TWI254031B - Manufacturing method of LixMyPO4 compound with olivine structure - Google Patents

Manufacturing method of LixMyPO4 compound with olivine structure Download PDF

Info

Publication number
TWI254031B
TWI254031B TW094115023A TW94115023A TWI254031B TW I254031 B TWI254031 B TW I254031B TW 094115023 A TW094115023 A TW 094115023A TW 94115023 A TW94115023 A TW 94115023A TW I254031 B TWI254031 B TW I254031B
Authority
TW
Taiwan
Prior art keywords
compound
producing
acid
olivine
lixmyp
Prior art date
Application number
TW094115023A
Other languages
English (en)
Other versions
TW200639122A (en
Inventor
Jr-Wei Yang
Original Assignee
Aquire Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquire Energy Co Ltd filed Critical Aquire Energy Co Ltd
Priority to TW094115023A priority Critical patent/TWI254031B/zh
Priority to US11/222,569 priority patent/US20060257307A1/en
Priority to JP2005279737A priority patent/JP4482507B2/ja
Priority to CA002522114A priority patent/CA2522114C/en
Priority to KR1020050094951A priority patent/KR100651156B1/ko
Application granted granted Critical
Publication of TWI254031B publication Critical patent/TWI254031B/zh
Publication of TW200639122A publication Critical patent/TW200639122A/zh
Priority to US11/747,746 priority patent/US7781100B2/en
Priority to US11/764,686 priority patent/US7799457B2/en
Priority to US11/940,283 priority patent/US7887954B2/en
Priority to US11/940,276 priority patent/US20080138710A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

l254〇3ι 九、發明說明: [發明所屬之技術領域】 本發明是有關於一種LixMyP〇4化合物之製作方法,特 別是指一種具撖欖石結構的LixMyP〇4化合物之製作方法。 【先前技術】 ' 含有經的過渡金屬化合物是目前被廣泛研究的經離子
' 電池正極材料(cathode material),如層狀結構的LiM〇^M _ 為C〇、Ni),及尖晶石結構的錳酸鋰(LiMn2〇4)。由於鈷酸 鋰(LiCo〇2 )的成本較高、毒性大,且鈷的資源少,加上 過充的不安全性,因此限制其在大容量電池的應用;錄酸 鋰(LiNi〇2)則有製備困難及熱穩定性差的缺點;再者錳酸 經雖較銘酸鐘廉價且安全,亦曾被認為具有應用於大:量 . 以之潛力,但是因其容量低及循環穩定性能有待改善, 在實際應用上仍有障礙。 撤搜石結構(o】iv]ne struct峨)的磷酸經鐵(UFep〇4 )是-種稍微扭曲的六方最密堆積’其晶體則是由八 鲁 S體、Li06八面體和P〇4四面體所構成的空間骨架。因為 _ 4酸鋰鐵具有良好之電化學特徵、無環境污染'安全性較 佳、原材料來源豐富、比容量高、循環性能及熱穩定性好 且充放電效率高等優點’而被認為是極具應用潛力的鋰離 子電池正極材料之一。 但破酸鐘鐵卻因為電子導電性較低而限制其應用盘發 展,這是因為合物的結構中並沒有共邊之_ 八面體網絡’所以不能形成電子導電;而且,由於八面體 5 1254031 之間的P〇4四面體限制了晶格體積變化’影響Lr的嵌入、 脱出運動,因而降低U、T . 政速率造纟L1MP04材料極 低的-电子導電率和離子擴散速率。 路r L是’當LlMP〇4的粒子半徑越小時,u+的固相擴散 使得Li+越容易嵌入、月兒出,越有利於增加離子 擴散速率。另外,利用摻雜導電材料亦可以改善LiMP〇4顆 粒的導電性能。因此, ' , 以袼鍊、合成方法創新等方式來改 吾碟酸經鐵的導電性’%已成為此領域研究者的努力目標 〇 目前用於璃酸鐘鐵的合成方法主要有高溫固相法、碳 熱遇原法(carb0thermaI reduction)、水熱法等。例如美國 專利案第5,91G,382號揭露—種以經化合物【如碳酸鐘( L】2C〇3)】、—價的鐵化合*【如醋酸残…仰CQ〇H)2]】 ’及破酸化合物【如碌酸二氫零H4h2P(V Η』】】在固態 下饭比例加以混合’繼而在鈍性氣氛下以6贼~卿。c的高 溫進行熱處理,以製得磷酸經鐵粉末。然而所形成的鱗酸 經鐵粉末具有粒徑較大且分布不均句之缺點,因此無法在 高電流下進行充放電動作;此外,其碟酸經鐵中的鐵成分 來源是單價較高的二價鐵化合物,而使成本較高,不符經 濟效益。 另外’如美國專利案第6,528,033、6,716,372、 6,730,281號等則揭露-種在純合物、鐵化合物與填酸化 合物的混合物中添加有機物,使混合物中含有過量的碳以 做為鐵金屬離子的還原劑,並在鈍性氣氛下進行高溫熱處 6 1254031 理時,利用熱碳還原反應製備磷酸鋰鐵。但是此方法會因 大里有機物的添加,使得製作出的磷酸鋰鐵含有較高成分 的奴,因為碳熱還原法中過多的碳會將鐵化合物還原成鐵 金屬而損失許多比電容量。 上述電池正極材料的合成方法均為固態反應法(s〇iid state reaction ),其缺點在於製程時間長且須高溫熱處理, 而j物粉末粒徑較大也導致離子導電度較差,影響電化學
貝或是因釦末粒徑車父大需要再進行研磨而導致研磨過 程中雜質的污染而影響品質。料’雖然水熱法用可溶性 二價鐵化合物、鋰化合物及磷酸為原料,在水熱條件下直 接合柄㈣鐵,得以解決產物粉末粒徑不易控制的問題 ’但是水熱法需要在高溫、高壓下進行,實施較為困難。 因此,如何在較為容易實施且成本較低的製程條件下 ⑦獲得產物粉末粒徑小且電子導電度高的具橄棍石結構的 氧✓也正極材料,是研究雷、、冰 ^ Β ^池正極材料相關領域者所需克服 的難題。 【發明内容】 基於習知技術所獲得之LiMp〇4化合物之粒徑大小,以 及衣耘成本等皆未足以符合 專…目女… 付。業界所需’申請人則發展出一 以…“ LlxMyp〇“匕合物之製作方法,藉 以就較低廉之製造成本與簡 之具有《石結構的u二:方式⑽ 作方Γ:ίΓ具有橄視石結構的 作万法包含下列步驟: ⑧ 1254031 U)提供—含有—M金屬離子、Lr及(P〇4)3-的 , (b)將該溶液乾燥形成-起始物;及 U)將该起始物置入—含有碳微粒的非氧化性氣氛中 進行熱處理,以得到一具有橄欖石結構的 l,P〇4;其中 0.8%12,且〇8_12。 、由於本發3明是利用在水溶液中均勻混合冑M金屬離子
Li及(Ρ〇4),再將該水溶液乾燥以形成一起始物,故該 起始物所具有之各粒子尺寸將小於各習知技術以球磨方法 所獲得之粒子’且起始物之各粒子混合的均勾度亦優於習 知者,亦即本案之起始物將具有更大之反應面積,使得於 後續之熱處理步驟中,得以在與習知相同之反應條件下, 具有更大的反應速率,進而以較低成本及簡便之合成方式 獲得該LixMyP〇4t合物。 再者,本發明使用含碳微粒的非氧化性氣氛進行熱處 理,可以控制氣氛中的碳微粒含量,並利用適量的碳微粒 將反應起始物中的三價鐵離子還原成二價鐵離子,且碳微 粒是以流動的氮氣為載體與該起始物混合,使碳微粒摻雜 灰其中。此方式不需在高壓下進行,且能避免如熱碳還原 法中:L】FeP〇4的含碳量過高,並因使用過量的碳而使鐵離子 遷原成鐵金屬的缺點,更能進一步地藉由熱處理過程中碳 微粒的摻雜而增加LiFeP〇4的導電性。 本發明之其他目的、特徵及優點,在參照下面的詳細 說明暨較佳實施例後,將變得明顯。 1254031 【實施方式】 &基於前述習知技術之不;^,申請人發展出一種具有撖 k石結構的LlxMyP〇4化合物之製作方法,包含下列步驟: (a) 提供一含有一 M金屬離子、u +及(p〇4)3·的溶液 (b) 將該溶液乾燥形成一起始物;及 (c )將該起始物置入一含有碳微粒的非氧化性氣氛中 進打熱處理,以得到一碳摻雜且具有橄欖石結構 的 LixMyP〇4 ;其中 〇8^χ^12,且 2 〇 该步驟(a )中獲得一含有一 M金屬離子、乙广及 (P〇4)的溶液,其主要目的是用以將該M金屬離子、l广及 (P〇4)在離子狀悲下均勻混合;較佳地,該步驟(a )的M 是選自於下列所構成之群組:鐵(Fe)、鈦(Τι)、釩(v) 、鉻(CO、錳(Μη)、始(c〇)、錄(Νι)及此等之一组合 〇 較佳地’該步驟(C)的含碳微粒的非氧化性氣氛( non-oxidizing atmosphere ),是藉由將一碳源在一溫度下加 熱產生碳微粒,再由一不會干擾該步驟(b)之起始物的鈍 性乳體承載該碳微粒所形成;又較佳地,該鈍性氣體是選 自於下列所構成之群組:氮氣(N2)、氬氣(A〇 一氧化 碳(C0)、二氧化碳(c〇2)’以及此等之一組合;而於本 發明之一具體例中’該鈍性氣體是氮氣。 較佳地,該碳源是選自於下列所構成之群組:木炭、 ⑧ 9 1254031 石墨、、碳粉、’某、有機化合物及此等之一組合;於本發明 之-具體例中,輸原是木炭;較佳,也,加熱該碳源二溫 度至少為30CTC ;更佳地,加熱該碳源的溫度是介於3〇〇艺 至1100°C之間;在本發明之一具體例中’該溫度為7〇〇t。 有關該步驟(a)的Μ金屬離子是可藉由將一可在水中 形成該Μ金屬離子之前驅物溶於水而產生;較佳地,可在 u 水中形成4 Μ金屬離子之前驅物是選自於下列所構成之群 組:Μ金屬化合物、一包含有Μ金屬粉與一酸劑之組合物 • ,以及此等之一組合;又較佳地,該前驅物是Μ金屬化合 物;更佳地,該前驅物是鐵金屬化合物;在本發明之一具 體例中,該前驅物是硝酸鐵[Fe(N〇3)3;);在本發明之另一具 體例中,該前驅物是氯化鐵(FeC】3 )。 較佳地,可在水中形成該M金屬離子之前驅物是一包 含有Μ金屬粉與一酸劑之組合物。而在本發明之一具體例 中’該前驅物之Μ金屬粉是鐵粉。 較佳地’泫削驅物之酸劑是無機酸(jn〇rganic acid ); • 更佳地,該前驅物之酸劑是選自於下列所構成之群組:硝 酸(HN〇3 )、硫酸(h2S〇4 )、鹽酸(HC1 )、過氯酸(HCI04 )、次氯酸(HC103 )、氟酸(HF )、溴酸(HBr〇3 )、磷酸( H3P〇4 ),以及此等之一組合;在本發明之一具體例中,該 前驅物之酸劑是硝酸,且在本發明之另一具體例中,該前 驅物之酸劑是鹽酸;於此,所選用之Μ金屬粉是為鐵粉, 而所生成之Μ金屬離子是為鐵離子(Fe3+)。在本發明之又 一具體例中,該前驅物之酸劑是磷酸;於此,所選用之Μ 10 1254031 金屬粉是為鐵粉,而所生成之M金屬離子是為亞鐵離子( ' Fe2+)〇 較佳地,該前驅物之酸劑是有機酸(organic acid);更 佳地’該前驅物之酸劑是選自於下列所構成之群組:曱酸 (HC〇〇H)、乙 S复(CH3COOH)、丙 S交(C2H5COOH)、檸才蒙 酸(citric acid)、酒石酸(tartarjc acid)、乳酸(lactate)、 草酸(Η2〇2〇4)、維他命c ( Ascorbiz acid ),以及此等之— 組合。 φ 較佳地,該步驟(a)的Li +是由一具有Li +的化合物溶 於水所形成;更佳地,該具有Li+的化合物是選自於下列所 構成之群組:氫氧化鐘(LiOH)、氟化經(LiF)、氯化經( LiC])、>臭化經(LiBr )、氧化裡(Li2〇)、硝酸鐘(LiN〇3 ) 、醋酸經(LiOAc )、_酸鋰(Li3P〇4 )、磷酸氫鐘( ♦ Li2HP04 )、峨酸二氫鋰(LiH2P〇4 )、填酸錄鋰(Li2NH4P〇4 )、磷酸二銨鋰(Li(NH4)2P04 ),以及此等之一組合;在本 發明之一具體例中,該具有Li +的化合物是氫氧化經。 • 較佳地,該步驟(a )的(P〇4)3·是藉由將一可在水中形 成(P〇4)3之化合物溶於水所形成;更佳地,該可在水中形成 (P〇4)3·之化合物是選自於下列所構成之群組:碟酸氯二敍( (nh4)2hpo4 )、磷酸二氫銨((nh4)h2p〇4 )、磷酸三銨( (nh4)3po4)、五氧化二磷(P2o5)、蛾酸(h3P〇4)、磷酸經 、磷酸氫鋰、磷酸二氫鋰、磷酸銨鋰、磷酸二銨鋰,以及 此等之一組合;在本發明之一具體例中,該可在水中形成 (P〇4)3·之化合物是填酸。 11 1254031 本發明具有撖欖石結構的 止/η人 x^yP〇4化合物之fj竹太、ί 可進一步包含—於該步驟( -作方去 )是於該溶液中添加一糖, u ),該步驟(a, 導”生;較佳,也… 以増加該W〇“匕合物之 V ^ ^ 也,泫糖類是 糖(―糖(g一單二 ,以及此等之在本發明之 蔗糖。 /、月豆例中,該糖類是 該步驟(c )中將該起始 氣氛中進行熱處理之目的,主要;^碳微粒的非氧化性 要在於利用碳微教扁 中將該起始物内的三價 "[兄 丁九避原成二價鐵離子, 使L】FeP〇4在高溫中產生 、、.而 ,ε ,Λ. 义匕乂形成有序的撖欖石結構, 或疋將该起始物内的二價鐵離子在高溫中直接進行反库’ 亚進-夕與其他物質生成L】Fep〇4;再者,碳微粒可附& L】FeP〇4顆粒上,藉此增加其導電性。 虫w 麵=,該步驟⑺的熱處理溫度是介於 。B ’更佳地’該步驟(〇的熱處理溫度是介於 450C至請。C之間;在本發明之—具體射,該 、 的熱處理溫度是7〇〇艺。 ” A (C)
孝乂佳地’該步,驟(C)的熱處理時間是介於】小時至 :時之間;更佳地,該步驟(C)的熱處理時間是介於' :〇 %•至20小時之間’·在本發明之一具體例中,該步驟 J 熱處理時間是12小時。 0 另外,該步驟⑴是可藉由任何習知的可將溶劑移除 的方式進行;較佳地,該步驟(b)是以艇乾法或噴霧乾二
12 '.1254031 法進行;在本發明之一具體例中,該步驟(b )是以烘乾法 進行。 以下將以實施例進一步說明本發明’惟該等實加例僅 為例示說明之用,而非用以限制本發明。 〈貫施例> 劑及儀器
I金屬化合物(硝酸鐵)··由島久絮藥株式會社所絮造 2·金屬化合物(氯化鐵)··虫島久製藥株式會社所絮造。 3·金屬粉(鐵粉):合格納斯代理型號NC-100.24。 4·鈍性氣體(氮氣)由島久製藥株式會钍所_诰 5·酸劑(硝酸):由島久製藥株式會社所製造。 6·酸劑(鹽酸):由島久製藥株式會年逆製造。 7.酸劑(磷酸):^ ^ t t4JkA±JiMJL^ δ-具有L.r的化合物(氫氧化經):皮所製造。 9.可在水中形成㈣广之化合物(磷酸)·· ^^絮藥株式 製造。 10·糖類(蔗糖):由台糖公 有限公 :;·點合劑供 13·官狀爐:鱼公司所_製造。 14‘CuKa X光繞射分析及電子顯微 ,/ν . θ v ^ ^77 ^ *圭遣^檢驗科技_ 有限公司。_ -- 本發明具有橄欖石結構的Lix 、 yP〇4化合物之製作方法 將以各貫施例簡單說明於下。 rs\ 13 1254031 <貫施例1 > 本發明具有撖欖石結構的LixMyP〇4化合物之製作方、去 的一實施例1簡單說明於下。 〆 將0.2莫耳硝酸鐵加至2〇〇m】去離子水中溶解,待完入 溶解後加入0.2莫耳的磷酸,再將預先配好的含有Q 2 =二 的氫氧化鋰水溶液l〇〇ml加入混合,使溶液中鋰離子··、鐵 離子·磷酸根離子依LiFeP〇4的計量比例(m)混合^ 待兀全混合反應後形成一含有Fe金屬離子、Ε】· +及(pa)3·的 溶液;再將該溶液乾燥,乾燥後即得一粉末狀的起始物。 力才口亥起始物置於氧化!呂掛鋼中,再將此谢銷置於放 ^炭之管狀爐内’使其在通氮氣氛下以7〇〇t熱處理U小 4,於此’木炭在高溫下產生的碳粒子懸浮物藉由流動的 I 氣載送,使碳微粒推雜入該起始物的粉末中,繼到 一磷酸鋰鐵粉末。 于到 將該產物以CUKax光繞射儀(XRD) 果見於圖b顯示其為撤視石結晶體。 一° 在本木的貝轭方式中’若在製備該步驟(a )之々 液時仍有未能完全溶解於該溶液中之^ 溶液後,先均勾混合所獲得之寸 、 可在乾燥該 ^ ^ si, 又 刖驅物,再繼續進行後續操 作4 ’如此亦不影響製程之進行,並能製得 '社 構的磷酸鋰鐵粉末。 /、彳見石… <實施例2> 本發明具有橄欖石結構的u 的一實施例2盥哼每X },4化合物之製作方法 戶、〇㈧Z只4声、施例 〕衣法大致相同,其差異之處 14 1254031 在於將石肖酸鐵置換成ο·2莫耳氣化鐵溶於去離子水中,立餘 步驟與該實施例工相同,得到—碟酸鐘鐵粉末。 - 將該產物以CuKaX錢射儀分析(xrd)進行 其結果見於圖2,顯示其為撖欖石結晶體。 <實施例3 > 本發明具有橄欖石結構的 x y〇4化合物之製作方法 的一貝域3與該實施例1的製法大致相同,其差 在於將硝酸鐵置換成〇.2莫 '、处 ,,容於去M k * * MM ’亚加人5㈣的濃石肖酸 酸鋰鐵粉末。 仔到 & <實施例4> 本發明具有橄欖石結構 的-實施例4血該實施例3 X y 4化5物之製作方法 …玄““列3的製法大致相同 在於將硝酸改為鹽酸。將 /、是兴之處 •〜吴耳鐵粉及l〇Q1T1j的、、曲 — 於200如去離子水中,A um]的成鹽酸〉谷 . 干其餘步驟與該實施例;!相π /Θ;Μ 一墙酸經鐵粉末。 同,付到 <實施例5 >
本發明具有橄欖石結構的U 的-實施例5與該實4化合物之製作方法 ^ 的製法大致相同,J:矣田$卢 在於將硝酸改為磷酸。 兴之處 於200ml去離子水中,吴耳鐵泰及〇·2莫耳的磷酸溶 -填隸鐵粉末。4步驟與該實施例1相同,得到 <實施例6> 本發明具有撖欖石結構 、]x 〇4化合物之製作方法 15 1254031 的一實施例6與該實施例5的製法大致相同,其差異之處 在於形成具有Li+、Fe金屬離子及(P〇4产的混合溶液後更添 加約3.2克的蔗糖(約生成物磷酸鋰鐵之1〇% )溶於該水溶液 中其後再以和該實施例5後續相同之乾燥與熱處理步驟 ’得到一磷酸鋰鐵粉末。 將所得的粉末以CuKa X光繞射儀進行分析(XRD)鑑 定並於電子顯微鏡(SEM)下觀察,其XRD結果及電子顯微
:(SEM)的照片分別見於圖3及圖4,顯示其為撖欖石結晶 月豆’且其一次粒子粒徑大小約為100 nm。 實施例7> 、, 丨…,一从穴T取ί冕yb、落稱的 磷酸鐘鐵粉末與碳黑及聚二氣乙稀(p〇iyWi…]如此 _崎】士4卿)為一黏合劑,依比例(83:1〇:7)混 合均勾後,塗佈於耗上’經烘乾後製成極片並組裝成電 池,再藉由充放電測試機測試其充放電性質。 參閱圖5’顯示出在c/5白勺充放電速率充放電下,充放 電範圍為2.5V〜4.5V時,在室溫下的初比電容量則為 ⑽誕h/g,經30圈循環充放電後則有i5imAh/g·另參閱 圖6 ’是以C/5之充放電速率充放電下’充放電範圍為 4料’在室溫下第Μ圏之充電與放電平台,而可 了解其電池測試之結果。 ^上所述,本發明之具有橄櫈石結構的l】A^化合 之衣作方法’利用水溶液混合有鐘離子、鐵離 根離子,再將其乾燥後置人含“㈣㈣ ⑧ 16 1254031 進行熱處理,可以降低製造成本,並能獲得粒徑較小的磷 酸敛鐵,加上碳微粒的摻雜增加其導電性,故碟實能達到 本發明之目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的❹變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。
【圖式簡單說明】 分析圖,說明本發明具有橄欖石結構的 xMyP〇4化合物之製作方法的實施例 為橄欖石結晶體; 衣付之‘末,疋 得之粉末…析圖,說明本發明的實施例2所製 于之仍末疋為橄欖石結晶體; 圖3是另一 、 得之粉末,是為 刀析圖’ 1兄明本發明的實施例6所製 疋為橄欖石結晶體; 末的Hr態;SEM圖,說明本發明的實施例6所t得之粉 所獲電循環次數圖’說明本發明的實施例6 循環次數;及 、。片後、’且衣成一電池測試的電容量對 圖6疋電容量相對於電動 所進行之電池挪 對π圖,說明於實施例7 ,室溫下第〗5圈之充電與放電平台。 (§) 17 1254031 【主要元件符號說明】

Claims (1)

1254031 十、申請專利範圍: 1 · 一種具有橄欖石处 、、°構的L]xMyP〇4化八 含下列步驟·· °物之製作方法,包 ⑷提供—含有-Μ金屬離子、Ll + ⑻將該溶液乾燥形成一起始物;& 〇’的溶液; (〇將該起始物置入-含有碳微粒的非" -輯理,以得到一具辑:化性氣氛中進 其中〇私紅2,且。.8〜12°,的 齡2.依據申請專利範圍第1項所述之具 LixMyP〇4化合物之製作方法,其中,ς橄欖石結構的 選自於下列所構成之群組:鐵、鈦、:步驟(a)的河是 鎳及此等之一組合。 I、銘、 3·依據申請專利範圍第1項所述 τ . '、有撖欖石結構的 l]xmvp〇4化合物之製作方法,其中, ^ m v驟(c )的令石卢 微粒的非氧化性氣氛,是藉由將—碳 . w ’册度下加妾九 產生碳微粒,再由一不會干擾該步驟 … I )之起始物的彳土 ’性氣體承載該碳微粒所形成。 ]純 4 ·依據申請專利範圍弟3項所述之呈女 1、炙具有撖欖石纟 LixMyP〇4化合物之製作方法,其中, ^ 送鈍性氣體是選自 於下列所構成之群組:氮氣、氬氣、一气外山 、曰 礼化蜮、二氧化 碳,以及此等之一組合。 5·依據申請專利範圍第4項所述之呈右括 -有撖欖石結構的 UxMyP〇4化合物之製作方法,其中,兮鉍从γ 5玄鈍性氣體是氮氣 〇 19 1254031 6. 依據申請專利範圍第3項所述之具有橄欖石結構的 LLMyPCU化合物之製作方法,其中,該碳源是選自於下 列所構成之群組:木炭、石墨、碳粉、煤、有機化合物 及此等之一組合。 7. 依據申請專利範圍第6項所述之具有橄欖石結構的 UxMyP〇4化合物之製作方法,其中,該碳源是木炭。 8. 依據申請專利範圍第3項所述之具有橄欖石結構的 LixMyP04化合物之製作方法,其中,該溫度至少為300°C 9. 依據申請專利範圍第8項所述之具有橄欖石結構的 LixMyP〇4化合物之製作方法,其中,該溫度是介於30(TC 至1100°C之間。 ~ 10.依據申請專利範圍第1項所述之具有橄欖石結構的 — LixMvP〇4化合物之製作方法,其中,該步驟(a )的Μ金 屬離子是藉由將一可在水中形成該Μ金屬離子之前驅物 溶於水而產生。 • 11.依據申請專利範圍第10項所述之具有撖欖石結構的 LixMyP〇4化合物之製作方法,其中,該前驅物是選自於 下列所構成之群組:Μ金屬化合物、一包含有Μ金屬粉 與一酸劑之組合物,以及此等之一組合。 12. 依據申請專利範圍第11項所述之具有橄欖石結構的 LixMyP〇4化合物之製作方法,其中,該前驅物是Μ金屬 化合物。 13. 依據申請專利範圍第12項所述之具有橄欖石結構的 20 1254031 LixMyP〇4化合物之製作方法,其中,該前驅物是鐵金屬 化合物。 14. 依據申請專利範圍第13項所述之具有橄欖石結構的 LixMyP〇4化合物之製作方法,其中,該前驅物是硝酸鐵 〇 15. 依據申請專利範圍第13項所述之具有橄欖石結構的 LixMyP〇4化合物之製作方法,其中,該前驅物是氯化鐵 〇 • 16.依據申請專利範圍第11項所述之具有撖欖石結構的 LixMyP04化合物之製作方法,其中,該前驅物是一包含 有Μ金屬粉與一酸劑之組合物。 17. 依據申請專利範圍第16項所述之具有橄欖石結構的 LixMyP04化合物之製作方法,其中,該前驅物之Μ金屬 粉是鐵粉。 18. 依據申請專利範圍第11項所述之具有撖欖石結構的 LixMvP〇4化合物之製作方法,其中,該前驅物之酸劑是 Φ 無機酸。 19. 依據申請專利範圍第18項所述之具有撖欖石結構的 LixMyP〇4化合物之製作方法,其中,該前驅物之酸劑是 選自於下列所構成之群組:硝酸、硫酸、鹽酸、過氯酸 、次氯酸、氟酸、漠酸、墙酸,以及此等之一組合。 20. 依據申請專利範圍第19項所述之具有撖欖石結構的 LixMyP04化合物之製作方法,其中,該前驅物之酸劑是 硝酸。 21 1254031 28. 依據申請專利範圍第1項所述之具有橄欖石結構的 LixMyP〇4化合物之製作方法,其中,該步驟(a )的 (Ρ〇4)^是藉由將一可在水中形成(P〇4)3_之化合物溶於水所 形成。 29. 依據申請專利範圍第28項所述之具有橄欖石結構的 LixMvP〇4化合物之製作方法,其中,該可在水中形成 _ (P〇4广之化合物是選自於下列所構成之群組:磷酸氫二銨 、磷酸二氫銨、磷酸三銨、五氧化二磷 '磷酸、磷酸鋰 _ 、磷酸氫鋰、磷酸二氫鋰、磷酸銨鋰、磷酸二銨鋰,以 及此等之一組合。 30. 依據申請專利範圍第29項所述之具有橄欖石結構的 LixMyP04化合物之製作方法,其中,該可在水中形成 (P〇4)3·之化合物是磷酸。 - 31.依據申請專利範圍第1項所述之具有撖欖石結構的 LixMvP04化合物之製作方法,更包含一於該步驟(a )後 之步驟(a7 ),該步驟(a7 )是於該溶液中添加一糖類。 _ 32.依據申請專利範圍第31項所述之具有橄欖石結構的 LixMyP04化合物之製作方法,其中,該糖類是選自於下 列所構成之群組:蔗糖、多糖、單糖多糖體,以及此等 之一組合。 33. 依據申請專利範圍第32項所述之具有橄欖石結構的 LixMyP04化合物之製作方法,其中,該糖類是蔗糖。 34. 依據申請專利範圍第1項所述之具有橄欖石結構的 LixMyP04化合物之製作方法,其中,該步驟(c )的熱處 23 1254031 理溫度是介於400°c至l〇〇〇°C之間。 35·依據申請專利範圍第34項所述之具有撖欖石 LixMyP〇4化合物之製作方法,其中,該步驟(c) 理溫度是介於450°C至850°C之間。 36. 依據申請專利範圍第1項所述之具有撖欖石 LixMyP〇4化合物之製作方法,其中,該步驟(c ) 理時間是介於1小時至30小時之間。 37. 依據申請專利範圍第36項所述之具有撖欖石 LixMyP〇4化合物之製作方法,其中,該步驟(c ) 理時間是介於4小時至20小時之間。 38. 依據申請專利範圍第1項所述之具有橄欖石 LixMyP〇4化合物之製作方法,其中,該步驟(b ) 乾法乾燥該步驟(a )之溶液。 39. 依據申請專利範圍第1項所述之具有橄欖石 LixMyP04化合物之製作方法,其中,該步驟(b ) 霧乾燥法乾燥該步驟(a )之溶液。 結構的 的熱處 結構的 的熱處 結構的 的熱處 結構的 是以烘 結構的 是以噴 24
TW094115023A 2005-05-10 2005-05-10 Manufacturing method of LixMyPO4 compound with olivine structure TWI254031B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
TW094115023A TWI254031B (en) 2005-05-10 2005-05-10 Manufacturing method of LixMyPO4 compound with olivine structure
US11/222,569 US20060257307A1 (en) 2005-05-10 2005-09-09 Method for making a lithium mixed metal compound
JP2005279737A JP4482507B2 (ja) 2005-05-10 2005-09-27 リチウムが混合した金属化合物を生成する方法
CA002522114A CA2522114C (en) 2005-05-10 2005-10-03 Method for making a lithium mixed metal compound
KR1020050094951A KR100651156B1 (ko) 2005-05-10 2005-10-10 리튬이 혼합된 금속 화합물의 제조 방법
US11/747,746 US7781100B2 (en) 2005-05-10 2007-05-11 Cathode material for manufacturing rechargeable battery
US11/764,686 US7799457B2 (en) 2005-05-10 2007-06-18 Ion storage compound of cathode material and method for preparing the same
US11/940,283 US7887954B2 (en) 2005-05-10 2007-11-14 Electrochemical composition and associated technology
US11/940,276 US20080138710A1 (en) 2005-05-10 2007-11-14 Electrochemical Composition and Associated Technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094115023A TWI254031B (en) 2005-05-10 2005-05-10 Manufacturing method of LixMyPO4 compound with olivine structure

Publications (2)

Publication Number Publication Date
TWI254031B true TWI254031B (en) 2006-05-01
TW200639122A TW200639122A (en) 2006-11-16

Family

ID=37419297

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094115023A TWI254031B (en) 2005-05-10 2005-05-10 Manufacturing method of LixMyPO4 compound with olivine structure

Country Status (5)

Country Link
US (1) US20060257307A1 (zh)
JP (1) JP4482507B2 (zh)
KR (1) KR100651156B1 (zh)
CA (1) CA2522114C (zh)
TW (1) TWI254031B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722004B2 (en) 2009-02-12 2014-05-13 Phosage, Inc. Method for the preparation of a lithium phosphate compound with an olivine crystal structure

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
JP4888411B2 (ja) * 2008-02-13 2012-02-29 ソニー株式会社 正極および非水電解質電池
US20080138710A1 (en) * 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
US7887954B2 (en) * 2005-05-10 2011-02-15 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
JP5127179B2 (ja) * 2006-07-31 2013-01-23 古河電池株式会社 リチウム二次電池正極活物質の製造方法
CA2569991A1 (en) 2006-12-07 2008-06-07 Michel Gauthier C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
US8168329B2 (en) * 2007-06-18 2012-05-01 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
EP2015382A1 (en) * 2007-07-13 2009-01-14 High Power Lithium S.A. Carbon coated lithium manganese phosphate cathode material
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
US20100301281A1 (en) * 2007-10-01 2010-12-02 Basf Se Process for the preparation of porous crystalline lithium-, vanadium and phosphate-comprising materials
KR101063934B1 (ko) * 2008-09-30 2011-09-14 한국전기연구원 활물질의 제조방법
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
CN102428026B (zh) 2009-03-17 2016-06-22 巴斯夫欧洲公司 在水热条件下合成锂-铁-磷酸盐
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
CN105140512B (zh) * 2010-06-02 2019-01-22 株式会社半导体能源研究所 电力储存装置
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
TWI404257B (zh) * 2010-08-04 2013-08-01 Univ Nat Pingtung Sci & Tech 鋰電池及其製造方法
JP5635697B2 (ja) * 2010-08-12 2014-12-03 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー リチウム2次電池用オリビン系正極材の製造方法
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
US20120212941A1 (en) * 2011-02-22 2012-08-23 Jomar Reschreiter Cordless, portable, rechargeable food heating lamp
CN107244693B (zh) * 2017-05-23 2022-01-14 湖南大学 一种Li0.5TiO2粉体材料的制备方法
CN114590788A (zh) * 2022-03-08 2022-06-07 青岛九环新越新能源科技股份有限公司 一种零排放循环生产磷酸铁锂的方法
CN115231536B (zh) * 2022-06-27 2023-05-02 佛山市德方纳米科技有限公司 磷酸氢二铵的制备方法及电池正极材料
CN114813616B (zh) * 2022-06-29 2022-11-08 四川富临新能源科技有限公司 检测磷酸铁锂电池负极材料中碳含量的设备和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304249A (en) * 1964-02-28 1967-02-14 Katz Herbert Method of stabilizing a fluidized bed using a glow discharge
US6528033B1 (en) * 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US7001690B2 (en) * 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
JP4734701B2 (ja) * 2000-09-29 2011-07-27 ソニー株式会社 正極活物質の製造方法及び非水電解質電池の製造方法
US6645452B1 (en) * 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US7025907B2 (en) * 2001-05-15 2006-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
US6815122B2 (en) * 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
US6913855B2 (en) * 2002-07-22 2005-07-05 Valence Technology, Inc. Method of synthesizing electrochemically active materials from a slurry of precursors
US7060238B2 (en) * 2004-03-04 2006-06-13 Valence Technology, Inc. Synthesis of metal phosphates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722004B2 (en) 2009-02-12 2014-05-13 Phosage, Inc. Method for the preparation of a lithium phosphate compound with an olivine crystal structure

Also Published As

Publication number Publication date
CA2522114A1 (en) 2006-11-10
KR20060116669A (ko) 2006-11-15
US20060257307A1 (en) 2006-11-16
JP4482507B2 (ja) 2010-06-16
CA2522114C (en) 2009-11-24
TW200639122A (en) 2006-11-16
KR100651156B1 (ko) 2006-11-29
JP2006315939A (ja) 2006-11-24

Similar Documents

Publication Publication Date Title
TWI254031B (en) Manufacturing method of LixMyPO4 compound with olivine structure
Qiao et al. Anchoring polysulfides and accelerating redox reaction enabled by Fe‐based compounds in lithium–sulfur batteries
CN110224129B (zh) 一种MOFs衍生物包覆NCM三元正极材料及其制备方法
Wang et al. Heterogeneous structured Mn2O3/Fe2O3 composite as anode material for high performance lithium ion batteries
Zhang et al. A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery
JP4223463B2 (ja) オリビン型リン酸鉄リチウム正極材料の製造方法
JP6098714B2 (ja) グラフェン粉末、グラフェン粉末の製造方法およびグラフェン粉末を含むリチウムイオン電池用電極
JP5458171B2 (ja) リン酸鉄リチウム合成材料の製造方法
KR20170003646A (ko) 질소 도핑 그래핀 코팅 나노 황 양극 복합재료, 그 제조 방법 및 응용
CN104003368A (zh) 一种多孔磷-氮共掺杂碳材料及其制备方法
CN105355874A (zh) 一种氮掺杂多孔碳球/四氧化三锰纳米复合电极材料及其制备方法
Yue et al. High performance hollow carbon@ SnO2@ graphene composite based on internal-external double protection strategy for lithium ion battery
Chen et al. Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries
Li et al. Heteroatomic interface engineering of an octahedron VSe 2–ZrO 2/C/MXene composite derived from a MXene-MOF hybrid as a superior-performance anode for lithium-ion batteries
TWI617074B (zh) 電池複合材料及其前驅物之製備方法
CN105244503A (zh) 一种分级石墨烯修饰的球形钠离子电池电极材料的制备方法
CN107017398A (zh) 一种焦磷酸钒钠/碳复合正极材料、制备及其应用
Li et al. Hydrazine hydrate reduction-induced oxygen vacancy formation in Co3O4 porous nanosheets to optimize the electrochemical lithium storage
Wang et al. Effects of oxidized Ketjen Black as conductive additives on electrochemical performance of the LiMn2O4@ Al2O3 cathode in lithium-ion batteries
Ding et al. Modified solid-state reaction synthesized cathode lithium iron phosphate (LiFePO4) from different phosphate sources
TW201533963A (zh) 一種磷酸鋰鐵錳/碳陰極材料的製造方法及其用途
Li et al. High electrochemical performance of in-situ carbon-coated vanadyl ethylene glycolate as cathode for aqueous zinc-ion batteries
Zhu et al. Rational design of NiO/NiSe2@ C heterostructure as high-performance anode for Li-ion battery
Li et al. A facile ball-milling preparation strategy of nitrogen-doped carbon coated Na4Fe3 (PO4) 2P2O7 nano-flakes with superior sodium ion storage performance
Xue et al. In-situ coupling of N-doped carbon dots with manganese hexacyanoferrate as a cathode material for aqueous zinc-ion batteries