TWI259274B - Dual-capacitor sensor - Google Patents

Dual-capacitor sensor Download PDF

Info

Publication number
TWI259274B
TWI259274B TW93121220A TW93121220A TWI259274B TW I259274 B TWI259274 B TW I259274B TW 93121220 A TW93121220 A TW 93121220A TW 93121220 A TW93121220 A TW 93121220A TW I259274 B TWI259274 B TW I259274B
Authority
TW
Taiwan
Prior art keywords
double
capacitor
dual
capacitance
sensor
Prior art date
Application number
TW93121220A
Other languages
Chinese (zh)
Other versions
TW200602628A (en
Inventor
Chen-Kuei Chung
Bo-Kai Fang
Yi-Jr Hung
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW93121220A priority Critical patent/TWI259274B/en
Publication of TW200602628A publication Critical patent/TW200602628A/en
Application granted granted Critical
Publication of TWI259274B publication Critical patent/TWI259274B/en

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The present invention relates to a dual-capacitor sensor, which is applied to temperature sensing. Bimaterial is deformed when temperature varies, and a capacitor variation value of both sides of a first capacitor and a second capacitor are varied to further output a voltage difference; using a strain migration theory arising from heating bimaterial to perform simulation to designed dimensions, the tolerance below 0.4%, the sensitivity is about 2.2 mV/DEG C and the accuracy reaches 0.3 DEG C between a theoretical temperature difference and the simulation result of the present invention. The dual-capacitor sensing device of the present invention can improve the heat generated in circuit operation and secure high sensitivity, low tolerance and high accuracy of the sensor.

Description

1259274 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種雙電容式感測器,係利用電容 變值進而輸出電壓差,感測環境變化,可應用於感測環 境變化之相關應用。 < 【先前技術】 目前使用的熱阻式溫度感測器是利用感測器材料本 身的 TCR (TeniPerature coefficient 〇f resistance), 當空氣或流體經過時電阻時,將受到溫度時產生改變 經惠斯敦電路輸出電壓後換算成溫度,但熱 阻式溫度感測器本身之電路通以電流時,會消耗其功率 而放出熱,而影響輸出訊號,且一般TCR線性度較低, 故輸出的訊號誤差值較大誤差約為2. 3%。或是利用 BiCOMS技術,其製程重複性高,但由於量測溫度時,會 產生漏電流,故會造成每次量測出的電壓都會產生偏 移相車又本考X明之雙電容式感測器,係利用溫度產生變 化時雙材料將產生形變,進而改變第一電容、第二電容 兩端電容變值進而輸出電壓差,使其雙電容式的間接輸 :,改善感測器本身因電路所產生的發熱而影響到輸出 、。果’亚具有低誤差、高靈敏度、和高精準度之優點。 1259274 【發明内容】 且低^;匕_在於提供1電容式感測器, 円友敏度、和南精準度之敷材之優點。 為達上述之目的,本發明係提 器,係包括有一第一固定電極、十:電谷式感測 -固定電極-端設有一播板…y電極,該第 =之_ 一可動電極, 一雙材料之金屬端’-設置於雙材料另—端之隔二 且-雙材料及隔熱層相連處設有^ 容式感測器。本發明係應用在感測溫度方Π:ί= 生變化時雙材料將產生形變,面…皿度產 電容兩端電容變值進而輸出電::改、“-電容、第二 的理論溫差盘本發明模擬二:十:尺寸進行模擬,所得 和靈敏度約為2.崎,而在懸臂樑 板的長度比例為1:1,雙電容式感測器之精準 ^在传用①3C。本發明之雙電容式感測器具有改善感測 口口在使用電路上所可能產峰 _ 高精準度之優點。 、、、、^讀度、低誤差和 【實施方式】 I閱第1 Α〜2圖』所示,係本發明雙電容式 感測器俯視示意圖、係本發明雙電容式感測器之前視示 1259274 意圖、係本發明之惠斯頓 本發明係提供—雙電容式^ 示意圖。如圖所示: 電極11、-第二固定係包括有一第一固定 一端設有-擔板13,且該2 =第—岐電 定電極12之間設有·*定電極11、第二固 4-端接連」:Γ 電極14,而該可動電極1 5另之金屬端15,-設置於雙材料1 相連處設有一導線工7,萨5及隔熱層1 6 ^ ^ 精此形成雙電容式感測器。上 =動214包含一第一電容141、-第二電容 142,泫第一電容141 、楚—& 參考電容181、一第-失考::電容142與-第-惠式電路。 “考電谷182相連接形成一 口月爹閱第3圖』所示’係本發明雙電容式感測器 剖面結構構成方程式推導示意圖。如圖所^本發明利 用溫度變化(Tsurr)產生偏移量⑷,進而產生電容值變化 (△〇’在以電位差方式(Δν_)輸出結果, ^sur S AC —> ΔΚ out (第1公式) 雙材料(bimaterial)曲率半徑(/?Γ)與溫度變化 (』之關係式(第2公式)與幾何關係結果(第3公 式)可求得(匕,)與(」7〇之關係函數,( ^ ^)、 感測靈敏度、最大線性量測溫度變化值。 1259274 以下為雙材料溫度感測為之推導結果: _ 1 3 · {〇ίβ ~ cc^) Δ7^ 雙材料彎曲時之曲率半徑····(第2公式) ^bi =hi2 = ^\aB ~aA)\hi)2 ·△ j 2·Ρ。 4 · tbi 懸臂標末端之偏移量.........(第3公式) (αΒ ~αΑί^ + γ~ (^ύ/)2Κ·π =>UAT)^-——ΔΓ 8 ^chi 輸出電位和溫差的關係.........(第4公式)1259274 IX. Description of the Invention: [Technical Field] The present invention relates to a dual-capacitance sensor that utilizes capacitance variation and thus output voltage difference to sense environmental changes and can be applied to sense environmental changes. application. <Prior Art The current thermal resistance type temperature sensor uses the TCR (TeniPerature coefficient 〇f resistance) of the sensor material itself. When the air or fluid passes through the resistance, it will undergo a change in temperature. The output voltage of the circuit is converted into temperature, but when the circuit of the thermal resistance temperature sensor is current, it will consume its power and release heat, which will affect the output signal, and the TCR linearity is generally low, so the output is 3%。 The signal error value is about 2.3%. Or the use of BiCOMS technology, the process repeatability is high, but due to the measurement of temperature, it will produce leakage current, so it will cause the voltage measured every time will produce offset phase car and this test X Ming double capacitive sensing When the temperature is changed, the two materials will be deformed, thereby changing the capacitance change between the first capacitor and the second capacitor and then outputting the voltage difference, so that the double-capacitance indirect transmission: improving the sensor itself due to the circuit The heat generated affects the output. The fruit has the advantages of low error, high sensitivity, and high precision. 1259274 [Summary of the Invention] and low ^; 匕 _ lies in providing a capacitive sensor, the advantages of the friend sensitivity, and the accuracy of the South. For the purpose of the above, the present invention comprises a first fixed electrode, a ten: electric valley sensing-fixed electrode-end provided with a playing board, a y electrode, the first _ a movable electrode, a The metal end of the double material is disposed at the other end of the double material and is provided with a capacitive sensor at the junction of the double material and the heat insulation layer. The invention is applied to the sensing temperature square: ί = the change of the double material will be deformed, the surface ... the capacitance of the capacitor at both ends of the capacitor and then the output of electricity:: change, "-capacitance, the second theoretical temperature difference disk The present invention simulates two: ten: size simulation, the obtained and sensitivity is about 2. Saki, and the length ratio of the cantilever beam plate is 1:1, and the precision of the double-capacitive sensor is 13C. The dual-capacitance sensor has the advantage of improving the possible peak of the sensing port on the used circuit. High precision. , , , , ^ reading degree, low error and [implementation] I read the first Α~2 The schematic view of the dual-capacitance sensor of the present invention is shown in the prior art. The dual-capacitance sensor of the present invention is shown in the prior art, and the embodiment of the present invention is provided by the present invention. The figure shows that: the electrode 11 and the second fixing system comprise a first fixed end provided with a support plate 13, and the 2 = the first electric constant electrode 12 is provided with a * fixed electrode 11 and a second solid 4 - terminal connection": 电极 electrode 14, and the movable electrode 1 5 another metal end 15, - set in the double material 1 is provided with a wire connected to the work 7, 5 and Sa ^ ^ insulating layer 16 is formed in this double-precision capacitance sensor. The upper switch 214 includes a first capacitor 141, a second capacitor 142, a first capacitor 141, a reference capacitor 181, a first-missing capacitor: 142 and a --thix circuit. "Chaodian Valley 182 is connected to form a monthly reading of Figure 3", which is a schematic diagram of the equation structure of the two-capacitance sensor of the present invention. As shown in the figure, the present invention utilizes temperature change (Tsurr) to generate an offset. The amount (4), which in turn produces a change in capacitance value (Δ〇' is output in the manner of potential difference (Δν_), ^sur S AC —> ΔΚ out (1st formula) bimaterial radius of curvature (/?Γ) and temperature The relationship between the change (the second formula) and the geometric relationship (the third formula) can be obtained by (匕,) and (7〇) the relationship function, ( ^ ^), sensing sensitivity, maximum linear measurement temperature Variation value 1259274 The following is the derivation result of the temperature sensing of the double material: _ 1 3 · {〇ίβ ~ cc^) Δ7^ The radius of curvature of the double material when bending · (· 2) ^bi =hi2 = ^\aB ~aA)\hi)2 ·△ j 2·Ρ. 4 · offset of tbi cantilever end...(3rd formula) (αΒ ~αΑί^ + γ~ (^ύ/)2Κ·π => UAT)^-——ΔΓ 8 ^chi The relationship between the output potential and the temperature difference.........(Form 4)

熱傳方程式 (第5公式)Heat transfer equation (5th formula)

Claims (1)

9274 十、申請專利範圍: 丄.—種雙電容式感測器,其係包括有: —第一固定電極、一第二固定電極,該第一電極— 端設有一擋板,且該第一固定電極、第二固定電極 之間設有一可動電極,而該可動電極一端接連—雙 材料之金屬端’ -設置於雙材料另—端之隔熱層, 且該雙材料及隔熱層相連處設有—導線,藉此形成 雙電容式感測器。9274 X. Patent Application Range: A dual-capacitive sensor comprising: a first fixed electrode and a second fixed electrode, wherein the first electrode has a baffle at the end, and the first A movable electrode is disposed between the fixed electrode and the second fixed electrode, and the movable electrode is connected at one end - the metal end of the double material is disposed at the other end of the double material, and the double material and the heat insulation layer are connected A wire is provided to form a dual capacitive sensor. ,據申請專難圍第i項所述之—種雙電容式感濟 為,其中,該可動電極包含一第一電容、一第二電 容0 依據申請專利範圍第2 jg郎十、 „„ u w項所述之—種雙電容式感測 4 5 :’其中,該第-電容、第二電容與一第一參考電 谷、-第二參考電容相連接形成一惠式電路。 ΓΠ專利範圍第1項所述之—種雙電容式感測 ς。’其中’該雙電容式感測器之外觀結構為矩形構 依據申請專利範圍第丄項所述之 器’其中,該雙材料之⑽端m又…大感測 係可選自於紹、金、鋼广二為電容板材料, (―、氧化物、氮化:或白金…… :據申請專利範圍第以所述之—種雔 器,其中’該雙電容式感測器之二W 和電容板的長度比例為…為最;/’以懸臂襟 12 1259274 =據申研專利範圍第2項所述之—種雙電容式感測 "中4雙電谷式感測器之最大線性 為100°c。 国 ^據申W專利範圍第】項所述之—種雙電容式感測 7 ,其中,該雙電容式感測器之靈敏 2· 2mV/°c。 9.=據申請專利範圍第i項所述之—種雙電容式感測 “中。亥雙電谷式感測器之量測誤差可降低 υ· 4以下。 -< 1〇測1 據申請專利範圍第1項所述之一種雙電容式感 时,其令,該雙電容式感測器是利用雙材料不同 之熱膨脹係數,取代傳統非線性的TCR。 1 1 =據.申請專利範圍第2項所述之一種雙電容式感 二:構,?ί一電容、一第二電容,利用雙材 丁十、°構叉熱,造成電容值極產生變化。 據申凊專利範圍第2項所述之一種雙電容式感 =,其中’該第一電容、第二電容,利用其為雙 2式輸出’可改善感測器因電路所 影響到輸出結果。According to the application, the double-capacitance type is described in the item i, wherein the movable electrode comprises a first capacitor and a second capacitor 0. According to the patent application scope, the second jglang ten, „„ uw The dual-capacitance sensing 4 5: wherein the first capacitor and the second capacitor are connected to a first reference valley and a second reference capacitor to form a Hui-type circuit.双The dual-capacitance sensing method described in item 1 of the patent scope. The structure of the double-capacitance sensor is a rectangular structure according to the device described in the scope of the patent application. The (10) terminal m of the double material and the large sensing system may be selected from the group consisting of Shao and Jin. , steel wide two for capacitive plate material, (-, oxide, nitride: or platinum ...: according to the scope of the patent application - the type of device, where 'the double capacitive sensor of the second W and The ratio of the length of the capacitor plate is ... the most; / 'With the cantilever 襟 12 1259274 = the double linear capacitance sensing according to the second paragraph of the research patent scope " the maximum linearity of the 4 double electric valley sensor It is 100°c. The double-capacitance sensing 7 described in the patent scope of the patent application, wherein the sensitivity of the dual-capacitance sensor is 2·2mV/°c. 9.=According to the application The dual-capacitance sensing described in item i of the patent scope "middle. The measurement error of the double-dual valley sensor can be reduced to less than υ·4. -< 1〇1 1 According to the patent application scope 1 In the case of a double-capacitance type, the dual-capacitance sensor uses a different thermal expansion coefficient of the two materials instead of the conventional one. Linear TCR. 1 1 = According to the application of the scope of claim 2, a double-capacitance type two: structure, ? a capacitor, a second capacitor, using double material D, 10 ° fork heat, resulting in capacitance The value of the pole is changed. According to a dual-capacitance sense according to item 2 of the patent scope of the application, wherein 'the first capacitor and the second capacitor, using the double-type output' can improve the sensor due to the circuit Affects the output.
TW93121220A 2004-07-15 2004-07-15 Dual-capacitor sensor TWI259274B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93121220A TWI259274B (en) 2004-07-15 2004-07-15 Dual-capacitor sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93121220A TWI259274B (en) 2004-07-15 2004-07-15 Dual-capacitor sensor

Publications (2)

Publication Number Publication Date
TW200602628A TW200602628A (en) 2006-01-16
TWI259274B true TWI259274B (en) 2006-08-01

Family

ID=37873370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121220A TWI259274B (en) 2004-07-15 2004-07-15 Dual-capacitor sensor

Country Status (1)

Country Link
TW (1) TWI259274B (en)

Also Published As

Publication number Publication date
TW200602628A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
Sandmaier et al. A square-diaphragm piezoresistive pressure sensor with a rectangular central boss for low-pressure ranges
US7635091B2 (en) Humidity sensor formed on a ceramic substrate in association with heating components
CN109883315A (en) A kind of two-sided resistance strain and strain measurement method
CN215493291U (en) Gas sensor
Tung et al. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks
CN101526404A (en) Temperature and pressure compound sensor
JPH10504387A (en) Force or elongation sensor
TWI259274B (en) Dual-capacitor sensor
CN209894749U (en) Double-capacitor temperature and humidity sensor
CN210071189U (en) Graphene film pressure sensor
RU2397460C1 (en) Pressure sensor based on tensoresistor thin-film nano- and micro-electromechanical system
CN1445535A (en) Device for measuring thermal conductivity of conductor thin film
JP4268100B2 (en) Ion conductivity measuring device
CN103105124B (en) Full-bridge type and semibridge system measure foil gauge and the method for shear strain
CN113567869B (en) Battery voltage monitoring miniature sensor and voltage monitoring method
CN111122026A (en) Pressure sensor
CN109917182B (en) Microwave power sensor based on graphene piezoresistive effect
CN216817383U (en) Piezoresistive sensor, touch device and electronic equipment
CN205426378U (en) Temperature detecting element and thermodetector
CN218212746U (en) Two-way three-dimensional heating type humidity sensor and equipment with humidity acquisition function
CN111122025A (en) Pressure sensor
CN114659697B (en) Flexible six-dimensional force sensor based on capacitive sensor
CN204630540U (en) A kind of measurement mechanism of interface sliding amount
JP2009150737A (en) Sensor and detector
CN220602750U (en) Film type temperature sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees