TWI224146B - Two step aging treatment for Ni-Cr-Mo alloys - Google Patents

Two step aging treatment for Ni-Cr-Mo alloys Download PDF

Info

Publication number
TWI224146B
TWI224146B TW091114334A TW91114334A TWI224146B TW I224146 B TWI224146 B TW I224146B TW 091114334 A TW091114334 A TW 091114334A TW 91114334 A TW91114334 A TW 91114334A TW I224146 B TWI224146 B TW I224146B
Authority
TW
Taiwan
Prior art keywords
alloy
temperature
hours
patent application
item
Prior art date
Application number
TW091114334A
Other languages
Chinese (zh)
Inventor
Lee M Pike Jr
Dwaine L Klarstrom
Michael F Rothman
Original Assignee
Haynes Int Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/894,179 external-priority patent/US6544362B2/en
Application filed by Haynes Int Inc filed Critical Haynes Int Inc
Application granted granted Critical
Publication of TWI224146B publication Critical patent/TWI224146B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

A two step heat treatment for Ni-Cr-Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.

Description

1224146 A7 B7 五、發明説明(i ) 發明範圍 本發明係關於對鉻含量為12至23.5重量百分比之鎳-鉻-鉬 合金的熱處理方法。 發明背景 已熟知絡給予鎳基合金抗腐I虫性。因此,Ni-Cr-Mo合金特 別是鉻含量為15至24%者使用在腐蝕環境如化學或石油化學 工業遭遇之環境已十分普遍。 熟化硬化為冶金工業中用於給合金組合物高強度(以其降 伏強度測量)、抗張強度(由典型上技藝界使用之凹槽應力破 裂試驗測量)之方法。許多應用要求高抗·張強度及低熱膨腊 性赁之結合。一種這樣之應用在太空工業中。另一應用為陸 基汽油渦輪中使用之密封環。高抗張強度及延展性之結合 對螺栓亦非常有用。因為在這些應用中對金屬產物要求操 作條件及性能參.數,已使用許多之熟化硬化法。一種普通技 術為加熱合金至選定之高溫,維持合金在該溫度一段時間, 之後冷卻合金至室溫。對一些合金組合物,合金可加熱至某 一溫度,冷卻,再次加熱至第二個溫度並冷卻。這些方法之 實例揭示在美國專利第3,871,928號中。用於熟化硬化合金之 溫度及時間視合金組成而定。對所有可熟化硬化商業合金 已建立變成工業中標準之使用時間及溫度,因為已知道產 生其要求性質。對具高鉻含量之Ni-Cr-Mo合金(即鉻大於12%) ,技藝界之一般觀點為為了改良機械性質在最初退火之外 之熱處理將不實際,這由於較長之要求時間(幾百至幾千小 時)且這樣之處理完全未做完。 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明(2 ) 固溶體強化鎳-鉻-鉬(Ni-Ci*-Mo)合金及鎳-鈿(Ni-Mo)合金廣泛 地用於例如化學工業之商業應用。一般,考慮單相材料,不 計小量碳化物相之存在,如這些之合金通常不視為對熱處 理有反應,因此使用退火條件。但有例外,一些特殊合金展 現商業上可利用之熟化硬化反應。然而,在這些例子中觀察 到之熟化硬化反應可歸因於其他元素(如魏、铭及鈇)存在合 金組成中。此情況之例外為稍後討論之HAYNES⑧242™合金 。Ni-Cr-Mo及Ni-Mo合金非商業上之可熟化硬化之事實不意味 其不展現在中間溫度對熱暴露之任何冶金反應。實際上,此 形式之合金在約538°C至87;TC之溫度範圍冲暴露時可展現複 合第二相反應。不幸地,其形成之相常對合金延展性之工作 性能之其他狀況。這特別地以含約25至30%鉬之Ni-Mo合金觀 察到。在這樣之材料中,暴露在約538°C至871°C之溫度可造成 微結構中脆化Ni3Mo或Ni4Mo相快速形成。這可成為組分製造 及組分性能之問題。 對具約16%鉬及16%路重量百分比含量之低鉬、高絡含量 的Ni-Cr-Mo合金,這些特別中間相之發生並非通常在短期熱 暴露之後觀察到。以約538°C至649°C之溫度之長期暴露,有獨 特不同之冶金反應。在約500至約1000小時後證明相Ni2 (Mo, Cr)存在微結構中。長範圍有次序之相(結構與Pt2Mo相似)Ni2 (Mo, Ci:)相達到這些材料強度之明顯增加而沒有延展性劇烈 之損失。一個主要之缺點為需要產生此相。 有幾個美國專利揭示Ni-Ci*-Mo合金。美國專利第4,818,486號 揭示一種含5%至12%鉻及10%至30%鉬之低膨脹鎳基合金。此 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明(3 ) 專利教導得到要求硬度而不對大部分Ni-Mo-Cr合金在經1000 小時649°C至816°C之溫度反形成有害相。然而,硬化揭示 在’ 486專利之合金組合物要求之時效時間在649°C少至24小時 。此專利合金在商標242合金及HAYNES 242合金下已進入市 場。HAYNES 242合金出售用在要求高抗張強度及低熱膨脹係 數之應用中。242合金之其他有利性質包括良好之熱安定性 、良好之抗低循環疲勞性及由於抗張強度及延展性之極佳 抑制的能力。HAYNES 242合金由約8% (重量百分比)之鉻、約 20-30%之鉬、約0.35%至最高約0.5%之鋁、最高0.03%之碳、最 高約0.8%之錳、最高約0.8%之矽、最高約2%之鐵、最高約1% 之姑、最高約0.006%之硼及其餘重量百分比之鎳所組成。 對具比美國專利第4,818,486號中發現避免有害Ni3Mo及 Ni4Mo相以及muphase發生者更高Cr水平(> 12% Cr)之Ni-Mo-Cr合 金之較短商業可利用的熟化硬化方法有需求。 頒予Crum等人之美國專利第5,019,184號中揭示另一 Ni-Cr-Mo 合金。這樣之合金含有19%至23%之鉻及14至17%之鉬。此專 利揭示在溫度範圍為1149°C至1260°C均勾熱處理5至50小時。 此處理之目的除了強化合金外產生具要求微結構之抗腐蝕 合金。此專利未提供任何這些樣品之抗強強度。此專利合金 以在商標INCONEL⑧合金686下商品化。 頒予Heubner等人之美國專利第4,906,437號中揭示另一抗腐 蝕Ni-Cr-Mo合金。此合金含有22%至24%之鉻及15%至16.5%之 鉬。未揭示任何此合金之熱處理或熟化硬化。此專利揭示之 合金已在商標VDM NICROFER 923 h Mo或合金59下商品化。 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明(6 ) 板、HASTELLOY C-4板、合金59板及INCONEL合金686板。表1 之記號「n.m.」指示未測到某元素之存在。表1亦列出每一合 金之P值。 試驗合金之鉻含量的範圍由Η合金之11.56%至P合金之 26.06%。鉬之範圍由合金G中之9.91%至合金S中之23.89%。所 有合金含相似量之鉻、鉛、鐵及錳。鎢存量在0.11%至0.34%之 範圍内。合金亦含小量硼、旋、錦、銅、鎂、麟、硫、石夕及飢 。試驗合金在熱軋成12.7毫米之板後在退火溫度範圍為1038°C 至1093°C下退火三十分鐘。由可由製造者得到之薄板及厚板 切割商業合金。薄板厚3.2毫米而厚板厚9.5亳米。在第一試驗 系列中所有合金以二步驟老化處理,其中第一老化在704 °C 進行16小時。最後,樣品以空氣冷卻至室溫。 -9- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明( 686 LA C-4 C-276 1 Hastelloy S | H C/3 〇 T3 Ο 2: r 〇 -n m σ n > 合金 n.m. 0.30 0.34 0.30 0.22 p o o Lk) 〇 p p P p O p Os p o p p p p ρ ro p K> p p > 組成 n.m. n.m. n.m. n.m. 0.008 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.002 0.002 0.002 0.002 0.002 <0.002 0.005 0.002 0.003 1 0.005 0.003 0.002 0.Ό02 ca 0.005 0.002 0.002 0.003 0.010 0.009 0.006 0.007 0.009 0.006 0.007 0.007 0.006 0.003 0.004 0.005 0.004 0.003 0.002 0.003 0.002 0.002 0.006 0.002 0.003 n Ti 0.07 n.m. Ti 0.23 n.m. n.m. 0.002 0.006 0.005 0.002 0.003 0.003 0.004 0.005 0.004 0.009 0.004 0.005 0.007 0.005 0.007 <0.005 <0.005 ! 0.008 0.007 0.008 P n.m. 0.08 n.m. 0.76 0.09 0.06 0.06 0.06 0.07 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.07 0.06 0.06 0.08 0.05 0.04 0.05 o 20.17 22.75 15.54 15.76 15.35 23.97 13.45 17.92 23.03 26.06 21.13 19.92 22.28 17.53 12.58 21.28 16.57 11.56 25.48 22.18 19.88 17.36 14.99 15.26 _1 12.79 n n.m. 0.01 0.02 0.06 n.m. <0.01 <0.01 o o <0.01 <0.01 o o p b p b 0.04 0.04 0,04 0.04 0.06 0.02 0.02 0.02 0.03 _1 0.03 0.01 0.04 g 0.21 0.65 b 5.48 0.99 o o S S o 0.98 •二 o g S S § s 二 二 n.m. n.m. 0.05 0.05 0.03 <0.002 0.002 0.002 <_ <0.002 <0.002 <0.002 0.002 0.002 0.003 <0.002 0.004 0.003 0.003 <0.002 <0.002 0.003 <0.002 <0.002 <0.002 0.23 0.17 0.18 0.51 1.. 0.59 0.30 0.27 0.27 0.28 0.29 0.30 0.29 0.30 0.31 0.30 0.31 0.31 0.34 0.32 0.31 0.32 0.32 0.32 0.34 0.33 3 16.08 15.45 15.41 15.43 14.80 13.60 23.89 1 16.66 15.62 17.38 14.73 18.63 22.48 15.60 19.75 9.91 13.32 15.40 17.21 18.78 19.92 21.58 2 O n.m. n.m. n.m. 0.09 n.m. 0.03 0.03 0.03 0.03 0.03 0.03 0.03 n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. 3 3 3 3 n.m. 1 n.m. ! 1 n.m. 2: σ- 其餘 |其餘 其餘 其餘 其餘 i其餘 1 其餘 其餘 I其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 其餘 2; 0.002 0.002 n.m. 0.007 n.m. 0.003 0.002 0.005 0.003 0.003 <0.002 <0.002 0.005 <0.004 <0.004 <0.002 <0.002 <0.004 0.002 0.002 0.005 0.003 0.002 <0.004 <0.004 p(磷) 0.001 0.002 n.m. 0.002 0.005 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.003 <0.001 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.01 0.05 0.04 n.m. 0.48 0.06 0.04 0.04 0.05 ί 0.06 ! 0.04 0.05 0.16 p 0.15 0.07 0.07 0.15 0.02 0.01 0.03 0.02 0.01 <0.01 <0.01 00 3 n.m. 0.02 0.12 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 j < 3.94 n.m. n.m. 3.39 0.23 o o o o ο p o p 00 p 0.22 p p p p oo p p p p 0.34 0.19 34.7 35.6 33.3 30.0 34.7 36.2 36.1 36.9 34.6 34.3 34.7 34.5 34.4 30.7 30.6 30.8 32.2 32.8 33.1 32.7 32.2 33.8 33.3 莫雖^^^^^ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明( 試驗所有樣品以測定其抗張性質。試驗測定降伏強度、極 限抗張強度及伸長百分率,其依據這類合金之標準ASTM E-8 試驗步驟。第一試驗系列之結果列在表2中。 表2 室溫之抗張性質 合金 0.2%降伏強度 極限抗張強度 伸長百分率 MPa ksi MPa ksi A 816 118.3 1306 189.4 40.1 B 823 119.3 1300 188.5 40.7 C 723 104.8 1229 178.3 43.4 D 709 102.9 1222 177.3 43.5 E 690 100.0 1198 173.7 44.1 F 508 73.7 962 139.5 47.6 G 324 47.0 738 107.1 61.8 Η 359 52.0 841 122.0 65.1 I 341 49.5 806 116.9 64.3 J 304 44.1 743 107.8 64.1 K 822 119.2 1338 194.0 41.1 L 659 95.6 1170 169.7 47.9 Μ 663 96.1 1166 169.1 45.8 N 644 93.4 1158 168.0 47.3 0 629 91.2 1145 166.1 47.3 P 343 49.8 761 110.4 60.7 Q 747 108.4 1227 177.9 34.5 R 809 117.4 1305 189.3 32.4 S 962 139.5 1473 213.6 28.0 丁 409 59.3 825 119.7 57.8 HASTELLOY S 465 67.5 918 133.1 47.1 C-276 369 53.5 803 116.4 56.7 C-4 497 72.1 947 137.4 47.6 合金59 594 86.2 1066 154.6 47.3 INCONEL 合金686 682 98.9 1169 169.6 45.0 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明(9 ) 只有試驗合金A至F及K至〇及商業合金INCONEL合金686與 合金59具有可接受之抗張性質。合金G、Η、I、J、P及T以及除 了 INCONEL合金686與合金59之外之所有商業合金具不可接受 之低降伏強度。可接受合金之伸長率值大於40百分比且降伏 強度大於500 MPa。合金Q、R及S由伸長百分率測量不具有足 夠之抗張延展性。微結構分析確認這由於存在不適當沈澱 不明之相。因為商業合金及合金Η、I、J、Q及R之鉻含量及鉬 含量在可接受合金之鉻含量及鉬含量之範圍内,在此等級 合金中鉻或鉬含量皆不是可接受抗張性質之僅有預測劑為 清楚的。我們的結構為其是幾乎所有這類性質預測劑之合 金元素的交互作用。實際上,我們發現當合金Ρ值在31.2至 35.9之範圍内以此二步驟老化方法得到可接受之抗張性質。 對此行為之例外在HASTELLOY C-276合金中發現,其Ρ值在合 適之範圍内但不具足夠之降伏強度。然而,合金中5.48%之Fe 量足以最好稱為Ni-Cr-Mo-Fe合金。因此,我們建議需要約3% Fe之限制以維持上面之關係。 圖1為試驗合金以合金之P值及鉻含量之圖形。具可接受抗 張性質之每一合金以點繪在圖中。X用於繪製受二步驟老化 處理後抗張性質不可接受之那些合金。繞可接受合金劃出 一箱形區。由圖1非常明顯的可接受合金之鉻含量為12%至 23.5%且P值在31.2至35.9之範圍内。 熟諳此藝者將認定儘管鉻及鉬必須存在在試驗樣品包圍 之範圍内,其他合金元素不必如此受限。實際上,這些元素 可以商業上可得之Ni-Cr-Mo合金之UNS敘述中陳述之範圍内 __-12-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明(10 ) 之量存在,此類合金包括在此試驗者及如C-2000⑧合金、C-22®合金、SM 2060 Mo合金及MAT-21合金。更特別地可有最 高0.05%之鋁、0.015%之硼、0.02%之碳、2.5%之鈷、2.0%之銅、 3.0%之鐵、1.5%之錳、1.25%之鈮、0.04%之磷、0.03%之硫、 0.75%之矽、2.2%之銓、0.7%鈦、0.35%釩及4.5%之鎢與0,1%之晞 土元素。 裝1224146 A7 B7 V. Description of the invention (i) Scope of the invention The present invention relates to a heat treatment method for a nickel-chromium-molybdenum alloy having a chromium content of 12 to 23.5 weight percent. BACKGROUND OF THE INVENTION It is well known to impart corrosion resistance to nickel-based alloys. Therefore, the use of Ni-Cr-Mo alloys, especially those with a chromium content of 15 to 24%, in corrosive environments such as those encountered in the chemical or petrochemical industries has become very common. Maturation and hardening are methods used in the metallurgical industry to give alloy compositions high strength (measured by their drop strength) and tensile strength (measured by groove stress cracking tests typically used in the art world). Many applications require a combination of high tensile strength and low thermal wax expansion. One such application is in the space industry. Another application is sealing rings used in land-based gasoline turbines. The combination of high tensile strength and ductility is also very useful for bolts. Because operating conditions and performance parameters are required for metal products in these applications, many curing and hardening methods have been used. One common technique is to heat the alloy to a selected high temperature, maintain the alloy at that temperature for a period of time, and then cool the alloy to room temperature. For some alloy compositions, the alloy may be heated to a certain temperature, cooled, reheated to a second temperature, and cooled. Examples of these methods are disclosed in U.S. Patent No. 3,871,928. The temperature and time for curing the hardened alloy depends on the alloy composition. Time and temperature have been established to become standard in all industries for all hardenable commercial alloys because they are known to produce the required properties. For Ni-Cr-Mo alloys with high chromium content (ie, chromium is greater than 12%), the general view in the art world is that heat treatment beyond the initial annealing to improve mechanical properties will not be practical, due to the longer required time (several Hundreds to thousands of hours) and such processing is not done at all. -4- This paper size applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1224146 A7 B7 V. Description of the invention (2) Solid solution strengthened nickel-chromium-molybdenum (Ni-Ci * -Mo) alloy And nickel-rhenium (Ni-Mo) alloys are widely used in commercial applications such as the chemical industry. In general, single-phase materials are considered, excluding the presence of small amounts of carbide phases. Alloys such as these are generally not considered to be reactive to heat treatment, so annealing conditions are used. With some exceptions, some special alloys exhibit aging and hardening reactions that are commercially available. However, the curing-hardening reactions observed in these examples can be attributed to the presence of other elements (such as Wei, Ming, and Plutonium) in the alloy composition. The exception to this is the HAYNES⑧242 ™ alloy discussed later. The fact that Ni-Cr-Mo and Ni-Mo alloys are not commercially matureable and hardening does not mean that they do not exhibit any metallurgical reaction to thermal exposure at intermediate temperatures. In fact, this form of alloy exhibits a complex second-phase reaction when exposed to temperatures ranging from about 538 ° C to 87 ° C; TC. Unfortunately, the phase in which it forms often affects the other properties of the alloy's ductility. This is particularly observed with Ni-Mo alloys containing about 25 to 30% molybdenum. In such materials, exposure to temperatures of about 538 ° C to 871 ° C can cause rapid formation of embrittlement Ni3Mo or Ni4Mo phases in the microstructure. This can be a problem for component manufacturing and component performance. For low molybdenum and high complex content Ni-Cr-Mo alloys with about 16% molybdenum and 16% road weight percentage content, the occurrence of these special mesophases is not usually observed after short-term thermal exposure. Long-term exposure at a temperature of about 538 ° C to 649 ° C has a unique metallurgical reaction. The phase Ni2 (Mo, Cr) was confirmed to exist in the microstructure after about 500 to about 1000 hours. The long range ordered phases (structure is similar to Pt2Mo) Ni2 (Mo, Ci :) phase achieves a significant increase in the strength of these materials without drastic loss of ductility. A major disadvantage is the need to produce this phase. Several US patents disclose Ni-Ci * -Mo alloys. U.S. Patent No. 4,818,486 discloses a low expansion nickel-based alloy containing 5% to 12% chromium and 10% to 30% molybdenum. This-5- This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1224146 A7 B7 V. Description of the invention (3) The patent teaches that the hardness is required without the majority of Ni-Mo-Cr alloys being used in the economy. A temperature of 649 ° C to 816 ° C will form a harmful phase in 1000 hours. However, hardening reveals that the aging time required for the alloy composition of the '486 patent is as little as 24 hours at 649 ° C. This patented alloy has entered the market under the trademark 242 alloy and HAYNES 242 alloy. HAYNES 242 alloy is sold for applications requiring high tensile strength and low thermal expansion coefficient. Other advantageous properties of the 242 alloy include good thermal stability, good resistance to low cycle fatigue, and the ability to inhibit due to excellent tensile strength and ductility. HAYNES 242 alloy consists of about 8% (weight percent) chromium, about 20-30% molybdenum, about 0.35% to up to about 0.5% aluminum, up to 0.03% carbon, up to about 0.8% manganese, and up to about 0.8% It consists of silicon, up to about 2% iron, up to about 1% aunt, up to about 0.006% boron, and the remaining weight percentage of nickel. Shorter commercially available maturation and hardening methods for Ni-Mo-Cr alloys with higher Cr levels (> 12% Cr) than those found in U.S. Patent No. 4,818,486 to avoid harmful Ni3Mo and Ni4Mo phases and muphase generators . Another Ni-Cr-Mo alloy is disclosed in U.S. Patent No. 5,019,184 to Crum et al. Such alloys contain 19% to 23% chromium and 14 to 17% molybdenum. This patent discloses that the heat treatment is performed for 5 to 50 hours in a temperature range of 1149 ° C to 1260 ° C. The purpose of this treatment is to produce a corrosion-resistant alloy with a required microstructure in addition to strengthening the alloy. This patent does not provide the strength of any of these samples. This patented alloy is commercialized under the trademark INCONEL (R) alloy 686. Another corrosion-resistant Ni-Cr-Mo alloy is disclosed in U.S. Patent No. 4,906,437 to Heubner et al. This alloy contains 22% to 24% chromium and 15% to 16.5% molybdenum. No heat treatment or aging hardening of this alloy is disclosed. The alloy disclosed in this patent has been commercialized under the trademark VDM NICROFER 923 h Mo or Alloy 59. -6- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 1224146 A7 B7 5. Description of the invention (6) plate, HASTELLOY C-4 plate, alloy 59 plate and INCONEL alloy 686 plate. The mark "n.m." in Table 1 indicates that the presence of an element was not detected. Table 1 also lists the P-values of each of the funds. The chromium content of the test alloy ranged from 11.56% of rhenium alloy to 26.06% of P alloy. The range of molybdenum is from 9.91% in alloy G to 23.89% in alloy S. All alloys contain similar amounts of chromium, lead, iron and manganese. The tungsten stock is in the range of 0.11% to 0.34%. The alloy also contains small amounts of boron, spin, brocade, copper, magnesium, lin, sulphur, stone and hunger. The test alloy was annealed at a temperature of 1038 ° C to 1093 ° C for 30 minutes after hot rolling into a 12.7 mm plate. Commercial alloys are cut from thin and thick plates available from manufacturers. The sheet thickness is 3.2 mm and the sheet thickness is 9.5 mm. In the first test series, all alloys were aged in two steps, with the first ageing at 704 ° C for 16 hours. Finally, the sample was cooled to room temperature with air. -9- The size of this paper applies Chinese National Standard (CNS) A4 (210 X 297 mm) 1224146 A7 B7 V. Description of the invention (686 LA C-4 C-276 1 Hastelloy S | HC / 3 〇T3 Ο 2: r 〇-nm σ n > Alloy nm 0.30 0.34 0.30 0.22 poo Lk) 〇pp P p O p Os popppp ρ ro p K > pp > Composition nmnmnmnm 0.008 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 0.002 0.002 0.002 0.002 0.002 0.002 < 0.002 0.005 0.002 0.003 1 0.005 0.003 0.002 0.Ό02 ca 0.005 0.002 0.002 0.003 0.010 0.006 0.007 0.006 0.007 0.007 0.006 0.003 0.004 0.005 0.004 0.003 0.002 0.003 0.002 0.006 0.002 0.002 0.003 n Ti 0.07 nm Ti 0.23 nmnm 0.002 0.006 0.005 0.002 0.003 0.003 0.004 0.005 0.004 0.00 0.004 0.005 0.007 0.005 0.007 < 0.005 < 0.005! 0.008 0.007 0.008 P nm 0.08 nm 0.76 0.09 0.06 0.06 0.06 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.07 0.06 0.06 0.08 0.05 0.04 0.05 o 20.17 22.75 15.54 15.76 15.35 23.97 13.45 17.92 23.03 26.06 21.13 19.92 22.28 17.53 12.58 21.28 16.57 11.56 25.48 22.18 19.88 17.36 14.99 15.26 _1 12.79 n nm 0.01 0.02 0.06 nm < 0.01 < 0.01 oo < 0.01 < 0.01 oopbpb 0.04 0.04 0,04 0.04 0.06 0.02 0.02 0.02 0.03 _1 0.03 0.01 0.04 g 0.21 0.65 b 5.48 0.99 oo SS o 0.98 • Two og SS § s two nmnm 0.05 0.05 0.03 < 0.002 0.002 0.002 0.002 < _ < 0.002 < 0.002 < 0.002 0.002 0.002 0.003 0.00 < 0.002 0.004 0.003 0.003 < 0.002 < 0.002 0.003 < 0.002 < 0.002 < 0.002 0.23 0.17 0.18 0.51 1 .. 0.59 0.30 0.27 0.27 0.28 0.29 0.30 0.29 0.30 0.31 0.30 0.31 0.31 0.34 0.32 0.31 0.32 0.32 0.32 0.34 0.33 0.3 16.3 15.08 15.45 15.41 15.43 14.80 13.60 23.89 1 16.66 15.62 17.38 14.73 18.63 22.48 15.60 19.75 9.91 13.32 15.40 17.21 18.78 19.92 21.58 2 O nmnmnm 0.09 nm 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 nmnmnmnmnmnmnmnmnm 3 3 3 3 nm 1 nm! 1 nm 2: σ- the rest | the rest the rest the rest i the rest 1 remaining remaining I remaining remaining remaining remaining remaining Remaining remaining remaining remaining remaining remaining remaining 2; 0.002 0.002 nm 0.007 nm 0.003 0.002 0.005 0.003 0.003 < 0.002 < 0.002 0.005 < 0.004 < 0.004 < 0.002 < 0.002 < 0.004 0.002 0.005 0.003 0.002 0.002 < 0.004 < 0.004 p (phosphorus) 0.001 0.002 nm 0.002 0.005 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.003 < 0.001 0.004 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.01 0.05 0.04 nm 0.48 0.06 0.04 0.04 0.05 ί 0.06! 0.04 0.05 0.16 p 0.15 0.07 0.07 0.15 0.02 0.01 0.03 0.02 0.01 < 0.01 < 0.01 00 3 nm 0.02 0.12 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.02 0.01 j < 3.94 nmnm 3.39 0.23 oooo ο pop 00 p 0.22 pppp oo pppp 0.34 0.19 34.7 35.6 33.3 30.0 34.7 36.2 36.1 36.9 34.6 34.3 34.7 34.5 34.4 30.7 30.6 30.8 32.2 32.8 33.1 32.7 32.2 33.8 33.3 Although ^^^^ ^ This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1224146 A7 B7 5. Description of the invention (All samples were tested to determine their tensile properties. The test determines the yield strength, ultimate tensile strength, and percent elongation, and is based on the standard ASTM E-8 test procedure for this type of alloy. The results of the first test series are shown in Table 2. Table 2 Tensile properties of alloys at room temperature 0.2% drop strength ultimate tensile strength elongation percentage MPa ksi MPa ksi A 816 118.3 1306 189.4 40.1 B 823 119.3 1300 188.5 40.7 C 723 104.8 1229 178.3 43.4 D 709 102.9 1222 177.3 43.5 E 690 100.0 1198 173.7 44.1 F 508 73.7 962 139.5 47.6 G 324 47.0 738 107.1 61.8 Η 359 52.0 841 122.0 65.1 I 341 49.5 806 116.9 64.3 J 304 44.1 743 107.8 64.1 K 822 119.2 1338 194.0 41.1 L 659 95.6 1170 169.7 47.9 M 663 96.1 1166 169.1 45.8 N 644 93.4 1158 168.0 47.3 0 629 91.2 1145 166.1 47.3 P 343 49.8 761 110.4 60.7 Q 747 108.4 1227 177.9 34.5 R 809 117.4 1305 189.3 32.4 S 962 139.5 1473 213.6 28.0 Ding 409 59.3 825 119.7 57.8 HASTELLOY S 465 67.5 918 133.1 47.1 C-276 369 53.5 803 116.4 56.7 C-4 497 72.1 947 137.4 47.6 Alloy 59 594 86.2 1066 154.6 47.3 INCONEL alloy 686 682 98.9 1169 169.6 45.0 -11-This paper size applies to China National Standard (CNS) A4 (210 X 297) (Mm) 1224146 A7 B7 V. Description of the invention (9) Only test alloys A to F and K to 0 and quotient Industrial alloys INCONEL alloy 686 and alloy 59 have acceptable tensile properties. Alloys G, rhenium, I, J, P, and T and all commercial alloys except INCONEL alloy 686 and alloy 59 have unacceptably low yield strength. Acceptable alloys have elongation values greater than 40 percent and yield strength greater than 500 MPa. Alloys Q, R, and S did not have sufficient tensile ductility as measured by percent elongation. Microstructure analysis confirmed this due to the presence of inappropriate precipitation of unknown phases. Because the chromium and molybdenum content of commercial alloys and alloys Η, I, J, Q, and R are within the acceptable chromium and molybdenum content ranges, neither the chromium or molybdenum content in this grade of alloy is acceptable for tensile properties. Only predictors are clear. Our structure is the interaction of alloy elements that are predictors of almost all such properties. In fact, we found that when the alloy P value is in the range of 31.2 to 35.9, this two-step aging method can obtain acceptable tensile properties. An exception to this behavior is found in the HASTELLOY C-276 alloy, where the P value is within a suitable range but does not have sufficient drop strength. However, an amount of 5.48% Fe in the alloy is sufficient to best be referred to as a Ni-Cr-Mo-Fe alloy. Therefore, we recommend that a limit of about 3% Fe be required to maintain the above relationship. Figure 1 is a plot of the alloy's P value and chromium content for the test alloy. Each alloy with acceptable tensile properties is plotted in the figure with a dot. X is used to plot those alloys whose tensile properties are unacceptable after a two-step aging process. A box-shaped area is drawn around the acceptable alloy. The chromium content of the acceptable alloy, which is very apparent from Figure 1, is 12% to 23.5% and the P value is in the range of 31.2 to 35.9. Those skilled in the art will recognize that although chromium and molybdenum must be present within the bounds of the test sample, other alloy elements need not be so limited. In fact, these elements can be within the range stated in the UNS narrative of the commercially available Ni-Cr-Mo alloy __- 12-_ This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1224146 A7 B7 5. The amount of invention description (10) exists. Such alloys include those tested here and such as C-2000⑧ alloy, C-22® alloy, SM 2060 Mo alloy and MAT-21 alloy. More specifically there can be up to 0.05% aluminum, 0.015% boron, 0.02% carbon, 2.5% cobalt, 2.0% copper, 3.0% iron, 1.5% manganese, 1.25% niobium, 0.04% phosphorus , 0.03% of sulfur, 0.75% of silicon, 2.2% of rhenium, 0.7% of titanium, 0.35% of vanadium and 4.5% of tungsten and 0.1% of arsenic elements. Hold

現在已定義可由二步驟熟化硬化法受益之合金,我們考 慮對每一步驟什麼時間及溫度範圍為可接受的。對合金Μ做 一系列之老化處理。在老化處理後測量硬度決定是否樣品 已熟化硬化。結果列在表3。若樣品之Rockwell C (Rc)硬度值 大於20.0認定其已熟化硬化。在未老化條件下之樣品確定材 料以小於20.0之硬度起始。合金Μ之試驗結果指出第一步驟 應在溫度範圍為約691°C至約760°C至少約8小時長,同時第二 步驟應在溫度範圍為約538°C至約691°C至少約24小時長。數據 亦指出當第一步驟使用較高溫度時則第二步驟可使用較低 溫度。儘管發現最高927°C之第一步驟溫度在熟化硬化合金 中有用,微結構檢驗透露不適當之晶粒邊界析出在第一步 驟溫度為760°C或更高時發生。這析出預期降低抗腐蝕性。 如技藝界所熟知,Ni2 (Mo, Ci:)熟化硬化短範圍之整理隨後 創造給予硬化性質之析出物。在連續加熱下將達到溶線溫 度,析出物在此溫度將回到溶液中。此短範圍整理亦與時間 及溫度相關。短範圍整理及溶線溫度隨一種合金組成至另 一種而變化。為提供熟化硬化任何二步驟老化處理必須包 括選定時間和溫度在第一步驟中提供必要之短範圍整理或 -13 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明(n ) 硬化相之最初析出並避免在第二步驟時溶解。這可在表3合 金Μ中之數據看到。當第一步驟為704°C或732°C 16小時,足夠 之短範圍整理不發生以支持538°C之第二步驟,同時溶解在 621°C達到。當第一步驟為760 °C 16小時時,足夠之短範圍整 理發生以支持538°C之第二步驟,同時溶解在621°C再次達到。 在再觀察合金Μ之數據後,我們使用704°C 16小時之老化 作第一步驟,隨後在593°C、621°C或649°C做第二次老化。我們 亦使用在760°C 8或16小時、在732°C 16或32小時或在704°C 16 小時之第一老化處理及在593°C至621°C間8、12、16或32小時之 第二步驟處理合金K。此試驗工作之處理·及結果列於表4中。 對-合金N及Ο硬化在593°C或621°C之第二步驟老化處理發生, 但在649°C則否。合金N及Ο可在621°C成功硬化而合金Μ不在 此溫度硬化之事實可歸因於在合金Ν及0比合金Μ中較高之 鉬及較低之鉻。 合金Κ具比合金Μ、Ν及0較高之鉬及較低之鉻。合金Κ在 704°C、732°C及760°C 8、16及32小時(如表4所示)試驗。數據顯 示當第二步驟在704°C或718°C但不是732°C下進行40小時時第 一處理可在760°C 8小時。當第一步驟在732°C進行32小時時第 二步驟可在704°C跑8小時。由此數據我們的結論為具高鉬及 低鉻之合金在第二步驟可使用較高之溫度。此外,當一步驟 為32至40小時時另一步驟可短至8小時。 對其他鎳-鉻-鈿合金我們可預期看到相似之結果,雖然溫 度組合可能不同。此外,工作組合與合金中鉻及翻水平相關 。對含鉻含量為12%至23.5%且P值在31.2至35.9之範圍内之合 -14- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Now that alloys that can benefit from the two-step curing and hardening process have been defined, we consider what time and temperature ranges are acceptable for each step. A series of aging treatments are performed on alloy M. The hardness is measured after the aging process to determine whether the sample has matured and hardened. The results are listed in Table 3. If the Rockwell C (Rc) hardness of the sample is greater than 20.0, it is considered to have matured and hardened. Samples under unaged conditions determined that the material started with a hardness of less than 20.0. The test results of Alloy M indicate that the first step should be at least about 8 hours long at a temperature range of about 691 ° C to about 760 ° C, and the second step should be at a temperature range of about 538 ° C to about 691 ° C at least about 24 hours. Hours long. The data also indicates that when higher temperatures are used in the first step, lower temperatures can be used in the second step. Although the first step temperature up to 927 ° C was found to be useful in curing hardened alloys, microstructure inspection revealed that inappropriate grain boundary precipitation occurred at the first step temperature of 760 ° C or higher. This precipitation is expected to reduce the corrosion resistance. As is well known in the art world, Ni2 (Mo, Ci :) cures a short range of curing and subsequently creates precipitates that impart hardening properties. The melting temperature will be reached under continuous heating, and the precipitates will return to the solution at this temperature. This short-range collation is also related to time and temperature. Short-range finishing and melting line temperatures vary from one alloy composition to another. In order to provide curing and hardening, any two-step aging treatment must include the selected time and temperature. In the first step, the necessary short-range finishing or -13 is required.-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 1224146 A7 B7 5. Description of the invention (n) The initial precipitation of the hardened phase and avoid dissolution in the second step. This can be seen in the data in Table 3 for alloy M. When the first step is 704 ° C or 732 ° C for 16 hours, a short enough range does not occur to support the second step of 538 ° C, while dissolving at 621 ° C. When the first step is 760 ° C for 16 hours, enough short-range conditioning occurs to support the second step at 538 ° C, while dissolving at 621 ° C again. After observing the data of Alloy M again, we used aging at 704 ° C for 16 hours as the first step, and then performed the second aging at 593 ° C, 621 ° C or 649 ° C. We also use the first aging treatment at 760 ° C for 8 or 16 hours, at 732 ° C for 16 or 32 hours or at 704 ° C for 16 hours and for 8, 12, 16 or 32 hours between 593 ° C and 621 ° C The second step processes alloy K. The processing and results of this test work are listed in Table 4. Para-alloy N and O harden at the second step of aging at 593 ° C or 621 ° C, but not at 649 ° C. The fact that alloys N and O can be successfully hardened at 621 ° C and alloy M is not hardened at this temperature can be attributed to higher molybdenum and lower chromium in alloys N and 0 than in alloy M. Alloy K has higher molybdenum and lower chromium than alloys M, N, and 0. Alloy K was tested at 704 ° C, 732 ° C and 760 ° C for 8, 16 and 32 hours (as shown in Table 4). The data show that when the second step is performed at 704 ° C or 718 ° C but not 732 ° C for 40 hours, the first treatment can be performed at 760 ° C for 8 hours. When the first step is performed at 732 ° C for 32 hours, the second step can run at 704 ° C for 8 hours. From this data we conclude that alloys with high molybdenum and low chromium can use higher temperatures in the second step. In addition, when one step is 32 to 40 hours, the other step can be as short as 8 hours. We can expect to see similar results for other nickel-chromium-rhenium alloys, although temperature combinations may be different. In addition, the working mix is related to the chromium and turning levels in the alloy. For combinations with a chromium content of 12% to 23.5% and a P value in the range of 31.2 to 35.9 -14- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

裝 訂Binding

1224146 A7 B7 五、發明説明( 金,當第一步驟在溫度範圍為約691°C至約760°C下至少約8小 時長且第二步驟在約538°C至約718°C之溫度下至少約8小時時 可達到可接受之熟化硬化反應。 表3 不同老化處理對合金Μ硬度之效應 第1步驟溫度 第1步驟時間 (h) 第2步驟溫度 第2步驟時間 (h) 硬度(Rc) 老化 --- --- — <20.0 649〇C/1200〇F 16 538〇C/1000〇F 32 <20.0 649〇C/1200〇F 16 566〇C/1050〇F 32 <20.0 649〇C/1200〇F 16 593〇C/1100〇F 32 <20.0 649〇C/1200〇F 16 621°C/1150°F 32 <20.0 649°C/1200°F 16 649〇C/1200〇F -32 <20.0 677°C/1250°F 16 538〇C/1000〇F 32 <20.0 677〇C/1250〇F 16 566〇C/1050〇F 32 <20.0 677〇C/1250〇F 16 593〇C/1100〇F 32 <20.0 677〇C/1250〇F 16 621°C/1150°F 32 <20.0 677〇C/1250〇F 16 649°C/1200°F 32 <20.0 704〇C/1300〇F 16 538〇C/1000〇F 32 <20.0 704〇C/1300〇F 16 566〇C/1050〇F 32 20.7 704〇C/1300〇F 16 593〇C/1100〇F • 32 28.6 704〇C/1300〇F 16 621〇C/1150〇F 32 <20.0 704〇C/1300〇F 16 649〇C/1200〇F 32 <20.0 732〇C/1350〇F 16 538〇C/1000〇F 32 <20.0 732〇C/1350〇F 16 566〇C/1050〇F 32 27.4 732〇C/1350〇F 16 593〇C/1100〇F 32 31.2 732〇C/1350〇F 16 621〇C/1150〇F 32 <20.0 732〇C/1350〇F 16 649°C/1200°F 32 <20.0 760〇C/1400〇F 16 538°C/1000°F 32 24.9 760〇C/1400〇F 16 566〇C/1050〇F 32 26.6 760〇C/1400〇F 16 593〇C/1100〇F 32 28.4 760〇C/1400〇F 16 621〇C/1150〇F 32 <20.0 760〇C/1400〇F 16 649〇C/1200〇F 32 <20.0 ___-15- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明( 816〇C/1500〇F 16 593°C/1100°F 32 31.0 871〇C/1600〇F 16 593〇C/1100〇F 32 30.4 927〇C/1700〇F 16 593〇C/1100〇F 32 27.8 704°C/1300°F 4 593〇C/1100〇F 4 <20.0 704〇C/1300〇F 4 593〇C/1100〇F 8 <20.0 704〇C/1300〇F 4 593〇C/1100〇F 16 <20.0 704〇C/1300〇F 4 593〇C/1100〇F 44 <20.0 704〇C/1300〇F 8 593〇C/1100〇F 4 <20.0 704〇C/1300〇F 8 593〇C/1100〇F 8 <20.0 704〇C/1300〇F 8 593〇C/1100〇F 16 <20.0 704〇C/1300〇F 8 593〇C/1100〇F 32 20.1 704〇C/1300〇F 8 593〇C/1100〇F 40 29.4 704〇C/1300〇F 16 593〇C/1100〇F 4 <20.0 704〇C/1300〇F 16 593〇C/1100〇F 8 <20.0 704〇C/1300〇F 16 593〇C/1100〇F 16 <20.0 704〇C/1300〇F 16 593〇C/1100〇F 24 20.4 表4 不同老化處理對合金N及0硬度之效應 合金 第1步驟溫度 第1步驟 時間(h) 第2步驟溫度 第2步驟 時間⑻ 硬度 (Rc) K 未老化 … — — <20 K 740〇C/1300〇F 16 593°C/1100°F 32 36.7 K 740〇C/1300〇F 16 649〇C/1200〇F 32 40.3 K 732〇C/1350〇F 16 677〇C/1250〇F 16 37.0 K 732〇C/1350〇F 32 704°C/1300°F 8 37.0 K 732〇C/1350〇F 16 704〇C/1300〇F 12 36.9 K 760〇C/1400〇F 16 704〇C/1300〇F 32 37.9 K 760〇C/1400〇F 8 704〇C/1300〇F 40 36.9 K 760〇C/1400〇F 16 718〇C/1325〇F 32 <20 K 760〇C/1400〇F 8 718〇C/1325〇F 40 30.7 K 760〇C/1400〇F 16 732〇C/1350〇F 32 <20 K 760〇C/1400〇F 8 732〇C/1350〇F 40 <20 N 未老化 … … <20 N 704〇C/1300〇F 16 593〇C/1100〇F 32 30.7 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A7 B7 五、發明説明( N 704〇C/1300〇F 16 621〇C/1150〇F 32 32.7 N 704〇C/1300〇F 16 649〇C/1200〇F 32 <20 〇 未老化 --- — — <20 〇 704〇C/1300〇F 16 593〇C/1100〇F 32 30.2 〇 704〇C/1300〇F 16 621〇C/1150〇F 32 23.9 〇 704〇C/1300〇F 16 649〇C/1200〇F 32 ‘ <20 此方法代表明顯之進展。在本發明之前具大於12%鉻之Ni-Cr-Mo合金無法在熟化硬化條件下生產,因為要求之老化時 間太久。因為關於如此長處理之能量成本,高路、熟化硬化 合金之估計成本視為太高而沒有這類合金在商業中存在。 此處揭示之二步驟熟化硬化處理可在總時間小於100小時而 以小於50小時較佳下完成。實際上,我們偏好在40至48小時 完成此方法。藉使用熱處理總時數小於100小時(以不超過50 小時較佳),其可產生具要求抗張性質之低成本、高鉻之Ni-Cr-Mo合金。儘管此處揭示之方法當總老化時間超過100小時 時亦有效,關於這類處理之能量成本使此方法較不合適且 商業上不實用。 雖然我們已敘述我們之合金及生產此合金方法的某些較 佳具體實施例,無疑地應了解我們之發明不限於此,但可為 在下面申請專利範圍之範圍内以不同之方式具體化。 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1224146 A7 B7 V. Description of the invention (gold, when the first step is at least about 8 hours long at a temperature range of about 691 ° C to about 760 ° C and the second step is at a temperature of about 538 ° C to about 718 ° C Acceptable ripening and hardening reaction can be achieved at least about 8 hours. Table 3 Effect of different aging treatments on the hardness of alloy M. 1st step temperature 1st step time (h) 2nd step temperature 2nd step time (h) Hardness (Rc ) Aging --- ----< 20.0 649〇C / 1200〇F 16 538〇C / 1000〇F 32 < 20.0 649〇C / 1200〇F 16 566〇C / 1050〇F 32 < 20.0 649 ° C / 1200 ° F 16 593 ° C / 1100 ° F 32 < 20.0 649 ° C / 1200 ° F 16 621 ° C / 1150 ° F 32 < 20.0 649 ° C / 1200 ° F 16 649 ° C / 1200〇F -32 < 20.0 677 ° C / 1250 ° F 16 538〇C / 1000〇F 32 < 20.0 677〇C / 1250〇F 16 566〇C / 1050〇F 32 < 20.0 677〇 / 1250 ° F 16 593 ° C / 1100 ° F 32 < 20.0 677 ° C / 1250 ° F 16 621 ° C / 1150 ° F 32 < 20.0 677 ° C / 1250 ° F 16 649 ° C / 1200 ° F 32 < 20.0 704 ° C / 1300 ° F 16 538 ° C / 1000 ° F 32 < 20.0 704 ° C / 1300 ° F 16 566 ° C / 1050 ° F 32 20.7 704 ° C / 1300 F 16 593 ° C / 1100 ° F • 32 28.6 704 ° C / 1300 ° F 16 621 ° C / 1150 ° F 32 < 20.0 704 ° C / 1300 ° F 16 649 ° C / 1200 ° F 32 < 20.0 732 ° C / 1350 ° F 16 538 ° C / 1000 ° F 32 < 20.0 732 ° C / 1350 ° F 16 566 ° C / 1050 ° F 32 27.4 732 ° C / 1350 ° F 16 593 ° C / 1100 ° F 32 31.2 732〇C / 1350〇F 16 621〇C / 1150〇F 32 < 20.0 732〇C / 1350〇F 16 649 ° C / 1200 ° F 32 < 20.0 760〇C / 1400〇F 16 538 ° C / 1000 ° F 32 24.9 760 ° C / 1400 ° F 16 566 ° C / 1050 ° F 32 26.6 760 ° C / 1400 ° F 16 593 ° C / 1100 ° F 32 28.4 760 ° C / 1400 ° F 16 621〇C / 1150〇F 32 < 20.0 760〇C / 1400〇F 16 649〇C / 1200〇F 32 < 20.0 ___- 15- This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 Mm) 1224146 A7 B7 V. Description of the invention (816 ° C / 1500 ° F 16 593 ° C / 1100 ° F 32 31.0 871 ° C / 1600 ° F 16 593 ° C / 1100 ° F 32 30.4 927 ° C / 1700 〇F 16 593 ° C / 1100 ° F 32 27.8 704 ° C / 1300 ° F 4 593 ° C / 1100 ° F 4 < 20.0 704 ° C / 1300 ° F 4 593 ° C / 1100 ° F 8 < 20.0 704〇C / 1300〇F 4 593〇C / 1100〇F 16 < 20.0 704〇C / 1300〇F 4 593〇C / 1100〇F 44 < 20.0 704〇C / 1300〇F 8 593〇C / 1100〇F 4 < 20.0 704〇C / 1300〇F 8 593 〇C / 1100〇F 8 < 20.0 704〇C / 1300〇F 8 593〇C / 1100〇F 16 < 20.0 704〇C / 1300〇F 8 593〇C / 1100〇F 32 20.1 704〇 / 1300 ° F 8 593 ° C / 1100 ° F 40 29.4 704 ° C / 1300 ° F 16 590 ° C / 1100 ° F 4 < 20.0 704 ° C / 1300 ° F 16 590 ° C / 1100 ° F 8 < 20.0 704 ° C / 1300 ° F 16 593 ° C / 1100 ° F 16 < 20.0 704 ° C / 1300 ° F 16 593 ° C / 1100 ° F 24 20.4 Table 4 Effect of different aging treatments on the N and 0 hardness of the alloy Alloy 1st step temperature 1st step time (h) 2nd step temperature 2nd step time ⑻ Hardness (Rc) K Unaged… — < 20 K 740〇C / 1300〇F 16 593 ° C / 1100 ° F 32 36.7 K 740 ° C / 1300 ° F 16 649 ° C / 1200 ° F 32 40.3 K 732 ° C / 1350 ° F 16 677 ° C / 1250 ° F 16 37.0 K 732 ° C / 1350 ° F 32 704 ° C / 1300 ° F 8 37.0 K 732 ° C / 1350 ° F 16 704 ° C / 1300 ° F 12 36.9 K 760 ° C / 1400 ° F 16 704 ° C / 1300 ° F 32 37.9 K 760 ° C / 1400 ° F 8 704〇C / 1300〇F 40 36.9 K 760 ° C / 1400 ° F 16 718 ° C / 1325 ° F 32 < 20 K 760 ° C / 1400 ° F 8 718 ° C / 1325 ° F 40 30.7 K 760 ° C / 1400 ° F 16 732 ° C / 1350〇F 32 < 20 K 760〇C / 1400〇F 8 732〇C / 1350〇F 40 < 20 N Unaged ... ... < 20 N 704〇C / 1300〇F 16 593〇C / 1100 〇F 32 30.7 -16- This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) 1224146 A7 B7 V. Description of the invention (N 704〇C / 1300〇F 16 621〇C / 1150〇F 32 32.7 N 704 ° C / 1300 ° F 16 649 ° C / 1200 ° F 32 < 20 〇Unaged -----< 20 〇704〇C / 1300〇F 16 593〇C / 1100〇F 32 30.2 0704 ° C / 1300 ° F 16 621 ° C / 1150 ° F 32 23.9 0704 ° C / 1300 ° F 16 649 ° C / 1200 ° F 32 '< 20 This method represents a significant advance. Prior to the present invention, Ni-Cr-Mo alloys with more than 12% chromium could not be produced under age-hardening conditions because the required aging time was too long. Because of the energy cost of such a long process, the estimated cost of high-road, age-hardened alloys is considered too high and no such alloy exists in business. The two-step curing and curing process disclosed herein can be completed in a total time of less than 100 hours and preferably less than 50 hours. In fact, we prefer to complete this method in 40 to 48 hours. By using a total heat treatment time of less than 100 hours (preferably not more than 50 hours), it can produce a low cost, high chromium Ni-Cr-Mo alloy with required tensile properties. Although the method disclosed here is also effective when the total aging time exceeds 100 hours, the energy cost of this type of treatment makes this method less suitable and commercially impractical. Although we have described some preferred embodiments of our alloys and methods of producing this alloy, it should be understood that our invention is not limited thereto, but may be embodied in different ways within the scope of the patent application below. -17- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

1224146 A8 第091114334號專利申請案 bs no 中文申請專利範圍替換本(92年11月)D8_ 六、申請專利範圍 1. 一種鎳-絡-4目合金,其由 12%至23.5%之鉻; 13%至23%之鉬; 最高3%之鐵; 至少一種選自下列元素之合金元素:銘、硼、疲、鉛、 銅、铪、鐵、i孟、魏、碎、4a、鎢、鈒及結;及 其餘之鎳加雜質所組成; 其中該合金之P值為31.2至35.9, P定義為: P = 2.64 Al+0.19 Co+0.83 Cr-〇.16 Cu+0.39 Fe+0.59 Μη +1.0 Mo+0.81 Zr+2.15 Si+1.06 V+0.39 W+0.68 Nb +0.52 Hf+0.45 Ta+1.35Ti 且該合金以二步驟熱處理加工由: 在691°C至760°C老化該合金至少8小時; 冷卻該合金至538°C至718t之溫度; 維持該合金在此溫度範圍至少8小時;及 冷卻該合金至室溫組成。 2. 如申請專利範圍第1項之合金,其中該二步驟熱處理由: 在704°C至760°C老化該合金16小時; 冷卻該合金至593°C至621°C之溫度; 維持該合金在此溫度32小時;及 冷卻該合金至室溫組成。 3. 如申請專利範圍第1項之合金,其亦包括: 最高0.1%之一種稀土元素; 取南2.0%之銅, O:\79\79243-921124.DOC 5/LLM - 1 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1224146 A8 B8 C8 D8 六、申請專利範圍 最高1.25%之鈮;. 最高0.04%之磷; 最高0.75%之矽; 最高0.03%之硫; 最高2.2%之鋰; 最高0.7%之鈦;及 最向0.35%之訊。 4. 如申請專利範圍第1項之合金,其含銓或鋰。 5. 如申請專利範圍第1項之合金,其中該合金由: 12%至23.5%之鉻; 13%至23%之鉬; 0.12%至 0.2%之鋁; 0.002%至 0.006%之碳; 0.30%至 0.34%之錳; 1.0%至1.7%之鐵; 0.05%至 0.8%之鈷; 0.10%至0.34%之鎢;及 0.002%至0.005%之硼組成。 6. 如申請專利範圍第5項之合金,其亦包括: 0.005%至 0.009%之鈽; 0.01%至 0.06%之銅; 0.001%至 0.004%之錳; 0.002%至 0.005%之磷; 0.001%至 0.004%之硫;及 O:\79\79243-921124.DOC 5/LLM * 2 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 1224146 A B c D 六、申請專利範圍 0.01 %至 0.02%之釩。 7. 如申請專利範圍第1項之合金,其中該合金元素由: 最高0.5%之鋁; 最高0.02%之碳; 最高1.5%之錳; 最高3%之鐵; 最高2.5%之鉛; 最高4.5%之鎢;及 最高0.015%之硼組成。 8. 如申請專利範圍第1項之合金,其亦包括最高1.25%之鈮及 最高0.015%之硼。 9. 如前述申請專利範圍中任一項之合金,其中冷卻該合金至 538°C至718°C之溫度,係以冷卻該合金至室溫之後加熱該 合金至538°C至718°C之溫度完成。 10. 如申請專利範圍第1項之合金,其中該二步驟熱處理在不 超過50小時内完成。 11. 一種處理合金之方法,該合金由12%至23.5%之鉻、13%至 23%之鉬、最高0.5%之鋁、最高0.02%之碳、最高1.5%之錳、 最高3%之鐵、最高2.5%之鈷、最高4.5%之鎢、最高0.015%之 硼、最高1.25%之鈮、最高0.75%之矽、最高2.2%之鈕、最高 0.7%之鈦及其餘之鎳加雜質所組成,其中合金之P值為31.2 至35·9,P定義為: P = 2.64 Al+0.19 Co+0.83 Cr—0.16 Cu+0.39 Fe+0.59 Μη +1.0 Mo+0.81 Zr+2.15 Si+1.06 V+0.39 W+0.68 Nb O:\79\79243-921124.DOC 5/LLM ~ 3 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 1224146 A B c D 々、申請專利範圍 +0.52 Hf+0.45 Ta+1.35Ti 此方法由: 在691°C至760°C老化該合金及至少8小時; 冷卻該合金至538t至718t之溫度; 維持該合金在此溫度範圍内至少8小時;及 冷卻該合金至室溫組成。 12. 如申請專利範圍第11項之方法,其中該二步騾熱處理在不 超過50小時内完成。 13. 如申請專利範圍第11項之方法,其中該合金在704°C至760°C 老化16小時、冷卻至593°C至621°C之溫度、維持在此溫度32 小時及冷卻至室溫。 14. 如申請專利範圍第11項之方法,其中該合金爐冷至538°C至 718°C之溫度。 15. 如申請專利範圍第11項之方法,其中冷卻該合金至至少538 °C之溫度,係藉冷卻該合金至室溫之後加熱合金至538°C至 718t之溫度完成。 16. 如申請專利範圍第11項之方法,其中該合金尚包括最高 1.25%之鈮及最高0.015%之硼。 O:\79\79243-921124.DOC 5/LLM ~ 4 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)1224146 A8 Patent Application No. 091114334 bs no Chinese Patent Application Replacement (November 1992) D8_ VI. Application Patent Scope 1. A Nickel-Medium-4 mesh alloy, from 12% to 23.5% chromium; 13 % To 23% of molybdenum; up to 3% of iron; at least one alloying element selected from the group consisting of Ming, boron, fatigue, lead, copper, thallium, iron, i-mon, wei, shred, 4a, tungsten, thorium and And other nickel and impurities; where the P value of the alloy is 31.2 to 35.9, and P is defined as: P = 2.64 Al + 0.19 Co + 0.83 Cr-〇.16 Cu + 0.39 Fe + 0.59 Μη +1.0 Mo +0.81 Zr + 2.15 Si + 1.06 V + 0.39 W + 0.68 Nb +0.52 Hf + 0.45 Ta + 1.35Ti and the alloy is heat-treated in two steps by: aging the alloy at 691 ° C to 760 ° C for at least 8 hours; cooling The alloy to a temperature of 538 ° C to 718t; maintain the alloy in this temperature range for at least 8 hours; and cool the alloy to room temperature composition. 2. For the alloy of item 1 of the patent application scope, wherein the two-step heat treatment is: aging the alloy at 704 ° C to 760 ° C for 16 hours; cooling the alloy to a temperature of 593 ° C to 621 ° C; maintaining the alloy At this temperature for 32 hours; and cool the alloy to room temperature composition. 3. For the alloy of item 1 in the scope of patent application, it also includes: a rare earth element with a maximum of 0.1%; copper with 2.0% of the south, O: \ 79 \ 79243-921124.DOC 5 / LLM-1-this paper size Applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1224146 A8 B8 C8 D8 VI. Niobium with patent application scope up to 1.25%;. Up to 0.04% phosphorus; Up to 0.75% silicon; Up to 0.03% sulfur ; Lithium up to 2.2%; titanium up to 0.7%; and news up to 0.35%. 4. As for the alloy of item 1 of the patent application scope, it contains thorium or lithium. 5. The alloy of item 1 in the patent application scope, wherein the alloy consists of: 12% to 23.5% chromium; 13% to 23% molybdenum; 0.12% to 0.2% aluminum; 0.002% to 0.006% carbon; 0.30 % To 0.34% manganese; 1.0% to 1.7% iron; 0.05% to 0.8% cobalt; 0.10% to 0.34% tungsten; and 0.002% to 0.005% boron composition. 6. If the alloy in the scope of application for item 5 of the patent, it also includes: 0.005% to 0.009% rhenium; 0.01% to 0.06% copper; 0.001% to 0.004% manganese; 0.002% to 0.005% phosphorus; 0.001% To 0.004% of sulfur; and O: \ 79 \ 79243-921124.DOC 5 / LLM * 2-This paper size applies to China National Standard (CNS) A4 specifications (210X 297 mm) 1224146 AB c D 6. Scope of patent application 0.01% to 0.02% vanadium. 7. The alloy of item 1 in the patent application scope, wherein the alloy element is: up to 0.5% aluminum; up to 0.02% carbon; up to 1.5% manganese; up to 3% iron; up to 2.5% lead; up to 4.5 % Tungsten; and boron composition up to 0.015%. 8. If the alloy in the scope of patent application No. 1, it also includes niobium up to 1.25% and boron up to 0.015%. 9. The alloy according to any one of the aforementioned patent applications, wherein cooling the alloy to a temperature of 538 ° C to 718 ° C is performed by cooling the alloy to room temperature and heating the alloy to 538 ° C to 718 ° C. The temperature is complete. 10. For the alloy of item 1 of the patent application scope, wherein the two-step heat treatment is completed in no more than 50 hours. 11. A method for treating alloys, the alloy consists of 12% to 23.5% chromium, 13% to 23% molybdenum, up to 0.5% aluminum, up to 0.02% carbon, up to 1.5% manganese, and up to 3% iron , Up to 2.5% cobalt, up to 4.5% tungsten, up to 0.015% boron, up to 1.25% niobium, up to 0.75% silicon, up to 2.2% button, up to 0.7% titanium and other nickel plus impurities , Where the alloy's P value is 31.2 to 35 · 9, and P is defined as: P = 2.64 Al + 0.19 Co + 0.83 Cr—0.16 Cu + 0.39 Fe + 0.59 Μη +1.0 Mo + 0.81 Zr + 2.15 Si + 1.06 V + 0.39 W + 0.68 Nb O: \ 79 \ 79243-921124.DOC 5 / LLM ~ 3-This paper size applies Chinese National Standard (CNS) A4 size (210 x 297 mm) 1224146 AB c D 々, patent application scope +0.52 Hf + 0.45 Ta + 1.35Ti This method consists of: aging the alloy at 691 ° C to 760 ° C for at least 8 hours; cooling the alloy to a temperature of 538t to 718t; maintaining the alloy in this temperature range for at least 8 hours; and The alloy was cooled to room temperature composition. 12. The method according to item 11 of the patent application scope, wherein the two-step heat treatment is completed in no more than 50 hours. 13. The method of claim 11 in which the alloy is aged at 704 ° C to 760 ° C for 16 hours, cooled to a temperature of 593 ° C to 621 ° C, maintained at this temperature for 32 hours, and cooled to room temperature . 14. The method of claim 11 in which the alloy furnace is cooled to a temperature of 538 ° C to 718 ° C. 15. The method according to item 11 of the patent application range, wherein cooling the alloy to a temperature of at least 538 ° C is accomplished by cooling the alloy to room temperature and heating the alloy to a temperature of 538 ° C to 718 t. 16. The method of claim 11 in which the alloy also includes niobium up to 1.25% and boron up to 0.015%. O: \ 79 \ 79243-921124.DOC 5 / LLM ~ 4 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW091114334A 2001-06-28 2002-06-28 Two step aging treatment for Ni-Cr-Mo alloys TWI224146B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/894,179 US6544362B2 (en) 2001-06-28 2001-06-28 Two step aging treatment for Ni-Cr-Mo alloys
US10/165,650 US6638373B2 (en) 2001-06-28 2002-06-07 Two step aging treatment for Ni-Cr-Mo alloys

Publications (1)

Publication Number Publication Date
TWI224146B true TWI224146B (en) 2004-11-21

Family

ID=26861569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091114334A TWI224146B (en) 2001-06-28 2002-06-28 Two step aging treatment for Ni-Cr-Mo alloys

Country Status (9)

Country Link
EP (1) EP1270754B1 (en)
JP (1) JP4206229B2 (en)
KR (1) KR20030003017A (en)
CN (1) CN1246490C (en)
AU (1) AU785025B2 (en)
CA (1) CA2391903C (en)
GB (1) GB2377944B (en)
MX (1) MXPA02006453A (en)
TW (1) TWI224146B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030003016A (en) * 2001-06-28 2003-01-09 하이네스인터내셔널인코포레이티드 AGING TREATMENT FOR Ni-Cr-Mo ALLOYS
US6860948B1 (en) * 2003-09-05 2005-03-01 Haynes International, Inc. Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
US7785532B2 (en) 2006-08-09 2010-08-31 Haynes International, Inc. Hybrid corrosion-resistant nickel alloys
JP4816950B2 (en) * 2006-11-10 2011-11-16 三菱マテリアル株式会社 Ni-base alloy excellent in corrosion resistance and wear resistance and conductor roll made of the Ni-base alloy
CN101333613B (en) * 2008-08-06 2010-06-09 钢铁研究总院 Nickel-based expansion alloy for metal connector of medium temperature plate type solid-oxide fuel battery
DE102011013091A1 (en) * 2010-03-16 2011-12-22 Thyssenkrupp Vdm Gmbh Nickel-chromium-cobalt-molybdenum alloy
US9761883B2 (en) 2011-11-03 2017-09-12 Johnson Controls Technology Company Battery grid with varied corrosion resistance
CN103740983B (en) * 2013-12-19 2015-11-04 重庆材料研究院有限公司 High tough corrosion-resistant ageing strengthening type nickel-base alloy and direct aging heat treating method
JP5725630B1 (en) * 2014-02-26 2015-05-27 日立金属Mmcスーパーアロイ株式会社 Ni-base alloy with excellent hot forgeability and corrosion resistance
RU2672647C1 (en) * 2017-08-01 2018-11-16 Акционерное общество "Чепецкий механический завод" Corrosive-resistant alloy
WO2021045183A1 (en) 2019-09-06 2021-03-11 日立金属株式会社 Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER
CN114045452A (en) * 2021-11-15 2022-02-15 贵州航宇科技发展股份有限公司 Forging and heat treatment method of Haynes242 alloy forging
CN114182139B (en) * 2021-12-10 2022-12-02 西北工业大学 Precipitation strengthening nickel-based high-temperature alloy and preparation method thereof
CN116716518B (en) * 2023-06-30 2024-02-09 江西宝顺昌特种合金制造有限公司 Hastelloy C-4 tube plate and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043810A (en) * 1971-09-13 1977-08-23 Cabot Corporation Cast thermally stable high temperature nickel-base alloys and casting made therefrom
US3871928A (en) * 1973-08-13 1975-03-18 Int Nickel Co Heat treatment of nickel alloys
JPS5837382B2 (en) * 1976-06-04 1983-08-16 三菱重工業株式会社 Heat treatment method for nickel-based heat-resistant alloy
US4129464A (en) * 1977-08-24 1978-12-12 Cabot Corporation High yield strength Ni-Cr-Mo alloys and methods of producing the same
US4245698A (en) * 1978-03-01 1981-01-20 Exxon Research & Engineering Co. Superalloys having improved resistance to hydrogen embrittlement and methods of producing and using the same
JPH064900B2 (en) * 1984-12-19 1994-01-19 日立金属株式会社 Corrosion resistance High strength Ni-based alloy
US5556594A (en) * 1986-05-30 1996-09-17 Crs Holdings, Inc. Corrosion resistant age hardenable nickel-base alloy
US5217684A (en) * 1986-11-28 1993-06-08 Sumitomo Metal Industries, Ltd. Precipitation-hardening-type Ni-base alloy exhibiting improved corrosion resistance
JPH03257131A (en) * 1990-03-07 1991-11-15 Mitsubishi Materials Corp Cutlery material made of ni-based alloy precipitation hardened with intermetallic compound and production thereof
US5360496A (en) * 1991-08-26 1994-11-01 Aluminum Company Of America Nickel base alloy forged parts
DE4203328C1 (en) * 1992-02-06 1993-01-07 Krupp Vdm Gmbh, 5980 Werdohl, De

Also Published As

Publication number Publication date
MXPA02006453A (en) 2004-05-05
JP2003027163A (en) 2003-01-29
GB2377944A9 (en) 2003-03-13
GB2377944A (en) 2003-01-29
CA2391903C (en) 2009-09-29
CN1246490C (en) 2006-03-22
AU5064502A (en) 2003-01-02
JP4206229B2 (en) 2009-01-07
GB0214712D0 (en) 2002-08-07
EP1270754A1 (en) 2003-01-02
EP1270754B1 (en) 2012-04-25
AU785025B2 (en) 2006-08-24
KR20030003017A (en) 2003-01-09
CN1412331A (en) 2003-04-23
CA2391903A1 (en) 2002-12-28
GB2377944B (en) 2005-03-23

Similar Documents

Publication Publication Date Title
AU784826B2 (en) Aging treatment for Ni-Cr-Mo alloys
Pike Development of a fabricable gamma-prime (γ′) strengthened superalloy
Eiselstein et al. The invention and definition of alloy 625
TWI224146B (en) Two step aging treatment for Ni-Cr-Mo alloys
JP6965364B2 (en) Precipitation hardening cobalt-nickel superalloys and articles manufactured from them
JP5727026B2 (en) High temperature low thermal expansion Ni-Mo-Cr alloy
EP0392484B1 (en) Corrosion-resistant nickel-chromium-molybdenum alloys
Pike HAYNES® 282™ alloy: a new wrought superalloy designed for improved creep strength and fabricability
WO2015159166A1 (en) Gamma - gamma prime strengthened tungsten free cobalt-based superalloy
AU2019249801B2 (en) High temperature titanium alloys
JP2010265550A (en) AGING TREATMENT FOR Ni-Cr-Mo ALLOY
US6638373B2 (en) Two step aging treatment for Ni-Cr-Mo alloys
Zulnuraini et al. Effect of Heat Treatment on Isothermal Oxidation of Fe-33Ni-18Cr Alloy at 1000° C
JPS6343457B2 (en)
KR20240034755A (en) Nickel-based alloy
JPH0684535B2 (en) Method for producing nickel-based alloy

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent