TWI263680B - Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack - Google Patents

Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack Download PDF

Info

Publication number
TWI263680B
TWI263680B TW092113085A TW92113085A TWI263680B TW I263680 B TWI263680 B TW I263680B TW 092113085 A TW092113085 A TW 092113085A TW 92113085 A TW92113085 A TW 92113085A TW I263680 B TWI263680 B TW I263680B
Authority
TW
Taiwan
Prior art keywords
weight
chromium
nickel
alloy
molybdenum
Prior art date
Application number
TW092113085A
Other languages
Chinese (zh)
Other versions
TW200401037A (en
Inventor
Paul Crook
Original Assignee
Haynes Int Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haynes Int Inc filed Critical Haynes Int Inc
Publication of TW200401037A publication Critical patent/TW200401037A/en
Application granted granted Critical
Publication of TWI263680B publication Critical patent/TWI263680B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Catalysts (AREA)
  • Soft Magnetic Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A nickel-chromium-molybdenum alloy that is thermally stable and resistant to wet process phosphoric acid and chloride induced localized attack contains in weight percent 31.0 to 34.5% chromium, 7.0 to 10.0% molybdenum, up to 0.2% nitrogen, up to 3.0% iron, up to 1.0% manganese, up to 0.4% aluminum, up to 0.75% silicon, up to 0.1% carbon with the balance nickel plus impurities.

Description

1263680 玖、發明說明: [技術領域] 本發明大體上係關於非鐵金屬合金,且更明確地說,係 關於可鈑k之鎳合金,其含有大量鉻及鉬與必要的微量元 素,所以可成功地進行熔化及鍛造加工,且由於有計劃地 添加氮,所以可增強該鎳合金之高抗濕式方法磷酸及高抗 由氯引起之局部侵蝕(孔蝕及裂隙腐蝕)性。 [先前技術] 肥料製備 < 一項重要步驟為磷酸之製造及濃縮。一般而 ^,邊酸之製法為使磷酸鈣石與硫酸反應,產生通常所謂的 濕式方法磷酸。藏所形成“濕式方法,,磷酸含有微量硫酸及 其得自該磷酸鈣石之其它雜質(例如,氯化物),這些雜質可 增加其腐蝕性。 為了專心於该“濕式方法”磷酸,必需採用幾種蒸發階段。 通常自沃斯田鐵系不銹鋼或鎳_鐵合金製造蒸發器管,該合 至之路含量範圍為約28至30重量〇/❶,例如,G_3〇合金(美國 專利第4,410,489號),合金31(美國專利第4,876,〇65號)及合 金28。在這些合金中,銅為必要成份。用於全部蒸發階段時, 這些商用材質對於“濕式方法,,磷酸或由氯引起之局部侵蝕 具有不合適之抗性,因此,不得不使用非金屬材質,導致 堅固性的犧牲。 由於知道有益於該沃斯田鐵系不銹鋼及鎳_鐵合金之“濕 式方法”磷酸抗性,所以可涵蓋具高鉻含量之材質。然而, 熱安定性已成為一種限制因素。簡言之,最好在此種材質 85275.doc 1263680 内維持該面心立方原子結構,且在鍛造加工或焊接時,過 度合金會導致有害第二相之形成,並合損 ,、a偵¥延性及抗蝕 性。因此,迄今,在計劃用於“渴式方法,,蹯、 .、八乃古斛馱 < 鍛造合金 内,並不適用高鉻含量’所以有必要包含可增強局部抗姓 性之非銘·之合金元素。 就熱安定性而言,熟知,例如,鉻及鉬元素(其可強烈影 響抗“濕式方法,,磷酸及抗由氯引起之局部侵蝕性在^中' = 在沃斯田鐵系不銹鋼中更容易溶解。若鐵含量低時术鎳合 金内當然可以有較高合金含量。因此,某些低-鐵鎳合金(其 鉻含量超過30重量%,並添加大量鉬)之存在並不令人驚訝。 美國專利第5,424,029號揭示此種合金系,儘管這些合金 需要添加鎢,其添加量在1至4重量%範圍内。美國專利第 5’424,029號陳述此種合金具有優異的抗各種介質性,然而 並未講述其抗“濕式方法,,磷酸性。尤其,其陳述不含鎢會導 致腐蝕速率明顯增快。該專利並未稱呼氮為添加物。 揭不具有鉻含量超過30重量%之抗蝕鎳合金之另一項參 考貝料為美國專利第5,529,642號,然而該較佳鉻含量為17 至22重量%,且全部組合物需要^至8重量%姮。美國專利 第5,529,642號要求添加介於〇 〇〇〇1與〇1重量。/〇之間之氮。 雖然全部這些先前技藝合金為有用的抗蝕合金,但是該 銅’鹤或赵之含量會減少熱安定性,因此,會使鍛造加工 及~接變複雜。然而,該先前技藝認為這些元素為最佳抗 名虫性所必需。事實上,銅被視為G-30合金,合金31及合金 28之必要成份。 85275.doc 1263680 其它兩項美國專利第4,778,576號及第4,789,449號揭示 可作為電化學電池之陽極之鎳合金,其具廣範圍的鉻(5至 重里及J目(3至25重量%)含量。這兩種專利較佳主張自 C-276合金(其含有16重量%絡及16重量%鉬)製成之陽極之 專利。這些專利中並未強調氮含量。這些專利報告自該合 金製成之電極在含氯根離子之水性驗介質中及在濃鹽酸 溶液中具抗蝕性。但是,美國專利第4,4 1〇,489號所報告之 資料顯示在磷酸内,該合金之抗蝕性並不能令人滿意。 [發明内容] 本發明之主要目的為提供比先前合金更高合併抗“濕式 方法”磷酸及抗由氯引起之局部侵银之新合金,其不需要故 意添加會減少熱安定性之鎢,姮或銅。 頃發現可藉由添加鉻,鉬及必要的微量元素至鎳内(其添 加量在某固定較佳範圍内)達成上述目的。雖然已預期在空 氣熔化時,氮會被吸收至該合金内,但是氮亦為較佳添Ζ 物。明確地說,較佳添加量範圍為31〇至34·5重量%鉻,7 〇 至10·0重量%鉬,多至〇.2重量%氮,多至3 〇重量%鐵,多 至:L0重量%錳,多至〇.4重量%鋁,多至〇//5重量%矽,= 至(Μ重量。/。碳,最佳範圍為32·5至34〇重量%鉻,人5至^6 重量%鉬,多至0.15重量%氮,多至15重量%鐵,〇1至〇 * 重量%錳,0.2至0.4重量%鋁,多至〇·5重量%矽,多至 重量%碳。 亦頃發現這些合金對於可能自其它抗蝕性鎳合金熔化 時所產生之雜質(特別為銅,多至0.3重量%)及鎢(多至 85275.doc 1263680 多至5重量%鈷以配代鎳。已預期 4凡’鈇)對於這些材質之一般特 重量%)具耐受性。可使用 少量其它雜質(例如,起 性幾乎沒有影響。 [實施方式] 上述界足的組成範圍之發現包括幾 並測試具有各種路,鉬,如1入s、 * 、 目銅含K幾種實驗用含銅合金。 其結果顯示就抗“濕式方、本,,采A 、 、万去磷鉍而j,鉻為最佳元素,且 在該環境下改良該現有鉍所—从处α Λ、 才貝之性月匕所必系之絡含量超過 3 0重量% 〇 在第一 Ρ“又内化並測試不含銅之合金·令人驚訝的 是,該試驗結果顯示於約33重量%路含量下,$需要銅即 可具咼抗“濕式方法’’磷酸性。而且,已發現在不需要添加 銅且只含約i重量%鐵之情況下,可添加約δ重量,仍 能維持良好熱钱性。此可產生高M U起之局部侵 lb在第二階段内’進行實驗以確定該合金系之上限及下 限,並研%氮及已預料雜質之影響。咸信由於氮之天然溶 解性’若該合金在空氣中溶化,貝^出現氮。在使用以溶 化各種合金之爐中常見來自雜質之污染。 與本發明有關的各該實驗合金之組成分析(以重量%表 示)以鉻含量增加之順序示於表丨中。鉻,鉬及氮被視為主 要合金元素。鐵,錳,鋁,矽,碳被視為必要元素(為該熔 化及再熔化操所必冩,但非絕對必要)。銅及鎢被視為雜質。 EN2201表示本發明基本組成,熔化en53〇i以調查該鉻 範圍之低限,熔化ΕΝ2ΗΠ以調查該鉬範圍之低限,並熔化 85275.doc 1263680 EN7 101以調查該範圍之上限。熔化EN5601以研究氮對於 該基本組成之影響。熔化EN5501以研究高鐵含量及潛在雜 質,銅及鎢之存在對於該基本組成之影響。熔化EN5401 以研究不含較高含量必要元素及雜質,該高鉻及鉬含量之 影響。未添加銅或鎢至 EN5301,EN2201,EN5 601,EN2101 或EN5401内,所以所偵測各該含量為雜質含量。 ^_11263680 玖, INSTRUCTION DESCRIPTION: [Technical Field] The present invention relates generally to non-ferrous metal alloys, and more particularly to nickel alloys of 钣k, which contain a large amount of chromium and molybdenum and necessary trace elements, so The melting and forging processes are successfully carried out, and since the nitrogen is planned to be added, the high-wet-resistance method of the nickel alloy and the high resistance to local corrosion (pore and crevice corrosion) caused by chlorine can be enhanced. [Prior Art] Fertilizer Preparation < An important step is the production and concentration of phosphoric acid. In general, the method of preparing the acid is to react the calcium phosphate with sulfuric acid to produce a so-called wet process phosphoric acid. The reservoir forms a "wet method, which contains traces of sulfuric acid and other impurities derived from the calcium phosphate (eg, chloride) that increase its corrosivity. To concentrate on the "wet method" of phosphoric acid, It is necessary to use several evaporation stages. The evaporator tubes are usually manufactured from Worthite iron-based stainless steel or nickel-iron alloy, and the combined route is in the range of about 28 to 30 weights ❶/❶, for example, G_3 〇 alloy (US Patent No. No. 4,410,489), Alloy 31 (U.S. Patent No. 4,876, No. 65) and Alloy 28. Among these alloys, copper is an essential component. When used in all evaporation stages, these commercial materials are used for "wet methods, phosphoric acid or by Partial erosion caused by chlorine has unsuitable resistance, so non-metallic materials have to be used, resulting in a sacrifice of robustness. A material with a high chromium content can be covered because it is known to be beneficial to the "wet method" phosphate resistance of the Vostian iron-based stainless steel and nickel-iron alloy. However, thermal stability has become a limiting factor. In short, it is best to maintain the face-centered cubic atomic structure in this material 85275.doc 1263680, and in the forging process or welding, excessive alloying will lead to the formation of harmful second phase, and damage, a detect Ductility and corrosion resistance. Therefore, so far, it is planned to use "thirsty method, 蹯, ., 八, 斛驮 斛驮 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻 锻Alloying elements. In terms of thermal stability, it is well known, for example, chromium and molybdenum elements (which can strongly influence the resistance to "wet methods, phosphoric acid and resistance to local aggressiveness caused by chlorine in ^" = in Vostian It is easier to dissolve in iron-based stainless steel. If the iron content is low, the nickel alloy can of course have a higher alloy content. Therefore, some low-iron-nickel alloys (with a chromium content of more than 30% by weight and a large amount of molybdenum) exist. It is not surprising. U.S. Patent No. 5,424,029 discloses such