TWI260401B - Interferometry apparatus and multiple-pass interferometry - Google Patents

Interferometry apparatus and multiple-pass interferometry Download PDF

Info

Publication number
TWI260401B
TWI260401B TW92101676A TW92101676A TWI260401B TW I260401 B TWI260401 B TW I260401B TW 92101676 A TW92101676 A TW 92101676A TW 92101676 A TW92101676 A TW 92101676A TW I260401 B TWI260401 B TW I260401B
Authority
TW
Taiwan
Prior art keywords
interferometer
mirror
beams
measuring
passes
Prior art date
Application number
TW92101676A
Other languages
Chinese (zh)
Other versions
TW200305004A (en
Inventor
Henry A Hill
Original Assignee
Zygo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zygo Corp filed Critical Zygo Corp
Publication of TW200305004A publication Critical patent/TW200305004A/en
Application granted granted Critical
Publication of TWI260401B publication Critical patent/TWI260401B/en

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Interferometry system including a multiple-pass interferometer having reflectors to reflect at least two beams along multiple passes through the interferometer. The multiple passes include a first set of passes and a second set of passes. The reflectors have first alignments that are normal to the directions of the paths of the beams that are reflected by the reflectors. The two beams provide information about changes in a first location on one of the reflectors after the first set of passes, and provide information about changes in the first location and changes in a second location on the reflector after the second set of passes. The paths of the beams are sheared during the first set of passes and during the second set of passes if at least one of the reflectors has an alignment other than the first alignment. The interferometry system includes optics to redirect the beams after the first set of passes and before the second set of passes so that shear imparted during the second set of passes cancels shear imparted during the first set of passes.

Description

1260401 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種干涉儀,特別係有關於一種用於 s測量測件的角度以及直線位移的干涉儀,該量測件可以 為一光罩平台或是一微影掃瞄儀或是一步進系統。 【先前技術】 位移量測干涉儀監視器其位置根據光學干涉訊號,在 量測件與參考物之間移動。該干涉儀藉由重疊及干涉一從 量測件反射的量測光束以及一從參考物反射的參考光束, 而產生該光學干涉訊號。 在許多例子中,該量測光束以及該參考光束具有互相 垂直的偏振方向,以及不同的頻率。該不同的頻率可藉由, 例如,雷射賽曼***(Zeeman splitting)、 Acousto-optical modulation或是在雷射内部裝設雙折射 元件來產生。遠垂直偏振允許一偏振光束***以引導該量 測光束以及該參考光束至該量測物以及該參考物,並結合 反射回來的該量測光束以及該參考光束以形成相互重疊的 ϊ測光束以及參考光束。該等重疊光束形成一輸出光束, 並經過一偏振器。 该偏振器混合該量測光束以及該參考光束的偏振,而 形成6光束。在该混合光束中的該量測光束以及該參 考光束會彼此干涉,所以該混合光束的強度,隨著該量測 光束以及該參考光束相對相變化而變化。—感測器量測該 1057-5466-PF1 6 1260401 混合光束的沿時間變化的強度,並依據該強度的比例,產 生電子干涉訊號。由於該量測光束以及該參考光束具有 不同的頻率,該干涉訊號包括一,,外差式的 eterodyne)訊號,其頻率等於該量測光束與該參考光 ,的頻率差。如果該量測光束以及該參考光束的路徑長度 過凋正,例如,藉由調整包含該量測件的平台,使該量 、J至]的頻率包括都普勒效應(D〇ppler shift)等於2^叩/ λ,其中^是量測件以及參考物的相對速度,λ是量測光 束以及參考光束的波長,η《該等光束經過的媒介的折射 率,例如空氣或是真空,p是經過該參考物以及該量測件 、數根據畺測到的參考訊號的相變化,轉換該量測件 的相對位置,2;r的相變化等於又/(叩)的L長度變化,其 L疋%繞一圈的距離變化,例如包括該量測件的平台 環繞距離。 不幸的,該等式不一定永遠正綠。此外,該量測到的 參考訊號的量或許會變化。一會變化的振幅會降低所量測 到的相變化的準確性。冑多干涉儀會有非線性的特性,例 所明的週期誤差cyclic errors” 。該週期誤差可藉 由相或是量測到的參考訊號的強度並與該光學路徑長度1260401 IX. Description of the Invention: [Technical Field] The present invention relates to an interferometer, and more particularly to an interferometer for measuring the angle and linear displacement of a measuring member, which may be a light The hood platform is either a lithography scanner or a stepper system. [Prior Art] The position of the displacement measuring interferometer monitor is moved between the measuring member and the reference object according to the optical interference signal. The interferometer generates the optical interference signal by overlapping and interfering with a measuring beam reflected from the measuring member and a reference beam reflected from the reference object. In many examples, the measurement beam and the reference beam have mutually perpendicular polarization directions, as well as different frequencies. The different frequencies can be generated by, for example, Zeeman splitting, Acousto-optical modulation, or by mounting a birefringent element inside the laser. The far vertical polarization allows a polarized beam to split to direct the measurement beam and the reference beam to the measurement and the reference, in combination with the reflected beam and the reference beam to form mutually overlapping spectroscopic beams and Reference beam. The overlapping beams form an output beam and pass through a polarizer. The polarizer mixes the measurement beam and the polarization of the reference beam to form a 6 beam. The measuring beam and the reference beam in the mixed beam interfere with each other, so the intensity of the mixed beam changes as the measuring beam and the reference beam change relative to each other. - The sensor measures the intensity of the 1057-5466-PF1 6 1260401 mixed beam over time and generates an electrical interference signal based on the ratio of the intensity. Since the measuring beam and the reference beam have different frequencies, the interfering signal comprises a heterodyne eterodyne signal having a frequency equal to a frequency difference between the measuring beam and the reference beam. If the path length of the measuring beam and the reference beam is excessive, for example, by adjusting the platform including the measuring member, the frequency of the quantity, J to ] includes a D〇ppler shift equal to 2^叩/λ, where ^ is the relative velocity of the measuring member and the reference object, λ is the wavelength of the measuring beam and the reference beam, η "the refractive index of the medium through which the beams pass, such as air or vacuum, p is After the reference object and the measuring component and the phase change according to the detected reference signal, the relative position of the measuring component is converted, and the phase change of 2; r is equal to the L length change of /(叩), L The distance of 疋% varies around a circle, for example, the surrounding distance of the platform including the measuring piece. Unfortunately, this equation is not necessarily always green. In addition, the amount of reference signal measured by this measurement may vary. A varying amplitude will reduce the accuracy of the measured phase change.胄Multiple interferometers have non-linear characteristics, such as the cyclic error cyclic errors. The periodic error can be measured by the intensity of the phase or measured reference signal and the optical path length.

PnL的變化呈—正弦相依。特別是,㈣—個譜波的週其: =具有一正弦相依於(kpnL)/又,而該第二個譜波的週 誤差具有一正弦相依於2(2”nL)/A。更高的諧波的週 功祆差亦可以此方式表現。 亦可能有”非週期非線性,、情況’例如由參考光束 1057-54 66-PF1 7 I26〇4〇i 以及量測光束於干涉儀的輸出光束中的側向位移(例如,, 束切變beam shear ),當參考光束的波前以及量测光 束的波前具有波前誤差(waVefront err〇rs)時。此現象可 由下述說明。 干涉儀儀器中的不均勻材質(inh〇mogeneities)會造 成參考光束以及量測光束的波前誤差。當該參考光束以及 κ里測光束以同一直線的方式穿過這些不均勻材質時,會 產生同一的波前誤差並造成干涉訊號的彼此抵銷。此外, X輪出光束中的該參考光束以及該量測光束會彼此側向位 移,例如相對的光束切變。此光束切變造成波前誤差並造 成從輪出光束得到的干涉訊號產生誤差。 此外,在許多的干涉系統中,光束切變隨著該量測件 的位置或是角度方位的變化而變化。例如,+面鏡量測件 的角度方位的變化會造成相對光束切變。因此,量測件的 角度變化會在干涉訊號中產生相應的誤差。 光束切變以及波前誤差的影響將取決於根據偏振態 此合輸出光束的步驟以及偵測該混合輸出光束以得到一電 子干涉汛號的步驟。該混合輸出光束可以利用一偵測器偵 測’其可藉由將該混合光束聚焦於該偵測器以進行偵測, 或是將該混合光束捕捉進入一單一模態或是多模態光纖 中,偵測傳入該光纖中的混合光束。光束切變以及波前誤 差的衫響也取決於光束戴斷器(beam st〇ρ)的性質。一般而 言,當光纖用於將該混合輸出光束導至該偵測器時,該干 涉訊號的誤差是複合式的。 1057-5466-PF1 8 1260401 干涉δίΐ "5虎的振幅戀化4 士々 文化9疋許多個機制總和產生的淨 結果。-機制是,例如,由於量測件的轉動而造成的參考 光束以及量測光束於輸出光束中的相對光束切變。 在色散量測中,光程量測利用複合波長,例如5· 以及刪⑽,以量測色散量測干涉儀的量測路徑中的氣 體。該色散量測可以被用於將一利用位移量測干涉儀量測 到的先程轉換為-物理長度。這種轉換是重要的,因為可 將會由於氣流的擾動或暑穷择 次疋在度不均而被影響的光程長度轉 換為固定不變的物理長度。 上述的干涉儀通常為為掃描器或是步進機系統的重 要元件,該掃描器或是步進機用於微影製程以在—晶圓上 形成-積體電路。此微影系統包括一可可移動平台,以支 擇並固定該晶圓;一聚焦裝置,以將該輕射光料至該晶 圓;一掃瞒或步進系統,用以將該平台移近該輻射光束; 以及至少一干涉儀。每個干涉儀引導一量測光束至,並接 收一反射的量測光束從’設於該平台的—平面鏡。每個干 涉儀將其反射的㈣光束與—相應的參考光束進行干涉, 該等干涉儀並準禮的量測該平台相對於該輕射光束的位置 變化。該干涉儀使該微影系統能準確的控制該晶圓於該輕 射光束中的曝光區域。 在許多的微影系統以及其他的應用令,該量測件包括 至少一平面鏡’以反射該量測光束。該量測件的微小角度 變化’例如平台的高度或是偏轉’會造成量測光束從該平 面鏡反射後的方向變化。如果不加以補償,該變化的量測 1057-5466-PF1 9 1260401 光束將會降低該量測光束以及參 1尤果在干涉儀中的重 疊。此外,該量測光束以及該參考光 、 1疋术將不會以彼此平行 的方式傳遞,其波前於形成該混合光束時也*會對準。因 此,該量測光束以及該夂老氺秦 叹4芩考光朿之間的干涉將沿該混合光 束的橫向剖面變化,因此合佶續俏丨 U此曰便4侦測态所量測到的干涉資 訊遭受損壞。 、 為了應付此問題,許多習知的干涉儀具有一倒反射器 retr〇reflector,以將該量測光束重新導回該平面鏡藉 此該量測光m㈣dQUble passes”該干涉儀與該 量測件之間的路徑。該倒反射器使該量測對於量測件的角 度轉動變化不會那麼敏感。當被用於平面鏡干涉儀,此配 置便成為一般所稱的高穩定平面鏡干涉儀 (high-stability plane mirror interferometer, HSPMI)。然而,即使使用倒反射器,該量測光束的側向位 置仍然對於量測件的角度轉動變化敏感。此外,量測光束 的路徑經過干涉儀中的光學裝置,該路徑也對量測件的角 度轉動變化敏感。 貝際上,該干涉系統用於量測該晶圓平台沿多重量測 軸線(multiple measurement axes)的位置。例如設定_個 卡氏座標系為晶圓平台位於x-y平面,量測主要是針對平 口於x-y軸上的位置以及平台在z軸向上的角度方位,此 時平台是在x-y平面上移動的。此外,其也可監測晶圓平 台在x-y平面外的傾斜。例如,該等傾斜的特徵可用於計 算於x-y位置的Abbe of fset errors。因此,其最高可有 1057-5466-PF1 10 !26〇4〇l =個量測的自由度。此外n例子中,其亦可監控平 口於2軸方向的位置,而產生第六個自由度。 為了要量測每一個自由度,一干涉儀用於監測座標轴 鐘的位移。例如’在量測平台的"位置以及x,y,z方向 曰動方位的系統中,至少有三個特別獨立的量測光束從該 :圓平台的_側&射,ϋ少有兩個特㈣立的量測光束 從該的另一側反射。參照,例如美國專利第5, 801,832號 專利利用五個量測軸將光罩圖案投影在基板上的裝置: 方去,其内容參考於此。每個量測光束與參考光束再結 合以監測相應、軸向&光學路徑|度變4匕。由於不同的㈣ 光束與該晶圓平台於不同的位置接觸,該晶圓平台的可藉 由適當的光學路徑長度量測結果,推演出角度方位。因此曰, 其可監控每一個自由度’該系統包括至少一量測光束,該 光束接觸晶圓平台。此外,如上所述,每一量測光束可以 兩次經過該晶圓平台以防止晶圓平台的角度方為變化影響 該干涉訊號。該量測光束可由物理分離干涉儀產生或是^ 多轴干涉儀所產生的多重量測光束。 【發明内容】 本發明為一多重自由度平面鏡干涉儀組,量測二,三 或更多自由度,並具有零或較低的光束切變狀況於感測器 或是光纖讀取頭(FOP)。在一些實施例中,該參考光束或是 量測光束的微分光束切變可有效的降低。該干涉儀組可包 括一單一干涉儀光學組。一具有零或低光束切變的雙自由 1057-5466-PF1 11 1260401 度平面鏡干涉儀組,可以被用於量測一平面鏡上兩個分開 的位置的直線位移,或量測一平面鏡的直線位移以及角度 位移。在某些設置狀況下,該參考光束以及量測光束的微 分光束切變可有效的被降低。 上述之技術可用於量測額外的自由度,使用美國專利 申凊案號60/352, 341專利所揭露的干涉儀配置。這些實施 例中包括一二自由度量測平面鏡干涉儀組,其具有零或相 對較低的微分光束切變,可被用於量測一平面鏡上的三個 獨立位置的三個直線位移,或是一平面鏡的一直線位移以 及兩個正父角度的位移,或是量測兩個直線位移以及一角 度位移。在一些配置中,該參考光束以及該量測光束的微 分光束切變可以被有效的降低。更進一步的實施例包括一 四或多重自由度量測平面鏡干涉儀組,其具有零或是被降 低的光束切變,可以被用於量測其他不同的直線及角度位 移組合。 丁 • V π ,卜π吻t可干以及量 件,以量測-物件的方位變化。該參考光束以及該量測 束用於量測單-經過該單—平面的角度。該干涉儀光學 件組可包括㊉穩定度的設計,以用於量測直線或角度的 移。該干涉儀光學元件、組可以被設置為f亥參考光束以及 量測光束之間的微分光束切變為零或是較低。用於該角 位移干涉儀中的該參考光束以及該量測光束的光束=變 -單-平面鏡為零。二或更多的直線或是角度位移輪出 束可具有-普通ΐ測光束路徑,以經過該單一平面鏡。 1057-5466-PF1 12 1260401 干涉儀組可以被配置為,該相對參考光束以及量測光束光 學路徑長度在玻璃中相同或是在氣體中相同。 般而a ’本發明揭露一種多重自由度多重經過干涉 儀,用以里測-量測件的角度方位以及距離的變化。該多 重經過干涉儀包括複數個反射鏡,沿多重經過反射至少兩 光束經過該干涉儀,該等多重經過包括一第一組經過以及 第一組經過。该等反射鏡具有複數個第一校準器,垂直 於由該等反射鏡所反射的該等光束路徑。該兩道光束提供 有關於於一第一 4立置於其中一該反射鏡在該第—組經過後 的變化之資訊。該兩道光束提供有關於於一第一位置以及 該第二位置於其中一該反射鏡在該第二組經過後的變化之 資訊。當至少一該反射鏡具有不同於該第一校準器的校準 效果時,在該第-組經過以及該第二組經過時,該等光束 的路徑會產生切變。該干涉儀包括光學元件,以在第一組 經過之後,第二組經過之前,引導該等光束,使得在第二 組經過時所產生的光束切變能與在第一組經過時所產生的 光束切變相互抵銷。 本發明的實施例可更包括下述特徵。 該等光學元件被設置為在引導該等光束時’維持該兩 道光束之間的光束切變的量與方向。在完成該第一組=過 時’該兩道光束被該等光學元件所分散的光束會相互平 行失:等反射鏡包括複數個平面反射表面。該等光束包括 一參考光束,其被導向一該反射鏡,其位於—相對於該干 涉儀的靜止位置。該等光束包括一量測光束,其被導向 1057-54 66-PF1 13 1260401 該反射鏡,其相對於該干涉儀是可動的。 、该苓考光束以及該量測光束定義出一光程差,該光程 差顯示一該反射鏡相對於該干涉儀的位置變化。該等反射 鏡包括—第一反射鏡以及一第二反射鏡,#等光束包括被 導向該第-反射鏡的-第一光束以及被導向該第二反射鏡 的一第-光束’該第-反射鏡以及該第二反射鏡相對於該 干涉儀疋可動的。|玄第一光束以及該第二光束定義出一光 私差’ 4光程差顯不該第_反射鏡以及該第二反射鏡的相 對位置變化。 卜L第一組經過由兩組經過所組成,且在每次經過時, 每一該等光束被該等反射器至少反射一次。該第二組經過 由兩組經過所組成,且在每次經過時,每一該等光束被該 等反射器至少反射一次。該多重經過干涉儀包括一分光 器,將一輸入光束分離為該等光束,並將該 等反射鏡。該分光器包括一偏振分光器。該等光學元=包 括奇數個反射表面。該等反射表面的法線位於同-平面。 该等反射表面包括平面反射表面。 每-道被該等光學元件引導的光束被該等反射表面 、,仔入射先束以及反射光束與每-反射表面的總 厂、零或π 360度的整數倍,該角度的量測是從該入射光 :至該反射光束,當以反時針方向時,該角度具有—正值, 备以順時針方向時,該角度具有— 光束經過該第-以及第1 且㈣04 ③干涉儀在該等 形成重疊的光束射二―::過時,將該等光束結合,以 1057-54 66-PF1 14 1260401 该等光學元件包括一反射表面。該等光學元件包括偶 數個反射表面。該等光學元件包括一錐狀反射鏡。該干涉 儀包括一微分平面鏡干涉儀。該兩道光束具有不同的頻率。 該干涉儀可以被用於-干㈣統,其包括_感測器, 用以感測該等重疊光束間的光學干涉,並產生一干涉訊 號,其顯示該等光束之間的光程差。該感測器包括一光感 測杰,一放大器以及一類比轉數位轉換器。該干涉系統更 包括一分析儀,耦接於該感測器,其根據該干涉訊號計算 該等光束之間的光程差變化。該干涉系統更包括一光源以 提供該等光束。 一該干涉儀可被用於一干涉系統其包括一平台,以支撐 -:圓;-發射系、统’以對該晶圓表面照射圖案輻射;: 及一定位“ ’以調整該平台相對於該圖案輻射的位置, 其中該干涉儀用於量測該平台的位置。 一曰針涉儀可被用於一干涉系統其包括一平台,以支禮 …圓卩及—發射系統’包括一輻射光源,一光罩,一 疋位系統以及—透鏡組,其中 蚪,一、a 一甲田在刼作時,該光源射出輻 射!過该光罩以產生 光罩相對於該麵射的位置,!! 定位系統調整該 、、 μ透鏡組將該圖案輻射投射至 “固’且該干涉儀用於量測該光罩相對於該晶圓的位置。 =涉儀可被用於一干涉系統其包括一光源,提供一 直寫先束,用以在一微影光罩上 撐該微影光| ;—光束引^ 成W案,-平台,以支 該微影光罩且,用以將該直寫光束傳遞至 及一疋位糸統,用以調整該平台以及該光 1057-54 66-PF1 15 1260401 束引導組之間的距離,其中該干涉儀用於量測該平台相對 於該光束引導組之間的位置。 積體電路之製做可使用上述之干涉系統,以支樓—曰 圓,投射特冑的圖案輻射至該晶圓之i,以及調整該平;; 相對於該圖案輕射的相對位置,其中,該干涉儀用於量= 該平台的位置。 積體電路之製做可使用上述之干涉系統,以支撐—曰 圓,從該光源引導輕射,經過該光罩以產生一特殊圖案= 射於該光源之上,㈣該光罩㈣於職射的位置,以及田 將該特殊圖案輕射投射至該晶圓之上,其中,該干涉儀用 於畺測該光罩相對於該晶圓的位置。 微影光罩之製做可使用上述之干涉系統,以支揮一微 影光罩,傳遞-直寫光束至該微影光罩,以及調㈣平I 與該光束引導組之相對位置,其中,該干涉儀心量測= 平台相對於該光束引導組之位置。 本發明亦揭露一種多重自由度干涉儀,用以根據多重 自由度,量測-量測件的距離或角度方位的位置變化。鲸 干涉儀包括複數個干涉儀光學元件,包括—參考件。^ 干涉儀光學元件用於⑴從—原始出入光束引導一第_;角 度量測光束以第-次經過該量測件上之第一點並第二切 過該參考件,⑵從該原始出入光束引導一第二角度量測光 束以第一次經過該參考件並第二次經過該量測件上之一第 二點,以及(3)重新結合該第一以及第二角度量次光束部 刀以產纟角度里測輸出光束’其内含有關於該量測件 1057-5466-PF1 16 1260401 角度方位變化的資訊。該等干涉儀光學元件更用於⑴從一 原。出入光束引導一第_距離量測光束以二次經過該參考 件’⑵從該原始出人光束引導—第二距離量測光束以二次 經過該量測件,以及f )舌 “ (3 )重新結合該第一以及第二距離量次 光束部分’以產生^一距雜旦、日丨土入 距離里測輸出光束,其内含有關於該 量測件距離變化的資訊。 該干涉儀可包括下述之任一特徵。 。亥多考件為-平面鏡,其旋轉方向垂直於該等光束成 分的入射線。 該等干涉儀光學元件更包括一偏振分光器,用以引導 該等光束成分沿其路徑傳遞,一第一 1/4波長極化片,設 於該偏振分光器與該參考件之間,以及一第二Μ波長極 化片’設於該偏振分光器及該參考件之間。該干涉儀光學 Γ件可更包括折疊光學元件’用以引導該等光束回到該偏 =分光ί、’且該等折疊光學元件可更包括半波片,用於接 又角度里测光束’於其第一次經過之後。該等折疊光學元 件可具有奇數個反射表面,用以引導該角度量測光束成分 回到該偏振分光器,且該等 今讲^光學几件可具有偶數個反 、、面U引導δ亥距離量測光束成分回到該偏振分光器。 該干涉儀可更包括-光學延遲線,用於接受該第二角 度量測光束成分’當其經過該量測件時,並產生一額外的 路徑長度,以減少該肖声旦响丨从^ t X里測輸出光束中的微分光束切變。 在^ ^ ^中,斜涉儀可更包括-輸人非偏振分 先益’用“離該原始輸人光束p角度量測輸入光束, 1057-5466-PF1 17 1260401 其被引導至該他無八 、刀光為以產生一角度量測光束成分,以 及一距離量測輪 庀术欣刀 距離旦& ,其引導至該偏振分光器以產生該 巨離里測先束成分。 兮;、半居γ 從該輸人非偏振分^ 干涉儀可更包括-鏡,用於 先為接受該距離量測輸入光束,並將其 Ή V至该偏振分弁哭 口口’以產生該距離量測輸出光束。 # 匕的實苑例中’該偏振分光器可分離該原始輸入 非心=角f量測光束成分,而該干涉儀可更包括-輸出 :刀光為’以分離-部分的該角度量測輸出光束並引 °」D亥偏振分光器,以產生該距離量測光束成分,從 '度量測輪出光束分離出來的成分定義了一距離量測輸 入光束。例如’該干涉儀可更包括—倒反射器,用以從該 輸出非偏振分光器接受該距離量測輸人光束,必將其引導 至該偏振分光器以產生該距離量測光束成分。此外,該干 涉儀可更包括一無焦距系統,設於該輸出非偏振分光器以 及°亥偏振分光器之間’該無焦距系統具有-放大效果,以 使該第-距離量測光束成分在—定的角度範圍β,以垂直 入射的方式接觸該量測件。例如,該無焦距系統的放大效 果可以為2 : 1。 干a儀可更包括一第一光纖光學讀取頭,用以耦合 該角度量測輪出光束至一感測器、,以及一第二光纖光學讀 取頭,用以耦合該距離量測輸出光束至該感測器。 該干涉儀可更包括一光源,提供該原始輸入光束,該 原始輸入光束包括互相垂直的線性偏振成分。 一般而言,在另一方面,本發明可以為一多重自由度 1057-5466-PF1 18 1260401 干涉儀,包括複數個干涉儀光學元 等干乎穩止與-从m 牛匕括一參考件。該 吾、Ηϊϊ 苐一輸入光束的一第一 里測光束,以兩次經過_量 第一於入土击认咕 仟上的弟一點,(2)引導該 r〇x ^ 朿以兩次經過該參考件,並 第::;量測光東以及該第-參考光束重新結合為- 資二二束"其含有關於該量測件的第-點的距離變化 貝成。該等干涉儀光學元件更 ^ , 文用以(1)引導一第二量測井蚩 兩次經過該量測件上之一第- 光束 .^ 弟一點,(2)引導一第二參考光東 兩二人經過該參考件,並(3)將哕曰 肝°亥第一®測光束以及該第二餐 专光束重新結合為一第二輪ψ 的 11出先束,其含有關於該量測件 的第二點的距離變化。复 灸太 八中該第二篁測光束以及該第二 乡考光束是從該第一輸出光束分離出來的。 該干涉儀可更包括下述之任一特徵。 該參考件為一平面鏡,其旋轉方向垂直於該等光 分的入射線。 該干涉毅包括一偏振分μ,用μ導該等光束成 分沿其路徑傳遞’-第—1/4波長極化片,設於該偏振分 光器與該參考件之間m 1/4波長極化片,設於 该偏振分光器及該參考件之間。 X干涉儀更包括一非偏振輸出分光器,用以分離該第 一輸出光束的一部份以定義一第二出入光束並引導其返還 至"亥偏振分光器以產生該第二量測光束以及該第二參考光 束。該干涉儀更包括複數個反射表面,用以將該第二輸入 光束從该輸出分光器引導該偏振分光器,其中,該非偏振 19 1057-54 66-PF1 1260401 分光器以及該等反射表面,奇數次反射該第二輸入光束, 在其達到該偏振分光器之前。例如,該非偏振分光器反射 該第二輸入光束,且其中該等反射表面反射該第二輸入光 束偶數次。 干"儀可更包括一第—光纖光學讀取頭,以將該第 一輸出光束搞合至-感測器,以及—第二光纖光學讀取 頭,以將該第二輸出光束耗合至該感測器。 忒干涉儀可更包括一光源,以提供該第一輸入光束, 該第-輸入光束包括相互正交的線性偏振成分。 在另一#面’本發明揭露一種用於在一晶圓上形成積 體電路的微影系統。該微影李 又〜系、、死包括(1 ) 一平台,用以支撐 該日日S],( 2 ) '一發射系έ在,田丨、丨_Ln a 糸、、先用以杈射特定的圖案輻射至該晶 圓之上,(3 ) —定位系統,用以士用軟 用以调整该平台相對於該圖案輻 射的位置,以及上述之干诛备 I t /乂糸統,用以監測該晶圓相對於 该圖案輪射的位置。 在另一方面,本發明揭露-種用於在-晶圓上形成積 體電路的微影系統。該微影系統包括⑴一平台,用以置放 該晶圓;(2) 一照射系統,包括-照射光源,一光罩,一定 位系統,一透鏡組以及上述 K十涉儀。當該光源將光引導 穿過該光罩以產生圖案時,誃 Μ疋位系統調整該光罩與該光 源之間的位置,該透鏡組 Λ 口系咣在该晶圓上,而該 涉糸統監控該光罩與該光源之間的相對位置。 在另一方面,本發明揭露一 種用於製做一微影光罩的 光束直寫糸統。該光束直寫系 尔、兄a括·( 1) 一光源,提供一 1057-5466-PF1 20 1260401 直寫光束以在一基板上形成圖案;一平台,用以置放該基 板;(2)—光束引導組,用以將該直寫光束傳遞至該基板; (3 ) —定位系統,用以調整該平台以及該光束引導組之間的 距離,以及上述之干涉儀,用以監控該平台與該光束引導 組之間的位置。 【實施方式】 本發明之貫施例具有干涉儀組,其可包括一或多直線 位移干涉儀以及一或多個角度位移干涉儀。該干涉儀組可 包括單一,例如,整體的光學組。該等直線位移干涉儀包 括一雙重經過干涉儀,例如一高穩定平面鏡干涉儀“丨运匕 stability plane mirror interferometer,HSPMI),或是 一微分平面鏡干涉儀(DPMI)。該等角度位移干涉儀包括平 面鏡干涉儀,…單一平面鏡同時當作一角度量測干涉 儀的多考以及里測光束兀件。干涉儀組的實施例將被說 明,其中該干涉儀組可包括一或多個直線位移干涉儀以及 一或多個角度位移干涉儀。 /照第1圖,該干涉儀組1Q於單—的組合中包括一 高穩定平面鏡干涉儀,以及一四經過直線位移干涉儀。一 輸入光束Η造成兩次纟m高穩定平面鏡干涉❹ 形成-對相互重疊的輸出光纟30。該輸出光束3。的一•丨 份的相角將被量測,以取得量測鏡12 I一位置上的位老 Η變化°該等輸出光I3G的-部份當作—射至第二高半 定平面鏡干涉儀的輸入光束,以形成該四經過干涉儀,^ 1057-54 66-PF1 21 1260401 四經過干涉儀量測位移X1+X2的變化,其中X2是指該量測 鏡1 2於一第二位置的位移。該位移χ丨以及χ2可被用於量 測鏡1 2相對於一參考點的直線移動以及角度移動。一反射 鏡組28(由虛線所圍成的部分)降低量測光束以及參考光束 中,由於鏡12的傾斜所產生的光束切變,以產生更準確的 位移Χ2量測結果。 輸入光束14具有相互正交的線性偏振成分,其具有 J的頻率差可作外差式偵測(heter〇(jyne detecti〇n)。一 偏振分光器(polarizing beam spliUer)16包括一光束分 4平面82,其,在點P5,分離輸入光束14的正交成分, 以形成一參考光束2 〇以及一量測光束丨8。參考光束2 〇以 及ϊ測光束18造成兩經過干涉儀組1〇,並射出偏振分光 器16以形成射出光束3 〇。 $測光束18(被傳遞經過表面82)主要於平行入射平 面的方向偏振。在此,該入射平面平行於第1圖的圖面。 多考光束20(從表面82所反射的)主要垂直於該入射平面 偏振。 參考光束20沿一第一參考路徑傳遞,接觸一參考鏡 26。$測光束18沿一第一量測路徑傳遞,接觸量測鏡12。 二考鏡以及里測鏡皆為平面鏡。在圖中,一光束重疊於該 光束傳遞的路,目此,該光束以及該路徑以同-條線表 不里測鏡12可設於一物件(例如,一微影平台)之上。 接下來說明量測光束18以及參考光束20於點p5分 離後直到其重新合成為輸出光束3〇之間的路徑。在第工圖 1057-54 ββ-PFl 22 1260401 疋配置為該鏡1 2 中,量測鏡1 2以及偏振分光器1 6 一開始 的表面以45度相對於光束***表面82。 在點P5被表面82反射之後,參考光击9Π丄 在射出偏 振分光器1 6之前,兩次經過干涉儀組j 〇, M做為輸出光 束30的成分。在第一次經過時,參考光走 1兀果Μ接近鏡26, 經過一 1/4波長極化片52,並於點Ρ9由鏡2R g^ 兄乙0反射。參考 光束26第二次經過1/4波長極化片52,射向反射鏡22, 並於點P13以及P14被反射鏡22所反射。 在第二次經過時,參考光束26射向鏡26,第三次經 過1/4波長極化片52,並於點P10被鏡26所反射。參考 光束26第四次經過1/4波長極化片52,射向表面82,於 點P6被表面82所反射,接著射向一感測器24,以成為輸 出光束30的一部份。 於點P5經過表面82之後,量測光束2〇在射出偏振 分光Is 16之前,兩次經過干涉儀組丨〇,以成為輸出光束 30的一部份。在第一次經過時,量測光束18射向鏡12, 經過1/4波長極化片54,並於點P1被鏡12所反射。量測 光束18苐一次經過1/4波長極化片54,並於點p5被表面 82所反射。量測光束18射向反射鏡22,並於點P13以及 P14被反射器22所反射。在第二次經過時,量測光束18 射向表面82,由表面82於點P6反射,並射向鏡12。量測 光束18第二次經過1/4波長極化片54,由鏡12於點P2 反射。量測光束1 8第四次經過1 / 4波長極化片5 4,於點 P6經過表面82’接著射向感測器24,成為輸出光束30的 1057-54 66-PF1 23 1260401 一部份。 之後^V8以及參考光束2°,在射出偏振分光器16 口口 且的輪出光束,並射向感测器24。一分弁 器36***光束3〇成為 77 成為先束32以及光束34。光束32經過 °化“2,並被感測器24感测。當量測鏡 ::移動到另-位置40時,第一參考路徑以及第一量測: 經之間的光程差將會產生變 干涉變化,盆可Η , 的輸出光束32的 #二 感測器24所感測。一分析儀可根據光程 ,計算物理上的位置變化代表點P1以及 P2在鏡12相對於偏振分光器16的平均位置變化。 分光器36為反射鏡組28的一部份,其接受光束3〇 並將光束30的-部份引導至光束42。 高穩定平面鏡干涉儀的輸入光束。光束42被光== 82於點P7分離為參考光束44以及量測光束46。參考光束 44沿一第二參考路徑傳遞,接觸參考鏡26,而量測光束 46沿一第二量測路徑傳遞,並接觸量測鏡12。以下描述量 測光束46以及參考光束44於點p7被分離後至重新結合 輸出光束48之間的路徑。 ' 在被表面82於點P7反射之後,參考光束在射出pBsi6 而成為輸出光束48的一部份之前,兩次經過干涉儀組丨〇。 在第三次經過時,參考光束44射向鏡26,經過1/4波長 極化片52,被鏡26於點P12反射。參考光束44第二次經 過1/4波長極化片52,射向倒反射器22,接著被倒反射器 56於點P16以及pis反射。 1057-5466-PF1 24 1260401 2 6,第三次經 反射。參考光 表面82,於點 過 束 在第四次經過時,參考光束44射向鏡 1/4波長極化片52,並被鏡26於點Pll 44第四次經過1/4波長極化片52,射向 P8被表面82反射,接著射向感測器5〇,成為輸出光束48 的一部份。 於點P7經過表面82之後,量測光束46在射出pBsl6 而成為輸出光束48的一部份之前,兩次經過干涉儀組1〇。 在第三次經過時,量測光束46射向鏡12,經過1/4波長 極化片54,並於點P4被鏡12反射。量測光束丨8第二次 經過1/4波長極化片54,並於點p7被表面82所反射。量 測光束18射向倒反射器56,並於點pi6以及pi5被倒反 射器5 6所反射。 在第四次經過時,量測光束18射向表面82,於點P8 被表面82所反射,並射向鏡12。量測光束18第三次經過 1/4波長極化片54,並被鏡12於點p3所反射。量測光束 18第四次經過1/4波長極化片54,於點p8經過表面μ, 並射向感測器5〇,成為輸出光束48的一部份。 置測光束46以及參考光束44,在射出偏振分光器i 6 之後,形成重疊的輸出光束48,並射向感測器5〇。光束 48經過極化片64並被感測器50所感測。當量測鏡12從 一位置38移動到另一位置4〇時,第二參考路徑以及第二 量測路經之間的光程差將會產生變化,造成重疊的輸出光 束48的干涉變化,其可由感測器50所感測。一分析儀可 根據光程差的變化,計算物理上的變化△ = △ 1+ △ 2。△ 2由 1057-5466-PFl 25 1260401 △減去△ !而得。△ 2表示點P3以及P4於鏡1 2上相對於 PBS16的平均位置變化。 藉由量測△ !以及△ 2,其可藉由計算(△ 1+么2)/2決定 鏡12相對於pBS16的平均直線位移。其亦可藉由計算(△ 广△ 2)以決定方位的變化,當被除以一中間點(ρι以及Μ 之間)到一中間點(P3以及P4之間)之間的距離時,其大略 接近於鏡相對於PBS16的轉動角度。The change in PnL is sinusoidal. In particular, (4) - the period of a spectral wave: = has a sine dependent on (kpnL) / again, and the circumferential error of the second spectral wave has a sine dependent on 2 (2" nL) / A. Higher The harmonics of the harmonics can also be expressed in this way. There may also be "non-periodic nonlinearities, conditions" such as by the reference beam 1057-54 66-PF1 7 I26〇4〇i and the measuring beam on the interferometer The lateral displacement in the output beam (eg, beam shear), when the wavefront of the reference beam and the wavefront of the beam have a wavefront error (waVefront err〇rs). This phenomenon can be explained by the following. The inhomogeneous materials in the interferometer instrument (inh〇mogeneities) cause the reference beam and the wavefront error of the measurement beam. When the reference beam and the κ ray beam pass through the non-uniform materials in the same straight line, the same wavefront error is generated and the interference signals are offset each other. In addition, the reference beam in the X-out beam and the measuring beam will be laterally displaced from each other, such as the opposite beam shear. This beam shear causes a wavefront error and causes an error in the interference signal resulting from the wheeled beam. Moreover, in many interferometric systems, beam shear varies with the position or angular orientation of the gauge. For example, a change in the angular orientation of the +-mirror gauge causes a relative beam shear. Therefore, the change in the angle of the measuring member produces a corresponding error in the interference signal. The effect of beam shear and wavefront error will depend on the step of combining the output beam based on the polarization state and the step of detecting the mixed output beam to obtain an electronic interference apostrophe. The hybrid output beam can be detected by a detector that can be detected by focusing the hybrid beam onto the detector, or capturing the mixed beam into a single mode or multimode fiber Medium, detecting the mixed beam that is passed into the fiber. The beam shear and the wavefront error of the wavefront are also dependent on the nature of the beam st〇ρ. In general, when the fiber is used to direct the mixed output beam to the detector, the error of the interference signal is complex. 1057-5466-PF1 8 1260401 Interference δίΐ "5 Tiger's amplitude of love 4 Gentry Culture 9疋 The net result of the sum of many mechanisms. The mechanism is, for example, the reference beam due to the rotation of the measuring member and the relative beam shear of the measuring beam in the output beam. In dispersion measurement, the optical path measurement uses a composite wavelength, such as 5· and ((10), to measure the dispersion in the measurement path of the interferometer. This dispersion measurement can be used to convert a prior range measured using a displacement measurement interferometer to a physical length. This conversion is important because the length of the optical path that is affected by the disturbance of the airflow or the unevenness of the temperature can be converted to a fixed physical length. The interferometer described above is typically an important component of a scanner or stepper system that is used in a lithography process to form an integrated circuit on a wafer. The lithography system includes a cocoa mobile platform for selecting and securing the wafer; a focusing device for feeding the light to the wafer; and a broom or stepping system for moving the platform closer to the radiation a beam; and at least one interferometer. Each interferometer directs a measuring beam to and receives a reflected measuring beam from a plane mirror disposed on the platform. Each interferometer interferes its reflected (four) beam with a corresponding reference beam that measures the positional change of the platform relative to the light beam. The interferometer enables the lithography system to accurately control the exposed area of the wafer in the light beam. In many lithography systems and other applications, the gauge includes at least one mirror to reflect the beam. A slight angular change in the measuring member, such as the height or deflection of the platform, causes the measuring beam to change from the direction of the mirror. If not compensated, the measurement of the change 1057-5466-PF1 9 1260401 beam will reduce the overlap of the beam and the interference in the interferometer. In addition, the measuring beam and the reference beam will not be transmitted in parallel with each other, and the wavefront will also be aligned when forming the mixed beam. Therefore, the interference between the measuring beam and the 夂 氺 叹 叹 叹 叹 将 将 将 将 将 将 将 将 将 将 沿 沿 沿 沿 沿 沿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿 朿The interference information was damaged. In order to cope with this problem, many conventional interferometers have an inverted reflector retr 〇 reflector to redirect the measuring beam back to the plane mirror by the metering m (d) dQUble passes" the interferometer and the measuring member The path between the reflectors makes the measurement less sensitive to changes in the angular rotation of the measuring member. When used in a planar mirror interferometer, this configuration becomes what is commonly referred to as a high-stability flat-mirror interferometer (high-stability). Plane mirror interferometer, HSPMI). However, even with the use of an inverted reflector, the lateral position of the measuring beam is still sensitive to the angular rotation of the measuring member. Furthermore, the path of the measuring beam passes through an optical device in the interferometer, which The path is also sensitive to changes in the angular rotation of the measuring member. On the other hand, the interferometric system is used to measure the position of the wafer platform along the multiple measurement axes. For example, the setting of the Cartesian coordinate system is crystal. The circular platform is located on the xy plane, and the measurement is mainly for the position of the flat mouth on the xy axis and the angular orientation of the platform in the z-axis. At this time, the platform is in the xy plane. It can also be moved. In addition, it can also monitor the tilt of the wafer platform outside the xy plane. For example, the tilted features can be used to calculate Abbe of fset errors at the xy position. Therefore, it can have up to 1057-5466-PF1. 10 !26〇4〇l = degree of freedom of measurement. In addition, in the example n, it can also monitor the position of the flat mouth in the 2-axis direction and produce the sixth degree of freedom. In order to measure each degree of freedom, one The interferometer is used to monitor the displacement of the coordinate axis clock. For example, in the system of measuring the position of the platform and the tilting position in the x, y, and z directions, there are at least three particularly independent measuring beams from the circular platform. The _ side & ϋ 有 两个 两个 四 四 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The device on the substrate: the square, the content of which is referred to herein. Each measuring beam is combined with the reference beam to monitor the corresponding, axial & optical path | degree. Because of the different (four) beam and the wafer The platform is in contact at different locations, and the wafer platform can be used by Appropriate optical path length measurements yield the angular orientation. Therefore, it can monitor each degree of freedom. The system includes at least one measuring beam that contacts the wafer platform. In addition, as described above, each amount The beam can be passed twice through the wafer platform to prevent the angular variation of the wafer platform from affecting the interference signal. The measurement beam can be generated by a physically separated interferometer or by a multi-weight beam generated by a multi-axis interferometer. SUMMARY OF THE INVENTION The present invention is a multi-degree-of-freedom planar mirror interferometer group that measures two, three or more degrees of freedom and has zero or lower beam shear conditions on a sensor or fiber optic read head ( FOP). In some embodiments, the differential beam shear of the reference beam or the measuring beam can be effectively reduced. The interferometer set can include a single interferometer optics set. A dual-free 1057-5466-PF1 11 1260401 degree flat mirror interferometer set with zero or low beam shear that can be used to measure linear displacement at two separate locations on a plane mirror, or to measure linear displacement of a plane mirror And angular displacement. In some settings, the reference beam and the differential beam shear of the measuring beam can be effectively reduced. The above described techniques can be used to measure additional degrees of freedom, using the interferometer configuration disclosed in U.S. Patent Application Serial No. 60/352,341. These embodiments include a one or two free metrology plane mirror interferometer set having zero or relatively low differential beam shear that can be used to measure three linear displacements at three independent locations on a plane mirror, or It is the linear displacement of a plane mirror and the displacement of two positive father angles, or the measurement of two linear displacements and an angular displacement. In some configurations, the reference beam and the differential beam shear of the measurement beam can be effectively reduced. Still further embodiments include a four or multiple free metrology plane mirror interferometer set with zero or reduced beam shear that can be used to measure other different linear and angular displacement combinations. D • V π , Bu π kiss t can be dry and the gauge to measure the change in the orientation of the object. The reference beam and the amount of beam are used to measure the angle through which the single plane passes. The interferometer optics set can include a ten-stability design for measuring linear or angular shifts. The interferometer optics, group can be set to f-reference beam and the differential beam between the beams is cut to zero or lower. The reference beam used in the angular displacement interferometer and the beam of the measuring beam = variable-single-plane mirror are zero. Two or more linear or angular displacement wheel exits may have a common speculative beam path to pass through the single planar mirror. 1057-5466-PF1 12 1260401 The interferometer group can be configured such that the relative reference beam and the optical path length of the measuring beam are the same in the glass or the same in the gas. The present invention discloses a multiple degree of freedom multiple pass interferometer for measuring the angular orientation and distance of the measuring member. The multi-pass interferometer includes a plurality of mirrors that pass at least two beams along the interferometer, the plurality of passes including a first set of passes and a first set of passes. The mirrors have a plurality of first aligners that are perpendicular to the beam paths reflected by the mirrors. The two beams provide information regarding the change of a first stage placed on one of the mirrors after the first set has passed. The two beams provide information about changes in a first position and the second position after one of the mirrors has passed the second set. When at least one of the mirrors has a different calibration effect than the first aligner, the paths of the beams may be sheared as the first set passes and the second set passes. The interferometer includes optical elements to direct the beams after the first set of passes, before the second set passes, such that the beam shear energy produced by the second set passes and the first set of passes The beam shears cancel each other out. Embodiments of the invention may further include the features described below. The optical elements are arranged to maintain the amount and direction of beam shear between the two beams when directing the beams. Upon completion of the first set = timeout, the beams of the two beams scattered by the optical elements will be lost to each other: the equal mirror includes a plurality of planar reflecting surfaces. The beams comprise a reference beam directed to a mirror located at a rest position relative to the interferometer. The beams comprise a measuring beam directed to 1057-54 66-PF1 13 1260401 which is movable relative to the interferometer. The reference beam and the measuring beam define an optical path difference, the optical path difference showing a change in position of the mirror relative to the interferometer. The mirrors include a first mirror and a second mirror, and the beam of # includes a first beam directed to the first mirror and a first beam directed to the second mirror. The mirror and the second mirror are movable relative to the interferometer. The first light beam and the second light beam define a light privacy difference. 4 The optical path difference indicates that the relative position of the first mirror and the second mirror changes. The first group of Bu L is composed of two sets of passes, and each of the beams is reflected by the reflectors at least once each time. The second set consists of two sets of passes, and each of the beams is reflected by the reflectors at least once each time it passes. The multiple pass interferometer includes a beam splitter that separates an input beam into the beams and the mirrors. The beam splitter includes a polarization beam splitter. The optical elements = an odd number of reflective surfaces. The normals of the reflective surfaces are in the same plane. The reflective surfaces include planar reflective surfaces. Each beam is guided by the optical elements by the reflective surface, the incident beam and the reflected beam and the per-reflective surface of the total factory, zero or π 360 degrees of an integer multiple, the angle is measured from The incident light: to the reflected beam, when in a counterclockwise direction, the angle has a positive value, in the case of a clockwise direction, the angle has - the beam passes through the first - and the first and (iv) 04 3 interferometer at the The overlapping beams are formed by two-:: obsolete, the beams are combined to 1057-54 66-PF1 14 1260401. The optical elements include a reflective surface. The optical elements include an even number of reflective surfaces. The optical elements include a tapered mirror. The interferometer includes a differential planar mirror interferometer. The two beams have different frequencies. The interferometer can be used in a dry (tetra) system that includes a sensor for sensing optical interference between the overlapping beams and generating an interference signal that exhibits an optical path difference between the beams. The sensor includes a light sensor, an amplifier, and a analog-to-digital converter. The interference system further includes an analyzer coupled to the sensor for calculating a change in optical path difference between the beams based on the interference signal. The interference system further includes a light source to provide the beams. An interferometer can be used in an interference system that includes a platform to support a -: circle; - a launch system, to illuminate the surface of the wafer with pattern radiation; and a position "to adjust the platform relative to The location of the pattern radiation, wherein the interferometer is used to measure the position of the platform. A needle can be used in an interference system that includes a platform to support ... the dome and the launch system include a radiation A light source, a reticle, a clamping system, and a lens group, wherein 蚪, a, and a field are emitted, the light source emits radiation! The reticle is passed to generate a position of the reticle relative to the surface,!! The positioning system adjusts the , the lens group to project the pattern radiation to "solid" and the interferometer is used to measure the position of the mask relative to the wafer. = The instrument can be used in an interference system which includes a light source, which provides a write-on beam for supporting the lithography light on a reticle ray; - the beam is led to the W case, the platform is supported The lithographic mask is configured to transmit the direct write beam to a clamp system for adjusting a distance between the platform and the light guiding group of the light 1057-54 66-PF1 15 1260401, wherein the interferometer For measuring the position of the platform relative to the beam guiding group. The integrated circuit can be fabricated using the above-described interference system, with a branch-circle, a projected pattern radiating to the wafer i, and adjusting the flat; the relative position of the light shot relative to the pattern, wherein The interferometer is used for the quantity = the position of the platform. The integrated circuit can be fabricated by using the above-described interference system to support a circle, directing light from the light source, passing the mask to produce a special pattern = incident on the light source, and (4) the mask (four) The location of the shot, and the field projecting the special pattern onto the wafer, wherein the interferometer is used to detect the position of the mask relative to the wafer. The lithography mask can be fabricated by using the above-described interference system to support a lithographic mask, transmitting a direct-write beam to the lithography mask, and adjusting the relative position of the beam I and the beam guiding group, wherein The interferometer heart measurement = the position of the platform relative to the beam guiding group. The present invention also discloses a multi-degree of freedom interferometer for measuring the positional change of the distance or angular orientation of the measuring member according to multiple degrees of freedom. The whale interferometer includes a plurality of interferometer optics, including - a reference piece. ^ Interferometer optics are used to (1) direct a _ from the original incoming and outgoing beam; the angular measuring beam passes the first point on the measuring element a second time and cuts the reference piece second, and (2) from the original entrance and exit The beam directs a second angular measurement beam to pass the reference member for the first time and a second time through a second point on the measurement member, and (3) recombining the first and second angular measurement beam portions The knife measures the output beam in the angle of calving, which contains information about the angular orientation of the measuring element 1057-5466-PF1 16 1260401. The interferometer optics are used more (1) from the original. The incoming and outgoing beams direct a _ distance measuring beam to pass through the reference member '(2) from the original outgoing beam - the second distance measures the beam to pass the measuring member twice, and f) the tongue "(3) Recombining the first and second distance-order beam portions ' to generate a measured output beam in the distance between the diurnal and the diurnal in-situ distance, which contains information about the change in the distance of the measuring member. The interferometer may include Any of the following features: The Hello test piece is a plane mirror whose direction of rotation is perpendicular to the incoming rays of the beam components. The interferometer optical elements further include a polarization beam splitter for guiding the beam components along the beam. Passing a path, a first quarter-wavelength polarizer is disposed between the polarizing beam splitter and the reference member, and a second germanium wavelength polarizing sheet is disposed between the polarizing beam splitter and the reference member The interferometer optical element may further comprise a folding optical element 'to guide the light beams back to the partial light splitting light', and the folding optical elements may further comprise a half wave plate for connecting the angled light beam 'after its first pass The folded optical elements may have an odd number of reflective surfaces for guiding the angular measurement beam component back to the polarization beam splitter, and the optical components may have an even number of inverses, and the surface U guides δ The distance measuring beam component is returned to the polarization beam splitter. The interferometer may further comprise an optical delay line for receiving the second angle measuring beam component 'when passing the measuring element and generating an additional path The length is used to reduce the differential beam shear in the output beam from ^ t X. In ^ ^ ^, the interferometer can further include - input non-polarization. The original input beam p angle is used to measure the input beam, 1057-5466-PF1 17 1260401. It is guided to the other, the knife light is used to generate an angle measuring beam component, and the distance measuring rim is the distance of the knives. Once &, it is directed to the polarizing beam splitter to produce the giant ionizing first beam component.半;, half-occupied γ from the input non-polarization component ^ interferometer may further include a mirror for measuring the input beam for receiving the distance, and ΉV to the polarization splitting crying mouth to generate This distance measures the output beam. #匕的实苑例' The polarizing beam splitter can separate the original input non-heart = angle f measuring beam component, and the interferometer can further include - output: the knife light is measured by the angle of the separation-part The output beam is directed to a D-polarized beam splitter to produce the distance-measured beam component, and the component separated from the 'measuring wheel' defines a distance-measured input beam. For example, the interferometer can further include an inverted reflector for receiving the distance from the output non-polarizing beam splitter to measure the input beam, which must be directed to the polarizing beam splitter to produce the distance measuring beam component. In addition, the interferometer may further include a non-focusing system disposed between the output non-polarizing beam splitter and the nano-polarization beam splitter. The non-focal length system has an amplification effect such that the first-distance measuring beam component is a predetermined angular range β that contacts the measuring element in a normal incidence. For example, the zoom-free system can have a magnification of 2:1. The dry meter may further include a first fiber optic read head for coupling the angle measuring wheel to a sensor, and a second fiber optic read head for coupling the distance measuring output Light beam to the sensor. The interferometer can further include a light source providing the original input beam, the original input beam comprising mutually perpendicular linearly polarized components. In general, in another aspect, the present invention can be a multi-degree of freedom 1057-5466-PF1 18 1260401 interferometer, including a plurality of interferometer optical elements, etc., and a reference piece from the m . The first illuminating beam of the input beam of the 吾 Ηϊϊ 以 以 两次 两次 两次 两次 两次 两次 两次 两次 两次 两次 两次 两次 两次 两次 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入 输入The reference piece, and the ::; measuring light east and the first-reference beam recombined into - the second two beams " which contains the distance change of the first point of the measuring piece. The interferometer optical elements are further used to (1) direct a second amount of well logging twice through one of the first beam of the measuring member. (2) to guide a second reference light. The East and the second pass the reference piece, and (3) recombine the first beam of the 哕曰 liver ° Hai and the second beam of the meal into a first rim of the second rim, which contains the measurement The distance of the second point of the piece changes. The second measurement beam of the moxibustion and the second reference beam are separated from the first output beam. The interferometer can further include any of the features described below. The reference member is a plane mirror whose direction of rotation is perpendicular to the incoming rays of the beams of light. The interference includes a polarization component μ, and the beam component is guided to transmit a '-1/4th wavelength polarization plate along the path, and is disposed between the polarization beam splitter and the reference member. The chemical sheet is disposed between the polarizing beam splitter and the reference member. The X interferometer further includes a non-polarization output splitter for separating a portion of the first output beam to define a second in and out beam and directing it back to the "heling polarizing beam splitter to generate the second measuring beam And the second reference beam. The interferometer further includes a plurality of reflective surfaces for directing the second input beam from the output beam splitter to the polarization beam splitter, wherein the unpolarized 19 1057-54 66-PF1 1260401 optical splitter and the reflective surfaces, odd The second input beam is reflected second before it reaches the polarization beam splitter. For example, the non-polarizing beam splitter reflects the second input beam, and wherein the reflecting surfaces reflect the second input beam an even number of times. The dry " instrument may further include a first fiber optic read head to engage the first output beam to the sensor, and - a second fiber optic read head to mate the second output beam To the sensor. The chirp interferometer can further include a light source to provide the first input beam, the first input beam comprising mutually orthogonal linearly polarized components. In another aspect, the invention discloses a lithography system for forming an integrated circuit on a wafer. The lithography of the lithography, the dynasty, and the death include (1) a platform to support the day S], (2) 'a launch system ,, 丨, 丨 _Ln a 糸, first used 杈A specific pattern is radiated onto the wafer, (3) a positioning system for softening the position of the platform relative to the pattern, and the above-described dry preparation device, Used to monitor the position of the wafer relative to the pattern. In another aspect, the invention discloses a lithography system for forming an integrated circuit on a wafer. The lithography system comprises (1) a platform for placing the wafer; and (2) an illumination system comprising: an illumination source, a reticle, a position system, a lens group, and the K-related instrument. When the light source directs light through the reticle to create a pattern, the clamping system adjusts a position between the reticle and the light source, the lens group port is tied to the wafer, and the entanglement The relative position between the reticle and the light source is monitored. In another aspect, the invention discloses a beam direct writing system for making a lithographic mask. The beam is directly written by a light source, a brother, and a light source, providing a 1057-5466-PF1 20 1260401 direct writing beam to form a pattern on a substrate; a platform for placing the substrate; (2) a beam steering group for transmitting the direct write beam to the substrate; (3) a positioning system for adjusting a distance between the platform and the beam guiding group, and an interferometer for monitoring the platform The position between the group and the beam guiding group. [Embodiment] A consistent embodiment of the present invention has an interferometer set that can include one or more linear displacement interferometers and one or more angular displacement interferometers. The interferometer set can include a single, e.g., integral, optical set. The linear displacement interferometers include a dual-interferometer, such as a high-stability flat-mirror interferometer (HSPMI), or a differential planar interferometer (DPMI). The angular displacement interferometer includes Planar mirror interferometers, ... a single plane mirror is used as both a multi-test of the interferometer and an internal beam element. An embodiment of the interferometer set may be described, wherein the interferometer set may include one or more linear displacement interferences. The instrument and one or more angular displacement interferometers. / According to Fig. 1, the interferometer group 1Q includes a high-stability flat-mirror interferometer in a single-by-one combination, and a four-linear displacement interferometer. The two 纟m high-stability plane mirror interference 形成 forms a pair of mutually overlapping output pupils 30. The phase angle of one of the output beams 3 will be measured to obtain the position of the position of the measuring mirror 12 I The change of the old ° ° part of the output light I3G is taken as the input beam to the second high semi-fixed plane interferometer to form the four-pass interferometer, ^ 1057-54 66-PF1 21 1260 401. The displacement of the displacement X1+X2 is measured by the interferometer, wherein X2 refers to the displacement of the measuring mirror 12 at a second position. The displacement χ丨 and χ2 can be used for the measuring mirror 1 2 relative to one The linear movement of the reference point and the angular movement. A mirror group 28 (the portion enclosed by the broken line) reduces the beam shear caused by the tilt of the mirror 12 in the measuring beam and the reference beam to produce a more accurate displacement. Χ2 measurement results. The input beam 14 has mutually orthogonal linear polarization components, and the frequency difference of J can be heterodyne detection (heyne detection). A polarization beam splitter (polarizing beam spiliUer) 16 A beam splitting 4 plane 82 is included which, at point P5, separates the orthogonal components of the input beam 14 to form a reference beam 2 〇 and a measuring beam 丨 8. The reference beam 2 〇 and the spectroscopic beam 18 cause two passes The interferometer group 1 〇 and emits a polarizing beam splitter 16 to form an exiting beam 3 〇. The measuring beam 18 (passed through the surface 82) is polarized primarily in the direction parallel to the plane of incidence. Here, the plane of incidence is parallel to Figure 1. Picture. 20 (reflected from surface 82) is primarily perpendicular to the plane of incidence polarization. Reference beam 20 is transmitted along a first reference path, in contact with a reference mirror 26. $beam 18 is transmitted along a first measurement path, contact measurement Mirror 12. Both the second mirror and the inner mirror are plane mirrors. In the figure, a beam is superimposed on the path of the beam, and the beam and the path can be set by the same-line meter 12 An object (e.g., a lithography platform). Next, the path between the measurement beam 18 and the reference beam 20 after separation at point p5 until it is recombined into the output beam 3〇 is illustrated. In the figure 1057-54 ββ-PF1 22 1260401 疋 configured as the mirror 12, the surface of the measuring mirror 1 2 and the polarization beam splitter 16 is at 45 degrees with respect to the beam splitting surface 82. After the point P5 is reflected by the surface 82, the reference beam 9 经过 passes through the interferometer group j 〇, M as a component of the output beam 30 before exiting the polarization beam splitter 16. On the first pass, the reference light travels close to the mirror 26, passes through a 1/4 wavelength polarizer 52, and is reflected by the mirror 2R g^ 乙 0 at point Ρ9. The reference beam 26 passes through the 1/4 wavelength polarizer 52 for a second time, is directed toward the mirror 22, and is reflected by the mirror 22 at points P13 and P14. On the second pass, the reference beam 26 is directed at the mirror 26, the third pass through the 1/4 wavelength polarizer 52, and is reflected by the mirror 26 at point P10. The reference beam 26 passes through the 1/4 wavelength polarizer 52 for a fourth time, toward the surface 82, is reflected by the surface 82 at point P6, and then is directed toward a sensor 24 to become part of the output beam 30. After the point P5 passes the surface 82, the measuring beam 2 经过 passes through the interferometer group 两次 twice before exiting the polarization beam splitting Is 16 to become a part of the output beam 30. At the first pass, the measuring beam 18 is directed toward the mirror 12, passes through the 1/4 wavelength polarizing plate 54, and is reflected by the mirror 12 at point P1. The measuring beam 18 passes through the 1/4 wavelength polarizing plate 54 once and is reflected by the surface 82 at point p5. The measuring beam 18 is directed toward the mirror 22 and is reflected by the reflector 22 at points P13 and P14. On the second pass, the measuring beam 18 is directed toward the surface 82, reflected by the surface 82 at point P6, and directed toward the mirror 12. The measuring beam 18 passes through the 1/4 wavelength polarizing plate 54 for the second time and is reflected by the mirror 12 at point P2. The measuring beam 1 8 passes through the 1/4 wavelength polarizing plate 5 4 for the fourth time, passes through the surface 82 ′ at the point P6 and then faces the sensor 24 to become a part of the output beam 30 1057-54 66-PF1 23 1260401 . After ^V8 and the reference beam 2°, the light beam exiting the mouth of the polarization beam splitter 16 is directed to the sensor 24. A splitter 36 splits the beam 3 into 77 to become the first beam 32 and the light beam 34. The beam 32 passes through the "2" and is sensed by the sensor 24. The equivalent mirror:: when moving to the other - position 40, the first reference path and the first measurement: the optical path difference between the passes will Producing a variable interference change, the basin 2 is sensed by the #2 sensor 24 of the output beam 32. An analyzer can calculate the physical positional change representative points P1 and P2 at the mirror 12 relative to the polarization beam splitter according to the optical path. The average position change of 16. The beam splitter 36 is part of the mirror group 28 that receives the beam 3 〇 and directs the - portion of the beam 30 to the beam 42. The input beam of the highly stable plane mirror interferometer. The beam 42 is illuminated == 82 is separated into reference beam 44 and measurement beam 46 at point P7. Reference beam 44 is transmitted along a second reference path, contacting reference mirror 26, and measurement beam 46 is transmitted along a second measurement path, and the amount of contact is Mirror 12. The following describes the path between the measuring beam 46 and the reference beam 44 after separation at point p7 to recombining the output beam 48. ' After being reflected by surface 82 at point P7, the reference beam is emitted as pBsi6. a portion of the beam 48 before passing through the interferometer twice At the third pass, the reference beam 44 is directed toward the mirror 26, passes through the 1/4 wavelength polarizer 52, and is reflected by the mirror 26 at point P12. The reference beam 44 is 1/4 wavelength polarized for the second time. The sheet 52, which is directed toward the inverted reflector 22, is then reflected by the inverted reflector 56 at points P16 and pis. 1057-5466-PF1 24 1260401 2 6. The third time is reflected. The reference light surface 82 is at the point of the beam. Four passes, the reference beam 44 is directed toward the mirror 1/4 wavelength polarizer 52, and is mirrored 26 by the mirror 26 for a fourth time through the 1/4 wavelength polarizer 52, and directed toward P8 is reflected by surface 82, and then The beam is directed toward the sensor 5A and becomes part of the output beam 48. After the point P7 passes the surface 82, the measuring beam 46 passes through the interferometer group 2 before it exits pBsl6 and becomes part of the output beam 48. At the third pass, the measuring beam 46 is directed toward the mirror 12, passes through the 1/4 wavelength polarizing plate 54, and is reflected by the mirror 12 at point P4. The measuring beam 丨8 passes through the 1/4 wavelength for the second time. The polarizing plate 54 is reflected by the surface 82 at a point p7. The measuring beam 18 is directed toward the inverted reflector 56 and is reflected by the inverted reflector 56 at points pi6 and pi5. At time, the measuring beam 18 is directed toward the surface 82, which is reflected by the surface 82 at point P8 and directed toward the mirror 12. The measuring beam 18 passes through the 1/4 wavelength polarizing plate 54 for the third time and is mirrored at point p3. The reflected beam 18 passes through the 1/4 wavelength polarizer 54 for the fourth time, passes through the surface μ at point p8, and is directed toward the sensor 5A to become part of the output beam 48. The beam 46 is placed and The reference beam 44, after exiting the polarization beam splitter i6, forms an overlapping output beam 48 and is directed toward the sensor 5''. Light beam 48 passes through polarizer 64 and is sensed by sensor 50. When the equivalent mirror 12 moves from one position 38 to another position 4, the optical path difference between the second reference path and the second measurement path will change, causing interference variations of the overlapping output beams 48, It can be sensed by the sensor 50. An analyzer can calculate the physical change Δ = △ 1 + △ 2 according to the change of the optical path difference. △ 2 is obtained by subtracting Δ ! from 1057-5466-PFl 25 1260401 △. Δ 2 represents the change in the average position of the points P3 and P4 with respect to the PBS 16 on the mirror 12. By measuring Δ ! and Δ 2, it is possible to determine the average linear displacement of the mirror 12 relative to the pBS 16 by calculating (Δ 1 + 么 2)/2. It can also determine the change in orientation by calculating (Δ wide Δ 2), when divided by an intermediate point (between ρι and Μ) to a middle point (between P3 and P4), It is roughly close to the angle of rotation of the mirror relative to the PBS 16.

參知第2圖’當鏡12從一位置5 8旋轉至另一位置6 〇 時,一相對切變5 1產生於輸出光束32的兩個成分(量測 光束18以及參考光束2〇)之間。反射鏡組28引導光束 以形成光束42。一相對切變5 2形成於光束42的兩成分(將 f為光束44以及46)之間。反射鏡組28被設計為相對切 變52基本上等同於相對切變51。 在經過點P7’量測光束46再第三次以及第四次經過 追蹤里測光束46以及理想量測路徑(當鏡丨2於位Referring to Fig. 2, when the mirror 12 is rotated from a position 5 8 to another position 6 ,, a relative shear 5 1 is generated from the two components of the output beam 32 (the measuring beam 18 and the reference beam 2 〇). between. The mirror set 28 directs the beam to form a beam 42. A relative shear 52 is formed between the two components of beam 42 (where f is beam 44 and 46). The mirror set 28 is designed to be substantially equivalent to the relative shear 51 relative to the shear 52. The beam 46 is measured at the point P7' for the third and fourth passes through the tracking beam 46 and the ideal measurement path (when the mirror 2 is in place)

置58時的量測光束路徑)之間的光束切變,在第-次經過 :乂及弟二次經過時所分散的切變,在量測光束第三次以及 第四次經過干涉儀組1〇時被消除。 一古η用干涉儀組10的優點在於,當鏡12傾斜時,從 -南穩定平®鏡干涉儀射出的❹光束48的成分中之 二 = 或是不同的)光束切變為零。從第二高穩定平面 干涉儀射出的該輸出光吏 丨先束48成分之整體光束切變(相對 田鏡12 >又有傾斜時的井圭The beam shear between the measured beam paths at 58 o'clock, the shear that is dispersed during the first pass: 乂 and the second pass, the third and fourth passes of the interferometer group 1〇 was eliminated. An advantage of the interferometer group 10 is that when the mirror 12 is tilted, two of the components of the xenon beam 48 emitted from the -stable pantograph interferometer = or a different beam are cut to zero. The output beam 射 从 from the second high-stability plane interferometer, the overall beam shear of the component of the first beam 48 (relative to the field mirror 12 >

Mm” 光束路旬亦為零。組成輸出光束 、、成勺疋相互平行的。組 战輸出光束48的兩成分亦是 1057-5466-PF1 26 1260401 互平行的。 接下來說明說明反射鏡組28&配置。除了分光器 36,反射鏡組包括反射鏡66以及68。分光器及反射 鏡66以及68可以幾種不同的方式設置。第3圖以及第4 圖顯示了兩種合適的反射鏡組28的配置m 36以及 反射鏡66 α及68被設置為入射光束以及反射光束之間的 角度總和為零或是3 6 0度的倍數。 光束30被分光器36反射進入光束34,其被反射鏡 66反射進入光束7〇,其被反射鏡68反射進入光束42。參 照第2圖’角度α具有-負值(從光束⑽順時針轉至光束 34),角度/3具有一正值(從光束34逆時針轉至光束7〇), 以及角度γ具有一正值。分光器36以及反射鏡66以及68 的配置使α+卢+7=0。 在第3圖中,角度《、万以及^具有負值(從入射光 束順時針轉至反射光束)。分光器36以及反射鏡66以及 68被配置為α +冷+ r=360度。該等鏡可以不同的方式配 置,使、/3以及γ的總和為零或者是3 6 0度的倍數。 在第3圖以及第4圖中,該分光器以及反射鏡其法線 位於同一平面(第3圖以及第4圖的圖面)。在設計上該分 光為以及反射鏡的法線亦可位於不同的平面但其亦可以補 償量測鏡所造成的光束切變。例如,在第5圖中,_反射 鏡組80包括一分光器36’反射鏡66以及68,以及一角錐 倒反射器7 2,其具有六個反射面(該等反射面的法線並不 位於同一平面)。 1057-5466-PF1 27 1260401 36以及反射鏡66以及 分光器 68被配置為一光束 川在被分光器36以及反射鏡66以及68反射後所產生) 平行於光束30’而光束30以及74在同—個方向上傳遞 倒反射器72引導光束74進入光束42。光束42平行於光 束30,但以相反的方向傳遞。反射鏡組8〇具有如第3圖 或第4圖中的反射鏡組28之相同的傳遞特性,所以光束 42的光束切變的量以及方向等同於光束3〇的光束切變的 量以及方向。 在第1-4圖中的例子中’反射鏡組28包括三個平面 反射面(一個形成分光器36而另外兩個分別形成反射鏡⑽ 以及68)。在別的例子中,也可使用另一奇數(大於三)的 平面反射鏡。從法線位於同一平面的分光器以及反射鏡的 奇數反射,將使入射反射鏡組的光束間之光束切變的數量 以及方向等同於被反射鏡組所反射的光束間之光束切變的 數量以及方向,其中,該光束切變是由於量測鏡的傾斜所 產生。 第卜5圖中的反射鏡組可補償量測鏡多變的轉動,例 如,繞彼此正交且正交於量測鏡法線的軸旋轉。不考虎由 於量測鏡傾斜所造成之光束切變的量以及方向,在第一次 以及苐一次經過時分政給里測光束的光束切變,將被於第 三次以及第四次經過時分散給量測光束的光束切變所抵 銷。 上述干涉儀系統的變化型,可包括額外的直線或是角 度位移干涉儀,於一干涉儀組之中或是於一單一的干涉儀 1057-5466-PF1 28 1260401 組中以成為可量測三或多自由度的干涉系統,其中該額外 的干涉儀的輸出光束於感測器可具有零或是被減低的光束 切變。該干涉系統的變形亦可包括一或多個動態元件以補 償任何量測件的傾斜。例如,可使用一動態元件以將干涉 儀的輸出光束耦合進入該感測器。該動態元件可補償輸出 光束因為量測件角度變化所產生的方向變化。此動態元件 揭露於美國專利U· s· Nos· 6, 271,923以及6, 313, 918中。 上述的干涉系統提供高精度的量測。此系統特別有用 於微影上的應用,用以製作大尺寸的積體電路,例如電腦 晶片。微影為半導體製造工業的關鍵技術。疊置改進是將 線寬降到lOOnm以下的重要挑戰,參照Semic〇nductc)rThe Mm" beam path is also zero. The output beam is formed, and the scoops are parallel to each other. The two components of the group output beam 48 are also 1057-5466-PF1 26 1260401 parallel to each other. Next, the mirror group 28 & Configuration. In addition to the beam splitter 36, the mirror group includes mirrors 66 and 68. The beamsplitters and mirrors 66 and 68 can be arranged in several different ways. Figures 3 and 4 show two suitable mirror groups. The configuration m 36 of 28 and the mirrors 66 α and 68 are arranged such that the sum of the angles between the incident beam and the reflected beam is zero or a multiple of 3 60 degrees. The beam 30 is reflected by the beam splitter 36 into the beam 34, which is reflected The mirror 66 reflects into the beam 7〇, which is reflected by the mirror 68 into the beam 42. Referring to Fig. 2, the angle α has a negative value (clockwise from the beam (10) to the beam 34), and the angle /3 has a positive value (from The beam 34 is rotated counterclockwise to the beam 7 〇), and the angle γ has a positive value. The configuration of the beam splitter 36 and the mirrors 66 and 68 is such that α + Lu + 7 = 0. In Fig. 3, the angle ", 10,000 and ^ has a negative value (clockwise rotation from the incident beam to the reflected beam The beam splitter 36 and the mirrors 66 and 68 are configured to alpha + cold + r = 360 degrees. The mirrors can be configured in different ways such that the sum of /3 and y is zero or a multiple of 366 degrees. In Fig. 3 and Fig. 4, the spectroscope and the mirror have their normal lines on the same plane (the planes of Figs. 3 and 4). In the design, the spectroscopic and the normal of the mirror can also be located. Different planes can also compensate for beam shear caused by the metrology mirror. For example, in Fig. 5, the mirror group 80 includes a beam splitter 36' mirror 66 and 68, and a pyramid inverted reflector 7 2, which has six reflecting surfaces (the normals of the reflecting surfaces are not in the same plane). 1057-5466-PF1 27 1260401 36 and the mirror 66 and the beam splitter 68 are configured as a beam of light in the beam splitter 36. And the mirrors 66 and 68 are reflected and parallel to the beam 30' and the beams 30 and 74 pass the inverted reflector 72 in the same direction to direct the beam 74 into the beam 42. The beam 42 is parallel to the beam 30, but in the opposite direction Direction transfer. The mirror group 8〇 has a picture as shown in Figure 3 or Figure 4. The same transfer characteristics of the mirror group 28, so the amount and direction of the beam shear of the beam 42 is equivalent to the amount and direction of the beam shear of the beam 3〇. In the example of Figures 1-4, the 'mirror group' 28 includes three planar reflecting surfaces (one forming the beam splitter 36 and the other two forming the mirrors (10) and 68, respectively). In other examples, another odd (greater than three) plane mirror can also be used. The splitters in the same plane and the odd-numbered reflections of the mirrors will cause the number and direction of beam shear between the beams of the incident mirror group to be equal to the number and direction of beam shear between the beams reflected by the mirror set, Among them, the beam shear is caused by the tilt of the measuring mirror. The mirror set in Fig. 5 compensates for the variable rotation of the measuring mirror, e.g., about an axis that is orthogonal to each other and orthogonal to the normal to the measuring mirror. Without considering the amount and direction of the beam shear caused by the tilt of the measuring mirror, the beam shearing of the measured beam will be applied to the third and fourth passes in the first pass and the first pass. The beam shear that is scattered to the measuring beam is offset. Variations of the above interferometer system may include additional linear or angular displacement interferometers in an interferometer group or in a single interferometer 1057-5466-PF1 28 1260401 group to become measurable three Or a multi-degree of freedom interferometric system in which the output beam of the additional interferometer can have zero or reduced beam shear at the sensor. The deformation of the interference system can also include one or more dynamic elements to compensate for the tilt of any of the gauges. For example, a dynamic element can be used to couple the output beam of the interferometer into the sensor. The dynamic component compensates for changes in the direction of the output beam due to changes in the angle of the gauge. This dynamic element is disclosed in U.S. Patent Nos. 6,271,923 and 6,313,918. The interference system described above provides high precision measurements. This system is particularly useful for applications on lithography to make large-scale integrated circuits, such as computer chips. Photolithography is a key technology in the semiconductor manufacturing industry. Overlay improvement is an important challenge to reduce the line width below 100 nm. See Semic〇nductc)r

Industry Roadmap, p82(1997)。 豐置直接相關於,例如,將晶圓以及光罩平台定位的 距離篁測干涉儀的精度。由於一微影工具一年可產生 $50-1 00M的產值,改善距離量測干涉儀的經濟價值是很巨 大的。在微影工具上每1%的改善可產生約為$1M的經濟效 益於積體電路的製造以及微影工具的銷售。 微影工具的功能在於引導光罩圖案至一塗佈有光阻 的曰曰圓。该製程包括決定晶圓的位置以及將放射線照設於 光阻之上。 ^為了要準確的設置該晶圓,該晶圓包括對位記號於該 圓之上,其可被專用的感測器量測。該對位記號的量測 位置 定義了晶圓在該工具中的位置。此資訊,校準該晶 圓與該圖案放射線的位置 。根據此資訊,呈放該塗佈有光 1057-54 66-PF1 29 1260401 阻的可移動平台,移動該晶圓,使該放射線可準確的照 射於該晶圓之上。 當在曝光過程中,一放射光源照射一具有圖案的分劃 板,其散射該放射線以產生該具有圖案的放射線。該分劃 板可以為-光罩’以下這兩個名詞可以互換。在縮小微影 的情況下,一縮小透鏡蒐集該散射的放射線,並形成一縮 小的影像。在近接轉印中,該散射放射線經過了一短距離 (一般為微米等級),接觸該晶圓,以產生一的i :丨的影像。 该放射開始了該光阻中的化學反應,並將圖案轉印至該光 阻中。 干涉系統為定位機構的重要元件,其可控制該晶圓以 及分劃板的位置,並將該縮小影像紀錄在該晶圓之上。如 果該干涉系統包括上述的特徵,則可最小化距離量測的週 期性誤差而提高精度。 一般而έ ’該微影系統,包括一照射系統以及一晶圓 疋位系統。該照射系統包括一放射光源,用以提供放射線, 例如紫外線,可見光,X射線,電子束或是離子束,以及 一分劃板或是光罩,用以賦予該放射線圖案,因此產生具 有圖案的放射線。此外,對於縮小微影,該照射系統可包 括一透鏡組,用以將該具有圖案的放射線印至該晶圓上。 該具有圖案的放射線照設於該晶圓上的光阻之上。該照射 系統亦包括一光罩平台,用以支撐該光罩,以及一定位系 統’用以調整該光罩平台相對於該放射線的位置。該晶圓 疋位糸統包括’ 一晶S]平台,用以承放该晶圓以及一定位糸 1057-5466-PF1 30 1260401 統’用以調整該晶圓平台相對於該具有圖案之放射線的位 置。積體電路的製造可包括複數個曝光步驟。可參考J. R· Sheats and B. W. Smith, in Microlithography: Science and Technol〇gy(Marcel Dekker, Inc, New York, 1998)。 上述的干涉系統可被用於準確的量測該晶圓平台以 及該光罩平台相對於曝光系統的其他元件的位置,例如透 鏡組,放射光源,或是承載結構。在每一個例子中,該干 /步系統可以被設於一靜態結構,而該量測件可被設於一可 動元件,例如光罩或是晶圓平台。該情況也可以轉換為, 该干涉系統設於一可動元件而該量測件設於一靜態件。 更般而吕,該干涉系統可以被用於量測曝光系統的 任何元件相對於其他任何元件的位置。 用於一干涉系統11 2 6的一個微影掃描器11 〇 〇的例 子,如第6圖所顯示的。該干涉系統用於準確的量測一曝 光系統中的晶圓位置。在此,平台1122用於承載與定位該 晶圓。掃描器11〇〇包括一框架11〇2,其承受其他的支撐 結構以及在這些結構上的各種元件。一曝光基礎1104其上 方认有透鏡外殼1106,其設有一分劃板或是光罩平台 1116 ’用以支撐該分劃板或是該光罩 一定位系統用以定 確定位的可動元件(參照 位該光罩相對於該曝光設備的位置,由元件1117表示。定 位系統1117可包括’例如,壓電換能器元件以及相應的電 子零件。雖然其未被包含於上述的實施例,上述的干涉系 統可以被用於準確的量測該光罩平台的位置,或其他需準 supra Sheats and Smith 1057-54 66-PFl 31 1260401Industry Roadmap, p82 (1997). The display is directly related to, for example, the distance at which the wafer and the reticle stage are positioned to measure the accuracy of the interferometer. Since a lithography tool can produce an output value of $50-1 00M a year, the economic value of the improved distance measuring interferometer is enormous. Every 1% improvement in lithography tools yields an economic benefit of approximately $1M for the manufacture of integrated circuits and the sale of lithography tools. The function of the lithography tool is to direct the reticle pattern to a circle coated with photoresist. The process includes determining the position of the wafer and placing the radiation on top of the photoresist. ^ In order to accurately set the wafer, the wafer includes a registration mark above the circle, which can be measured by a dedicated sensor. The measurement position of the alignment mark defines the position of the wafer in the tool. This information calibrates the position of the crystal and the pattern radiation. Based on this information, the movable platform coated with the light 1057-54 66-PF1 29 1260401 is placed, and the wafer is moved so that the radiation can be accurately irradiated on the wafer. When exposed during exposure, a radiation source illuminates a patterned reticle that scatters the radiation to produce the patterned radiation. The reticle can be interchangeable with the following terms - the reticle. In the case of lithography reduction, a reduced lens collects the scattered radiation and forms a reduced image. In a proximity transfer, the scattered radiation passes through a short distance (typically on the order of microns) to contact the wafer to produce an image of i: 。. The radiation initiates a chemical reaction in the photoresist and transfers the pattern into the photoresist. The interference system is an important component of the positioning mechanism that controls the position of the wafer and the reticle and records the reduced image on the wafer. If the interference system includes the features described above, the periodic error of the distance measurement can be minimized to improve accuracy. Typically, the lithography system includes an illumination system and a wafer clamping system. The illumination system includes a radiation source for providing radiation, such as ultraviolet light, visible light, X-rays, electron beams or ion beams, and a reticle or reticle for imparting the radiation pattern, thereby producing a patterned pattern radiation. Additionally, for reducing lithography, the illumination system can include a lens group for printing the patterned radiation onto the wafer. The patterned radiation is applied over the photoresist on the wafer. The illumination system also includes a reticle platform for supporting the reticle and a positioning system for adjusting the position of the reticle platform relative to the radiation. The wafer clamping system includes a 'one crystal S' platform for receiving the wafer and a positioning 糸 1057-5466-PF1 30 1260401 system for adjusting the wafer platform relative to the patterned radiation position. The fabrication of the integrated circuit can include a plurality of exposure steps. See J. R. Sheats and B. W. Smith, in Microlithography: Science and Technol〇gy (Marcel Dekker, Inc, New York, 1998). The interference system described above can be used to accurately measure the position of the wafer platform and other components of the reticle stage relative to the exposure system, such as a lens set, a radiation source, or a load bearing structure. In each of the examples, the dry/step system can be placed in a static structure, and the measuring member can be placed on a movable component such as a reticle or wafer platform. This case can also be converted into that the interference system is provided on a movable element and the measuring element is provided on a static member. More generally, the interference system can be used to measure the position of any component of the exposure system relative to any other component. An example of a lithography scanner 11 〇 用于 for an interference system 11 2 6 as shown in FIG. The interference system is used to accurately measure the position of the wafer in an exposure system. Here, platform 1122 is used to carry and position the wafer. The scanner 11A includes a frame 11〇2 that is subjected to other support structures and various components on these structures. An exposure base 1104 has a lens housing 1106 above it, which is provided with a reticle or a reticle stage 1116' for supporting the reticle or the reticle-positioning system for positioning the movable element (refer to Position of the reticle relative to the exposure apparatus is indicated by element 1117. Positioning system 1117 can include 'eg, piezoelectric transducer elements and corresponding electronic components. Although not included in the above-described embodiments, the above The interference system can be used to accurately measure the position of the reticle platform, or other requirements. supra Sheats and Smith 1057-54 66-PFl 31 1260401

Microlithography: Science and Technology)。 懸掛於曝光基礎1104之下的為支撐基礎m3,其承 載晶圓平台1122。平台1122包括一平面鏡U28,用以反 射被干涉系統112 6引導至平台的一量測光束11 $ 4。一用 以疋位平台11 22的定位系統,以元件i丨丨9表示。定位系 統111 9可包括,例如,壓電換能器元件以及相應的控制電 子零件。該量測光束反射回該干涉系統,其設於曝光基礎 11 04之上。該干涉系統可以為上述之任一實施例。 在操作上’ β放射光束11 1 0 ’例如紫外光,經過一光 束形成光學組1112並在經鏡1114反射後向下傳遞。因此, 該放射光束經過一由光罩平台;承放的光罩(未圖 不)。,亥光罩經過一透鏡組丨1〇8反映與晶圓平台1上的 一晶圓(未圖示)之上。基礎1104以及其所支撐的各種元件 利用彈簧1120而獨立於環境的震動。 忒微影掃描器的另一實施例,先前描述的干涉系統可 被用於沿多軸量測距離以及角度,但並不僅限於,該晶圓 或是該分劃板(或該光罩)平台。同樣的,除了紫外光束之 外,可使用其他的光束例如X光,電子束,離子束以及可 見光。 在一些實施例中,該干涉系、统1126引導該參考光束 (未圖示)沿一外參考路徑,接觸設於—些結構上的一參考 鏡(未圖示)以引導該放射光束,例如透鏡外殼11〇6。該參 考鏡反射該參考光束回至該干涉系統。該干涉系統ιΐ26結 合量測光束1154以及參考光束產生干涉訊號,表示該平台 1057-5466-PF1 32 1260401 相對於該放射光束的位移。此外,在其他實施例中,該干 v系統11 2 6可以用於量測分劃板或是光罩平台111 6的位 置變化,或是該掃瞄系統的其他可動元件的位置變化。最 後,該干涉系統可用於相似的微影系統,其可包括步進機 或是掃描器。 微影為製作半導體裝置方法中的一困難的部分。例 美國專利5,4 8 3,3 4 3號專利概述了此製造步驟。這些 /驟在此利用弟7圖以及第8圖描述。該γ圖為一半導體 羞置的製造流程圖,如一半導體晶片,一液晶面板或是電 荷耦合器。步驟1151為一設計的製程,用以設計該半導體 裝置的電路。步驟1152為一製造光罩於該電路圖案設計的 基礎上的製程。步驟1153為利用如矽等材料製作晶圓的製 程。 步驟1154為一晶圓製程,稱為前處理,使用預先準 備好的光罩及晶圓,電路經由微影形成於晶圓之上。為了 形成足夠精度的電路於晶圓之上,該微影工具相對於該晶 圓的干涉定位是必須的。在此摇述的該干涉方法以及系= 特別有利於改善微影的效果。 步驟1155是一組合步驟,其稱為後處理,其中經過 步驟1154處理後的該晶圓形成為半導體晶片。此步驟包: 組合以及封裝。步驟1156為一檢查步驟,其中可操作性檢 驗,耐久性檢驗,以及其他半導體裝置由步驟"Μ所生欢 的問題。經由這些製程,半導體裝置可以完成並:成 1157)。 、驟 1057-5466-PF1 33 1260401 弟8圖為一流避闽 « 、 圖’顯示了晶圓製程的細節。步驟 11 61為一氧化步驟, 〆 用U乳化晶圓表面。步驟1162為一 化學氣相沈積製程,用 用u在晶圓表面形成一層絕緣層。步 驟11 6 3為一電極形成萝 I旌,用以利用蒸鍍的方式在晶圓上 形成電極。步驟1丨64兔_ 為一離子植入製程,用以將離子植入 晶圓。步驟1165為一光阳制和 P製私,用以施加一光阻於晶圓之 上。步驟1166為一曝弁制扣 <、先I耘,利用曝光,將光罩上的電路 圖案利用上述的曝光裝 锝P圖案。再一次的,如上所述, 使用此干涉系統及方法 无了改善微影步驟的精度。 步驟1167為一 I貞旦彡半挪 .,‘“步驟,用以對該晶圓進行顯影。 少鄉lib8為一巍釗半_ m v 〃’用以移除經顯影光阻影像的其他 部分。步驟1169為一光阻劍 、 剥離製程,用以去除殘留於晶圓 的光阻材料。藉由重複此盤 复此製,電路圖案形成並疊印於該 晶圓之上。 該干涉系統可用於i从μ 士 、,、他的應用,當物件之間的相對位 置需要準確量測的情況。例如 , 直寫光束為雷射,X光’ 離子束或是電子束,將圖案桿 铩不於一基板,該干涉系統可 被用於置測該基板以及該直寫光束的相對運動。 一例女光束直寫系統12G()的示意圖如第9圖所顯 不的二-光源ι21。產生一直寫光束1212,以及一光束聚 焦組5 1214’引導該放射光束至—基板1216,其由可動平 台1218所支揮。為了要決定兮 〜要/央疋5亥千台的相對位i,該干涉系 統1 220引導一參考光束1222至— 曰 鏡1 2 2 4 ’並引導一量測 光束1 226至一鏡lug。由於 、°亥參寺光束接觸設於該光束 1057-5466-PF1 34 1260401Microlithography: Science and Technology). Hanged below the exposure base 1104 is a support base m3 that carries the wafer platform 1122. The platform 1122 includes a mirror U28 for reflecting a measuring beam 11$4 that is directed by the interfering system 112 6 to the platform. A positioning system for clamping the platform 11 22 is represented by the component i 丨丨 9. The positioning system 111 9 can include, for example, piezoelectric transducer elements and corresponding control electronics. The measuring beam is reflected back to the interference system and is disposed above the exposure base 11 04 . The interference system can be any of the embodiments described above. In operation, the 'β-emission beam 11 1 0 ', for example, ultraviolet light, passes through a beam of light to form an optical group 1112 and is reflected downward after being reflected by the mirror 1114. Therefore, the radiation beam passes through a reticle platform; the reticle is placed (not shown). The glare mask is reflected on a wafer (not shown) on the wafer platform 1 via a lens group 丨1〇8. The foundation 1104 and the various components it supports are vibration independent of the environment using the spring 1120. In another embodiment of the 忒 lithography scanner, the previously described interference system can be used to measure distance and angle along multiple axes, but is not limited to the wafer or the reticle (or reticle) platform . Similarly, in addition to the ultraviolet beam, other beams such as X-rays, electron beams, ion beams, and visible light can be used. In some embodiments, the interference system 1126 directs the reference beam (not shown) along an external reference path to contact a reference mirror (not shown) provided on the structures to direct the radiation beam, for example Lens housing 11〇6. The reference mirror reflects the reference beam back to the interference system. The interference system ι 26 combines the measurement beam 1154 and the reference beam to produce an interference signal indicative of the displacement of the platform 1057-5466-PF1 32 1260401 relative to the radiation beam. Moreover, in other embodiments, the dry v system 11 26 can be used to measure position changes of the reticle or reticle stage 11 6 or positional changes of other movable elements of the scanning system. Finally, the interference system can be used in a similar lithography system, which can include a stepper or a scanner. Photolithography is a difficult part of the method of fabricating a semiconductor device. This manufacturing step is outlined in U.S. Patent No. 5,4, 3,3,3,3. These/steps are described here using the brother 7 diagram and the eighth diagram. The gamma pattern is a manufacturing flow diagram of a semiconductor shy, such as a semiconductor wafer, a liquid crystal panel or a charge coupler. Step 1151 is a design process for designing the circuitry of the semiconductor device. Step 1152 is a process for fabricating a reticle on the basis of the circuit pattern design. Step 1153 is a process for fabricating a wafer using a material such as germanium. Step 1154 is a wafer process called pre-processing. A pre-prepared mask and wafer are used, and the circuit is formed on the wafer via lithography. In order to form a circuit of sufficient accuracy on the wafer, the interference positioning of the lithography tool relative to the wafer is necessary. The interference method and system described here are particularly advantageous for improving the effect of lithography. Step 1155 is a combined step, referred to as post processing, in which the wafer processed through step 1154 is formed as a semiconductor wafer. This step package: combination and packaging. Step 1156 is an inspection step in which the operability test, the durability test, and other semiconductor devices are caused by the steps " Through these processes, the semiconductor device can be completed and: 1157). Step 1057-5466-PF1 33 1260401 Brother 8 shows the details of the wafer process for the first-class avoidance «, Figure'. Step 11 61 is an oxidation step, emulsification of the wafer surface with U. Step 1162 is a chemical vapor deposition process in which an insulating layer is formed on the surface of the wafer. Step 11 6 3 forms an electrode for forming an electrode on the wafer by vapor deposition. Step 1丨64 Rabbit_ is an ion implantation process for implanting ions into the wafer. Step 1165 is a solar system and a P-type private application for applying a photoresist to the wafer. Step 1166 is an exposure button (1), and first, using the exposure, the circuit pattern on the photomask is utilized by the above-described exposure device P pattern. Again, as described above, the use of this interference system and method does not improve the accuracy of the lithography step. Step 1167 is an I 贞 彡 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Step 1169 is a photoresist sword and stripping process for removing the photoresist material remaining on the wafer. By repeating the disk, the circuit pattern is formed and overlaid on the wafer. The interference system can be used for i From the application of μ, , and his application, when the relative position between the objects needs to be accurately measured, for example, the direct writing beam is a laser, the X-ray 'ion beam or the electron beam, and the pattern rod is not one. a substrate, the interference system can be used to detect the relative motion of the substrate and the direct writing beam. A schematic diagram of a female beam direct writing system 12G() is shown as a two-light source ι 21 shown in Fig. 9. 1212, and a beam focusing group 5 1214' directs the radiation beam to the substrate 1216, which is supported by the movable platform 1218. In order to determine the relative position i of the 要~要/央疋5 千千台, the interference system 1 220 guides a reference beam 1222 to - 曰 mirror 1 2 2 4 And directing a measurement beam 1226 to a mirror lug. Since, ° Hai Temple reference beam provided to the beam in contact 1057-5466-PF1 34 1260401

來焦組曰的鏡上,该光束直寫系統為一使用陣列參考的 例子。干涉系統1 220可以為任一上述的干涉系統。由該干 涉系統所量測到的位置變化相應於直寫光束丨2丨2以及基 板1216的相對位置變化。干涉系統122〇傳送一量測訊號 1 232至控制器1 230,其指引了直寫光束1212以及基板1216 之間的相對位置。控制器1 230傳送一輸出訊號1 234至一 基礎1 236,其支撐並定位平台1218。此外,控制器123〇 傳送一訊號1 238至光源1210以變化直寫光束1212的強 度,以使該直寫光束以足夠的強度接觸該基板。 此外,在一些實施例中,控制器i 23〇可使光束聚焦 組1214於該基板的一個區域掃瞄該直寫光束,例如,使用 訊號1244。因此,控制器123〇引導系統的其他元件以將 圖案印至該基板。該轉印圖案的動作乃基於儲存於控制器 中的電子設計圖案。在_些應用+,該直寫光束將圖案印 至一光阻該基板上的一光阻,或利用該直寫光束直接蝕刻 該基板。 此系統的一重要應用為製造光罩以及劃分板。例如, 為了製造-微影光罩,-電子束可被用於轉印圖案至一鉻On the mirror of the focus group, the beam direct writing system is an example using an array reference. Interference system 1 220 can be any of the above described interference systems. The change in position measured by the interference system corresponds to the change in the relative position of the direct write beam 丨2丨2 and the substrate 1216. The interference system 122 transmits a quantity of signal 1 232 to the controller 1 230, which directs the relative position between the direct write beam 1212 and the substrate 1216. Controller 1 230 transmits an output signal 1 234 to a base 1 236 that supports and positions platform 1218. In addition, controller 123 transmits a signal 1 238 to light source 1210 to vary the intensity of direct write beam 1212 such that the direct write beam contacts the substrate with sufficient strength. Moreover, in some embodiments, controller i 23A can cause beam focus group 1214 to scan the direct write beam in an area of the substrate, for example, using signal 1244. Thus, controller 123 will direct other components of the system to print the pattern onto the substrate. The action of the transfer pattern is based on an electronic design pattern stored in the controller. In some applications, the direct write beam prints a pattern onto a photoresist that resists the substrate, or directly etches the substrate using the direct write beam. An important application of this system is the manufacture of reticle and dividing plates. For example, in order to manufacture a lithographic mask, an electron beam can be used to transfer the pattern to a chrome

基板:在此例子中,其中當直寫光束為一電子束,該光束 直寫系統將該電子束路徑封閉於真空之中。同樣的,當該 直寫光束是,例如,一電子束或是離子束,該光束聚焦組 包括電子場產生器,例如動態四極鏡用以聚焦並引導該粒 子至該基板。該直寫光束可以為放射線,例如,χ光,紫 卜線或疋可見《忒光束聚焦組包括相應的光學元件, 1057-5466-PF1 35 I26〇4〇i 用从聚焦並引導該放射線至該基板。 雖然本發明已於較隹眚始a , 限 土實轭例揭露如上,然其並非用以 神任何熟習此項技藝者,在不脫離本發明之精 乾π,仍可作些許的更動與满飾,因此本發明之保 4乾圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係顯示一干涉系統; 第2圖係顯示一干涉系統; 第3-5圖係顯示反射鏡組; 第6圖係顯示—用於製做積體電路的微統的示意 ξ| ; =7-8圖係顯示製做積體電路的步驟流程圖; 第9圖係顯示一光束直寫系統的示意圖。 【主要元件符號說明】 10〜 干涉 儀組 14〜 輸入 光束 18〜 量測 光束 22〜 反射 鏡 26〜 參考 鏡 3 0〜 輸出 光束 34〜 光束 44〜 '參考 鏡 1057-5466-PF1 12、 >量測鏡 16、 /偏振分光器 20、 -參考光束 24〜感測器 28、 -反射鏡組 32、 -光束 36 ^ ^分光器 46- ^量測光束 36 1260401 48〜輸出光束 5 0〜 感測器 52〜1/4波長極化片 54〜1/4波長極化片 5 6〜倒反射器 62〜 極化片 6 4〜極化片 70〜 光束 72〜角錐倒反射器 74〜 光束 82〜光束***平面 1151 、1152···、1157〜 步驟 1 200〜光束直寫系統 1161 、1162···、1169〜 步驟 1 21 0〜光源 1212 〜直寫光束 1214〜光束聚焦組合 1216 〜基板 1218〜可動平台 1220 〜干涉系統 1 222〜參考光束 1224 〜鏡 1 226〜量測光束 1228 〜鏡 1 230〜控制器 1232 〜量測訊號 1234〜輸出訊號 1236 〜基礎 1 2 3 8〜訊號 1244 〜訊號Substrate: In this example, where the direct write beam is an electron beam, the beam direct writing system encloses the beam path in a vacuum. Similarly, when the direct writing beam is, for example, an electron beam or an ion beam, the beam focusing group includes an electron field generator, such as a dynamic quadrupole mirror, for focusing and directing the particles to the substrate. The direct writing beam may be radiation, for example, neon, violet or 疋 visible. The 忒 beam focusing group includes corresponding optical components, 1057-5466-PF1 35 I26〇4〇i is used to focus and direct the radiation to the Substrate. Although the present invention has been described above, the limited earth yoke example is disclosed above, but it is not used by anyone skilled in the art, and can still make some changes and fullness without departing from the essence of the present invention. Therefore, the warranty of the present invention is defined by the scope of the patent application. [Simple diagram of the diagram] Figure 1 shows an interference system; Figure 2 shows an interference system; Figure 3-5 shows the mirror group; Figure 6 shows the micro-made circuit The schematic diagram of the system is shown; the =7-8 diagram shows the flow chart of the steps for making the integrated circuit; the figure 9 shows the schematic diagram of a beam direct writing system. [Main component symbol description] 10~ Interferometer group 14~ Input beam 18~ Measuring beam 22~ Mirror 26~ Reference mirror 3 0~ Output beam 34~ Beam 44~ 'Reference mirror 1057-5466-PF1 12, > Measuring mirror 16, / polarization beam splitter 20, - reference beam 24 ~ sensor 28, - mirror group 32, - beam 36 ^ ^ beam splitter 46 - ^ measuring beam 36 1260401 48 ~ output beam 5 0 ~ sense Detector 52 to 1/4 wavelength polarizing plate 54 to 1/4 wavelength polarizing plate 5 6 to inverted reflector 62 to polarizing plate 6 4 to polarizing plate 70 to beam 72 to pyramidal inverted reflector 74 to beam 82 ~ Beam splitting plane 1151, 1152···, 1157~ Step 1 200~ Beam direct writing system 1161, 1162, · 1169~ Step 1 21 0~ Light source 1212 ~ Direct writing beam 1214 ~ Beam focusing combination 1216 ~ Substrate 1218 ~ Movable platform 1220 ~ Interference system 1 222 ~ Reference beam 1224 ~ Mirror 1 226 ~ Measuring beam 1228 ~ Mirror 1 230 ~ Controller 1232 ~ Measuring signal 1234 ~ Output signal 1236 ~ Basic 1 2 3 8 ~ Signal 1244 ~ Signal

1057-5466-PFl 371057-5466-PFl 37

Claims (1)

1260401 十、申請專利範圍: 1 · 一種干涉儀裝置,包括·· 一多重經過干涉儀,包括 複數個反射鏡’沿多重經過反射至少兩光束經過該干 涉儀,該等多重經過包括一第一組經過以及一第二組經 過,該等反射鏡具有複數個第一校準器,垂直於由該等反 射鏡所反射的該等光束路徑; 該兩道光束提供有關於於一第一位置於其中一該反 射鏡在該第一組經過後的變化之資訊; 該兩道光束提供有關於於一第一位置以及該第二位 置於其中一该反射鏡在該第二組經過後的變化之資訊; 當至少一該反射鏡具有不同於該第一校準器的校準 效果時,在該第一組經過以及該第二組經過時,該等光束 的路徑會產生切變;以及 光學元件,以在第一組經過之後,第二組經過之前, 引導口亥等光束’使得在第二組經過時所產生的光束切變能 與在第一組經過時所產生的光束切變相互抵銷。 2 ·如申印範圍第1項所述之干涉儀裝置,其中,該等 光學元件被設置為在引導該等光束時,維持該兩道光束之 間的光束切變的量與方向。 3.如申請範圍第1項所述之干涉儀裝置,其中,在完 成該第-、组經過時,肖兩道光束被該#$學元件所分散的 光束會相互平行。 4·如申請範圍第i項所述之干涉儀裝置,其中,該等 1057-54 66-PF1 38 1260401 反射鏡包括複數個平面反射表面。 5. 如申請範圍第1項所述之干涉儀裝置,其中,該等 光束包括一參考光束,其被導向一該反射鏡,其位於一相 對於該干涉儀的靜止位置。 6. 如申請範圍第5項所述之干涉儀裝置,其中,該等 光束包括-!測光束’其被導向—該反射鏡,其相對於該 干涉儀是可動的。 7.如申請範圍第6項所述之干涉儀裝置,其中,該參 考光束以及該量測光束定義出—光程差,該絲差顯示: 該反射鏡相對於該干涉儀的位置變化。 8·如申請範圍第1項所述之干涉儀裝置,其中,該等 反射鏡包括一第一反射鏡以及一第二反射鏡,料光束包 括被導向該第一反射鏡的一第一光束以及被導向該第二反 射鏡的-第二光束,該第一反射鏡以及該第二反射鏡相對 於該干涉儀是可動的。 9·如曱請範圍第8項所述 :光束以及該第二光束定義出—光程差,該光程差顯示^ 第反射鏡以及該第二反射鏡的相對位置變化。 〃1〇·如申請範圍第i項所述之干涉儀裝置,其中,該 第-組經過由兩組經過所組成,且在每次經過時,每一該 專光束被該等反射器至少反射一次。 11.如申請範圍帛10項所述之干涉儀裝置,其中,該 第二組經過由兩組經過所組成,且在每次經過時,每―: 等光束被該等反射器至少反射一次。 Μ 1057-5466-PF1 39 1260401 1 2·如申請範圍第1項所述之干涉儀裝置,其中,&gt; 夕重經過干涉儀包括一分光器’將一輸入光束分離為該等 光束,並將該等光束導向該等反射鏡。 1 3 ·如申请範圍第1 2項所述之干涉儀裳置,复中今 分光器包括一偏振分光器。 1 4 ·如申請範圍第1項所述之干涉儀裝置,其中,今 專光學元件包括奇數個反射表面。 15·如申請範圍第14項所述之干涉儀裝置,其中,該 等反射表面的法線位於同一平面。 16.如申請範圍第14項所述之干涉儀裝置,其中,該 等反射表面包括平面反射表面。 lr^·如申請範圍第14項所述之干涉儀裝置,其中,每 —道被該等光學元件引導的光束被該等反射表面所反射, ^侍入射光束以及反射光束與每一反射表面的總合為零或 是360度的整數倍,該角度的量測是從該入射光束至該反 射光束’當以反時針方向時’該角度具有一正值,當以順 時針方向時,該角度具有一負值。 18. 如申请範圍第丨項所述之干涉儀裝置,其中,該 :涉儀在該等光束經過該第—以及第二組經過時,將該等 光束結合,以形成重疊的光束射出該干涉儀。 19. 如申請範圍第18項所述之干涉儀裝置,其中,更 感測器用以感測該等重疊光束間的光學干涉,並 產生-干涉訊號’其顯示該等光束之間的光程差。 20· 士申明範圍第19項所述之干涉儀裝置,其中,該 1057-5466-PF1 40 1260401 類比轉數位轉換 感測器包括一光感測器,一放大器以及一 器。1260401 X. Patent application scope: 1 · An interferometer device, comprising: a multiple interferometer, comprising a plurality of mirrors, wherein at least two beams are reflected along the multiple passes through the interferometer, and the multiple passes include a first And the second group passes through, the mirrors having a plurality of first aligners perpendicular to the beam paths reflected by the mirrors; the two beams are provided in relation to a first position Information about the change of the mirror after the first set of passes; the two beams provide information about a change in a first position and the second position after the second group passes the second set When at least one of the mirrors has a calibration effect different from the first calibrator, the paths of the beams may be sheared when the first set of passes and the second set pass; and the optical components are After the first group passes, before the second group passes, the light beam is guided to make the beam shear energy generated when the second group passes and the first group passes. The beam shears cancel each other out. The interferometer device of claim 1, wherein the optical elements are arranged to maintain the amount and direction of beam shear between the two beams when the beams are directed. 3. The interferometer device of claim 1, wherein the beams of the two beams that are dispersed by the #$ learning element are parallel to each other when the first group is passed. 4. The interferometer device of claim i, wherein the 1057-54 66-PF1 38 1260401 mirror comprises a plurality of planar reflective surfaces. 5. The interferometer device of claim 1, wherein the beams of light comprise a reference beam directed to a mirror positioned in a rest position relative to the interferometer. 6. The interferometer device of claim 5, wherein the beams comprise a -! beam of light&apos; that is directed to the mirror, which is movable relative to the interferometer. 7. The interferometer device of claim 6, wherein the reference beam and the measurement beam define an optical path difference that indicates: a change in position of the mirror relative to the interferometer. 8. The interferometer device of claim 1, wherein the mirrors comprise a first mirror and a second mirror, the beam comprising a first beam directed to the first mirror and a second beam directed to the second mirror, the first mirror and the second mirror being movable relative to the interferometer. 9. As described in item 8 of the scope: the beam and the second beam define an optical path difference that indicates the relative positional change of the second mirror and the second mirror. The interferometer device of claim i, wherein the first group is composed of two sets of passes, and each time the individual beam is at least reflected by the reflectors each time it passes once. 11. The interferometer device of claim 10, wherein the second group is comprised of two sets of passes, and each time the -: beam is reflected by the reflectors at least once. The interferometer device of claim 1, wherein &gt; The beams are directed to the mirrors. 1 3 · The interferometer is placed as described in item 1 of the application scope, and the complex concentrator includes a polarization beam splitter. The interferometer device of claim 1, wherein the specialized optical component comprises an odd number of reflective surfaces. The interferometer device of claim 14, wherein the normal to the reflective surfaces are on the same plane. The interferometer device of claim 14, wherein the reflective surface comprises a planar reflective surface. The interferometer device of claim 14, wherein each of the light beams guided by the optical elements is reflected by the reflective surfaces, and the incident beam and the reflected beam are reflected by each of the reflective surfaces. The sum is zero or an integer multiple of 360 degrees. The angle is measured from the incident beam to the reflected beam 'when in the counterclockwise direction', the angle has a positive value, when in the clockwise direction, the angle Has a negative value. 18. The interferometer device of claim 2, wherein: the beams are combined when the beams pass through the first and second groups to form an overlapping beam to emit the interference. instrument. 19. The interferometer device of claim 18, wherein the more sensor is configured to sense optical interference between the overlapping beams and to generate an -interference signal that displays an optical path difference between the beams . 20. The interferometer device of claim 19, wherein the 1057-5466-PF1 40 1260401 analog-to-digital conversion sensor comprises a light sensor, an amplifier, and a device. 21 ·如申請範圍第 包括一分析儀,麵接於1 該等光束之間的光程差變化。 22.如申請範圍第丨項所述之干涉儀裴置,其中,該 等光學元件包括一反射表面。 八 &quot; ^ &gt; 23.如申請範圍第丨項所述之干涉儀袭置,其中,該 等光學元件包括偶數個反射表面。 24.如申請範圍第23項所述之干涉儀裝置,其中,該 等光學元件包括一錐狀反射鏡。 A如申請範圍第i項所述之干涉儀裝置,其中,更 包括一光源以提供該等光束。 亂如申請範圍第i項所述之干涉儀裝置,其中,該 干涉儀包括一微分平面鏡干涉儀。 27.如申請範圍第i項所述之干涉儀裝置,其中,該 兩道光束具有不同的頻率。 ^ 1項所述之干涉儀裝置,其更包括21 • If the scope of the application includes an analyzer, the surface is connected to a change in the optical path difference between the beams. 22. The interferometer device of claim 3, wherein the optical elements comprise a reflective surface. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The interferometer device of claim 23, wherein the optical elements comprise a tapered mirror. A interferometer device according to claim i, further comprising a light source to provide the light beams. The interferometer device of claim i, wherein the interferometer comprises a differential planar mirror interferometer. 27. The interferometer device of claim i, wherein the two beams have different frequencies. ^ The interferometer device of item 1, which further comprises 源,一光罩,一 光罩,一定位系統以及一 一透鏡組,其中當在操作時 1057-5466-PF1 28·如申請範圍第】 一平台,以支撐一晶圓; 1260401 該光源射出㈣經過該光罩以產生特定的圖案 ^ 位糸統調整該$罩相對於該賴射诱^ 安t u π &amp; 置 違透鏡組將該圖 案輻射投射至該晶w,且該 該晶圓的位置。 用於…光罩相對於 之干涉儀裝置,其更包括·· 用以在一微影光罩上形成 3 0 ·如申請範圍第1項所述 一光源,提供一直寫光束, 圖案; 一平台’以支撐該微影光罩; 罩;;及光束引導組,用以將該直寫光束傳遞至該微影光 一定位系統,用以調整該平台以及該光束引導組之間 的距離,#中該干涉儀用於量測該平台相對於該光束 組之間的位置。 31· —種製做積體電路的方法,包括: 利用如申請專利範圍第28項所述之裝置以支撐一曰 圓,投射特定的圖案輻射至該晶圓之上,以及調整^平= 相對於該圖案輻射的相對位置,其中,該干涉儀用於量= 該平台的位置。 32· —種製做積體電路的方法,包括: 利用如申請專利範圍第29項所述之裝置以支_ —曰 曰曰 圓,從該光源引導輻射,經過該光罩以產生一牲社θ… 玍特殊圖案輻 射於該光源之上,調整該光罩相對於該輻射的位置,以 將該特殊圖案輻射投射至該晶圓之上,其中, 必丁涉儀用 於量測該光罩相對於該晶圓的位置。 1057-5466-PF1 42 1260401 33· —種製做微影光罩的方法,包括·· 利用如申請專利範圍第30項所述之裝置以 、’罩,傳遞一直寫光束至該微影光罩,以及調整該平二 與該光束引導組之相對位置,其中,該干涉儀用於量測: 平台相對於該光束引導組之位置。 /、Μ 34· —種干涉儀裝置,包括: -多軸干涉儀,用以根據多重自由度,量測 的位置變化; 里利件 斜涉儀被設置以接受—輸人光束,引導 束中分離出來的一第一量測光束以第一::先 於該量測件上的-第一點,接著,:二: 測光束與從該輸入光束中分里 =第〜,一該;= 該干涉儀更被設置為引導 的-第二量測光束,以第一次以1=束中分離出來 於該量測件上的一第二點,接著上第人經過該量測件, 該輸入光束中分離出來的一第二參考光測光束與從 第二輸出光束,其包含有關於該第、、、。合’以產生一 其中,該干涉儀包括折疊光學::的距離變化、 反射-部份的該第一輸出光束, 心反射奇數-人 且 疋我一第二輸入光束; 其中,該第二量測光束以及哕 二輸入光束所分離出來。 參考光束乃從該第 1057-54 66-PF1 43 1260401 35. —多重自由度干涉儀,包括: 複數個干涉儀光學元件,該等干涉儀光學元件用於引 導苐輸入光束的第一 ΐ測光束,以兩次經過一量測 件上的一第一點,引導該第_輸入光束的一第一參考光束 以兩次經過該參考件,並將該第一量測光束以及該第一參 考光束重新結合為一第一輸出光束,其含有關於該量測件 的苐一點的距離變化資訊; 該等干涉儀光學元件更用以引導一第二量測光束兩 次經過該量測件上之一第二點,弓丨導一第二參考光束兩次鲁 經過該參考件,並將該第二量測光束以及該第二餐考光束 重新結合為—第二輸出光束,其含有關於該量測件的第二 點的距離變化; 其中,该第二量測光束以及該第二參考光束是從該第 一輸出光束分離出來的。 片36·如申請專利範圍第35項所述之干涉儀,其中,該 *干y儀光予疋件更包括一偏振分光器,用以引導該等光 嫩:其路徑傳遞,-第-1/4波長極化片,設於該偏 振分光器與該參考 、 可件之間,u及一弟二/4波長極化片, 設於該偏振分并 器及该參考件之間。 …Γ广申請專利範圍第36項所述之干涉儀,其中,該 . 鏡’其旋轉方向垂直於該等光束成分的入 射線。 和耗圍第36項所述之干涉儀,其更包括 非偏振輪出分# ^ 為’用以分離該第一輸出光束的一部份 1057-54 66~ρρχ 44 1260401 以定義-第二出入光束並引導其返還至該偏 。。、 生該第二量測光束以及該第二參考光束。 為Μ產 39.如申請專利範圍第38項所述之干涉儀,1 =個反射表面,將該第二輸入光束從該輪出 ρ該偏振分光器,其中,該非偏振分光器以及該等反: 器^奇數次反射該第二輸人光束,在其達到該偏振分光 40.如申請專利範圍第39項所述之干涉儀,其中上 非偏振分光器反射該第二輸入光束,且其中該等反、= 反射該第二輸入光束偶數次。 41·如申請專利範圍第35項所述之干涉儀,其中,1 更包括一第一光纖光學讀取頭,以將該第一輪出光束耦: 至一感測器,以及一第二光纖光學讀取頭,以將該第二輸 出光束耦合至該感測器。 一別 42· —種微影系統,用於一晶圓上製做積體電路,該 系統包括: 一平台,用以支撐該晶圓; 一發射系統,用以投射特定的圖案輻射至該晶圓之 上; 一疋位系統’用以調整該平台相對於該圖案輻射的位 置;以及 如申請專利範圍第35項所述之多重自由度干涉儀, 用以監測該晶圓相對於該圖案輻射的位置。 43· —種微影系統,用於在一晶圓上形成積體電路, 1057-5466-PF1 45 1260401 # 5亥糸統包括: 一平台,用以置放該晶圓; 一照射系統,包括一照射光源,一光罩,一定位系統, 一透鏡組以及如申請專利範圍第35項之多重自由度干涉 儀, ’ 其中,當該光源將光引導穿過該光罩以產生圖案時 該定位系統調整該光罩與該光源之間的位置,該透鏡組將 &quot;亥圖案映在該晶圓上,而該干涉系統監控該光罩與該光源 之間的相對位置。 44· 一種光束直寫系統,用於製造一微影光罩,該系 統包括: 一光源,提供一直寫光束以在一基板上形成圖案; 一平台,用以置放該基板; 一光束引導組,用以將該直寫光束傳遞至該基板; 一定位系統,用以調整該平台以及該光束引導組之間 的距離;以及 如申請專利範圍第35項之多重自由度干涉儀,用以 監控該平台與該光束引導組之間的位置。 1057-54 66-PF1 46a source, a reticle, a reticle, a positioning system, and a lens group, wherein when operating, 1057-5466-PF1 28·as in the application scope] a platform to support a wafer; 1260401 the light source is emitted (4) Passing the reticle to produce a specific pattern to adjust the $ hood relative to the ray ray and illuminating the pattern onto the crystal w, and the position of the wafer . The reticle is opposite to the interferometer device, and further comprises: forming a light source on a reticle ray; a light source according to item 1 of the application scope, providing a constant writing beam, a pattern; 'to support the lithography reticle; a cover; and a beam guiding group for transmitting the direct writing beam to the lithography-positioning system for adjusting the distance between the platform and the beam guiding group, #中中The interferometer is used to measure the position of the platform relative to the beam set. 31. A method of making an integrated circuit, comprising: using a device as described in claim 28 to support a circle, projecting a specific pattern onto the wafer, and adjusting the level = relative The relative position of the pattern radiation, wherein the interferometer is used for the amount = position of the platform. 32. A method of making an integrated circuit, comprising: using a device as claimed in claim 29, to support radiation from the light source, passing the mask to produce a living animal θ... 玍 a special pattern radiates over the light source, adjusting a position of the reticle relative to the radiation to project the special pattern radiation onto the wafer, wherein the damper is used to measure the reticle Relative to the position of the wafer. 1057-5466-PF1 42 1260401 33 - A method of making a lithographic mask, comprising: using a device as described in claim 30, 'cover, transmitting a write beam to the lithography mask And adjusting the relative position of the flat to the beam guiding group, wherein the interferometer is used to measure: the position of the platform relative to the beam guiding group. /, Μ 34 · - Interferometer device, including: - Multi-axis interferometer for measuring position changes according to multiple degrees of freedom; Lili interferometer is set to accept - input beam, guiding beam Separating a first measuring beam with a first:: preceding the first point on the measuring member, and then: two: measuring the beam and dividing from the input beam = first, one; The interferometer is further configured to direct the second measuring beam to be separated from the second point on the measuring device by 1 = 1 for the first time, and then the first person passes the measuring member, A second reference optical beam separated from the input beam and a second output beam are included with respect to the first, , and . In order to generate one, the interferometer includes a folding optical:: a distance change, a reflection-part of the first output beam, a cardiac reflection odd-person and a second input beam; wherein the second amount The beam and the second input beam are separated. The reference beam is from the 1057-54 66-PF1 43 1260401 35. - a multi-degree of freedom interferometer comprising: a plurality of interferometer optics for directing the first spectroscopic beam of the input beam Directing a first reference beam of the first input beam twice through the reference member by passing a first point on the first measuring element twice, and passing the first measuring beam and the first reference beam Recombining into a first output beam containing information on the distance change of the 苐 point of the measuring member; the interferometer optical elements are further configured to guide a second measuring beam twice through the measuring member The second point is that the second reference beam passes through the reference member twice, and the second measurement beam and the second meal beam are recombined into a second output beam, which is related to the measurement. The distance of the second point of the piece varies; wherein the second measuring beam and the second reference beam are separated from the first output beam. The interferometer of claim 35, wherein the x-ray device further comprises a polarizing beam splitter for guiding the light: the path is transmitted, -1 The /4 wavelength polarizing plate is disposed between the polarizing beam splitter and the reference and the movable member, and is disposed between the polarization splitter and the reference member. The interferometer of claim 36, wherein the mirror's direction of rotation is perpendicular to the incoming rays of the beam components. And the interferometer of the 36th item, further comprising a non-polarization wheel output point ^^ is used to separate a portion of the first output beam 1057-54 66~ρρχ 44 1260401 to define - the second access The beam is directed back to the offset. . And generating the second measuring beam and the second reference beam. 39. The interferometer of claim 38, 1 = a reflective surface from which the second input beam exits the polarizing beam splitter, wherein the non-polarizing beam splitter and the counter are The second input beam is reflected by the second input beam, and the interferometer of claim 39, wherein the upper non-polarization beam splitter reflects the second input beam, and wherein Etc., = Reflect the second input beam even times. 41. The interferometer of claim 35, wherein 1 further comprises a first fiber optic readhead for coupling the first wheel out beam to a sensor and a second fiber An optical pickup is coupled to the second output beam to the sensor. A lithography system for forming an integrated circuit on a wafer, the system comprising: a platform for supporting the wafer; and a launch system for projecting a specific pattern of radiation to the crystal Above the circle; a clamping system 'to adjust the position of the platform relative to the pattern radiation; and the multiple degree of freedom interferometer as described in claim 35, for monitoring the radiation of the wafer relative to the pattern position. 43. A lithography system for forming an integrated circuit on a wafer, 1057-5466-PF1 45 1260401 #5 糸 system includes: a platform for placing the wafer; an illumination system, including An illumination source, a reticle, a positioning system, a lens group and a multi-degree of freedom interferometer as claimed in claim 35, wherein the positioning is performed when the light source directs light through the reticle to create a pattern The system adjusts the position between the reticle and the light source, the lens group maps the &quot;Hai pattern on the wafer, and the interference system monitors the relative position between the reticle and the light source. 44. A beam direct writing system for fabricating a lithographic mask, the system comprising: a light source providing a write beam to form a pattern on a substrate; a platform for placing the substrate; a beam guiding group For transmitting the direct write beam to the substrate; a positioning system for adjusting the distance between the platform and the beam guiding group; and a multi-degree of freedom interferometer as claimed in claim 35 for monitoring The position between the platform and the beam guiding group. 1057-54 66-PF1 46
TW92101676A 2001-08-02 2003-01-27 Interferometry apparatus and multiple-pass interferometry TWI260401B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US30960801P 2001-08-02 2001-08-02
US31456801P 2001-08-23 2001-08-23
US31434501P 2001-08-23 2001-08-23
US35242502P 2002-01-28 2002-01-28

Publications (2)

Publication Number Publication Date
TW200305004A TW200305004A (en) 2003-10-16
TWI260401B true TWI260401B (en) 2006-08-21

Family

ID=37874745

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92101676A TWI260401B (en) 2001-08-02 2003-01-27 Interferometry apparatus and multiple-pass interferometry

Country Status (1)

Country Link
TW (1) TWI260401B (en)

Also Published As

Publication number Publication date
TW200305004A (en) 2003-10-16

Similar Documents

Publication Publication Date Title
JP4583759B2 (en) Multi-degree-of-freedom interferometer
JP4030960B2 (en) Dynamic interferometry control of input beam direction
JP5255170B2 (en) Interferometer system with dynamic beam steering assembly for measuring angle and distance
US6762845B2 (en) Multiple-pass interferometry
US6819434B2 (en) Multi-axis interferometer
JP4401574B2 (en) Dynamic beam steering interferometer
JP4216728B2 (en) Method and apparatus for compensating the time-varying optical properties of gases in an interferometer
US6912054B2 (en) Interferometric stage system
JP4469604B2 (en) Optical interferometry
US7330274B2 (en) Compensation for geometric effects of beam misalignments in plane mirror interferometers
US6791693B2 (en) Multiple-pass interferometry
US6856402B2 (en) Interferometer with dynamic beam steering element
US7286240B2 (en) Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems
JP4376624B2 (en) Multipath interferometry
TWI260401B (en) Interferometry apparatus and multiple-pass interferometry
JP4469609B2 (en) Multipath interferometer
TWI277720B (en) Multi-axis interferometer apparatus and method, lithography apparatus and method using same, and beam writing system and method using same
JP2005530145A (en) Interferometric spectroscopy system including a dynamic beam steering assembly

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees