TWI254339B - Reflective area light source - Google Patents

Reflective area light source Download PDF

Info

Publication number
TWI254339B
TWI254339B TW93140064A TW93140064A TWI254339B TW I254339 B TWI254339 B TW I254339B TW 93140064 A TW93140064 A TW 93140064A TW 93140064 A TW93140064 A TW 93140064A TW I254339 B TWI254339 B TW I254339B
Authority
TW
Taiwan
Prior art keywords
reflective
source
field emission
layer
field
Prior art date
Application number
TW93140064A
Other languages
Chinese (zh)
Other versions
TW200623192A (en
Inventor
Shih-Pu Chen
Yi-Ping Lin
Wen-Liang Huang
Jung-Yu Li
Ting-Wei Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW93140064A priority Critical patent/TWI254339B/en
Application granted granted Critical
Publication of TWI254339B publication Critical patent/TWI254339B/en
Publication of TW200623192A publication Critical patent/TW200623192A/en

Links

Abstract

This invention relates to a reflective area light source. It comprises a filed emitter structure in form of any array. The field emitter structure comprises a substrate, a metal reflective layer, a light-emitting layer and a plurality of field emitter. Wherein, the substrate has at least a trench, the metal reflective layer, and the light-emitting layer, etc. are sequentially formed upon the trench. Each field emitter is disposed on top of the metal reflective layer and the light-emitting layer in the trench. Therefore, the light source can have effective reflection to elevate the lighting intensity. Moreover, it employs a method free of spacer. The upper and lower substrates are identical material that is good for maintaining vacuum degree after packaging. The array of the field emitter provides a troubleshooting wiring design. If one of electrode wires is open-circuited, overall operation can still be secured.

Description

1254339 九、發明說明: 【發明所屬之技術領域】 射式絲,特瑕指—種具有反 【先前技術】 賴碳管的場發射特性被發現後,相較於傳統以 ί emittf),其具有較優良之場發射特性,而 不^反g作為陰極材料,.目前已應用於製作奈米碳管場發射元件 par on nanotube field emission element)與奈米碳管場發射顯示器 二=Tfbe 5dd emissi°n display)。奈米碳管場發射元件應用 在恥明用逯上,若能將其發光效率提升至80_1001m/w,則可取 曰光燈而普遍化。 ϋ圖種具有奈米碳管場發射子的傳統平面發光源的截 包括有:一陰極基板100; 一陽極基板_係平行 陰極基板100上方;一支撐層(SPaCer)500係置於前述 基板100與陽極基板600之間,以維持兩者之間有一預定的 :距離及維持兩者間的空間真空度。陰極基板1〇〇係為一玻璃 基板,一陰極電極層200形成其上方,而一催化層 layer)30、g形成於陰極電極層2〇〇上方,以利於奈米碳管成長於其 上面。複數個奈米碳管400係形成於前述催化層3〇〇上方,以g ^極場尹射子(cath〇de field emitter}。陽極基板_係為一玻焱 丞,,一氧化銦錫(Indium Tin Oxide,ITO)陽極電極層700係形成 基板_下方,而—螢光層_形成於氧化銦^陽ί1254339 IX. Description of the invention: [Technical field of invention] Shooting wire, special type refers to the kind of anti-[previous technique] After the field emission characteristics of the carbon tube are found, compared with the conventional one, ί emittf) More excellent field emission characteristics, instead of g as a cathode material, has been applied to the production of carbon nanotube field emission element (parallel nanotube field emission element) and nano carbon tube field emission display two = Tfbe 5dd emissi ° n display). The carbon nanotube field emission component is applied to the shame-enhanced crucible. If the luminous efficiency can be increased to 80_1001 m/w, the neon lamp can be generalized. A cross section of a conventional planar light source having a carbon nanotube field emitter includes: a cathode substrate 100; an anode substrate _ being parallel to the cathode substrate 100; and a support layer (SPaCer) 500 disposed on the substrate 100 Between the anode substrate 600 and the anode substrate 600, a predetermined distance is maintained therebetween and the spatial vacuum between the two is maintained. The cathode substrate 1 is a glass substrate, and a cathode electrode layer 200 is formed thereon, and a catalytic layer 30, g is formed over the cathode electrode layer 2 to facilitate the growth of the carbon nanotubes thereon. A plurality of carbon nanotubes 400 are formed above the catalytic layer 3〇〇, and are g ^ 场 field field emitters. The anode substrate _ is a glass 焱丞, indium tin oxide ( Indium Tin Oxide, ITO) anode electrode layer 700 is formed into a substrate _ below, and - luminescent layer _ is formed in indium oxide ^ 阳

Ϊϊί 下方。前述奈米碳管400在氧化銦錫陽極電極層7〇〇 的電壓吸引下,發射出電子,而撞擊螢光層8〇〇,使榮 〇Q ^激發放光。螢光層800之發光穿經陽極基板6〇〇,以形成平面 發光源。 剷述以奈米碳管做為場發射子的平面發光源具有以下一些 f f。例如,包圍電子發射面積(electr〇n_emittingarea)的外部奈米 ΐί 400具有邊緣效應(edge effect),使得螢光層800的周圍i光 7C度大於中心發光党度,造成前述平面光源的發光強度不均勻, 而降低其發光特性。再者,前述奈米碳管4〇〇通常係以弧光放電 (arc discharge)或雷射蝕刻(iaser ablation)方法形成,上述兩種方法 並不適合於以低成本量產奈米碳管,奈米碳管的結構亦難控制/。 1254339 因此=料面光源要製作成大尺寸面統會有困難。 以克服上述供一種改良的具有場發射特性的平面發光源, 【發明内容】' 拉料問題’本發明的主要目的在於提供一種具場發射 Ιΐΐϊί式2發光源’其設計將光源有效反射,以提高發光 發勻$ 其場發射子元件可呈任何_形式排列,以提高 疥朵,目的係提供一種具場發射特性的反射式平面 造兀件結構係採組合式,可克服大發光面積發 料、目的係提供—難場鶴特㈣反射式平面 i持方式’以於發光源組件封裝 S錳S率Si:仍能正常工作,進而提高本發明發 括:其為柄達的,本㈣提供—飯財平面發絲,其包 金屬1射的溝槽於其上,此基板是供做陽極基板; 反射層上^七發光層,形成於溝射並位於金屬 λ i播士二/琢么射子元件(field emitter element) ’以陣列配 ίϊίίί^ίΓϊ;^ 2,使兩者 JSfS; 量 j 第接至ΐ二電壓源,其中第二電壓源的 屬透前錢絲板,⑽成— 总本^月别述反射式平面發光源之透光基板及陽極美軛槿报 1254339 ΐ光^;tffίίί^。,故於發光源組件封裝後,有助於 夷板另發日服供—種反料場發料結構,其包括: £ΐ (1^^^ ^Smmi 金屬光層與 j列形式的場發射求二取JJg種 ί5ί2ί?柯tjr合形成反射=件i 解,兹配合實_詳細二^特“及/▲有進一步的瞭 【實施方式】 頻示射式平面發絲,可適用於目前的,昭明、 ishii能Γ㈡之器4:本r月之反射式平面 ίΐ#2*ί 材料置於其中。=¾诚Jts冓令:Ϊ閉空間,而陰極 基板與陽極基板之間無|使用^撐^、( ^ 時,透光 使ίΐίίΐΐί製, ί 度。陰極材料的場發射i(iL 持良 電極^構成,其中 S安裝於具有溝槽結構ί述“ 整此ί合^!的Sit 1254339 作與上針採取陰極場發射子製 之製程,故不受溫度等| 以J 的製作為獨立 單化。 致〜9可以降低製造成本並使製程簡 源,ίί^ίι^4ίί場ί射子結構及其形成之平面發光 例配合所附圖式,予以詳細說明如下。 截面不意圖。在第-具體實施财 例的 極式結構(diode structure),二上其射子結構20呈二 或塑膠基板或由其它適合的材質^成二 ^ $璃基板 ^ '型狀;金屬反射層各:槽2二g 弧 ϊιΐ光層;及數個場發射子元件置 於母一溝槽211之金屬反射層22與發光層23上方,日义、+、+曰^ 射子元件24可以碳材附著於片狀、棒狀或管 狀或管狀導電材料即構成陰極電極。 杯 -係反射式場發射子結構20的俯視 J J)件24係經電極線212串聯一起,再搞接至 一 f 2C圖係第2Α圖之反射式場發射子結構2〇的 ,不思圖,其與第2Α圖之反射式場發射子結構2〇不同處^截 f 2C圖之反射式場魏子結構施是將基板21a以物 ^方 法蝕刻或模板成U型結構。 4化予方 ^ 2D圖係第2A圖之反射式場發射子結構2〇的另一 截面示意圖,其與第2A圖之反射式場發射子結構2〇不同虛兔 屬反射層22b為整面式,其在基板21b上形成單一個溝柙金 金屬反射層22b與發光層23b依序披覆於整個溝槽2iib中,真6 裝數個反射式%發射子元件24b’此種整面式的反射式場♦射$ 結構20b於玻璃模板製作時較為容易。 7咐十 此外,本發明之反射式場發射子結構亦可為三極式姓 (triodestructure),如第3A圖〜第3D圖所示,詳細說明於下:"傅 1254339 第3A圖係本發明反射式場發射子結構之第二且 |面示賴。在第二具體實施财,反射式場f 管板。供做-陽極基板’其具有數個陣列排列 ’基^ 31可以;%玻絲板或塑膠基板或由其 ^ ^ 溝槽311截面可以呈弧狀或u型狀;金屬 g材2 ,溝槽3Π中;發光層33,形成於各溝槽3^^ J J 方,且發光層33可以是一螢光層或一磷光層;^數尸^ f子元件34,分別設置於每一溝槽311之金屬反射層及U ^ ^ 發射子元件34可以碳材附著於片狀? 係分別形成於每—對相鄰溝槽並且S - ί 電極35是用以提供驅動電壓以驅使場發 式場發射子結構3G可使驗低的操作電壓,Ί 诉 電極35係由導電材料形成,例如高熔點全屬 ,枉 (hafmjmi)或它彳,的組成物或碳化物(carbides)。 叫,給 二- HB,係反射式場發射子結構30的俯視圖,前述的場發射 i、電極線312串聯一起,再減至第一電 出)’,刖述弟二t壓源的電壓係高於第一電壓源的電壓。’、 旦/弟示的二極式反射式場發射子結構2〇的製程較為衮 易,但#作電壓較高,而第3A圖所示的二極式 結構3。將气助於操作電壓的降低。反射式_射子 5係第3Α ®之反射式場發射子結構3。的-變 ^例截面不思圖,苐3C圖之反射式場發射子結構 = 31a以物理或化學方法侧或模板成U型結構。τ將基板 把3D圖所示,其反射式場發射子結構30b是在基 溝槽册,而具有整面式的金屬反射層 在ί三具體實施例中,反射式場發射子結構50為一 ίίϊϊίϋ且陰極電極具有檢修配線的設計;反射式場發 射子、、^構50係包括基板51與複數個呈一列陣列安排的場發射子 1254339 陰f發射源’·—呈倒U型的透光基板41, 方表可以是—玻璃基板’健放於基板 上方,使兩者間構成一封閉空間45 ;及一透明 iss光面上,前述透明導電層42係耦;妾至-第、 ^^^=^中弟*1$麼源的電壓高於第一電塵源的電遷,前述 ,,®可以由氧化銷錫(IT〇, Indium Tin oxide)或氧化錫形 ί墼Ϊίttf H件24在第二電_的電壓吸5丨下射出電子, 層23放光,光線會經由金屬反射層22反 ΐϋ型^妓射式平面發光源4G各組件封裝時無需i用 Ϊ、^ί=本個發光源的封裝製程更為容易。再者,ϋι ㈣齡二f 用相同材質’例如皆使用玻璃材質,由於孰膨 11《面’可加設—吸氣器(g_) 46於基板21,|Ϊί通 f間45」藉吸氣器46吸收封酸間45内的 匕軋子,以提咼封閉空間45的真空度。 ” ^ 调吏rf第从圖場發射子結構30的反射式平面發光 ’賊帛6A ®的反射式平面發統4〇不同 ί 式結構’而閘極電極35輕接的 iii 錢係南於第―電壓源的電壓,而低於第二電壓源 谓,ί吏f第2C圖場發射子結構2〇a的反射式平面發光 f 2的截面不思圖。反射式平面發光源47係包括:且 Ϊ 4ΐ3ίϊίΐ發射子結構20a ’供做為陰極發射源、;—透光i 於臭杯二表Ϊ與一底面,例如可以是一玻璃基板,係疊放 =基f 21^上方,使兩者間構成一封閉空間45 ;及一透明 至二光气板化的底面上,前述透明導電層42係耦i ί化ΐί Ϊ明!ί層42可以由氧化銦錫(IT〇,Indium Tin oxide)i ΐΐί 發射子元件24在第二電壓源的電壓吸引下射 射屛22 23,使發光層23放光,光線會經由金屬反 A^21a係口過透光基板4U,以形成一平面發光源。由於 基板la係壬u型,故當反射式平面發光源47各組件封裝時無需 12 1254339 支撐層(spacer),以使基板21a與透光基板41a之間保持一定 J产〒離’因此可使本發明發光源的封裝製程更為容易。再者, iSPt及爷光基板41a可使用相同材質,例如皆使用玻璃材質, 衫脹係數相同’有利於保持反射式平面發光源47内部結構 25二^137夸面,可加設一吸氣器(获_)46於基板21心使 ΐίίίΐϊ封閉空間45,藉吸氣器46吸收封閉空間45内的水 軋及。匕氣體,子,以提高封閉空間45的真空度。 、/i 圖吏用第3C圖場發射子結構3〇a的反射式平面發光 其與*6c圖的反射式平面發光源47不同i 二雷結構為三極式結構,而閘極電極35麵接的第 ^壓。源的電壓係高於第—霞源的賴,而低於第二電麼源的 孚與第6F圖分別是使用第2D圖與第3D圖之場發射 ίί ί =與:= 射式平光源7G與71的截·ίίΐ 的反射式平面發光源4〇與47不同處,僅 -個2Gb與通皆是在基板21b與31b形成單 有整面式的金屬反射層22b與32b。 達到顺職料元件結構 社槿ίίΐ in如H圖及第5圖所示具有檢修配線的場發射子元件 6tmr$6Fm 修配線設计,,⑽如,一來,由於反射式平面發光源具有檢 作,進伽正常工 ϊϊ,°4ί舍本 上所ϊί S2Z定ΐ 月53S範圍。關於本發明所衫之誌dS4 【圖式簡單說明】 示意ί :1難—具有奈米碳管場發射子的習知平面發光源的截面 意圖f2Α圖係本發明場發射子結構之第一具體實施例的截面示 第2Β圖係第2Α圖場發射子結構俯視圖; 13 1254339 圖 游Hi 2么圖#一變化例的截面示意圖; 意圖 α係弟2A圖场發射子結構之另一變化例的截面示意 ,第3Α圖係本發明場發射子結構之第二具體實施例的截面示 ί 3 3ίί 5圖場發射子結構俯視圖; 第犯圖係第3A圖場截面示思圖; 圖; 耵于、、、°構之另一變化例的截面示意 視圖f4 _本發9肢射式場發射子結構之第三越實施例的俯 視圖- ^ MV 的截if使用第2A圖場發射子結構的反射式平面發光外 截面^意圖^使用第3 A圖%發射子結構的反射式平面發光源的 ,意圖1級用第2(:圖%發射子結構的反射式平面發光源的 第6D圖後#用筮_LH W 2 _ 截面不思圖, · ^^ 第6E圖係使用第2D圖場發射早姓 示意圖;及 射子…構的反射式平面發光源的 篦6F HU备佔田铪〇τλ向 第5圖係本翻反射辆歸子結構之第四具财施例的俯 源 截面示意, ........ 第6D圖係使用第3C圖場發射 示意圖; 射子、、、°構的反射式平面發光源的 第6E圖係矿一 “- 截面示意圖;及 …a丁®j赞无綠的 第6F圖係使用第3D圖場發 截面示意圖。 射子結構的反射式平面發光源的 【主要元件符號說明】 1〇〇 陰極基板 mb i^發射子結構 22, 22b 金屬反射層 23,23b 發光層 24, 24b 場發射子元件 200 陰極電極層 211,211b 溝槽 14 1254339 212 電極線 300 催化層 30, 30a,30b 反射式場發射子結構 31,31a,31b 基板 32, 32b 金屬反射層 33 發光層 34 場發射子元件 35 閘極電極 311,311b 溝槽 312 電極線 400 奈米礙層 4〇, 44, 47, 48, 70, 71 反射式平面發光源 _ 41,41a 透光基板 42 透明導電層 45 封閉空間 46 吸氣器 500 支撐層 50 反射式場發射子結構 51 基板 52 場發射子元件 53 電極線 54a〜54d 輔助導線 600 陽極基板 鲁 60 反射式場發射子結構 61 基板 62a,62b 場發射子元件 63a,63b 電極線 64a〜64d 輔助導線 65a〜65d 輔助導線 700 陽極電極層 800 螢光層 15Ϊϊί Below. The carbon nanotube 400 emits electrons under the attraction of the indium tin oxide anode electrode layer 7〇〇, and strikes the phosphor layer 8〇〇 to cause the excitation to emit light. The illumination of the phosphor layer 800 passes through the anode substrate 6A to form a planar light source. A planar illumination source that uses a carbon nanotube as a field emitter has the following f f . For example, the external nano-400, which surrounds the electron-emitting area (electr〇n_emitting area), has an edge effect such that the surrounding i-light of the phosphor layer 800 is greater than the central light-emitting degree, causing the luminous intensity of the planar light source to be absent. Uniform, reducing its luminescent properties. Furthermore, the aforementioned carbon nanotubes 4 are usually formed by an arc discharge or an iaser ablation method, and the above two methods are not suitable for producing carbon nanotubes at a low cost, and nanometers. The structure of the carbon tube is also difficult to control. 1254339 Therefore, it is difficult to make a large-sized surface of the material source. In order to overcome the above-mentioned planar light source with improved field emission characteristics, the present invention has a main object of providing a field emission 式ί 2 illuminating source, which is designed to effectively reflect a light source. Improve the illuminating and smoothing. The field emission sub-elements can be arranged in any _ form to enhance the enthalpy. The purpose is to provide a reflective planar enamel structure with field emission characteristics, which can overcome the large illuminating area. The purpose is to provide - the difficult field Heite (four) reflective plane i holding mode 'for the light source component package S manganese S rate Si: still can work normally, and then improve the invention: it is handled, this (four) provides - The rice hair is flat, the groove of the metal is sprayed on it, the substrate is used as an anode substrate; the light-emitting layer on the reflective layer is formed in the groove and located in the metal λ i. The field emitter element 'is arrayed with ίϊίίί^ίΓϊ;^ 2, so that the two JSfS; the quantity j is connected to the second voltage source, wherein the second voltage source belongs to the front of the money board, (10) into - Total this month Beam-transmissive substrate plane light emitting source and the anode of US 1254339 ΐ light yoke packets hibiscus ^; tffίίί ^. Therefore, after the illuminating source component is packaged, it helps the slab to be separately supplied for the same day, and the reverse feed field material structure includes: £ΐ (1^^^ ^Smmi metal light layer and field array in the form of j column Seeking two JJg species ί5ί2ί? Ke tjr combined to form reflection = piece i solution, with the actual _ detailed two ^ special "and / ▲ have further [implementation] frequency display plane hair, can be applied to the current , Zhaoming, ishii can Γ (2) device 4: this r month reflective plane ίΐ #2*ί material placed in it. =3⁄4诚Jts 冓令: Ϊ closed space, and there is no cathode substrate and anode substrate | use ^ Supporting ^, (^, light transmission makes ίΐίίί, ί degree. The field emission of the cathode material i (iL holds a good electrode ^, where S is mounted on a grooved structure “ "The whole ί合^! Sit 1254339 The process of taking the cathode field emission sub-system with the upper needle is not subject to temperature, etc. | The production of J is independent and singular. To ~9 can reduce the manufacturing cost and make the process simple, ίί^ίι^4ίί ί射子The structure and the planar light-emitting example formed thereof are described in detail below with reference to the drawings. The cross-section is not intended. The pole structure of the financial example, the second structure of the emitter structure 20 is two or a plastic substrate or other suitable material ^ into two glass substrate ^ ' shape; metal reflective layer: slot 2 g ϊ ΐ ΐ light layer; and a plurality of field emission sub-elements are disposed above the metal reflective layer 22 and the light-emitting layer 23 of the mother-groove 211, and the Japanese, +, +曰^ emitter elements 24 may be attached to the sheet material by carbon material The rod-shaped or tubular or tubular conductive material constitutes the cathode electrode. The plan view JJ of the cup-based reflective field-emitting sub-structure 20 is connected in series via the electrode line 212, and then connected to a f 2C diagram. The reflective field emission substructure is 2 ,, which is not considered, and is different from the reflective field emission substructure 2 第 of the second diagram. The reflective field Wei substructure of the f 2C diagram is to etch the substrate 21a by the method or The template is a U-shaped structure. 4 is a schematic diagram of another cross-section of the reflective field emission substructure 2A of FIG. 2A, which is different from the reflective field emission substructure of FIG. 2A. 22b is a full-face type, which forms a single gully gold metal reflective layer 22b on the substrate 21b. The light-emitting layer 23b is sequentially coated in the entire trench 2iib, and the true reflective image field of the glass substrate is relatively easy to be mounted on the glass template. In addition, the reflective field emission substructure of the present invention may also be a triode structure, as shown in FIGS. 3A to 3D, and is described in detail below: "Fu 1254339 3A is a reflective field of the present invention The second and the surface of the emitter structure. In the second specific implementation, the reflective field f tube plate. For the anode substrate, which has a plurality of arrays, the substrate can be arranged; the % glass plate or the plastic substrate or the groove 311 can be arcuate or u-shaped; the metal material 2, the groove The light-emitting layer 33 is formed on each of the trenches 3^^JJ, and the light-emitting layer 33 may be a phosphor layer or a phosphor layer; and a plurality of sub-components 34 are respectively disposed in each of the trenches 311. The metal reflective layer and the U ^ ^ emitter element 34 can be attached to the sheet by carbon material? They are respectively formed in each pair of adjacent trenches and the S-ί electrode 35 is used to provide a driving voltage to drive the field-emitting field emission sub-structure 3G to enable a low operating voltage, and the detecting electrode 35 is formed of a conductive material. For example, a composition having a high melting point, a hafmjmi or a ruthenium, or a carbide. Called, to the second-HB, is a top view of the reflective field emission substructure 30, the aforementioned field emission i, the electrode line 312 are connected in series, and then reduced to the first electrical output), and the voltage of the second voltage source is high. The voltage at the first voltage source. The process of the two-pole reflective field emission substructure structure shown by Dan, is very simple, but the voltage is higher, and the two-pole structure 3 shown in Fig. 3A. The gas is assisted by a reduction in the operating voltage. Reflective_Shot 5 is the third field of the reflective field emission substructure 3. The reflection-field emission substructure of the 苐3C diagram = 31a is physically or chemically side or templated into a U-shaped structure. τ shows the substrate in a 3D view, the reflective field emission substructure 30b is in the base trench, and has a full-surface metal reflective layer. In a specific embodiment, the reflective field emission substructure 50 is an ίίϊϊίϋ The cathode electrode has a design of the inspection wiring; the reflective field emitter, the structure 50 includes a substrate 51 and a plurality of field emitters 1504339 arranged in an array of arrays, and an inverted U-shaped transparent substrate 41. The square table may be a glass substrate that is placed on top of the substrate to form a closed space 45 therebetween; and a transparent iss light surface, the transparent conductive layer 42 is coupled; 妾 to -, ^^^=^ The voltage of the younger brother*1$ source is higher than that of the first electric dust source. As mentioned above, the ® can be made of tin oxide (IT〇, Indium Tin oxide) or tin oxide. The voltage of the electricity_ emits electrons under 5 ,, and the layer 23 emits light, and the light is transmitted through the metal reflective layer 22, and the package is not required for the components of the 4G package. The packaging process is much easier. In addition, ϋι (four) age two f with the same material 'for example, all use glass material, because 孰 11 11 "face" can be added - aspirator (g_) 46 on the substrate 21, | Ϊ 通 f f between 45" by inhaling The device 46 absorbs the rolling rolls in the sealing chamber 45 to increase the degree of vacuum of the enclosed space 45. ” ^ 吏 r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r The voltage of the voltage source is lower than the second voltage source, and the cross-section of the reflective planar light emission f 2 of the field emission substructure 2〇a of the 2Cth image is not considered. The reflective planar light source 47 includes: And Ϊ 4ΐ3 ϊ ϊ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ ΐ Between the two forms a closed space 45; and a transparent to two phosgeneized bottom surface, the transparent conductive layer 42 is coupled to the ! Ϊ Ϊ ί ί layer 可以 layer can be made of indium tin oxide (IT〇, Indium Tin oxide) The illuminating sub-element 24 emits 屛 22 23 under the voltage of the second voltage source, and illuminates the illuminating layer 23, and the light passes through the metal anti-A21a port to pass through the transparent substrate 4U to form a planar illuminating source. Since the substrate la is 壬u type, when the components of the reflective planar light source 47 are packaged, 12 1254339 branches are not required. The spacer is configured to maintain a certain distance between the substrate 21a and the transparent substrate 41a. Therefore, the packaging process of the light source of the present invention can be made easier. Further, the iSPt and the photo substrate 41a can be used the same. The materials, for example, all use glass material, the same expansion coefficient of the same 'favors to maintain the internal structure of the reflective planar light source 47 25 ^ 137 exaggerated, can add an aspirator (obtained _) 46 on the substrate 21 to make ΐ ί ί ΐϊ The space 45 absorbs the water rolling and the gas in the closed space 45 by the aspirator 46 to increase the degree of vacuum of the closed space 45. /i Figure 3 is a reflection of the field emission substructure 3〇a of the 3C image The planar light emission is different from the reflective planar light source 47 of the *6c diagram. The second lightning structure is a three-pole structure, and the gate electrode 35 is connected to the first voltage. The voltage of the source is higher than that of the first source. , and the 6F map below the second power source is the field emission using the 2D and 3D maps, respectively, and the := _ _ ίίΐ reflective planar illumination of the shot flat light source 7G and 71 The source 4〇 differs from the 47, and only 2Gb and the pass form a single-faced gold on the substrates 21b and 31b. Reflective layers 22b and 32b. Reach the material structure of the material. 如ίίΐ In the H and 5, the field emission sub-element with the inspection wiring, 6tmr$6Fm, wiring design, (10), for example, due to reflection The type of plane illumination source has the inspection, the normal operation of the gamma, and the S2Z ΐ 53 53S range. About the shirt of the invention dS4 [simple description of the diagram] ί : 1 difficult - with nai Cross-sectional view of a conventional planar light source of a carbon nanotube field emitter. The section of the first embodiment of the field emitter structure of the present invention is shown in the second diagram. FIG. 2 is a top view of the field emission substructure; 13 1254339 A schematic cross-sectional view of a variation of the Hi 2 diagram; a schematic representation of another variation of the field emission substructure of the 2A map, and a cross-sectional view of a second embodiment of the field emitter structure of the present invention. ί 3 3ίί 5 top view of the field emission substructure; Fig. 3A field cross section view; Fig.; sectional view of another variation of the 耵, ,, ° structure f4 _本发9 射射场Top view of the third embodiment of the emitter structure - ^ MV cut if using the 2A map field emission substructure of the reflective planar illumination outer section ^ intended ^ using the 3A map % emitter structure of the reflective planar illumination source, intended to use level 2 with the second (: The 6D map of the reflective planar illumination source of the % emitter structure is used #筮LH W 2 _ section is not considered, · ^^ The 6E diagram uses the 2D map field to launch the early surname; and the shot... The 篦6F HU of the reflective planar illuminating source occupies the 俯λλ λλ to the fifth figure, which is the fourth source of the fascinating structure. The 6D diagram uses the 3C map field emission diagram; the 6E diagram of the reflection type planar illumination source of the emitter, and the structure is a "--section schematic diagram; and...a Ding®j like the green 6F diagram A schematic diagram of the cross section of the 3D field is used. [Major component symbol description of the reflective planar light source of the emitter structure] 1 〇〇 cathode substrate mb i ^ emission substructure 22, 22b metal reflection layer 23, 23b luminescent layer 24, 24b field emission subelement 200 cathode electrode layer 211 , 211b trench 14 1254339 212 electrode line 300 catalytic layer 30, 30a, 30b reflective field emission substructure 31, 31a, 31b substrate 32, 32b metal reflective layer 33 light emitting layer 34 field emission sub-element 35 gate electrode 311, 311b trench Slot 312 electrode line 400 nano layer 4, 44, 47, 48, 70, 71 reflective planar illumination source _ 41, 41a transparent substrate 42 transparent conductive layer 45 enclosed space 46 aspirator 500 support layer 50 reflective field Emission substructure 51 Substrate 52 Field emission subelement 53 Electrode lines 54a to 54d Auxiliary wire 600 Anode substrate Lu 60 Reflective field emission substructure 61 Substrate 62a, 62b Field emission subelement 63a, 63b Electrode lines 64a to 64d Auxiliary wires 65a to 65d Auxiliary wire 700 anode electrode layer 800 fluorescent layer 15

Claims (1)

12543391254339 、申請專利範圍: .一種反射式平面發光源,包括有: 基板,係於该基板上形成一個以上的溝槽; 一金屬反射層,係形成於該溝槽中; 一發光層,係形成於該溝槽中並位於該金屬反射層上方· ▲複數個場發射子元件(field emitter element),係以陣列配詈 於A溝槽中並位於該發光層與該金屬反射層上方,且各該 射子元件係耦接至一第一電壓源; 知 一透光基板,具有一表面與一底面,係疊放於該基板上 方’使兩者間構成一封閉空間;及 ❿ 了透明導電層,係形成於該透光基板的底面上,該透明導 電層係耦接至一第二電壓源,其中該第二電壓源的電壓高 第一電壓源的電壓。 ⑽邊 2·如申^專利範圍第1項所述之反射式平面發光源,其中該溝槽 ,為,數個,並呈現陣列排列,以供該些場發射子元件分別^ 设於該些溝槽中。 3·如^請專利範圍第2項所述之反射式平面發光源,其中該基板 之每一對相鄰的該些溝槽之間具有一閘極電極,該閘極電&係 輕接至一第三電壓源,其中該第三電壓源的電壓係高於該第二 電壓源的電壓及低於該第二電壓源的電壓。 4·如申睛專利範圍第3項所述之反射式平面發光源,其中該美 本體係呈U型。 做 5·如申請專利範圍第3項所述之反射式平面發光源,其中該 基板本體係呈倒U型。 6·如申請專利範圍第3項所述之反射式平面發光源,其中該些 發射子元件係由包覆碳材的導電材料構成。 — 7·如申請專利範圍第6項所述之反射式平面發光源,其中該碳材 係選自下列任一者:奈米碳材、鑽石及類鑽石。 8·如申請專利範圍第3項所述之反射式平面發光源,其中該發光 層係為螢光層及填光層任一者。 9·如申請專利範圍第3項所述之反射式平面發光源,其中該些場 發射子元件係以群組方式分別耦接至一輔助導線,而該輔助導 ,係耦接至該第一電壓源,及每一群組中的該些場發射子元件 係彼此串聯。 16 1254339 第2項舰之反射式平面發杨,其中該基 所狀反料伟發統,其中該透 ϋιΐ/ϋίϋϋ所述之反射式平面發光源,其中該些 琢孓射子70件係由包覆碳材的導電材料構成。 範,圍第12項所述之反射式平面發光源,其中該 石反材自^任一者··奈米礙材、鑽石及類鑽石。f 紐式平面發絲,其中該發 15义專ϋ圍第,2項所述之反射式平面發光源,其中該虺 ίίίίίίΐϊι群5式分另_妾至一輔助導線,而ί “ ==_源,及每-群組中的該些場發射子元 16· —種反射式場發射子結構,包括有: 一基板,係於該基板上形成一個以上的溝槽; 一金屬反射層,係分別形成於該溝槽中; 及一發光層,係形成於該溝槽中並位於該金屬反射層上方; ίί溝於該發么與二7丄)方係 射子70件係耦接至一第一電壓源。 合發 1 如第16撕述之反射式場發料結構,1中 呈現陣列排列,以供該些場發 18如^^專利範圍第17項所述之反 鄰的該些溝槽之間具有—閘㈣極,中 電壓源’其中該第二電壓源㈣壓高於該第二ΪΪ 專利範圍第18項所述之反射式場發射子姓Μ甘丄 2〇牛係由包覆碳材的導電材料構成# ’ η第19項所述之反射式場發射子結構, 申5月專利範圍第18項所述之反射式場發射ΐ结構,其中 1254339 該些場發射子元件係以群組方式分別耦接 該第—_,及每-群組 22該項㈣认料場飾雜構,其中 該些包式場發射子結構,其中 該碳材係選自下列者:射,發射子結構,其中 該些場發射子元件f系以群植ϋ之ϋ式場發射子結構,其中 子元件係彼此串聯。 垒源’及母一群組中的該些場發射 26·如申請專利範圍莖17 … 該基板本體係呈^。、斤述之反射式場發射子結構,其中 18Patent application range: A reflective planar light source comprising: a substrate on which one or more trenches are formed; a metal reflective layer formed in the trench; a light emitting layer formed in The trench is located above the metal reflective layer. ▲ a plurality of field emitter elements arranged in an array in the A trench and above the light emitting layer and the metal reflective layer, and each of the holes The emitter element is coupled to a first voltage source; a transparent substrate having a surface and a bottom surface stacked on the substrate to form a closed space therebetween; and a transparent conductive layer The transparent conductive layer is coupled to a second voltage source, wherein the voltage of the second voltage source is higher than the voltage of the first voltage source. (10) The reflective planar light source of claim 1, wherein the plurality of trenches are arranged in an array for providing the field emission sub-components respectively. In the groove. The reflective planar light source of claim 2, wherein each pair of adjacent ones of the substrates has a gate electrode between the adjacent trenches, and the gate is electrically connected And a third voltage source, wherein the voltage of the third voltage source is higher than a voltage of the second voltage source and lower than a voltage of the second voltage source. 4. The reflective planar illumination source of claim 3, wherein the U.S. system is U-shaped. 5. The reflective planar light source of claim 3, wherein the substrate is in an inverted U shape. 6. The reflective planar illumination source of claim 3, wherein the emitter elements are comprised of a conductive material coated with a carbon material. The reflective planar illumination source of claim 6, wherein the carbon material is selected from the group consisting of nano carbon materials, diamonds, and diamond-like materials. 8. The reflective planar light source of claim 3, wherein the light-emitting layer is any one of a phosphor layer and a light-fill layer. The reflective planar illumination source of claim 3, wherein the field emission sub-components are respectively coupled to an auxiliary conductor in a group manner, and the auxiliary conduction is coupled to the first The voltage sources, and the field emission sub-elements in each group are connected in series with each other. 16 1254339 The reflective flat plane of the second ship, in which the base is in the form of a reflective flat light source, wherein the reflective planar light source is described by ϋιΐ/ϋίϋϋ, wherein the 70 electrons are It is composed of a conductive material coated with carbon material. The reflective planar light source of claim 12, wherein the stone object is made of any one of the materials, diamonds, and diamonds. f New-style flat hair, which is the reflective flat-light source described in 2, wherein the 虺 群 group 5 is divided into another auxiliary wire, and ί " ==_ The source, and the field emission sub-members in each group, the reflective field emission sub-structure includes: a substrate on which one or more trenches are formed; a metal reflective layer, respectively Formed in the trench; and a light-emitting layer is formed in the trench and located above the metal reflective layer; ί 沟 于 该 该 该 与 与 与 与 与 与 与 与 与 70 70 70 70 70 70 70 A voltage source. The hairline 1 is the reflection field field structure of the 16th tear, and the array arrangement is arranged in 1 for the fields 18 to be opposite to the grooves described in Item 17 of the patent scope. Between the gate (four) poles, the medium voltage source 'where the second voltage source (four) is higher than the second ΪΪ patent range, the reflective field emitter is named after the 〇 丄 2 〇 系The conductive material of the material constitutes the reflective field emission substructure described in Item 19 of the 'n, the patent scope of May The reflective field emission ΐ structure according to Item 18, wherein the field emission sub-components are respectively coupled to the first--, and each-group 22 (4) of the fascinating field decoration structure, wherein The package field emission substructure, wherein the carbon material is selected from the group consisting of: a shot, an emitter structure, wherein the field emitter elements f are in a group field, and the sub-element is connected in series with each other. The field source 'and the field emission in the parent group 26 · as claimed in the patent range stem 17 ... The substrate system is ^., the reflective field emission substructure, of which 18
TW93140064A 2004-12-22 2004-12-22 Reflective area light source TWI254339B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93140064A TWI254339B (en) 2004-12-22 2004-12-22 Reflective area light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93140064A TWI254339B (en) 2004-12-22 2004-12-22 Reflective area light source

Publications (2)

Publication Number Publication Date
TWI254339B true TWI254339B (en) 2006-05-01
TW200623192A TW200623192A (en) 2006-07-01

Family

ID=37587283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93140064A TWI254339B (en) 2004-12-22 2004-12-22 Reflective area light source

Country Status (1)

Country Link
TW (1) TWI254339B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570506B2 (en) 2008-03-28 2013-10-29 Industrial Technology Research Institute System for inspecting defects of panel device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570506B2 (en) 2008-03-28 2013-10-29 Industrial Technology Research Institute System for inspecting defects of panel device

Also Published As

Publication number Publication date
TW200623192A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
TWI304507B (en)
WO2009081838A1 (en) Organic light emitting device
US7804245B2 (en) Electroluminescent device having improved brightness uniformity
JP2007184249A (en) Electron emitting element, backlight unit equipped with it, flat panel display apparatus equipped with it, and driving method of electron emitting element
JP2005235748A (en) Carbon nanotube field emission element and driving method thereof
CN110676142A (en) Light-emitting backlight source with convex slope connecting surface ring cathode fork branch straight-curved gate control structure
TWI314334B (en) Field emission flat lamp and cathode plate thereof
TWI254339B (en) Reflective area light source
TWI276138B (en) Array-like flat lighting source
CN110164323A (en) A kind of display screen and electronic device
TWI296180B (en)
TW200810589A (en) Flat field-emission illuminating module
JP2001035361A (en) Manufacture of electron emitting source, the electron emitting source and fluorescent type display
KR101165809B1 (en) Lateral field emission
JP2004022536A (en) Flat display device with mesh-like grid
TW571330B (en) Fluorescent luminous tube
JP2004259577A (en) Flat-plate type image display device
JP3970965B2 (en) Light emitting element having diamond film and flat panel display
JP4653455B2 (en) Organic electroluminescent device sealing member and organic electroluminescent device
TWI264964B (en) Electrode pattern design for field emission display
TWI325284B (en) Field emission device and method for making same
JP2004031945A (en) Nitride semiconductor light emitting chip
TWI285856B (en) Reflective organic electroluminescence panel and display
JP5679292B2 (en) Organic EL light emitting device
CN217562588U (en) Miniature LED chip and display module