alloys, although these alloys require the addition of tungsten in amounts ranging from 1 to 4% by weight. U.S. Patent No. 5,424,029 states that such alloys are excellent. Resistant to various media properties, but does not describe its anti-wet method, phosphoric acid. In particular, it states that the absence of tungsten will lead to a significant increase in corrosion rate. This patent does not call nitrogen as an additive. ultra Another reference material for the 30% by weight of the resist nickel alloy is U.S. Patent No. 5,529,642, however, the preferred chromium content is 17 to 22% by weight, and the total composition requires from 2 to 8% by weight. No. 5,529,642 requires the addition of nitrogen between 〇〇〇〇1 and 〇1 weight./〇. Although all of these prior art alloys are useful resist alloys, the copper 'he or zhi content will reduce heat stability. Sex, therefore, will make forging processing and complexing. However, this prior art considered these elements to be necessary for optimal resistance to insects. In fact, copper is considered as G-30 alloy, alloy 31 and alloy 28 85275.doc 1263680 Two other US patents Nos. 4,778,576 and 4,789,449 disclose nickel alloys which can be used as anodes for electrochemical cells with a wide range of chromium (5 to cc and J to 3 to 25% by weight) The two patents preferably claim a patent from an anode made of a C-276 alloy containing 16% by weight and 16% by weight of molybdenum. These patents do not emphasize the nitrogen content. These patents are reported from the alloy. Made electrode The aqueous test medium containing chloride ions is corrosive in concentrated hydrochloric acid solution. However, the data reported in U.S. Patent No. 4,41,489 shows that in the phosphoric acid, the corrosion resistance of the alloy cannot be [SUMMARY OF THE INVENTION] The main object of the present invention is to provide a new alloy which is more resistant to "wet method" phosphoric acid and to localized silver intrusion caused by chlorine than prior alloys, which does not require deliberate addition to reduce heat stability. Tungsten, tantalum or copper. It has been found that this can be achieved by adding chromium, molybdenum and the necessary trace elements to the nickel (the amount of which is added within a fixed range). Although it has been expected to be nitrogen during air melting. It will be absorbed into the alloy, but nitrogen is also a preferred additive. Specifically, the preferred addition amount ranges from 31 〇 to 34.5 wt% chromium, 7 〇 to 10·0 wt% molybdenum, up to 2.2 wt% nitrogen, up to 3 〇 wt% iron, up to: L0% by weight of manganese, up to 4.4% by weight of aluminum, up to 〇 / /5% by weight 矽, = to (Μ weight. /. carbon, the best range is 32. 5 to 34% by weight of chromium, person 5 To ^6 wt% molybdenum, up to 0.15 wt% nitrogen, up to 15 wt% iron, 〇1 to 〇* wt% manganese, 0.2 to 0.4 wt% aluminum, up to 〇·5 wt% 矽, up to wt% Carbon. These alloys have also been found to be suitable for impurities (especially copper, up to 0.3% by weight) and tungsten (up to 85,275.doc 1263680 to 5% by weight of cobalt) when melted from other resist nickel alloys. Nickel generation. It has been expected that 4% '鈇' is resistant to the general weight % of these materials. A small amount of other impurities may be used (for example, the onset has little effect. [Embodiment] The discovery of the composition range of the above-mentioned boundary foot includes several tests for various paths, molybdenum, such as 1 in s, *, and copper in the eye. The use of copper-containing alloys. The results show that it is resistant to "wet square, this, and A, 10,000, and phosphine, and chrome is the best element, and the existing sputum is improved in this environment - from the α才 之 之 性 匕 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必 必At the road level, $copper is required to resist the "wet method" phosphoric acid. Moreover, it has been found that when it is not necessary to add copper and only contains about i% by weight of iron, about δ weight can be added. Maintain good hot money. This can produce high MU local intrusion lb in the second stage 'test to determine the upper and lower limits of the alloy system, and study the effect of % nitrogen and expected impurities. Natural solubility 'If the alloy melts in the air, the shell appears nitrogen Contamination from impurities is common in furnaces used to melt various alloys. The compositional analysis (expressed in weight percent) of each of the experimental alloys associated with the present invention is shown in Table C in the order of increasing chromium content. Chromium, molybdenum and nitrogen It is regarded as the main alloying element. Iron, manganese, aluminum, niobium and carbon are regarded as essential elements (must be necessary for the melting and remelting operation, but not absolutely necessary). Copper and tungsten are regarded as impurities. EN2201 indicates this Inventing the basic composition, melting en53〇i to investigate the lower limit of the chromium range, melting ΕΝ2ΗΠ to investigate the lower limit of the molybdenum range, and melting 85275.doc 1263680 EN7 101 to investigate the upper limit of the range. Melting EN5601 to study nitrogen for this Effect of basic composition. Melt EN5501 to study the effect of high iron content and potential impurities, the presence of copper and tungsten on this basic composition. Melt EN5401 to study the effect of high chromium and molybdenum content without high levels of essential elements and impurities. No copper or tungsten is added to EN5301, EN2201, EN5 601, EN2101 or EN5401, so the content detected is the impurity content. ^_1

Ni Cr Mo Fe Mn A1 Si C N Cu W EN5301* BAL 31.7 7.6 1.1 0.2 0.24 0.27 0.04 <0.01 0.02 0.04 EN2201* BAL 32.7 8.1 1 0.29 0.24 0.34 0.04 <0.01 <0.01 N/A EN5601* BAL 32.8 8.1 1 0.24 0.21 0.29 0.04 0.18 0.02 0.04 EN2101 BAL 32.9 5.1 1 0.28 0.26 0.33 0.04 N/A <0.01 N/A EN5501* BAL 32.9 8.1 2 0.22 0.23 0.3 0.04 <0.01 0.34 0.65 EN5401* BAL 33.9 8.5 1.1 0.25 0.24 0.26 0.04 <0.01 0.02 0.04 EN7101 BAL 34.7 10.2 3 u 0.43 0.81 0.14 0.22 1.2 1.17 N/A =未經分析 *本發明合金 為了比較起見,亦測試G-3 0合金,合金3 1,合金2 8及 C-276合金。若必要,亦熔化並測試美國專利第5,424,029 號之較佳合金(合金A)及第5,529,642號之較佳合金(合金13) 與美國專利第5,529,642號之最密集合金(合金37)。這些先 前技藝合金之組成示於表2中。 1263680 表2Ni Cr Mo Fe Mn A1 Si CN Cu W EN5301* BAL 31.7 7.6 1.1 0.2 0.24 0.27 0.04 <0.01 0.02 0.04 EN2201* BAL 32.7 8.1 1 0.29 0.24 0.34 0.04 <0.01 <0.01 N/A EN5601* BAL 32.8 8.1 1 0.24 0.21 0.29 0.04 0.18 0.02 0.04 EN2101 BAL 32.9 5.1 1 0.28 0.26 0.33 0.04 N/A <0.01 N/A EN5501* BAL 32.9 8.1 2 0.22 0.23 0.3 0.04 <0.01 0.34 0.65 EN5401* BAL 33.9 8.5 1.1 0.25 0.24 0.26 0.04 <0.01 0.02 0.04 EN7101 BAL 34.7 10.2 3 u 0.43 0.81 0.14 0.22 1.2 1.17 N/A = not analyzed * The alloy of the present invention is also tested for G-3 0 alloy, alloy 3 1, alloy 2 8 and C for comparison -276 alloy. If necessary, the preferred alloy (Alloy A) of U.S. Patent No. 5,424,029 and the preferred alloy (Alloy 13) of No. 5,529,642 and the most dense alloy (Alloy 37) of U.S. Patent No. 5,529,642 are also melted and tested. The composition of these prior art alloys is shown in Table 2. 1263680 Table 2

Ni Cr Mo Fe Mn A1 Si C N Cu 其它 G-30 BAL 29.9 4.9 14 1.1 0.16 0.32 0.01 L5 Co:0.6 W:2.7 Nb:0.8 31 32 27 6.5 BAL 1.5 一 0.09 <0.01 0.19 1.3 - 28 30J 26.8 3.5 BAL L5 一 0.3 0.01 嗎 1.2 - C-276 BAL 15.6 15.4 6 0〇5 0.23 0.04 <0.01 0.02 〇e〇7 Co:1.5 W:4 V:0.15 A BAL 31 10.1 0.1 <0.01 0.25 0.02 0.03 <0.01 0.01 W:2.3 Nb:0.44 Ti:0.28 13 BAL 20.5 22.1 0.07 0.52 0.02 0.11 0.02 <0.01 <0.01 Ta:19 37 BAL 34.8 8.3 0.1 0.73 0.02 0.21 0.03 <0.01 <0.01 Ta:4.9 W:3.9 以50磅加熱大小,使各該實驗合金,美國專利第 5,424,02 9號及第5,529,642號之先前技藝合金先後經真空 感應熔化及電渣熔化。浸泡如此製成之鑄錠,然後於1204 °C下使其經鍛造並軋製。於鍛造及軋製時,美國專利第 5,529,642號之合金13及37碎裂的情形很嚴重,因此必須分 別被刮去2英寸及1 ·2英寸厚度。同樣,於锻造時,EN7 1 〇 1 碎裂的情形很嚴重,因此必須被刮去2英寸厚度。使已成 功軋製成具所要試驗厚度(0· 125英寸)之此等合金進行退 火試驗以決定最適合的退火處理方法。在全部情況中,於 H49°C下進行15分鐘,繼而經水淬火。於該製造者所主張 的條件(所謂“研磨退火”條件)下測試G_3〇合金,合金31, 合金28及C-276合金。 測試該實驗及先前技藝合金前,已確定於135^τ,54 重量%為“濕式方法,,磷酸(P2〇5)之顯著腐蝕濃度。因此,矸 85275.d〇, •10- 1263680 以於該環境中測試所有已成 氣製成0.125英寸厚度薄片 之合金及類似之商業八冬落 门系σ至溥片。不中斷地在壓埶器中進行 該試驗,費時96小時,就由聋u 2 … Τ 攻由鼠引起之局部侵蝕而言,使用 ASTM標準G 48-00方法c所定羞乏古 、 |疋我炙万法•其步驟包含於不 同溫度卜在6重量%氯化鐵(F ri 减I ell3)及1重f〇/o鹽酸(Ή(^)中進 行測試以決定該臨界孔韻γ 、、曰 蚀級度,於孩最低臨界孔蝕溫度 下,以72小時發生孔蝕現象。 二 豕 d试則,以手曆砰全部試樣 表面以使任何研磨潤飾作用失效。 測試之結果連同熱安定性之量度(亦即,電子空位數,Ni Cr Mo Fe Mn A1 Si CN Cu Other G-30 BAL 29.9 4.9 14 1.1 0.16 0.32 0.01 L5 Co: 0.6 W: 2.7 Nb: 0.8 31 32 27 6.5 BAL 1.5 A 0.09 < 0.01 0.19 1.3 - 28 30J 26.8 3.5 BAL L5 - 0.3 0.01 1.2 - C-276 BAL 15.6 15.4 6 0〇5 0.23 0.04 <0.01 0.02 〇e〇7 Co: 1.5 W: 4 V: 0.15 A BAL 31 10.1 0.1 <0.01 0.25 0.02 0.03 <0.01 0.01 W: 2.3 Nb: 0.44 Ti: 0.28 13 BAL 20.5 22.1 0.07 0.52 0.02 0.11 0.02 < 0.01 < 0.01 Ta: 19 37 BAL 34.8 8.3 0.1 0.73 0.02 0.21 0.03 < 0.01 < 0.01 Ta: 4.9 W: 3.9 The 50 lb. heating size allows the experimental alloys, prior art alloys of U.S. Patent Nos. 5,424,02, and 5,529,642 to be subjected to vacuum induction melting and electroslag melting. The ingot thus formed was immersed and then forged and rolled at 1204 °C. In the case of forging and rolling, the alloys 13 and 37 of U.S. Patent No. 5,529,642 are severely broken and must be scraped 2 inches and 1.2 inches apart, respectively. Similarly, in the case of forging, the breakage of EN7 1 〇 1 is severe and must be scraped off to a thickness of 2 inches. These alloys which have been successfully rolled into the desired test thickness (0.125 inch) are subjected to an annealing test to determine the most suitable annealing treatment method. In all cases, it was carried out at H49 ° C for 15 minutes, followed by water quenching. G_3 〇 alloy, alloy 31, alloy 28 and C-276 alloy were tested under the conditions claimed by the manufacturer (so-called "grinding annealing" conditions). Before testing the experiment and the prior art alloy, it was determined at 135^τ, 54% by weight for the "wet method, the significant corrosion concentration of phosphoric acid (P2〇5). Therefore, 矸85275.d〇, •10-1263680 All alloys that have been made into 0.125 inch thick sheets and similar commercial octagonal sigma to sputum were tested in this environment. The test was carried out without interruption in the press, which took 96 hours. u 2 ... Τ In the case of local erosion caused by rats, the ASTM standard G 48-00 method c is used to determine the shame, and the method is included in different temperatures at 6 wt% ferric chloride ( F ri minus I ell 3) and 1 weight f 〇 / o hydrochloric acid (Ή (^) were tested to determine the critical hole γ, 曰 级 grade, at the lowest critical pitting temperature of the child, 72 hours to occur Corrosion phenomenon. The second test is to test the surface of all the samples by hand to invalidate any grinding and refining effect. The test results together with the measure of thermal stability (ie, electronic vacancies,

Nv)示於表3中,基本上,本發明合金可提供高抗“濕式方法” 磷酸性(亦即於13 5°C下,在54舌-〇/ϋ ^ ^ 「在^4重1%卩2〇5中,腐蝕率為〇·35 毫米/碼或更小),高抗由氣引起之局部侵蝕性(亦即,當使 用ASTM標準方法G 48_GG方法(測試時,其臨界孔姓溫度大 於65°C)及容易鍛造加工之充份熱安定性(亦即,Nv值等於或 小於2·7)。除了合金A外,全部先前技藝合金在濕式方法鱗 酸中具較高腐蝕率。但是合金A含有2·3%鎢,如同該2 76Nv 值所示,其會使該合金更難作用。而且,美國專利第 5,424,029號表示在此種合金中,鎢含量必需為i至4%才能得 到令人滿意的抗蝕性。然而,令人驚訏的是,本發明該合 金不需要鎢即能得到良好抗蝕性結果。而且,合金£1^55〇1 證明可耐受多至0.65鎢,且不會不利地影響其可加工性。 如表3所述,於116°C下在46%Ρ2〇5中,本發明各該合金之 腐I虫率亦明顯低於美國專利第4,41〇,489號所述之C-276腐 I虫率(〇 · 4 4毫米/碼)。 85275.doc -11 - 1263680 表3 於135°C下在54% P2O5内之腐蝕率 (毫米/碼) 在 6%FeCl3+l%HCl 内 之臨界孔蝕溫度(°C ) Nv EN53011 0.35 75 2.55 EN22011 0.29 75 2.63 EN56011 0.28 >95 2.63 EN2101 .028 45 2。45 EN55011 0.33 85 2,7 EN54011 0.3 85 2.7 EN7101 不能加工 3.13 G-30 0.43 60 2.85 31 0.53 75 2.98 28 0.64 45 2.88 C-276 1.53 >95 2.63 A(專利 5,424,029) 0.34 >95 2.76 13(專利 5,529,642) 不能加工 3.01 37(專利 5,529,642) 不能加工 3.02 85275.doc -12 - 1 本發明各該合金 就該合金元素之一般作用的幾種觀測報告如下: 鉻(Cr)為主要合金元素。其可提供高抗“濕式方法”磷酸 性。該較佳鉻含量範圍為31.0至34.5重量%。在31.0重量% 以下,該合金之抗“濕式方法”磷酸性不足;超過34。5重量 %,則危害該合金之熱安定性。最佳鉻含量範圍為32.5至 34.0重量%。 鈿(Mo)亦為主要合金元素。其可提供高抗由氯引起之局 部侵I虫性,例如,裂隙腐!虫及孔蚀。該較佳鈿含量範圍為 7.0至10.0重量%。在7.0重量%以下,該合金之抗由氯引起 之局部侵蚀性不足;超過10.0重量%,則產生熱安定性問 題。最佳鉬含量範圍為7.5至8.6重量%。 1263680 氮(N)雖非絕對必要,但亦為主要合金元素,其可強烈地 增加抗由氯引起之局部侵蝕性。纟空氣熔化加埶中,已預 期^吸收至少0.03重量%β在較佳含量範圍内可添加額外, 數量’多至0.2重量%,或在更佳含量範圍内,可添加多至 二15重量%。使用真空熔化時,可得到很好的無氮合金, 實際上其係為漸漸引導至本發明之技術。在Μ重量%以 下,氣為锻造困難之主因。 鐵(Fe)為必要元素,其含量較佳多至3.0重量%,且更佳 多至2.0重量%。其係為可重複使用的經濟材冑,其大部份 ^有殘餘量之鐵。使用新的爐襯及高純度填充材質可製成 無鐵合金。於超過3.0重量%之含量下,鐵會引起熱不安定 性。 錳(Μη)亦為必要元素,其可用以控制硫,其含量較佳多 土丨.〇重里%,且更佳(使用電弧熔接,繼而進行氬_氧脫碳 作用)在0.1至〇.4重量%範圍内。超過1〇重量%之含量,錳 會引起熱不安定性。使用真线化,可製成具很低鐘含量 之適合合金。 鋁(Α1)為必要元素,於氬_氧脫碳作用時,其可用以控制 乳,熔化浴溫及鉻含量。該較佳含量範圍多至0.4重量%, 且更佳(使用電弧熔接,繼而進行氬_氧脫碳作用)為〇2至 〇·4重量%。超過〇.4重量%,鋁會引起熱安定性問題。使用 真空熔化,可製成具很低鋁含量之適合合金。 矽(Si)5F為必要元素,其可用以控制氧及鉻含量。該較 佳各里範圍多至0 75重量%,且最佳含量範圍多至〇·5重量 85275.doc -13 - 1263680 %。矽含量超過0.75重量%時,由於熱不安定性,預期會產 生鍛造上的問題。使用真空熔化可製成具很低矽含量之適 合合金。 雖然於氬-氧脫碳作用時,碳含量會儘可能減少,但是, 該電弧熔接方法必需使用碳(C)。該較佳碳含量範圍多至 0· 1重量%,超過該含量,則由於該微結構中碳化物之增 加,會造成熱不安定性。更佳含量範圍多至0.02重量%。 使用真空熔化及高純度填充材質可製成具很低碳含量之 適合合金。 已證明可耐受普通雜質。更詳細地說,已證明可耐受多 至0.3重量%銅,並可耐受多至0.65重量%鎢。另一方面, 應該保持會促使氮化物及其它第二相形成之元素(例如, 銳,欽,釵,4s)於低含量,例如,少於0 · 2重量%。可以以 低含量存在之其它雜質包括硫(多至0.01 5重量%),磷(多至 0.03重量%),氧(多至0.05重量%),鎂(多至0.05重量%), 鈣(多至0.05重量%)。其中最後兩種與去氧作用有關。可慎 重地添加少量鈷至本發明各該合金内以取代鎳,且不會明 顯改變其性質,因為鉛對於鎳合金之熱安定性只有很小的 影響,且並不瞭解其對降低抗蝕性之影響。因此,鈷之存 在量可多至5重量°/〇。 雖然所測試各該試樣全部為鍛造薄片。呈其它鍛造型式 (例如,片狀物,棒狀物,管狀物及線狀物)及呈鑄造與粉 末冶金型式之各該合金應該亦具有類似性質。因此,本發 明包含該合金組合物之全部型式。 85275.doc -14 - 1263680 雖然已揭示本發明該合金之較佳具體實施例,但是應該 清楚瞭解本發明並不受其限制,而且在以下申請專利範圍 内可以有多種具體實施例。 85275.doc 15Nv) is shown in Table 3. Basically, the alloy of the present invention can provide a high resistance to "wet method" phosphoric acid (i.e., at 13 5 ° C, at 54 tongue-〇 / ϋ ^ ^ "at ^4 weight 1 %卩2〇5, corrosion rate 〇·35 mm/yard or less), high resistance to local erosion caused by gas (ie, when using the ASTM standard method G 48_GG method (when tested, its critical hole last name) The temperature is greater than 65 ° C) and the thermal stability of the easy forging process (that is, the Nv value is equal to or less than 2·7). Except for Alloy A, all prior art alloys have higher corrosion in the wet method sulphuric acid. However, Alloy A contains 2.3% tungsten, which, as indicated by the value of 2 76 Nv, makes the alloy more difficult. Moreover, U.S. Patent No. 5,424,029 shows that in such an alloy, the tungsten content must be from i to 4 % can obtain satisfactory corrosion resistance. However, it is surprising that the alloy of the present invention can obtain good corrosion resistance without the need of tungsten. Moreover, the alloy £1^55〇1 proves tolerable To 0.65 tungsten, and does not adversely affect its processability. As described in Table 3, at 116 ° C in 46% Ρ 2 〇 5, the alloy of the present invention The rate of rot I was also significantly lower than that of C-276 rot I (p. 4 4 mm/y) as described in U.S. Patent No. 4,41, 489. 85275.doc -11 - 1263680 Table 3 at 135° Corrosion rate (mm/y) in 54% P2O5 at C. Critical pitting temperature (°C) in 6% FeCl3+l% HCl Nv EN53011 0.35 75 2.55 EN22011 0.29 75 2.63 EN56011 0.28 >95 2.63 EN2101 . 028 45 2.45 EN55011 0.33 85 2,7 EN54011 0.3 85 2.7 EN7101 Cannot be processed 3.13 G-30 0.43 60 2.85 31 0.53 75 2.98 28 0.64 45 2.88 C-276 1.53 >95 2.63 A (patent 5,424,029) 0.34 >95 2.76 13 (patent 5,529,642) can not be processed 3.01 37 (patent 5,529,642) can not be processed 3.02 85275.doc -12 - 1 Several observations of the general role of the alloy in the present invention on the alloying elements are as follows: chromium (Cr) is the main alloy An element which provides a high resistance to "wet method" phosphoric acid. The preferred chromium content ranges from 31.0 to 34.5 wt%. Below 31.0 wt%, the alloy is less resistant to "wet method" phosphoric acid; more than 34. 5% by weight, which jeopardizes the thermal stability of the alloy. The optimum chromium content ranges from 32.5 to 34.0% by weight. Niobium (Mo) is also the main alloying element. It provides high resistance to local infestation caused by chlorine, for example, fissure rot! Insects and pitting. The preferred cerium content ranges from 7.0 to 10.0% by weight. At 7.0% by weight or less, the alloy is insufficient in local corrosion resistance due to chlorine; when it exceeds 10.0% by weight, thermal stability is caused. The optimum molybdenum content ranges from 7.5 to 8.6% by weight. 1263680 Nitrogen (N), although not absolutely necessary, is also a major alloying element that strongly increases the resistance to local attack caused by chlorine. In the air melting and twisting, it has been expected that absorption of at least 0.03% by weight β may be added in a preferred range, the amount 'up to 0.2% by weight, or in a more preferable range, up to two 15% by weight may be added. . When a vacuum is used for melting, a very good nitrogen-free alloy can be obtained, which is actually a technique that is gradually guided to the present invention. Below Μ% by weight, gas is the main cause of forging difficulties. Iron (Fe) is an essential element, and its content is preferably up to 3.0% by weight, and more preferably up to 2.0% by weight. It is a reusable economic material, and most of it has a residual amount of iron. Iron-free alloys can be made with new linings and high-purity filler materials. At temperatures above 3.0% by weight, iron can cause thermal instability. Manganese (Mn) is also an essential element, which can be used to control sulfur, and its content is preferably more than that of soil, 〇%, and more preferably (using arc welding, followed by argon-oxygen decarburization) from 0.1 to 〇.4. Within the weight% range. Manganese can cause thermal instability above 1% by weight. With the use of true line, a suitable alloy with a very low clock content can be produced. Aluminum (Α1) is an essential element that can be used to control milk, melt bath temperature and chromium content during argon-oxygen decarburization. The preferred content range is up to 0.4% by weight, and more preferably (using arc welding, followed by argon-oxygen decarburization) from 〇2 to 〇·4% by weight. Above 〇.4% by weight, aluminum causes thermal stability problems. A suitable alloy with a very low aluminum content can be produced by vacuum melting. Bismuth (Si) 5F is an essential element that can be used to control oxygen and chromium content. The preferred range is up to 0 75 wt%, and the optimum range is up to 〇·5 weight 85275.doc -13 - 1263680 %. When the niobium content exceeds 0.75% by weight, it is expected to cause a problem in forging due to heat instability. A suitable alloy with a very low bismuth content can be produced by vacuum melting. Although the carbon content is reduced as much as possible during the argon-oxygen decarburization, the arc welding method requires the use of carbon (C). The preferred carbon content ranges up to 0.1% by weight. Above this level, thermal instability can occur due to an increase in carbides in the microstructure. More preferably, the content ranges up to 0.02% by weight. A vacuum-melted and high-purity filler material can be used to make a suitable alloy with a very low carbon content. It has been proven to withstand ordinary impurities. In more detail, it has been demonstrated that up to 0.3% by weight of copper can be tolerated and up to 0.65% by weight of tungsten can be tolerated. On the other hand, elements which cause the formation of nitrides and other second phases (for example, sharp, qing, 钗, 4s) should be kept at a low content, for example, less than 0.2% by weight. Other impurities which may be present at low levels include sulfur (up to 0.015% by weight), phosphorus (up to 0.03% by weight), oxygen (up to 0.05% by weight), magnesium (up to 0.05% by weight), calcium (up to 0.05% by weight). The last two of them are related to deoxygenation. A small amount of cobalt can be carefully added to each of the alloys of the present invention to replace nickel without significantly changing its properties, since lead has only a small effect on the thermal stability of the nickel alloy, and it is not known to reduce corrosion resistance. The impact. Therefore, the amount of cobalt present can be as much as 5 wt/min. Although each of the samples tested was a forged sheet. Other alloys (e.g., sheets, rods, tubes, and strands) and alloys of the cast and powder metallurgical type should also have similar properties. Accordingly, the present invention encompasses all versions of the alloy composition. Although a preferred embodiment of the alloy of the present invention has been disclosed, it should be understood that the invention is not limited thereto, and various specific embodiments are possible within the scope of the following claims. 85275.doc 15

Claims (1)

1263680 拾、申請專利範圍: 1. 一種抗濕式方法磷酸及抗由氯引起之局部侵蝕之鎳-鉻-鉬合金,其基本上由以下組成: 31.0至34.5重量% 鉻 7.0至10.0重量% 鉬 多至0.2重量% 氮 多至3.0重量% 鐵 多至1.0重量% !孟 多至0.4重量% 羞呂 多至0.75重量% 矽 多至〇.1重量% 碳 其差額為鎳及雜質。 2.根據申請專利範圍第1項之鎳-鉻-鉬合金,其基本上由以 下組成: 32.5至34.0重量% 鉻 7.5至8.6重量% 鉬 多至0.15重量% 氮 多至1.5重量% 鐵 0.1至0.4重量% !孟 0.2至0.4重量% 鋁 多至0.5重量% 矽 多至0.02重量% 碳 其差額為鎳及雜質。 3.根據申請專利範圍第1項之鎳-鉻-鉬合金,其中該雜質含 85275.doc l26368〇 有多至0.3重量%銅及多至0.65重量%鎢。 ' I據申請專利範圍第1項之鎳-鉻-鉬合金,其中該雜質含 有土少一種起,歛,訊,is,硫,鱗,氧,鎮,#5。 〕·根據申請專利範圍第1項之鎳_鉻-鉬合金,其中係使用多 至5重量%鉛以取代鎳。 6·根據申請專利範圍第1項之鎳-鉻-鈿合金,其中該合金係 呈選自由薄片,片狀物,棒狀物,線狀物,管狀物及鍛 件所組成之群組之鍛造型式。 7·根據申請專利範圍第1項之鎳-鉻-鉬合金,其中該合金係 王~造型式。 δ·根據申請專利範圍第1項之鎳-鉻-鉬合金,其中該合金係 呈粉末冶金型式。 9·根據申請專利範圍第1項之合金,其基本上由以下組成: 31.7至33·9重量% 鉻 8·1至8.5重量% 鉬 多至0.18重量% 氮 1 · 0至1 · 1重量% 鐵 0.24多至0.29重量% 猛 〇·2 1多至〇.24重量% 鋁 0.26多至0.34重量% 石夕 0.04重量% 碳 多至0.02重量% 銅 多至0.04重量% 鎢 其差額為鎳及雜質。 85275.doc 1263680 10.根據申請專利範圍第1項之合金,其基本上由以下組成: 31.7至32.8重量% 鉻 8.1重量% 鉬 多至0.18重量% 氮 1.0重量% 鐵 0.24多至0.29重量% Ml 0.21多至0.24重量% 鋁 0·29多至0.34重量% 矽 0.04重量% 碳 多至0.02重量% 銅 多至0。04重量% 鎢 其差額為鎳及雜質。 85275.doc1263680 Pickup, patent application scope: 1. A moisture-resistant method of phosphoric acid and a nickel-chromium-molybdenum alloy resistant to localized corrosion caused by chlorine, which consists essentially of: 31.0 to 34.5 wt% chromium 7.0 to 10.0 wt% molybdenum Up to 0.2% by weight Nitrogen up to 3.0% by weight Iron up to 1.0% by weight! Mundo to 0.4% by weight Shaylu to 0.75% by weight 矽Up to 〇.1% by weight Carbon is the difference between nickel and impurities. 2. A nickel-chromium-molybdenum alloy according to claim 1 of the patent application, which consists essentially of: 32.5 to 34.0 wt% chromium 7.5 to 8.6% wt% molybdenum up to 0.15 wt% nitrogen up to 1.5 wt% iron 0.1 to 0.4% by weight! Meng 0.2 to 0.4% by weight Aluminum up to 0.5% by weight 矽 up to 0.02% by weight Carbon is the difference between nickel and impurities. 3. The nickel-chromium-molybdenum alloy according to item 1 of the patent application, wherein the impurity contains 85275.doc l26368〇 up to 0.3% by weight of copper and up to 0.65% by weight of tungsten. I. According to the nickel-chromium-molybdenum alloy of the first application of the patent scope, the impurity contains a small amount of soil, convergence, signal, is, sulfur, scale, oxygen, town, #5. According to the nickel-chromium-molybdenum alloy of claim 1, the use of up to 5% by weight of lead is used in place of nickel. 6. The nickel-chromium-bismuth alloy according to claim 1, wherein the alloy is in the form of a forged group selected from the group consisting of a sheet, a sheet, a rod, a thread, a tube and a forging. . 7. The nickel-chromium-molybdenum alloy according to item 1 of the patent application scope, wherein the alloy is a king-shaped type. δ· A nickel-chromium-molybdenum alloy according to item 1 of the patent application, wherein the alloy is in a powder metallurgy type. 9. The alloy according to claim 1 of the patent application, which consists essentially of: 31.7 to 33.9 wt% chromium 8.1 to 8.5 wt% molybdenum up to 0.18 wt% nitrogen 1 · 0 to 1 · 1 wt% Iron 0.24 to 0.29 wt% Mammoth · 2 1 to 〇. 24 wt% Aluminum 0.26 to 0.34 wt% Shi Xi 0.04 wt% Carbon up to 0.02 wt% Copper up to 0.04 wt% Tungsten is the difference between nickel and impurities . 85275.doc 1263680 10. The alloy according to claim 1, which consists essentially of: 31.7 to 32.8 wt% chromium 8.1 wt% molybdenum up to 0.18 wt% nitrogen 1.0 wt% iron 0.24 to 0.29 wt% Ml 0.21 to 0.24% by weight Aluminum 0.29 to 0.34% by weight 矽0.04% by weight Carbon up to 0.02% by weight Copper up to 0.04% by weight The difference between tungsten is nickel and impurities. 85275.doc
TW092113085A 2002-05-15 2003-05-14 Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack TWI263680B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/146,343 US6740291B2 (en) 2002-05-15 2002-05-15 Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack

Publications (2)

Publication Number Publication Date
TW200401037A TW200401037A (en) 2004-01-16
TWI263680B true TWI263680B (en) 2006-10-11

Family

ID=22516942

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092113085A TWI263680B (en) 2002-05-15 2003-05-14 Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack

Country Status (13)

Country Link
US (1) US6740291B2 (en)
EP (1) EP1369497B1 (en)
JP (1) JP4287191B2 (en)
KR (1) KR100978953B1 (en)
CN (1) CN1263877C (en)
AT (1) ATE412784T1 (en)
AU (1) AU2003204177B2 (en)
CA (1) CA2428013C (en)
DE (1) DE60324362D1 (en)
ES (1) ES2312685T3 (en)
GB (1) GB2390855B (en)
MX (1) MXPA03004232A (en)
TW (1) TWI263680B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764646B2 (en) * 2002-06-13 2004-07-20 Haynes International, Inc. Ni-Cr-Mo-Cu alloys resistant to sulfuric acid and wet process phosphoric acid
JP4773773B2 (en) 2005-08-25 2011-09-14 東京電波株式会社 Corrosion-resistant material for supercritical ammonia reaction equipment
EP2455504A1 (en) * 2010-11-19 2012-05-23 Schmidt + Clemens GmbH + Co. KG Nickel-chromium-iron-molybdenum alloy
US9399807B2 (en) 2012-04-30 2016-07-26 Haynes International, Inc. Acid and alkali resistant Ni—Cr—Mo—Cu alloys with critical contents of chromium and copper
US9394591B2 (en) 2012-04-30 2016-07-19 Haynes International, Inc. Acid and alkali resistant nickel-chromium-molybdenum-copper alloys
EP2746414B1 (en) 2012-12-19 2019-12-11 Haynes International, Inc. Acid and alkali resistant ni-cr-mo-cu alloys with critical contents of chromium and copper
CN103388091A (en) * 2013-08-02 2013-11-13 北京科大京都高新技术有限公司 Wear-resistant anti-corrosion nickel-base high-temperature alloy
CN112008293A (en) 2019-05-28 2020-12-01 株式会社东芝 Nickel-based alloy welding material, welding material for nuclear reactor, nuclear power plant and structure, and method for repairing same
JP7370830B2 (en) * 2019-05-28 2023-10-30 株式会社東芝 Nickel-based alloy welding materials, welding materials for nuclear reactors, nuclear equipment and structures, and repair methods for nuclear equipment and structures
WO2021183459A1 (en) 2020-03-09 2021-09-16 Ati Properties Llc Corrosion resistant nickel-based alloys
WO2023176650A1 (en) * 2022-03-17 2023-09-21 株式会社プロテリアル Ni-cr alloy member comprising additively manufactured article, method for manufacturing ni-cr alloy member, and product using ni-cr alloy member
CN114855052A (en) * 2022-05-13 2022-08-05 赵克中 Molybdenum-titanium-based alloy material and preparation method thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB710413A (en) * 1951-03-15 1954-06-09 Mond Nickel Co Ltd Improvements relating to alloys
US3565611A (en) 1968-04-12 1971-02-23 Int Nickel Co Alloys resistant to corrosion in caustic alkalies
GB1496930A (en) * 1975-11-28 1978-01-05 Inco Europ Ltd Directionally solidified castings
US4591393A (en) * 1977-02-10 1986-05-27 Exxon Production Research Co. Alloys having improved resistance to hydrogen embrittlement
US4171217A (en) 1978-02-21 1979-10-16 Cabot Corporation Corrosion-resistant nickel alloy
GB2039950B (en) * 1979-01-11 1983-06-15 Boc Ltd Hard alloys
US4410489A (en) 1981-07-17 1983-10-18 Cabot Corporation High chromium nickel base alloys
US5424029A (en) 1982-04-05 1995-06-13 Teledyne Industries, Inc. Corrosion resistant nickel base alloy
ZA832119B (en) * 1982-04-05 1984-04-25 Teledyne Ind Corrosion resistant nickel base alloy
EP0092397A1 (en) * 1982-04-20 1983-10-26 Huntington Alloys, Inc. Nickel-chromium-molybdenum alloy
JPH0674471B2 (en) 1986-01-07 1994-09-21 住友金属工業株式会社 High corrosion resistance Ni-based alloy
JPS62180028A (en) * 1986-02-03 1987-08-07 Daido Steel Co Ltd Mo-containing high cr-ni alloy having excellent corrosion resistance and pitting resistance
US4778576A (en) 1986-07-31 1988-10-18 The Dow Chemical Company Nickel alloy anodes for electrochemical dechlorination
JPS63157828A (en) * 1986-12-19 1988-06-30 Nippon Steel Corp Electrifying roll for electroplating
DE3716665A1 (en) 1987-05-19 1988-12-08 Vdm Nickel Tech CORROSION RESISTANT ALLOY
JP2512764B2 (en) * 1987-09-03 1996-07-03 新日本製鐵株式会社 Energizing roll material for electroplating
US4877461A (en) * 1988-09-09 1989-10-31 Inco Alloys International, Inc. Nickel-base alloy
DE4203328C1 (en) * 1992-02-06 1993-01-07 Krupp Vdm Gmbh, 5980 Werdohl, De
JPH05255784A (en) * 1992-03-11 1993-10-05 Sumitomo Metal Ind Ltd Ni-base alloy for oil well excellent in corrosion resistance
DE4210997C1 (en) * 1992-04-02 1993-01-14 Krupp Vdm Gmbh, 5980 Werdohl, De
JP3303024B2 (en) * 1993-09-20 2002-07-15 三菱マテリアル株式会社 Ni-base alloy with excellent sulfuric acid corrosion resistance and workability
US5529642A (en) 1993-09-20 1996-06-25 Mitsubishi Materials Corporation Nickel-based alloy with chromium, molybdenum and tantalum
JPH07316699A (en) * 1994-05-18 1995-12-05 Mitsubishi Materials Corp Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH083669A (en) * 1994-06-20 1996-01-09 Mitsubishi Materials Corp Nickel-base alloy powder for thermal spraying and composite member obtained by thermally spraying this nickel-base alloy powder
JP3485980B2 (en) * 1994-10-03 2004-01-13 Jfeスチール株式会社 Method for producing welded clad steel pipe for boiler

Also Published As

Publication number Publication date
CN1263877C (en) 2006-07-12
CA2428013A1 (en) 2003-11-15
TW200401037A (en) 2004-01-16
AU2003204177B2 (en) 2009-06-11
CA2428013C (en) 2007-07-17
GB2390855B (en) 2005-10-26
MXPA03004232A (en) 2004-05-21
EP1369497B1 (en) 2008-10-29
JP4287191B2 (en) 2009-07-01
US6740291B2 (en) 2004-05-25
CN1458293A (en) 2003-11-26
DE60324362D1 (en) 2008-12-11
AU2003204177A1 (en) 2003-12-04
ES2312685T3 (en) 2009-03-01
JP2004003021A (en) 2004-01-08
KR100978953B1 (en) 2010-08-30
GB0311012D0 (en) 2003-06-18
KR20030089434A (en) 2003-11-21
GB2390855A (en) 2004-01-21
EP1369497A1 (en) 2003-12-10
ATE412784T1 (en) 2008-11-15
US20030215350A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
KR101226335B1 (en) An austenitic steel and a steel product
JP6493566B2 (en) Austenitic heat-resistant alloy and manufacturing method thereof
AU2007204075B2 (en) Hybrid corrosion-resistant nickel alloys
JP6148061B2 (en) Acid- and alkali-resistant nickel-chromium-molybdenum-copper alloys
JP2010508439A (en) Duplex stainless steel and use of this steel
JP5661938B2 (en) Ni-Fe-Cr-Mo-alloy
US9938609B2 (en) Acid and alkali resistant Ni—Cr—Mo—Cu alloys with critical contents of chromium and copper
TWI263680B (en) Ni-Cr-Mo alloys resistant to wet process phosphoric acid and chloride-induced localized attack
JP2005501970A (en) Use of duplex steel
AU2003204654B2 (en) Ni-Cr-Mo-Cu alloys resistant to sulfuric acid and wet process phosphoric acid
JP6806158B2 (en) Nickel material and manufacturing method of nickel material
CA3093022A1 (en) Corrosion resistant alloy
AU2013251188A1 (en) Acid and alkali resistant nickel-chromium-molybdenum-copper alloys
CA2831121A1 (en) Acid and alkali resistant ni-cr-mo-cu alloys with critical contents of chromium and copper
US20130287624A1 (en) STABILIZED ACID AND ALKALI RESISTANT Ni-Cr-Mo-Co ALLOYS

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent