensor, the sensor device and a second sensing component, and the connection of the component to the baseline, and the second sense.彳7L 兵兵 baseline connection angle is less than 180 degrees, and defines a equivalent, 曰 twiddle factor calculation method includes the following steps: Degree a) the magnetic element rotates a rotation angle production b) record the first, The change of the magnetic field measured by the second sensing element. 〇Select—the magnetic field index, and the magnetic field index is between the maximum and minimum values of the | field change; ) 〒 magnetic 22 1273391 d). Recorded. Haidi _ Sense Then the component measures 誃ew? ^ ^ ^ The phase of the % indicator; _ the second sensing element is the phase of the % index; and 〇 according to the factors of step d) and step e). Rotation of the magnetic element 10. Calculation of the twiddle factor of the feeding motor according to the device of claim 9: sub-step, sub-step of determining the direction of rotation of the magnetic element, 4f) including f-ι) calculation step d And the difference of step e); f-2) judge whether the result of the step is called Zero); whether the result of the vehicle 4 f]) is greater than the predetermined diameter; „)- the result of the step f_3) determines the tangential direction of the magnetic element adjacent to the first and second sensing elements; and f- 5) The result of the conversion step f_4) is the direction of rotation of the magnetic element. 11 · According to the application of the patent application, the non-contact angle sensing method of the servo motor of the steering gear is calculated according to the method of applying for a patent, wherein step d) further comprises comparison and quasi-value and The magnitude of the first sensing component is measured, and the step further includes comparing the magnitude of the alignment with the magnitude of the second sensing component. ^ According to the non-contact angle sensing according to item 9 of the Uliguan, the calculation method of the rotation factor of the servo motor is set. [Step d) further includes comparing the value of the 6 haibo with the first sense. The component value measured by the component is measured, and step e) further includes a micro value measured relative to the standard value and the second sensing component. 13. The rotation of the servo motor according to the device of the ninth application of the patent application. The non-contact angle sensing monitoring method described by the worker | J factor calculation method, further including step g) conversion 23 1273391 The phase of the magnetic field change is the rotation angle. 14 15 16. According to the scope of application No. 13, the non-contact angle sensing monitoring method of the servo motor is calculated by the twiddle factor, and the step h) is to convert the rotation angle to the rotation speed. a method for calculating a twiddle factor of a servo motor with a non-contact angle sensing monitoring device, wherein the angle sensing monitoring device includes a magnetic element that rotates around a baseline to generate a magnetic % change, and - for sensing The magnetic field change spoon sensing element, the s Xuan twiddle factor calculation method comprises the following steps: g) rotating the magnetic element by a rotation angle; h) recording the magnitude of the magnetic field measured by the sensing element; 〇 recording the sensing element The differential value of the obtained magnetic field; and j) judging the rotation of the magnetic S piece according to the results of step h) and step i) according to the non-contact angle sensing monitoring clothing according to the patent application scope 1 A method for calculating a rotation turn factor of a servo motor, wherein the step j) comprises the following substeps of determining the phase of the absolute value of the magnetic element: j-Ι) determining that the magnetic component of the % 4 is within 360 degrees according to step h) Phase; and ^ j-2) From these possible bits f A ι *, determine the absolute phase 0 24 according to step i)
TW93140774A 2004-12-27 2004-12-27 Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof TWI273391B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93140774A TWI273391B (en) 2004-12-27 2004-12-27 Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93140774A TWI273391B (en) 2004-12-27 2004-12-27 Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof

Publications (2)

Publication Number Publication Date
TW200622595A TW200622595A (en) 2006-07-01
TWI273391B true TWI273391B (en) 2007-02-11

Family

ID=38621499

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93140774A TWI273391B (en) 2004-12-27 2004-12-27 Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof

Country Status (1)

Country Link
TW (1) TWI273391B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403871B (en) 2010-10-25 2013-08-01 Ind Tech Res Inst Feedback switching device and method for servo motor driving
TWI469503B (en) * 2012-02-24 2015-01-11 Foxnum Technology Co Ltd Absolute place recording devcie for motors
TWI460414B (en) * 2012-09-12 2014-11-11 Non - contact steering sensing method and device
CN111831000A (en) * 2019-04-16 2020-10-27 北海燕航慧程智能科技有限公司 ROV automatic posture stabilizing device and ROV

Also Published As

Publication number Publication date
TW200622595A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
JP4260223B2 (en) Operating device
CN102047079A (en) Turning angle detecting device
CN107919830A (en) The scaling method and device of a kind of motor position sensor
CN108196213A (en) Zero-bit angle test device, the method and system of a kind of rotary transformer
CN107070102A (en) The motor control method of motor, miniature head and miniature head
JPS6243426B2 (en)
WO2005028993A1 (en) Steering angle sensor
JP4034691B2 (en) Rotation angle sensor
TWI273391B (en) Servo motor having non-contact angular sensing apparatus and method for calculating twiddle factor thereof
CN211429147U (en) Rotary-transformation zero-adjusting system for permanent magnet synchronous motor
JPH0293321A (en) Relative displacement detector
CN206640471U (en) Motor and miniature head
JP2733504B2 (en) Multi-rotation position detector
FR3088717A1 (en) DETECTION SYSTEM FOR STEERING A VEHICLE FOR MEASURING TORQUE AND ABSOLUTE MULTI-TURN ANGLE
JPH11122984A (en) Device and method for motor control
CN107294436B (en) For demarcating the method and control device of motor
JP2006214969A (en) Resolver
JPH10288537A (en) Variable reluctance type resolver
JP3429464B2 (en) Variable reluctance angle detector
JP4028294B2 (en) Rotation sensor
JPH02264306A (en) Motor drive system
WO2001071288A1 (en) Torsional quantity measuring device
JP2002039795A (en) Resolver and method for detecting breakage of wire in the same
JP2007114074A (en) Variable reluctance type resolver
TW488125B (en) Method for measuring the sensitive electromotive force to verify the quality of rotator magnetization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees