TWI223840B - Method of fabricating an organic device - Google Patents

Method of fabricating an organic device Download PDF

Info

Publication number
TWI223840B
TWI223840B TW091120149A TW91120149A TWI223840B TW I223840 B TWI223840 B TW I223840B TW 091120149 A TW091120149 A TW 091120149A TW 91120149 A TW91120149 A TW 91120149A TW I223840 B TWI223840 B TW I223840B
Authority
TW
Taiwan
Prior art keywords
layer
organic
mask
deposition
substrate
Prior art date
Application number
TW091120149A
Other languages
Chinese (zh)
Inventor
Max Shtein
Stephen R Forrest
Original Assignee
Univ Princeton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Princeton filed Critical Univ Princeton
Application granted granted Critical
Publication of TWI223840B publication Critical patent/TWI223840B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A method of fabricating an organic device is provided. A first layer is deposited over a substrate through a mask by a first process that results in the first layer having a first area of coverage. A second layer is then deposited over the substrate through the mask by a second process that results in the second layer having a second area of coverage that is different from the first area of coverage.

Description

12238401223840

圖18出示像素形狀因子P以mfp之函數表示。 圖19出示使用i 〇6 Alq3分子在&背景中使用响,微米 下自M〇nte.Cad。所得之模擬沉積結果,說明改變罩幕厚产 的影響1圖出示以罩幕厚度函數表示之形狀因子。又 響圖2。係出不模擬沉積結果’說明改變罩幕-基材間距的影 圖2i出示模擬之沉積結果,說明不同罩幕側壁幾何形狀 在各種罩幕厚度的影響。 圖22出示在圖21之不同側壁幾何形狀下,以罩幕厚度之 函數表示之形狀因子。 圖23出示在不同整體流速假設下,以位置函數表示之模 擬標準化高度。 ' 圖24出不杈擬0VPD沉積結果,其中載體氣體係具有一整 體流速。 圖25出示實驗〇vpd系統之示意圖。 圖26出示藉0VPD沉積於Si上之aiu層的顯微相片,及 接近該層外圍之邊緣的干涉顯微鏡結果。 -圖27出示沿著圖26之薄層半徑來自干涉顯微鏡之光強度 圖,及自該干涉圖型計算之對應像素高度圖。 圖28出示圖26之薄層的實驗測量圖型。 圖29出示在w = 7.5微米且在10·6托耳下s〜〇微米下,藉 由VTE經由網板圖型化而位於Si上的Alq3薄膜之掃描式電 子顯微相片,及在1 = 3 ·5微米,w = 7.5微米且s < 1微米下, 於〇· 1托耳下藉由OVPD經由鎳網板沉積於Si上的A|q3圖型 -7- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1223840 A7 B7 五、發明説明 5 ) 之掃描 式 電 子顯微相片。 圖 30 出 示 混合沉積之示意圖。 詳述 • 可 使 用 相 同罩幕一具有相同隙孔一使有 機 裝 置 之 金 屬 及 有機 層 圖 型 化。藉有機氣相沉積(OVPD)沉 積 之 有 機 層 進 行 自然 且 可 控 制之展佈,視方法參數諸如蒸 汽 壓 及 罩 幕 與 基 材之 幾 何 形 狀而定。藉真空熱蒸發(VTE)所 沉 積 之 金 屬 層 通常 具 有 遠 較為低之展佈性。結果,可經 由 相 同 罩 幕 隙 孔 沉積 不 同 圖 型,使得經圖型化之有機層大 於 經 圖 型 化 之 金 屬層 〇 該 有 機裝置可為有機發光裝置(OLED), 或 不 同 類 型 之有 機 裝 置 ^諸如有機電晶體或有機太陽 能 電 池 〇 可 製 造 各式 各樣 之 裝置,包括有機被動陣列型顯 示 器 及 有 機 主 動 陣列 型 顯 示 器。 有 機 層 及 後續金屬層可依序經由相同孔 板 沉 積 〇 因 為 沉 積方 法 之 差 異,有機層可具有較大之展佈 性 7 該 金 屬 層 可 完全 沉 積 於 有機層上,而不使金屬層與位 於 有 機 層 底 下 之 任何層 接 觸 。因此可有利地避免短路。此 種 方 法 有 助 於 製 造有 機 裝 置 ,諸如有機發光裝置(OLED)。 OLED 使 用在裝置兩側施加電壓時發光之 有 機 薄 膜 〇 OLED係為ί 日漸普遍之應用技術,諸如平 板 顯 示 器 Λ m 4 SW 明 、及 後 昭 $ \\\ 光 。OLED結構包括雙重異質結 構 單 一 異 質 結 構及 單 層 可使用各式各樣之有機材料以製造OLED 〇 美. 國專 利 第 5, 707,745號描述數種OLED材料 及 結 構 , 該 專 利 係以 提 及 方 式完全併入本文中。 -8- 衣紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 1223840 A7 ____________B7 五、發明明(一6 一) " ~' '- 許多現代有機電子及奈米結構裝置需要微米大小之側向 圖型解析度,但與習用微影術不相容。經常使用有機薄膜 之原位圖型化取代。FIG. 18 shows the pixel shape factor P as a function of mfp. Figure 19 shows the use of iO6 Alq3 molecules in & background from Monte.Cad. The simulated deposition results obtained illustrate the effect of changing the thickness of the mask. Figure 1 shows the shape factor as a function of mask thickness. Sounds like Figure 2. The results of non-simulated deposition are shown to illustrate the effect of changing the mask-substrate spacing. Figure 2i shows the simulated deposition results, illustrating the effect of different mask sidewall geometries on various mask thicknesses. Figure 22 shows the form factor as a function of the thickness of the mask under the different sidewall geometries of Figure 21. Figure 23 shows the simulated normalized height as a function of position under different overall velocity assumptions. 'Figure 24 shows the results of a pseudo-OVD deposition, in which the carrier gas system has an overall flow rate. Figure 25 shows a schematic diagram of the experimental OVPD system. Figure 26 shows a photomicrograph of the aiu layer deposited on Si by 0VPD and the results of an interference microscope near the edge of the layer. -Figure 27 shows a light intensity map from an interference microscope along the thin layer radius of Figure 26 and the corresponding pixel height map calculated from the interference pattern. FIG. 28 shows an experimental measurement pattern of the thin layer of FIG. 26. Figure 29 shows a scanning electron micrograph of an Alq3 film on Si at w = 7.5 microns and s ~ 0 microns below 10.6 Torr through stencil patterning, and at 1 = 3 · 5 microns, w = 7.5 microns and s < 1 micron, A · q3 pattern deposited on Si by OVPD via nickel stencil under 0.1 Torr Scanning electron micrograph of standard (CNS) A4 specification (210X297 mm) 1223840 A7 B7 V. Description of invention 5). Figure 30 shows a schematic of mixed deposition. Details • The metal and organic layers of an organic device can be patterned using the same mask, with the same apertures. The organic layer deposited by organic vapor deposition (OVPD) is used for natural and controllable distribution, depending on method parameters such as vapor pressure and the geometry of the mask and substrate. Metal layers deposited by vacuum thermal evaporation (VTE) usually have much lower spreadability. As a result, different patterns can be deposited through the same mask gap holes, so that the patterned organic layer is larger than the patterned metal layer. The organic device may be an organic light emitting device (OLED), or a different type of organic device ^ Such as organic transistors or organic solar cells. Various devices can be manufactured, including organic passive array displays and organic active array displays. The organic layer and subsequent metal layers can be sequentially deposited through the same orifice plate. Because of the difference in deposition methods, the organic layer can have greater spreadability. 7 The metal layer can be completely deposited on the organic layer without the metal layer and the Any layer under the organic layer is in contact. Therefore, short circuits can be advantageously avoided. This method helps to make organic devices such as organic light emitting devices (OLED). OLED uses organic thin film that emits light when voltage is applied to both sides of the device. OLED is an increasingly common application technology, such as flat panel display Λ m 4 SW, and later $ \\\ light. OLED structures include dual heterostructures, single heterostructures, and single layers. A variety of organic materials can be used to make OLEDs. US Patent No. 5,707,745 describes several OLED materials and structures. This patent refers to Ways are fully incorporated into this article. -8- Applicable to China National Standard (CNS) A4 size (210 x 297 mm) 1223840 A7 ____________ B7 V. Invention (1 6 1) " ~ ''-Many modern organic electronics and nano-structured devices need Micron-sized lateral pattern resolution, but not compatible with conventional lithography. In situ patterning of organic thin films is often used instead.

本發明具體貫例可包括在沉積各種材料層之間移動孔板 。該移動之描述可參照代理人待審案件編號1〇〇2〇/1丨5〇1 之專利申清案’其以提及方式完全併入本文中。可藉著如 下移動罩幕(或基材)而製造裝置陣列。使用配置於第一位 置之罩幕沉積第一有機層及第一金屬層之後,該罩幕移動 至相對於第一位置決定之第二位置。可於經由位於第二位 置之罩幕沉積第二有機層,隨之第二金屬層。因為該第二 位置係相對於第一位置而決定,故可有利地避免耗費成本 及時間之配向步驟。沉積該第二有機層及該第二金屬層之 後,該罩幕可移動至相對於第二位置決定之第三位置。可 經由位於第三位置之罩幕沉積第三有機層,及後續之第三 金屬層。可有利地使用此種方法,例如,製造三色〇LED 顚示為’其中該第一、第二及第三有機層各用以發射不同 色彩之光。 本發明具體實例可用以製造具有在5微米或更大之解析 度下明確界定之多色彩OLED陣列。事實上,並非每種材 料(金屬與有機物相反)都需要個別配向步驟,各色彩亦然 ,增加有效之解析度。 本發明具體實例可包括使用有機氣相沉積(OVPD)。有 機氣相沉積之描述可參照代理人待審編號1 〇〇2〇/37、 1 0020/3 702、及1 0020/3703之專利申請案,其係以提及方 -9 - '衣紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 玎 線 1223840 f—τ-—-~一 __ 五、發明説明(7 ) ' 式元全併入本文中。 真空熱蒸發(V Τ E) 圖1出示一真空熱蒸發(VTE)系統1〇〇。將源極u〇加熱, 使得材料蒸發至真空艙1 20内。該材料經由真空擴散至基 材1 3 0上,而沉積於此。 圖2出示具有罩幕22〇之vte系統200的更詳細圖示。源極 2 1〇提供有機材料,其擴散至真空内,大小為1〇_6至ι〇·7托 耳。該有機材料經由真空且經由孔板320擴散。具有隙孔 222之孔板220係配置於與基材23〇距離為s之處。有機材料 通經該孔板之後,沉積於基材23〇上,以形成經圖型化之 有機層240。 因為VTE之低壓,.分子平均自由路徑λ (亦稱為冚邙)可 能相當大。例如,在1〇-7托耳下,又約為!米。結果,小於 5 〇微米之罩幕-基材間距會產生具有明確界定邊緣而最高 達〜100微米之像素,其中源極_基材於艙t之距離係為1〇 至1〇〇厘米之大小。基材23〇與源極21 〇之間的距離以小於 分子平均自由路徑為佳,使得分子之間於真空中的碰撞達 最小值,在自基材230至源極210具有明確視線而由罩幕 2 20勿&之處沉積圖型化層24〇。使用,可得到具有明 確基底之梯形的像素輪廓。至10'13帕司卡係為VTE壓 力的較佳範圍。 因為源極2 1〇並非單一點,故圖型化層24〇可稍大於隙孔 222。參照圖2,圖型化層24〇之底長丨;係表示為: 裝 η 線 •10-Specific embodiments of the invention may include moving the orifice plate between depositing various material layers. The description of the move can be referred to the patent pending case of the agent's pending case No. 1002/1/1501, which is fully incorporated herein by reference. The device array can be manufactured by moving the mask (or substrate) as follows. After the first organic layer and the first metal layer are deposited using a mask disposed in the first position, the mask is moved to a second position determined relative to the first position. A second organic layer may be deposited through a mask located at the second position, followed by a second metal layer. Since the second position is determined relative to the first position, it is advantageous to avoid costly and time-consuming alignment steps. After the second organic layer and the second metal layer are deposited, the mask can be moved to a third position determined relative to the second position. A third organic layer and a subsequent third metal layer may be deposited through a mask located at the third position. Such a method may be advantageously used, for example, a tri-color OLED is shown as' wherein the first, second, and third organic layers are each used to emit light of different colors. Specific embodiments of the present invention can be used to make multi-color OLED arrays with well-defined resolutions of 5 microns or greater. In fact, not every material (metals and organics are the opposite) requires an individual alignment step, as do the colors, increasing effective resolution. Specific examples of the invention may include the use of organic vapor deposition (OVPD). For the description of organic vapor deposition, please refer to the pending patent applications of the agents No. 1 200/37, 1 0020/3 702, and 1 0020/3703. Applicable to China National Standard (CNS) A4 specification (210X297 mm) decoration line 1223840 f—τ -—- ~~ __ 5. Description of the invention (7) The formula element is incorporated herein. Vacuum Thermal Evaporation (VT) Figure 1 shows a vacuum thermal evaporation (VTE) system 100. The source electrode u is heated, so that the material is evaporated into the vacuum chamber 120. The material is vacuum diffused onto the substrate 130 and deposited there. FIG. 2 shows a more detailed illustration of the vte system 200 with a cover 22o. The source electrode 2 10 provides an organic material which diffuses into a vacuum and has a size of 10-6 to ι7 · 7 Torr. The organic material is diffused through a vacuum and through the orifice plate 320. The orifice plate 220 having the gap holes 222 is disposed at a distance of s from the substrate 23. After the organic material passes through the orifice plate, it is deposited on the substrate 23 to form a patterned organic layer 240. Due to the low voltage of VTE, the average molecular free path λ (also known as 冚 邙) may be quite large. For example, at 10-7 Torr, about again! Meter. As a result, a mask-to-substrate spacing of less than 50 microns will produce pixels with clearly defined edges up to ~ 100 microns, where the distance between the source and the substrate from the chamber t is between 10 and 100 cm. . The distance between the substrate 23o and the source electrode 21o is preferably smaller than the average free path of the molecules, so that the collision between the molecules in a vacuum reaches a minimum. The distance from the substrate 230 to the source 210 has a clear line of sight. The patterning layer 24 is deposited at the < 2 > Using, you can get a trapezoidal pixel contour with a clear base. To 10'13 Pascal series is a better range of VTE pressure. Because the source electrode 2 10 is not a single point, the patterning layer 24 may be slightly larger than the aperture 222. Referring to FIG. 2, the bottom length of the patterning layer 24o is represented by: η line • 10-

1223840 A7 B7 _ _ | --- - 五、發明説明(8 ) t 1 Ο+ί)· (/1+/2) 2 h (l) 其中s =罩幕-基材間距,t =罩幕厚度,11 =源極寬度, h二隙孔寬度,且h=源極-罩幕距離。此式表示極接近實驗 觀察之d值。 有機氣相沉積 有機氣相沉積(〇 V P D)極適於沉積供顯示器、電晶體及 光電伏打使用之非晶形及結晶有機薄膜。其與真空熱蒸發 完全相異之處在於使用載體氣體以將有機蒸汽輸送至沉積 搶内’分子於此處擴散經過一邊界層,而物理性吸附於該 基材上。該載體氣體以惰性為佳。控制摻雜劑濃度、純度 、及所沉積薄膜之結晶度可大幅改善真空熱蒸發(Vte)。 此情況下,吾人自實驗及模型試驗細節檢測來自氣相之薄 膜沉積,強調孔板圖型化一製造以OLED為主之全色彩顯 示器的一個關鍵步驟。雖然因為分子平均自由路徑一般 >3 0厘米,使得相對地容易在 < 丨〇-6下使用真空熱蒸發達到 清楚界定之像素,但此情況在〇VPD下更為複雜。因為 OVPD—般係於〉10·2托耳的壓力下進行,〇丨微米〈几以厘 米,故在罩幕平面附近之分子間撞擊增高之頻率導致像素 具有相對較多之擴散邊緣。介於丨至1 〇3帕司卡範圍内之沉 積壓力亦佳,分子平均自由路徑(mfp)個別係由103至1毫米 。當然,在此項研究中,吾人顯示可在適當之基材溫度、 反應器壓力、及罩幕幾何形狀之條件下達到圖型銳度約1 微米之沉積。吾人結果顯示在〇vpD之不同材料輸送過程1223840 A7 B7 _ _ | ----V. Description of the invention (8) t 1 Ο + ί) · (/ 1 + / 2) 2 h (l) where s = cover screen-substrate spacing, t = cover screen Thickness, 11 = source width, h 2 slot width, and h = source-mask distance. This formula represents the value of d that is very close to the experimental observation. Organic Vapor Deposition Organic Vapor Deposition (0 V P D) is ideal for depositing amorphous and crystalline organic thin films for displays, transistors, and photovoltaics. It is completely different from vacuum thermal evaporation in that a carrier gas is used to transport organic vapor to the deposition. The molecules diffuse here through a boundary layer and are physically adsorbed on the substrate. The carrier gas is preferably inert. Controlling dopant concentration, purity, and crystallinity of the deposited film can greatly improve vacuum thermal evaporation (Vte). In this case, we have tested the deposition of thin film from the gas phase from the details of experiments and model tests, emphasizing the patterning of orifice plates, a key step in manufacturing full-color displays based on OLEDs. Although the average free path of the molecule is generally > 30 cm, it is relatively easy to use vacuum thermal evaporation at < 丨 〇-6 to reach clearly defined pixels, but this situation is more complicated under OVPD. Because OVPD is generally performed under a pressure of> 10 · 2 Torr and 0 μm (several centimeters), the increased frequency of intermolecular impact near the plane of the mask causes the pixels to have relatively more diffuse edges. The deposition pressure in the range of 丨 to 10 Pascal is also good, and the average molecular free path (mfp) is individually from 103 to 1 mm. Of course, in this study, we have shown that deposition with a pattern sharpness of about 1 micron can be achieved with the appropriate substrate temperature, reactor pressure, and hood geometry. Our results show the different material delivery processes at 0vpD

1223840 A7 B7 五、發明説明(9 ) 一游離分子、擴散及該兩者之中間體一下生長有序之有機 薄膜的動力學,助於確認有效之加工條件,且引導OVPD 糸統之設計。 有機氣相沉積(OVPD)之技術愈來愈廣泛地使用以沉積 供顯示器、電晶體、及光電伏打設備使用之非晶形及結晶 有機薄膜。因為與真空熱蒸發(VTE)比較下之低操作成本 及放大簡易性,故分子有機LED之製造特別具有吸引力。 低壓OVPD (LP-OVPD)已於先前技藝中使用於沉積光學非 線性鹽、光學泵動有機雷射、有效之有機發光二極體 (OLED)、及戊省通道薄膜電晶體(TFT)。因為OVPD原先 即因使用載體氣體而與VTE相異,故其量輸送機制亦完全 相異。例示OVPD中具有中間(0.1-100)康生(Knudsen)數之 薄膜沉積,兩者分以實驗進行且藉由Monte-Carlo電腦模擬 。尤其吾人經由孔板檢測有機薄膜之圖型化,尤其有關在 相同基材上之多色彩像素沉積,例如使用於全色彩OLED 顯示器製造。 藉OVPD模擬有機薄膜圖型化亦可檢測過渡流動過程。 康生(Knudsen)數Kn = mfp/d以分子平均自由路徑mpf除 以臨界裝置尺寸d定性氣體流動方法中所包括之不同輸送 過程。當Κη<<1時,分子-分子撞擊頻率遠高於分子壁撞擊 ,質傳係以Poiseuille流動描述。與用以生長無機半導體薄 膜及異質結構相同之金屬-有機化學氣相沉積(MOCVD)經 常1生瘅―勢過程中發生。 就未經圖型化之薄膜的沉積而言,OVPD —般係於 -12- 衣紙張尺度通用中國國家標準(CNS) A4規格(210 X 297公釐) 1223840 A7 __ B7 五、發明説明(1〇 ) Κη<<1下發生。然而,就高解析度薄膜圖型化之目的而言 ,以其他流動過程為佳,視Pdep及d是否對應於圖蜇尺寸、 解析度、或隙孔寬度而定。 雖然通經小通道之分子流動先前已使用各種不同技術 (分子束磊晶、氣體給料、薄膜氣體滲透、氣溶膠過濾等) 而針對Kn範圍調整,可變瞄準通量係具有如圖2所示之— 般特性,結果無法輕易,亦無法精確地應用於藉由〇VPD 進行有機薄膜之微圖型化。分子束研究一般包括相同分子 或原子之極稀薄物流。相反地,氣體給料實驗使用致密氣 體及大型通道(直徑>>mfp),流動之流體動力學係由 Navier-Stokes方程式所描述。氣體流型式一般亦不受致密 表面之存在所影響。在多孔性介質中之氣體及由氣體驅動 之粒子傳送通常與整體變數有關。技術文獻包括在如 同0VPD之Kri值下,數種在通孔及溝渠中之反應離子蝕刻 及、’儿積的擴散-及以Monte-Carlo為主之研究,唯係次微米 隙孔尺寸。此項研究使用經圖型化沉積實驗及M〇nte_Carl〇 模擬之組合物,以研究藉0VPD進行之微圖型化。該處理 係藉由忽略氣相及表面反應及分子或粒子再發射一在反應 性沉積或蝕刻中需考慮一而簡化。 於0VPD中’載體氣流於基材上生成流體力學邊界層, 由1毫米至〜5厘米深度。先前研究中,薄膜沉積速率顯然 受限於橫越此邊界層之擴散。該有機物通常為少數種類 (< 1莫耳百分比),擴散通經載體氣體背景,易於途中與基 材撞。 -13- 本紙狀度it用巾s國家標準(C@A4規格(21QX 297公€---- 1223840 A7 一唯_______Β7 五、發明説明'~ --——— 當响係為圖型尺寸時,經圖型化OVPD之Monte-Cad。 挺擬顯示沉積邊緣經常變得較不明$。圖㉟解析度之控制 係藉由改變mfp、整體氣體流速、及隙孔幾何形狀而達成 。孩Monte-Cado模擬及〇VPD實驗證明可得到小達以敌米 之圖型,沉積輪廓與壓力、隙孔形狀及與基材之距離有密 切關係。亦發現與mfp及整體流速之相依性較低。操作條 件及隙孔幾何形狀係與達成較高解析度者相同。 對OVPD具有重要性之程序參數係包括蒸發及反應器壁 溫度(Tevap,Twan),載體氣體流速(v)及沉積壓力(Pdep),較 仏薄膜〉儿積條件之特徵為1 pa<pdep<1〇3 Pa,5〇〇K<Tevap, Twall<700K,且 10 sccm<*v<1〇〇() sccm。該程序容限中, 有機分子之蒸汽壓係為丨〇-2至丨〇 1帕司卡,使有機物質保持 揮發性且仍具化學安定性,而氣相分子擴散速率係為整 體載體氣體流動之大小,促進薄膜沉積速率及均勻性。薄 層厚度控制可藉由機械擋閘或藉著調整* V或兩者之組合而 達成。較佳之OVPD程序容限如下。源極壓力之下限係〜q 帕司卡。低於此值時,自源極入口至基材之壓力降不足以 驅動該氣流,有機物之輸送會變成由擴散支配,而難以控 制。沉積區中之壓力上限Pdep係約〜丨仟帕司卡,受限於有 機蒸汽隨壓力而降低之擴散性α在由1至1 〇3帕司卡之壓力 範圍内’分子輸送係自VTE所包括之康生(Knudsen)數.值 變化至擴散數值,而沉積之特性可大幅改變。 圖3係出示有機氣相沉積(0VPD)系統3〇〇。載體氣體通 過源極構件3 10上,有機物質於此處蒸發成載體氣體。可 -14 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) -- 1223840 A7 B7 五、發明説明(12 ) '~~— -— 使用多個源極構件(未示)提供有機物質之混合物,且/或於 丨同時間提供不同之有機物f。載體氣體隨之通經與基材 3 30距離5之網板320。該載體氣體隨之撞擊於基材33〇上’ 有機物質於此處物理性吸附於該基材表面上。基材33〇可經 冷卻。系統300之邊壁340可加熱以降低或防止有機物質沉 積於邊壁340上。該有機物質可為小分子物質,或其可為 聚合物材料。 .1223840 A7 B7 V. Description of the invention (9) The kinetics of an organic film growing in a free molecule, diffusion, and the intermediate between them at once, helps to confirm the effective processing conditions, and guides the OVPD system design. Organic vapor deposition (OVPD) technology is increasingly used to deposit amorphous and crystalline organic thin films for use in displays, transistors, and photovoltaic devices. The manufacturing of molecular organic LEDs is particularly attractive because of their low operating costs and ease of amplification compared to vacuum thermal evaporation (VTE). Low-voltage OVPD (LP-OVPD) has been used in previous technologies to deposit optical non-linear salts, optically pumped organic lasers, effective organic light emitting diodes (OLEDs), and channel thin film transistors (TFTs). Because OVPD was originally different from VTE due to the use of carrier gas, its volume delivery mechanism was also completely different. An example is a thin film deposition with an intermediate (0.1-100) Knudsen number in OVPD, both of which were performed experimentally and simulated by a Monte-Carlo computer. In particular, we detect the patterning of organic thin films through an orifice plate, especially regarding the deposition of multi-color pixels on the same substrate, such as used in the manufacture of full-color OLED displays. OVPD simulation of organic thin film patterning can also detect the transition flow process. The Knudsen number Kn = mfp / d is divided by the molecular mean free path mpf divided by the critical device size d and the different transport processes included in the qualitative gas flow method. When Kη < 1, the molecular-molecular impact frequency is much higher than the molecular wall impact. Mass transfer is described by Poiseuille flow. Metal-organic chemical vapor deposition (MOCVD), which is the same as used to grow inorganic semiconductor films and heterostructures, usually takes place during a pseudo-potential process. For the deposition of unpatterned thin films, OVPD—generally -12—clothing and paper size common Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1223840 A7 __ B7 V. Description of the invention (1 〇) Kn < < 1 occurred. However, for the purpose of patterning a high-resolution film, other flow processes are preferred, depending on whether Pdep and d correspond to the size, resolution, or aperture width of the figure. Although the molecular flow through the small channel has previously used a variety of different technologies (molecular beam epitaxy, gas feed, membrane gas permeation, aerosol filtration, etc.) and for the Kn range adjustment, the variable aiming flux has shown in Figure 2 The general characteristics, the results cannot be easily and accurately applied to the micropatterning of organic thin films by 0VPD. Molecular beam research generally involves extremely thin streams of the same molecules or atoms. In contrast, gas feed experiments use dense gas and large channels (diameters> mfp). The fluid dynamics of the flow is described by the Navier-Stokes equation. Gas flow patterns are generally not affected by the presence of dense surfaces. Gas and gas-driven particle transport in porous media are often related to global variables. The technical literature includes several types of reactive ion etching in through-holes and trenches, and the diffusion of 'child products' under the same Kri value of 0VPD, and studies mainly based on Monte-Carlo, only sub-micron gap size. This study used a patterned deposition experiment and a composition simulated by Monte_Carl〇 to study micropatterning by 0VPD. The process is simplified by ignoring gas-phase and surface reactions and molecular or particle re-emissions-one that needs to be considered in reactive deposition or etching. In 0VPD, the carrier gas flow generates a hydrodynamic boundary layer on the substrate, with a depth of 1 mm to ~ 5 cm. In previous studies, the film deposition rate was obviously limited by diffusion across this boundary layer. The organics are usually a few species (< 1 mole percent), diffuse through the carrier gas background, and easily collide with the substrate on the way. -13- National standard for paper-like degree towels (C @ A4 specifications (21QX 297 € ---- 1223840 A7) only _______ Β7 V. Description of the invention '~ ---—— When the ring is a figure size The Monte-Cad of the OVPD is patterned. It seems that the sedimentary edges often become less clear. The control of the resolution of the figure is achieved by changing the mfp, the overall gas flow rate, and the geometry of the aperture. -Cado simulation and OVPD experiment proves that it is possible to obtain a pattern of Dida and dimi, the deposition profile is closely related to the pressure, the shape of the pores and the distance from the substrate. It is also found that the dependence on mfp and the overall flow rate is low. Operating conditions and aperture geometry are the same as those that achieve higher resolution. The program parameters that are important to OVPD include evaporation and reactor wall temperature (Tevap, Twan), carrier gas flow rate (v), and deposition pressure (Pdep ), Compared to thin film> The product condition is characterized by 1 pa < pdep < 103 Pa, 500K < Tevap, Twall < 700K, and 10 sccm < * v < 100 () sccm. The program content In the limit, the vapor pressure of organic molecules is from 〇〇-2 to 〇〇1 Pascal, so that organic matter It remains volatile and still chemically stable, and the molecular diffusion rate of the gas phase is the size of the overall carrier gas flow, which promotes the film deposition rate and uniformity. The thickness of the thin layer can be controlled by mechanical blocking or by adjusting * V or The combination of the two is achieved. The better OVPD program tolerance is as follows. The lower limit of the source pressure is ~ q Pascal. Below this value, the pressure drop from the source inlet to the substrate is not enough to drive the air flow, organic matter. The transport will become dominated by diffusion, which is difficult to control. The upper limit of pressure Pdep in the deposition zone is about ~ 丨 Pascal, limited by the diffusibility of organic vapor that decreases with pressure α from 1 to 103 psi The molecular transport within the pressure range of the card changes from the Knudsen number value included in the VTE to the diffusion value, and the characteristics of the deposition can be greatly changed. Figure 3 shows the organic vapor deposition (0VPD) system 300. The carrier gas passes through the source member 3 and 10, and the organic substances are evaporated into the carrier gas here. May-14-This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 public love)-1223840 A7 B7 V. Invention description 12) '~~ — -— Use multiple source components (not shown) to provide a mixture of organic materials, and / or provide different organic materials f at the same time. The carrier gas then passes through the substrate 3 30 30 5 Stencil 320. The carrier gas then hits the substrate 33. Organic substances are physically adsorbed on the surface of the substrate. The substrate 33 can be cooled. The side wall 340 of the system 300 can be heated to Reduce or prevent deposition of organic matter on the side wall 340. The organic substance may be a small molecule substance, or it may be a polymer material. .

空間性且暫時性地分隔0VPD中之蒸發及沉積使得可個 別且準確地控制沉積速率、摻雜劑濃度、及分子有機薄膜 之塗層均勻性。該沉積壓力以介於約〇 · 〇 1及1 〇托耳之範圍 内為佳。可生長非晶形薄膜(例如fNPD , Alq3),及結晶 薄膜(例如^,戊省)C 於OVPD中’吸收性有機分子係均句分佈於整體基材面 積上其可視為接近罩幕之點狀蒸發源極的擬無限集合體 | OVPD所使用之0.0 1至1 〇托耳較佳壓力範圍内,載體氣體 分子(例如氮,氬)之;I個別係厘米至〇1微米。因此, 使用微米大小之孔板圖型,分子於不同壓力下撞擊於罩幕 上方及下方之頻率變化會導致像素輪廓大幅變化,如圖4 所示。圖4出示〇VPD系統400。使用,載體氣體以輸送來自 源極、(未出示於圖4,參照例如圖3 )之有機分子。該分子具 有平均自由路徑λ。罩幕4 1 0係配置於基材4 2 0上方距離s 處。有機層430係經由罩幕410中之隙孔412沉積於基材42〇 上。因為載體氣體中之分子間撞擊,有機物質之明顯沉積 可能發生於罩幕底下距離d處非直接位於隙孔4丨2上方之區 I 一_Γ 本紙張尺度適财S國王標準(CNS) A4規格(⑽,響公董)-—----— 1223840 A7 B7 五、發明説明(13 域中。該沉積較佳係於壓力範圍之較低值處進行,使得平 均自由路徑大於在高壓下者,而d係對應低值,以達到有 利於全色彩顯示應用之微米級解析度。 就OVPD之高度分子性質的限制而言,吾人可陳述載體 氣體速度相對於平均分子速度之比例^仏以約〇 ^至丨為佳 即LP-0 VPD中之流動係低於音波方法或較廣。因為所使 用之壓力低,故雷諾數(Reyn〇Ms number)Re完全在層流方 法範圍内(Re<<2000)。基材附近之葛休夫數值(Grash〇f number)亦低於i,意味著自然對流在接近基材之氣體混合 中不重要。就本發明沉積動力學之討論而纟,到達基材之 輸运到達基材表面之擴散、及表面擴散與固定化最有相 關性。因為非晶形薄膜之有效沉積係包括最小之表面擴散 及解吸’較佳係使用可實際應用之最低基材溫度。此情況 下發生兩項結果·· kads>>kdes,而結晶速率匕極高,音指表 面擴散之有機分子遠較其擴散至基材^ 因r,面擴散及固定化係極為快速,且不視為=晶 形厚膜之速率限制。該速率限制步驟因此係到達表妗 送及到達基材表面之擴散。 & 如先前研究所示,整體沉積速率~”可表示為:Spatially and temporarily separating evaporation and deposition in 0VPD allows individual and accurate control of deposition rate, dopant concentration, and coating uniformity of molecular organic thin films. The deposition pressure is preferably in the range of about 0.01 and 10 Torr. Can grow amorphous films (such as fNPD, Alq3), and crystalline films (such as ^, E), in OVPD 'absorptive organic molecules are evenly distributed on the entire substrate area, which can be regarded as a dot close to the curtain Quasi-infinite aggregates of evaporation source | Within the preferred pressure range of 0.0 1 to 10 Torr used by OVPD, the carrier gas molecules (eg nitrogen, argon); I are individually centimeters to 0.1 micron. Therefore, using a micron-sized orifice plate pattern, the frequency change of molecules hitting above and below the mask under different pressures will cause the pixel profile to change significantly, as shown in Figure 4. FIG. 4 shows the OVPD system 400. The carrier gas is used to transport organic molecules from the source (not shown in FIG. 4, see, for example, FIG. 3). The molecule has an average free path λ. The mask 4 10 is arranged at a distance s above the substrate 4 2 0. The organic layer 430 is deposited on the substrate 42 through the holes 412 in the mask 410. Because of the intermolecular collision in the carrier gas, the obvious deposition of organic substances may occur in the area that is not directly above the aperture 4 丨 2 at a distance d under the mask I__ This paper is suitable for King S Standard (CNS) A4 Specifications (⑽, Xiang Gongdong) --------- 1223840 A7 B7 V. Description of the invention (13 domains. The deposition is preferably performed at a lower value in the pressure range, so that the average free path is greater than under high pressure D is corresponding to a low value to achieve micron-level resolution that is conducive to full-color display applications. With regard to the limitation of the high molecular nature of OVPD, we can state the ratio of the carrier gas velocity to the average molecular velocity About 0 ^ to 丨 is better, that is, the flow system in the LP-0 VPD is lower than the sonic method or wider. Because the pressure used is low, the Reynoms number Re is completely within the laminar flow method range (Re & lt < 2000). The Grashof number near the substrate is also lower than i, meaning that natural convection is not important in the mixing of gases close to the substrate. , Transport to the substrate Surface diffusion and surface diffusion have the most correlation with immobilization. Because the effective deposition of amorphous thin films includes minimal surface diffusion and desorption, it is better to use the lowest substrate temperature that can be practically used. In this case two cases occur Results · kads > kdes, and the crystallization rate is extremely high, the organic molecules diffused on the surface of the finger are far more diffuse than the substrate ^ due to r, the surface diffusion and immobilization system is extremely fast, and is not considered = crystalline The rate limiting of the film. This rate limiting step is therefore a diffusion that reaches the surface and reaches the surface of the substrate. &Amp; As shown in previous studies, the overall deposition rate ~ "can be expressed as:

rdep --^ 參 RTrdep-^ see RT

V ηνδ/Don (2) 其中P〇r&/RT係為有機物質之濃度,V點係為 動速率,㈣為BL厚度,系為有 ^ 十於载體氣體 I _ - 16 - 本紙張尺度適用中國國家標準(CNS} A4規格㈣X 297公爱厂 a 1223840V ηνδ / Don (2) where P〇r & / RT is the concentration of organic matter, V point is the dynamic rate, ㈣ is the thickness of BL, and is ^ ten or less than the carrier gas I _-16-this paper size Applicable to China National Standard (CNS) A4 size ㈣X 297 Gongai Factory a 1223840

中之擴散性。動黏度本身係視壓力而定:V:"/P,其中P P/RT杧加月景氣體壓力pdeP可能導致沉積速率rdep因為 兩項相反之因素而亞線性地(subHnear)降低··擴散性D。^ 之降低使rdep降低,而占之降低改善輸送速率。此式可用以 預測特定程序條件下之整體沉積速率,與表面分子擴散模 型聯合,用以預測多晶性薄膜之結晶試劑及晶粒大小。 基材附近之系統可於氣體垂直噴射撞擊於平板上、接近 平板處成為停滯之均勻流動,或抗擊於旋轉盤上之流動(改 善塗層均勻性)時進行工程加工及模型實驗;所有情況下, 5皆採用以下形式:Diffusion. The dynamic viscosity itself depends on the pressure: V: " / P, where PP / RT plus moonscape gas pressure pdeP may cause the deposition rate rdep to decrease sub-linearly (subHnear) due to two opposite factors. Diffusion D. ^ The decrease makes rdep lower, and the decrease makes it improve the delivery rate. This formula can be used to predict the overall deposition rate under specific program conditions, combined with the surface molecular diffusion model, to predict the crystallization reagent and grain size of polycrystalline thin films. The system near the substrate can be subjected to engineering processing and model experiments when the vertical jet of gas impinges on the plate, close to the plate and becomes a stagnant uniform flow, or resists the flow on the rotating disk (improves the coating uniformity); in all cases , 5 all take the following forms:

其中V係為氣體之動黏度,且a係為隨V點及/或旋轉速率 線性降低之量,使該式可直接用以估計5,當v係為厘米2 / 秒時單位為厘米,且a係使用單位為厘米/秒之整體流動軸 向速度。就OVPD所使用之較佳條件及此項研究而言,諸 如T — 275 C ’Pdep = 〇.2托耳且V點=15 seem氮,5約等於1 至10厘米。然而,因為5並非遠小於一般沉積艙之軸向尺 寸(1至30厘米),故邊界層一辭需謹慎地使用。Where V is the kinematic viscosity of the gas, and a is the amount that decreases linearly with the V point and / or the rotation rate, so that this formula can be directly used to estimate 5, when v is cm2 / s, the unit is cm, and a is the overall axial flow velocity in centimeters per second. In terms of the better conditions used for OVPD and this study, such as T-275 C 'Pdep = 0.2 Torr and V point = 15 seem nitrogen, 5 is approximately equal to 1 to 10 cm. However, because 5 is not much smaller than the axial size (1 to 30 cm) of a general sedimentation tank, the term boundary layer should be used with caution.

經由孔板進行之0 VPD 先文时論係基於連續性作又设因為使用均勻整體擴散性 DQr&及邊界層厚度δ所致之確實性。此段係檢驗在〇 vPD中 應用孔板罩蓋時的連續性假設的確實性。 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1223840The 0 VPD antecedent theory conducted through the orifice plate is based on continuity and is based on the reliability caused by the use of uniform overall diffusivity DQr & and the thickness of the boundary layer δ. This paragraph tests the validity of the continuity hypothesis when applying orifice covers in 0 vPD. -17- This paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) 1223840

發明説明 /有機分子在到達罩幕平面時保持其原始整體_流速之程度 铋為影響OVPD之因素。首先,*人假設存在邊界層bl, 此處定義為分子喪失整體輸送之記憶體,其速度分佈完全 經熱量化。此情況下,T定性地發現因為較高之p一所致 之DQrg降低不會使圖型較不明璀。因為ο”係各向同性,故 刀子垂直擴散至基材需要較長日寺間]則向擴散需要較長(相 同量)時間。此等速率之相互抵消於不同壓力下產生相同圖 型,此非所觀察得之實驗傾向。(參見例如下式(8))之 稍車乂貝際;^型係其於基材取向沿著漸低之溫度梯度而降低 。但該降低仍量各向同性,圖型應保持不受影響。 裝 針對各向同性速度於邊界層内之分佈的要求鬆綁且使分 子保持原始速度之z-分量,可表示為: 線 其中dmax係為像素邊緣分散,如圖4所示,而u係為沉積 艙中之載體氣體速度。此情況下,假設;^、至足以將該程 序塑造為自-系列位於罩幕隙孔沿線之點狀源極擴散的模 型。該像素邊緣分散經由Dorg及罩幕_基材間距3而隨著壓 力平方根而增加。此種模型巾’整體流速增加自然改善銳 度。然而’此式針對適當之壓力(例如Q」托耳)將像素邊緣 分散過度預估了至少-位數,因為並非對與此討論有關之 尺寸及壓力皆嚴格符合該擴散輸送假設。實驗所得之沉積 圖型建議該機制係位於兩擴散模式之間。此情況下’應注 1223840 A7 B7 五、發明説明(16 ) 意連續性及因此所致之擴散假設對於大部分〇 VPD條件皆 不正確。如前文所述,基於孔板尺寸之康生(Knudsen^^ (λ/L,其中L =特性長度)大,而其量及能量不滅方程式不 再形成密閉組合。接近該基材之有機分子所進行的任意碰 撞使得像素側向展佈。因為分子速度之完全隨機化係於BL 中發生,預期ά之大小影響圖型之銳度。此外,後者受限 於下列因素:分子平均自由路徑;^,罩幕_至·基材間距s, 及罩幕隙孔之形狀。就程序參數而言,此等因素係經由沉 積壓力、載體氣體流速、所使用之載體氣體類型、及孔板 之。又。十而控制。因為D。r g及人密切相關,故吾人隨之檢測 λ如何隨Pdep變化及其對於圖型銳度之影響。 可使用Monte-Carlo型模擬經由孔板進行沉積之模型實 驗。參照圖4,較大之人會使BL内之分子間撞擊變少,伴 隨著該孔板上之側向均勻濃度分佈,該基材上之圖型的側 向分散較少。就單一成份之低壓非極性氣體而言,;1具有 以下形式: ^__/eg · Γ 4l · ;τ · σ21 pdep (5) 因此,藉由降低氣體壓力,該平均自由路徑增加,且得 到幸父明銳之像素。然而,壓力無法無限度地降低;用以輸 送有機蒸Ά之載體氣體的流入必然產生背景氣體壓力。極 低/儿積壓力pdep之極限係表示自由分子輸送方法,其中入 大’載體氣體速率V點限制材料輸送。增高之v點產生較 -19- 本紙張尺度適种國國家料(CNS) A4規格(咖χ撕公爱)------ 裝 玎 線 1223840 A7 B7 五、發明説明(17 )Description of the invention / Organic molecules maintain their original whole_flow rate when reaching the plane of the mask Bi is a factor affecting OVPD. First of all, * person assumes the existence of a boundary layer bl, which is defined here as the memory that the molecule loses its overall transport, and its velocity distribution is completely thermalized. In this case, T qualitatively finds that the decrease in DQrg due to higher p will not make the pattern less clear. Because ο ”is isotropic, it takes longer for the knife to diffuse vertically to the substrate.] It takes longer (same amount) to diffuse. These rates cancel each other out and produce the same pattern under different pressures. This is not an observed experimental tendency. (See, for example, the following formula (8)): The cartilage is slightly reduced in the orientation of the substrate along a decreasing temperature gradient. However, the decrease is isotropic. The pattern should be kept unaffected. The z-component that loosens the isotropic velocity in the boundary layer and keeps the molecule at the original velocity can be expressed as: line where dmax is the pixel edge dispersion, as shown in the figure As shown in Figure 4, and u is the velocity of the carrier gas in the deposition chamber. In this case, it is assumed that ^ is sufficient to model the program as a point-type source diffusion model located along the gap hole of the mask. The The pixel edge dispersion increases with the square root of pressure through Dorg and the mask_substrate spacing 3. This model towel 'increases the overall flow rate naturally to improve sharpness. However, this formula will be appropriate for the pressure (such as Q "Tor) Pixel edges are scattered Estimated at least - the number of bits, not because of this discussion about the size and pressure are strictly in line with the transport diffusion hypothesis. The experimental deposition pattern suggested that the mechanism is located between two diffusion modes. In this case, 1223840 A7 B7 should be noted. V. Description of the Invention (16) The continuity and the diffusion assumptions caused by it are not correct for most VPD conditions. As mentioned earlier, the Knudsen ^ (λ / L, where L = characteristic length) based on the size of the orifice plate is large, and its quantity and energy equations no longer form a closed combination. Organic molecules close to the substrate Arbitrary collision causes the pixels to spread sideways. Because the complete randomization of the molecular velocity occurs in BL, the expected size affects the sharpness of the pattern. In addition, the latter is limited by the following factors: average molecular free path; ^, Mask _ to · substrate spacing s, and the shape of the pores in the mask. In terms of program parameters, these factors are determined by the deposition pressure, the carrier gas flow rate, the type of carrier gas used, and the orifice plate. Also. Ten controls. Because D.rg and people are closely related, we then detect how λ changes with Pdep and its effect on the sharpness of the pattern. Monte-Carlo simulation can be used to perform model experiments of deposition through orifice plates. Reference Figure 4. A larger person will reduce the number of intermolecular collisions in the BL. With the lateral uniform concentration distribution on the orifice plate, the pattern on the substrate will have less lateral dispersion. The low pressure of a single component Non-polar gas In terms of,; 1 has the following form: ^ __ / eg · Γ 4l ·; τ · σ21 pdep (5) Therefore, by reducing the gas pressure, the average free path is increased, and a pixel of good luck is obtained. However, the pressure Can not be reduced indefinitely; the inflow of carrier gas used to transport organic steam will inevitably generate background gas pressure. The limit of the extremely low / child product pressure pdep indicates the free molecular transport method, in which a large 'carrier gas velocity V point limit material Conveying. Increasing the v-point yields more than -19- The paper size is suitable for the national material of the country (CNS) A4 size (Ca χ tear public love) ------ Decoration line 1223840 A7 B7 V. Description of the invention (17)

大之Pdep,且當λ變小時輸送變成擴散限制 體氣體流速及使有機物氣相擴散最大化 '^間 OVPD中使用之0·01至1〇托耳最佳壓力範圍。 。使用充分载 的協調產生於 雖然式(5)可正癌地使用非極稀氣體如 乳夂氬’但〇vPD 使用複合分子例如Alqs與載體氣體諸如 ^从或虱之3 有效通稱平均自由路徑及撞擊剖面人及 散性修飾表示及以下關係決定: 混合物。 可經由式5之擴Pdep is large, and when λ becomes smaller, the transportation becomes a diffusion-restricted body gas flow rate and maximizes the vapor phase diffusion of organic matter. The optimal pressure range of 0.01 to 10 Torr used in OVPD. . The use of fully loaded coordination arises from the fact that although formula (5) can be used positively against non-dilute gases such as lactate and argon, 0vPD uses complex molecules such as Alqs and carrier gases such as ^ from or lice. The impact profile person and loosely modified representations are determined by the following relationships: Mixture. Can be expanded by Equation 5

⑹ 此情況下,可使用具有偶極或感應偶極之分子的擴散性 的 Chapman-Enskog表示法:⑹ In this case, the Chapman-Enskog notation for the diffusivity of molecules with dipoles or induced dipoles can be used:

Dab = 1.835. 1〇8.7^丄 + ---- ^ ΜαΡσ2Μ〇.ΑΒ \ 0.5Dab = 1.835. 1〇8.7 ^ 丄 + ---- ^ ΜαΡσ2Μ〇.ΑΒ \ 0.5

Mb) ⑺ 裝 線 其中Mi係為擴散物質I之質量,T係為氣體溫度,且σ ΑΒ係為平均撞擊剖面,cr ΑΒ=[ΐ/2( σ Α+ cr Β)2]1/2。數量Ω D ab係 為Lennard-Jones分子間電位及溫度之二因次函數。就〇led 所使用之一般材料而言,可信之Lennard-Jones參數經常無效 ,而可代之後Fuller相互關係:Mb) Installation line where Mi is the mass of the diffusive substance I, T is the gas temperature, and σ ΑB is the average impact profile, cr ΑΒ = [ΐ / 2 (σ Α + cr Β) 2] 1/2. The quantity Ω D ab is a two-dimensional function of Lennard-Jones intermolecular potential and temperature. As far as the general materials used by Oled are concerned, the reliable Lennard-Jones parameter is often invalid, and the Fuller correlation can be replaced afterwards:

(8) 其中Σ v係為擴散中之分子的個別結構分量的有效體積 -20- 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1223840 A7 B7 五、發明説明(π ) 分佈和。使用他處所描述之標準群組分佈方法計算各種分 子專有之常數。如表1所示’ DAB之值在不同理論之間變化 半位數之多,可能需要進行更詳細之實驗及/或分子動力模 擬,以更準確地決定二元擴散。然而,;^及σ之估計值應 足以決定壓力之傾向,該傾向可用以控制所期望之沉積性 質。 模擬 裝 訂(8) Where Σ v is the effective volume of the individual structural components of the molecules in the diffusion -20- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1223840 A7 B7 V. Description of the invention ( π) distribution. Calculate constants specific to various molecules using standard group distribution methods described elsewhere. As shown in Table 1, the value of DAB varies between different theories by as much as half a digit, and more detailed experiments and / or molecular dynamics simulations may be required to determine the binary diffusion more accurately. However, the estimates of ^ and σ should be sufficient to determine the propensity to stress, which can be used to control the desired deposition properties. Simulation binding

Monte-Carlo模擬係如下進行。計算空間分成具有變化 構件尺寸之3維栅條。表示有機分子之粒子係於邊界層及 罩幕上指定於任意原始位置,及滿足Maxwell-Boltzmann分 佈。歷經一段時間間隔及不大於平均自由路徑之1 /1 〇的行 進距離之後,該分子與具有來自Maxwell-Boltzmann分佈之 任意速度的局部生成載體分子碰撞。使用依以下函數計算 之碰撞接受度:The Monte-Carlo simulation was performed as follows. The calculation space is divided into three-dimensional grids with varying component sizes. Particles representing organic molecules are assigned to any original position on the boundary layer and the mask, and satisfy the Maxwell-Boltzmann distribution. After a period of time and a travel distance of no more than 1/10 of the average free path, the molecule collided with a locally generated carrier molecule with an arbitrary velocity from the Maxwell-Boltzmann distribution. Use the collision acceptance calculated as:

PccU FNCFfUrAtPccU FNCFfUrAt

Vc (9) 其中FN係為一模擬分子所代表之實際分子的數量,^ τ係 為碰撞分子之總剖面積,u係其相對速度,△〖係為容許發 生碰撞之時隔’其中VG係為發生碰撞之構件的體積。^之 值可自deff及有效碰撞直徑〜使用相對粒子速度乂「概算—計 算: (10) 重複整體方法’而追蹤空間中之百萬分子。與基材平面 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297^7 1223840 A7 _ ___B7 五、發明説明(~~) '~' —- 或罩幕之任何其他側面碰撞時,有機粒子固定於該處。側 向放置周期性邊界條件’而將固定濃度之有機物及載體氣 體固定於邊界層之邊緣。該模擬係進行至該基材上形成所 期望之薄膜厚度。進行由數種個別分子組成之百萬分子的 追蹤,以節約計算成本。 模擬結果及討論 圖5出示在擴政方去中經由孔板進行沉積之模擬結果。 當標稱s= 10微米且罩幕厚度為丨8微米時,圖$出示又=8 25 、82·5及825微米(Pdep〜〇.〇1,〇·;[」·〇托耳)之沉積圖型。分 子於離罩幕2000微米處於任意角度下發射,具有平均分子 熱速度,且可擴散穿透該模擬空間體積。已發現該基材附 近的/辰度曲線係為線性’表示輸送單純是擴散。此係圖5 中不同λ值所發現之d值並無差異之原因。亦如同連續性 模型’分子沉積於基材及罩幕上之比例,即沉積效率,在 λ較小時較低,對應於低值Dorg。該模擬係使用30微米寬之 罩幕開口、18微米之罩幕厚度、及s=1〇微米之罩幕間距下 進行。圖510、520及520係出示罩幕(較高)及基材(較低)在 λ=8·25,82.5,825 下之沉積厚度曲線,Pdep=1.0, 〇 l 〇〇1 托耳。點510、520及53 0之間的像素形狀無明顯差異,表示 單純擴散方法壓力對於邊緣分散幾乎沒有影響;與預測相 同地,沉積效率隨者λ值之降低而降低。 圖6出示在擴散方法中經由孔板沉積之模擬結果。該罩 ** 幕開口保持30微米寬,t= 18微米且久=82.5微米,而圖610 、620及63 0個別s = 3、10及20微米。較小之s值產生較明銳 -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)Vc (9) where FN is the number of actual molecules represented by a simulated molecule, ^ τ is the total cross-sectional area of the collision molecule, u is its relative speed, △ is the time interval allowed for collision, where VG is Is the volume of the component that collided. The value of ^ can be calculated from deff and effective collision diameter ~ using relative particle velocity 乂 "estimate-calculation: (10) repeat the overall method 'to track millions of molecules in space. With the plane of the substrate -21-This paper scale applies to China Standard (CNS) A4 specification (210 X 297 ^ 7 1223840 A7 _ ___B7 V. Description of the invention (~~) '~' —- Or when any other side of the curtain collides, the organic particles are fixed there. Period of lateral placement The boundary conditions are used to fix a fixed concentration of organics and carrier gas on the edge of the boundary layer. The simulation is performed until the desired film thickness is formed on the substrate. Tracking of millions of molecules composed of several individual molecules, In order to save the calculation cost. Simulation results and discussion Figure 5 shows the simulation results of deposition through the orifice plate in the expansion of the government. When the nominal s = 10 microns and the thickness of the mask is 8 microns, the figure $ shows again = 8 25, 82.5, and 825 microns (Pdep ~ 〇.〇1, 〇 ·; [″ · 〇tor)) deposition pattern. Molecules are emitted at an arbitrary angle of 2000 microns from the mask, with an average molecular thermal velocity, And can diffuse through the mold The volume of space. It has been found that the / Chen degree curve near the substrate is linear 'indicates that the transport is simply diffusion. This is the reason why there is no difference in the d value found for different lambda values in Figure 5. It is also like the continuity model molecule The ratio of deposition on the substrate and the mask, that is, the deposition efficiency, is lower when λ is smaller, corresponding to a low value Dorg. This simulation uses a mask opening of 30 microns wide, a mask thickness of 18 microns, and s = 10 micron mask pitch. Figures 510, 520 and 520 show the deposition thickness curves of the mask (higher) and substrate (lower) at λ = 8 · 25, 82.5, 825, Pdep = 1.0, 〇l 〇〇1 Torr. There is no significant difference in the pixel shape between points 510, 520, and 53 0, indicating that the pressure of the simple diffusion method has little effect on the edge dispersion; as predicted, the deposition efficiency follows the λ value. Decrease and decrease. Figure 6 shows the simulation results of deposition through the orifice plate in the diffusion method. The mask ** has a curtain opening of 30 microns wide, t = 18 microns and long = 82.5 microns, and Figures 610, 620, and 63 0 individual s = 3, 10, and 20 microns. Smaller s values produce sharper -22- this paper Of the applicable Chinese National Standard (CNS) A4 size (210 X 297 mm)

ATAT

1223840 A7 _____ B7 五、發明説明(21 1Γ^ ~Ί 積曲線變明銳。當整體流速Ubuik接近分子熱逮度u時,其 ! 接近真空 >儿積之梯形特性。此點建議一沉積模式,其中使 丨 用超快速載體氣體噴射將有機物,,喷灑”於基材上,如同噴 | 黑列印。此種蒸汽噴射沉積模式之一實例係說明於圖9中 丨 ,出不一濃度測繪圖,其中整體速度重疊於分子之任意熱 丨 移動上’產生通經罩幕隙孔之類喷射分子流。 i 圖1 0出示村料遭度測繪圖’其出示沉積之類噴射特性 : 與超快載體流動。此方法之整體沉積效率可接近i 〇〇百分 丨: 比’因為像素係藉由經導向之氣體喷射而圖型化,塗覆該 | 孔板時不浪費材料。應可使用個別噴嘴針對各顏色之像素 | 對/儿積系統進行工程處理,以得到有效、準確且更易攜帶 零 之沉積系統。圖1 〇之沉積曲線係出示與真空沉積箱相同之 丨· 具有明確邊界的梯形像素。 ; 實驗 鈐1223840 A7 _____ B7 V. Description of the invention (21 1Γ ^ ~ Ί Product curve becomes sharp. When the overall flow rate Ubuik is close to the molecular thermal capture u, its! Is close to the trapezoidal characteristic of vacuum > This point suggests a deposition mode, Among them, the ultra-fast carrier gas spray is used to spray organic materials on the substrate, as if sprayed | black print. An example of this type of vapor spray deposition mode is illustrated in Figure 9 The drawing, in which the overall velocity is superimposed on the arbitrary heat of the molecule 丨 moves' produces a jet of molecular flow passing through the pores of the mask curtain. I Fig. 10 shows the measured drawing of the village material, which shows the ejection characteristics such as deposition: and super Fast carrier flow. The overall deposition efficiency of this method can be close to 100%. The ratio is' because the pixels are patterned by guided gas spray, no material is wasted when coating the | orifice plate. Should be used Individual nozzles for pixels of each color | The / pair product system is engineered to obtain an effective, accurate, and easier to carry zero deposition system. The deposition curve in Figure 10 shows the same as the vacuum deposition box. Clear trapezoidal pixel boundaries; experimental seal

Alqs之有機薄膜沉積係使用多筒型玻璃反應器系統以原 I 位溫度及厚度測量設備進行。簡言之,該反應器係為丨1厘 丨 米直徑乘150厘米長度之pyrex®圓柱。藉三區段爐具加熱 b ,以經由沿著該管内之溫度梯度放置各構件,而控制源極 :丨 溫度。每個源極皆個別封裝於2.5厘米直徑乘7 5厘米長度之 | 玻璃筒中。載體氣體流動係藉由其流控制器調整,而沉積 丨: 壓力係藉著調整泵節流閥而保持於0.1及1 0托耳範圍内,且 ; 載體總流速係保持於1 0至5 0 s c c m。使用具有液態氮冷啡之 : 4〇 lpm真空泵以排出未冷凝之載體及有機物。有機蒸汽冷 .丨 凝於位在機械操作擋閘後方之旋轉水冷式基材上。薄膜厚 丨 -24- : 本纸張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 1223840Alqs' organic thin film deposition is performed using a multi-barrel glass reactor system with in-situ temperature and thickness measurement equipment. In short, the reactor was a 1 × 1 m diameter by 150 cm length pyrex® cylinder. B is heated by a three-section stove to control the source electrode by placing components along the temperature gradient in the tube: 丨 temperature. Each source is individually packaged in a 2.5 cm diameter by 7 5 cm length | glass tube. The carrier gas flow is adjusted by its flow controller, and deposition 丨: The pressure is maintained within the range of 0.1 and 10 Torr by adjusting the pump throttle valve, and the total carrier flow rate is maintained between 10 and 50 sccm. Use a liquid nitrogen cooling morphine: 40 lpm vacuum pump to discharge uncondensed carrier and organic matter. Organic steam cooling. 丨 Condensed on a rotating water-cooled substrate behind the mechanically operated shutter. Film Thickness 丨 -24- : This paper size applies to China National Standard (CNS) Α4 specification (210 X 297 mm) 1223840

度及生長速率係藉使用偏光測定有機薄膜厚度校正之石英 結晶微量天平偵測。 除了使用OVPD沉積有機薄膜之外,使用習用真空熱蒸 發器。該源極-至-基材距離係學3〇厘米;沉積壓力保持於 10_6托耳。 圖11中說明孔板罩蓋配置。使用包括網板112〇及板片 1130之罩幕1110。使用夾具114〇以使罩幕m〇保持位於基材 1150上方固定距離處。網板1120包括5微米厚之鎳網,由⑺ 微米交織之線構成,形成15微米正方形開口。此網板直接 放置於1毫米厚之塗覆有銀的玻璃片頂上,覆蓋5〇微米厚 而包括1及0.3毫米直徑的圓孔之鎳板113〇。此種配置可同 時測量兩s值之沉積。因為包括鎳網之金屬網的非正方形 外形,如圖11所示,s之最小值係〜2微米。此情況下,在 s = 2微米下之分散值d意指位於該側面上之正方形像素7至 10微米的蓬鬆度(fuzziness)。對應於s = 5微米之值意指所形 成之圓形沉積邊緣的蓬鬆度,網板頂部之5〇微求厚罩幕之 1毫米及0.3毫米孔洞係位於網板頂部。後續最大間距5〇微 米係使用圖11所說明之雙層鎳罩幕達成。 可將附加之孔板製造整合於該基材上,以提供最準確之 罩幕-基材間距。該罩幕係使用光阻/鉻/光阻(Pr1/Ci>/PR2) 夾層結構及微影術形成。 在沉積Alqs之後,形成之像素圖型係使用掃描式電子顯 微鏡檢測。 貫驗結果及討論 -25- 衣紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 裝 訂 線 1223840 A7 B7 五、發明説明(23 ) 圖12出示自〇VPD經由孔板於2)d(r6至2托耳範圍内之 下形成之圖型的掃描式電子顯微相片。當沉積壓力增高時 ,模擬及實驗數據皆顯示喪失邊緣銳度。影像121〇、122〇及 1230個別出示pdep=2 · UT6、Pde广0 2托耳及ρ_= 2托耳之結果 。左欄及右攔之間距個別為s = 5及2·5微米。如該模型所預 測,該像素在壓力及罩幕-基材間距增加時變得較為擴散。 已發現0.2托耳之壓力及高達15微米之間距可達到數微米大 小之像素解析度,足以使用於全色彩顯示設備。 為了定量像素蓬鬆之程度,吾人定義分散參數d係為沿 著X-軸之距離,其中像素厚度係介於其中心最大值之9〇及 10百分比之間。此數值係由罩幕-基材間距s而概算,產生 無因次之像素分散性,針對實驗及模擬值而相對於沉積壓 力緣圖。 混合沉積 圖13係出示由混合0VPD-VTE沉積所形成之八⑷/八^微圖型 之模擬結果Ό兩者使用相同之孔板。自動地確保金屬 層1310與底層有機層132〇的優越配向性 防止環繞像«緣之潛在短路。㈣擬結果出示與在^ 可接叉之壓力乾圍内的實驗相同地,分散性隨著壓力而增 加。因為目前之沉積系統無法輕易達到介於i(r6及1〇1托耳 間之壓力,故該模擬結果會充填至該間隙中。在極低沉積 壓力的限制下,像素邊緣分散性可逐漸趨近一非零常數, 此係真空艙及罩幕幾何形狀之特性。 製造全色彩OLED顯示器時,各種經圖型化材料之薄層以 -26-The degree and growth rate are detected by a quartz crystal microbalance calibrated using polarized light to measure the thickness of the organic thin film. In addition to using OVPD to deposit organic thin films, a conventional vacuum thermal evaporator was used. The source-to-substrate distance is 30 cm; the deposition pressure is maintained at 10-6 Torr. The arrangement of the orifice cover is illustrated in FIG. 11. A mask 1110 including a screen 112 and a plate 1130 is used. A clamp 114o was used to keep the mask m0 at a fixed distance above the substrate 1150. The stencil 1120 includes a 5 micron-thick nickel mesh composed of ⑺ micron interlaced wires to form a 15 micron square opening. This stencil was placed directly on top of a 1 mm-thick silver-coated glass sheet, covering a 50-micron-thick nickel plate 113 including circular holes having a diameter of 1 and 0.3 mm. This configuration allows simultaneous measurement of two s-value deposits. Because of the non-square shape of the metal mesh including the nickel mesh, as shown in Fig. 11, the minimum value of s is ~ 2 m. In this case, the dispersion value d at s = 2 microns means the fuzziness of the square pixels 7 to 10 microns on the side. The value corresponding to s = 5 micrometers means the fluffiness of the circular deposition edge formed. The 50 micrometers at the top of the stencil and the 1 mm and 0.3 mm holes of the thick mask are located at the top of the stencil. The subsequent maximum spacing of 50 micrometers was achieved using a double-layer nickel mask as illustrated in FIG. Additional orifice manufacturing can be integrated on this substrate to provide the most accurate mask-to-substrate spacing. The mask is formed using a photoresist / chrome / photoresist (Pr1 / Ci > / PR2) sandwich structure and lithography. After depositing Alqs, the formed pixel pattern was detected using a scanning electron microscope. Test results and discussion -25- Applicable to Chinese National Standard (CNS) A4 size (210 X 297 mm) for binding paper size binding line 1223840 A7 B7 V. Description of the invention (23) Figure 12 shows from 0VPD through the orifice plate at 2 ) d (scanning electron micrograph of the pattern formed below the range of 6 to 2 Torr. When the deposition pressure is increased, both the simulation and experimental data show the loss of edge sharpness. Images 1210, 1220, and 1230 individual Show the results of pdep = 2 · UT6, Pde wide 0 2 Torr and ρ_ = 2 Torr. The distance between the left column and the right block is s = 5 and 2.5 micrometers respectively. As predicted by the model, the pixel is under pressure And the mask-substrate distance becomes more diffuse as the pitch increases. It has been found that a pressure of 0.2 Torr and a pixel resolution of up to 15 microns can reach a few micron size resolution, which is sufficient for full-color display devices. Degree, I define the dispersion parameter d as the distance along the X-axis, where the pixel thickness is between 90 and 10 percent of its center maximum. This value is approximated by the mask-substrate spacing s, Generate dimensionless pixel dispersion, for experiments and The simulated value is relative to the deposition pressure edge map. The mixed deposition Figure 13 shows the simulation results of the eighth / eighth micropattern formed by the mixed 0VPD-VTE deposition. Both use the same orifice plate. Automatically ensure the metal layer The superior alignment between 1310 and the underlying organic layer 132 ° prevents potential short-circuits around the edge. The simulation results show that, as in the experiments within the pressure-dried surroundings, the dispersion increases with pressure. Because at present The deposition system cannot easily reach a pressure between i (r6 and 101 Torr), so the simulation results will fill the gap. Under the limitation of extremely low deposition pressure, the pixel edge dispersion can gradually approach a Non-zero constant, this is the characteristics of the geometry of the vacuum chamber and the curtain. When manufacturing full-color OLED displays, the thin layers of various patterned materials are -26-

1223840 A7 B7 五、發明説明(24 ) 彼此配向為佳。一實際流程圖係包括於適當之壓力下經由 孔板組合OVPD,如圖4所示,之後於低壓下沉積金屬接點 ’如圖2所不,而兩步驟之間不移除罩幕。有機塗層之受 控分散會防止有機薄膜邊緣周圍形成短路。此觀念係由圖 13所說明之模擬而說明。 圖14出示根據圖13之模擬而實驗製造之結構的掃描式電 子顯微相片。Alq3有機層1410係藉OVPD沉積,之後藉VTE 沉積Ag金屬層1420。因為沉積該層時使用不同參數,故有 機層固定且可信地大於金屬層,即使其係經由相同孔板沉 積亦然,且經由有機物及金屬之沉積而保持固定於相同位 置中。第二組像素可藉由單純地側向轉換該罩幕(也許於原 位)而沉積,不需使罩幕與先前沉積之圖型配向,之後沉積 第二有機層(也許發出不同顏色),之後為金屬層。該方法 可針對三色彩顯示器而重複操作一次。 表1 : Alq3、N2、及Alq3KN2混合物中之氣相擴散係數 τ(κ) Dorg(動力理論) (厘米2/秒) Dorg(FuU 等人) (厘米2/秒) Dorg(Chapman-Enskog) (厘米2/秒) 273 0.0355(N2) 0.68(N2) 0.105(Alq3) 0.0629(N2) 548 0.101(N2) 2.30(N2) 0.356(Alq3) 0.179(N2) 附加模擬 雖然以連續性為主之分析對於OVPD所包括之輸送方法並 非極為準確,但可藉著考慮在限制幾何形狀令之單純擴散 而參透使用OVPD之圖型化。 圖15係說明藉OVPD經由孔板沉積之像素的鐘形輪廓。基 -27- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1223840 A7 B7 五、發明説明(25 裝 材15丨0係配置於罩幕1520底下。隙孔壁外形之特徵為角度j (或α’)。罩幕1520具有厚度t,具有寬度〜之隙孔1525與基材 分隔s。材料層1530係經由罩幕152〇沉積於基材151〇上。入 射於基材上之分子流係源自空間中由-w/2<x<w/2所包圍之無 限個均勻分佈點源極,產生具有所示之鐘形外形的沉積物 。就連續方法中之各向同性擴散而言,沉積物之基部直接 與s成比例地增寬。因此,較小之3應產生較大之圖型解析 度。若S保持定值,但沉積壓力增高,則氣體分子之擴散 性降低。然而,因為擴散係各向同性,故分子垂直擴散至 基材花費之時間愈長,側向擴散花費之時間愈長(相同量) 。此等速率相互抵消導致於不同壓力下之相同圖型,並非 所發現之實驗傾向。而且,在連續性假設中,圖型形成與 位於與基材最接近之邊緣上方的隙孔的形狀無關。相反地 ,沉積之模擬一觀察位於基材附近之分子的推測散射一可 預測所沉積之圖型形狀不僅與s有關,亦與mfp及隙孔形狀 有關。 線 因為在低數值密度下之不連續輸送性質,對於通經罩幕 隙孔之有機分子流的數種平行校正效應亦需考慮。首先, 分子流平行校正可與隙孔之寬高比t/w成比例(犧牲沉積效 率)。其次,若較重之有機分子保留其原始整體流速U之重 要分率,則當其到達罩幕平面時,發生部分平行校正,其 先決條件為u<U(吾人假設於沉積艙中為完全開展之流動 ,故在邊界層之邊緣,假設有機分子之U等於載體氣體分 子之U )。此處所考慮之OVPD方法中,整體流動對於通量 -28- 本紙張尺度適财S ®家料(CNS) A4^(21G X 297公董) " ' 1223840 A71223840 A7 B7 5. Description of the invention (24) It is better to align with each other. An actual flowchart consists of combining OVPD through an orifice plate at an appropriate pressure, as shown in Figure 4, and then depositing metal contacts under low pressure, as shown in Figure 2, without removing the mask between the two steps. Controlled dispersion of the organic coating prevents short circuits around the edges of the organic film. This concept is illustrated by the simulation illustrated in FIG. FIG. 14 shows a scanning electron micrograph of a structure experimentally manufactured based on the simulation of FIG. 13. The Alq3 organic layer 1410 is deposited by OVPD, and then the Ag metal layer 1420 is deposited by VTE. Because different parameters are used to deposit this layer, the organic layer is fixed and reliably larger than the metal layer, even if it is deposited through the same orifice plate, and remains fixed in the same location through the deposition of organics and metals. The second set of pixels can be deposited by simply laterally transforming the mask (perhaps in situ), without the need to align the mask with the previously deposited pattern, and then deposit a second organic layer (perhaps emitting a different color), It is followed by a metal layer. This method can be repeated once for a tri-color display. Table 1: Gas diffusion coefficients in mixtures of Alq3, N2, and Alq3KN2 τ (κ) Dorg (dynamic theory) (cm2 / s) Dorg (FuU et al.) (Cm2 / s) Dorg (Chapman-Enskog) ( Cm2 / s) 273 0.0355 (N2) 0.68 (N2) 0.105 (Alq3) 0.0629 (N2) 548 0.101 (N2) 2.30 (N2) 0.356 (Alq3) 0.179 (N2) The transport method included in OVPD is not very accurate, but it can be used to understand the patterning of OVPD by considering the simple diffusion in limiting the geometric shape. FIG. 15 illustrates a bell-shaped outline of a pixel deposited through an orifice plate by OVPD. Base-27- This paper size is in accordance with China National Standard (CNS) A4 (210 X 297 mm) 1223840 A7 B7 V. Description of the invention (25 Packing materials 15 丨 0 are arranged under the cover 1520. The shape of the gap wall The feature is the angle j (or α '). The mask 1520 has a thickness t, and the gap 1525 having a width of ~ is separated from the substrate by s. The material layer 1530 is deposited on the substrate 1510 via the mask 1520. The incident on the substrate The molecular flow on the wood originates from an infinitely evenly distributed point source surrounded by -w / 2 < x < w / 2 in space, producing a deposit with the bell-shaped shape shown. Each of the continuous methods For isotropic diffusion, the base of the sediment widens directly in proportion to s. Therefore, a smaller number 3 should produce a larger pattern resolution. If S remains constant, but the deposition pressure increases, the Diffusion is reduced. However, because the diffusion system is isotropic, the longer it takes for molecules to diffuse vertically to the substrate, and the longer it takes for lateral diffusion (same amount). These rates cancel each other out, resulting in different pressures. The same pattern is not an experimental tendency found. Also, In the continuity hypothesis, pattern formation is independent of the shape of the pores located above the edge closest to the substrate. Conversely, the simulation of deposition-observation of speculative scattering of molecules located near the substrate-predicts the pattern deposited The shape is not only related to s, but also to mfp and the shape of the gaps. Because of the discontinuous transport properties of the wire at low numerical density, several parallel correction effects on the organic molecular flow passing through the gaps of the mask also need to be considered. First The parallel correction of molecular flow can be proportional to the aspect ratio t / w of the gap (sacrifice deposition efficiency). Second, if the heavier organic molecules retain the important fraction of their original overall flow rate U, then when they reach the plane of the mask At this time, a partial parallel correction occurs, and its prerequisite is u < U (we assume that the sedimentation tank is a fully developed flow, so at the edge of the boundary layer, it is assumed that U of the organic molecules is equal to U of the carrier gas molecules). Considered here In the OVPD method, the overall flow is related to the flux -28- this paper size suitable financial S ® household materials (CNS) A4 ^ (21G X 297 public director) " '1223840 A7

平/亍杈正可此並不重要,因為u〜100至400米/秒,而u〜i至 1〇米/秒’因此’接近基材處單純擴散佔優勢。然而,載體 氣體之整體流動動量的影響仍可使用M〇nte_Cari〇模擬評估 。例如,若U/U>(U,則11之變化會影響沉積輪廓。最後, 因為天然對流速率於低數量密度下與擴散相較之下不具意 義,因此估計基材附近之熱驅動力相對小,故不作進一步 之考慮。 ’ 圖型形狀之討論係藉助定義形狀因子^等於薄層153〇面 積1535—由_w/2<x<w/2所包圍(斜線區域)—除以沉積總剖面 裝 積而進行。當;?等於-時,係為"完美,,之矩型沉積物,隨 著p、t/w、5之增加而降低。 線 該模擬之一目的係瞭解有機分子於限制幾何形狀中輸送 之方法其中"玄裝置尺寸係為分子平均自由路徑之大小, 不應用以連縯性為主之描述。該模型提議有機沉積於基材 上之圖型化,於具有有限之厚度的隙孔表面上附加冷凝之 限制。該模擬係表現擴散方法在中間體Kn之隨機性質。因 此模型迨縱有機分子在基材附近撞擊較輕之載體氣體 分子且沉積於經冷卻之表面一該基材及該隙孔邊緣一的路 徑。簡言之,假設滯留機率為一。使用有機物約1〇-2巾白司 卡之較佳蒸汽壓,較佳背景載體氣體壓力係為丨至丨〇3帕司 卡的大小,有機物-有機物碰撞極少發生。 氣體之整體擴散輸送係為平均自由路徑現象,其速率具 有擴散性D之特性。單純氣體之動力理論係使整體參數〇 與以分子為主之量產生關聯,若單一成份低壓非極性氣體 -29- 本纸張尺度適用巾S @家料(CNS) Α4規格(⑽X挪公爱) ---- 1223840 A7 ______ B7 五、發明説明(27 ) 於低壓mfp下,則平均自由路徑mfp : ϋ=-ΪΙ^φ 3 . (Π) 因為Ο V P D所使用之有機蒸汽係由大型分子一幾何上及 活力上皆較動力學理論之硬質球形原子複雜一所組成,故 模擬及實驗結果之間可能有部分差異。It is not important that the flat / horizontal is right, because u ~ 100 to 400 meters / second, and u ~ i to 10 meters / second ', therefore, the simple diffusion near the substrate is dominant. However, the effect of the overall flow momentum of the carrier gas can still be evaluated using a Monte_Cari simulation. For example, if U / U> (U, then a change of 11 will affect the deposition profile. Finally, because natural convection rates are not meaningful compared to diffusion at low number densities, it is estimated that the thermal driving force near the substrate is relatively small Therefore, no further consideration is given. 'The discussion of the shape of the pattern is based on the definition of the shape factor ^ equal to the thin layer 1530 area 1535-surrounded by _w / 2 < x < w / 2 (diagonal area)-divided by the total deposition profile Packing is carried out. When? Is equal to-, it is " perfect, " The rectangular sediments decrease with increasing p, t / w, and 5. One of the purposes of this simulation is to understand the organic molecules in The method of restricting the transport in the geometric shape is that the size of the xuan device is the size of the average free path of the molecule, and the description based on continuity is not used. The model proposes the patterning of organic deposition on the substrate, which has limited The thickness of the interstitial surface is limited by condensation. This simulation shows the random nature of the diffusion method in the intermediate Kn. Therefore, the model vertical organic molecules hit the lighter carrier gas molecules near the substrate and are deposited on the cooled The surface is the path of the substrate and the edge of the gap. In short, it is assumed that the retention probability is one. The preferred vapor pressure of the organic substance is about 10-2 towels of white ska, and the preferred background carrier gas pressure is 丨To the size of Pascal, organic-organic collisions rarely occur. The overall diffusion and transport of gas is an average free path phenomenon, and its velocity has the characteristic of diffusivity D. The theory of dynamics of pure gas makes the overall parameters 0 and The molecule-based quantity is related. If a single component is a low-pressure non-polar gas -29- this paper size is suitable for towels S @ 家 料 (CNS) Α4 size (⑽X 诺 公 爱) ---- 1223840 A7 ______ B7 V. Description of the invention (27) Under the low pressure mfp, the average free path mfp is: ϋ = -ΪΙ ^ φ 3. (Π) Because the organic vapor system used by 〇 VPD is a large molecule, geometrically and dynamically, it is more dynamic theory The hard spherical atoms are complex, so there may be some differences between simulation and experimental results.

Monte-Carlo模擬係如下進行。計算空間係分成於y_方 向上無限延伸之x-z栅條,其目的係使基材及罩幕表面定 位,且追蹤沉積物厚度之變化。代表有機分子之粒子於邊 界層内及罩幕上方被分配於任意原始定位(XQ,h,ZG)。選擇 任意原始方向’粒子行進一距離r=[(XrXQ)+(yi,)+(Zi_z。)] 1/2, 其中Oi,yi,Zi)係為粒子之新位置。距離Γ係為柵條尺寸之最 小值或mfP/l〇。與載體氣體分子碰撞之機率pe。丨1係以 Pc〇n = r/mfp表示,相對於介於〇及1之間的隨機數rand進行 檢測。若Pe〇n<rand,則分子仍可於相同方向前進距離r。 若P⑶H>rand ’則粒子與具有任意選自MaxweU-B〇Uzmann 分佈之速度而局部生成之載體氣體分子碰撞。該碰撞導致 分子轉折’速度及角度係與兩硬球彈性碰撞之動量及能量 守恒相符。若粒子之路徑橫越基材平面或隙孔壁,則假設 粒子於單一效率下滯留於表面,而沉積物厚度更新。模擬 單一隙孔’於X ·方向安置周期性邊界條件。該模擬進行時 間隨著用以進行沉積之分子數目而增加,隨著較大之m fp 而降低。隙孔幾何形狀對於所沉積之圖型形成的影響係藉 著分配不同之隙孔側壁角度而進行模型實驗,α =45、9〇、 -30- 本纸張尺度適用中國國家榉準(cn^7I^(210 χ 297公董) 1223840 A7 B7 五、發明説明(28 ) 135 ’且α ’ = 270。,如圖5所說明。 吾人考慮archetypal分子三(8 -羥基峻啉)(Alq3)之薄膜生 長,d〜10埃。Alch於%載體氣體中之混合物的碰撞剖面作 為兩物質於自身擴散中之個別剖面的平均值, ¢1^/2(^43 + (^2),而式(1)中卜ρ_。 裝 圖16出示有機物質在模擬105粒子結束時之濃度的模擬曲 線,S = 7微米,t = 3微米,且αΜ35。,而_=1〇〇微米, 對應於在Τ = 500Κ下〜37帕司卡的總沉積壓力。有機層 1630(模擬)經由罩幕1610沉積於基材162〇上,其係配置於 罩幕1610上方距離s處。產始粒子速度係自任意熱分佈分配 ,重疊於z -方向速度向量上,大小為1/=1〇米/秒。將個別 粒子之尺寸放大以顯示所沉積之薄膜厚度的輪廓。 η 線 圖17出示與圖16相同之模擬曲線,其中有機層173〇(模擬) 係經由罩幕1710沉積於基材1720上,其係配置於罩幕1 7工〇 上方距離s之處。用以生成圖17之結果的mfp係較圖16所使 用者小10倍。藉著使mfp降低1〇倍,得到較擴散之圖型。圖 17所示之薄膜可能較不實際地較大部分裝置應用者厚,但 圖中亦說明當mfp減低時於罩幕及隙孔壁内側上增加之寄 生沉積。以1000埃大小之薄膜厚度較為實際,後續模擬結 果僅提供厚度曲線,為明瞭計,不重疊孔板。 除非另有陳述,否則以下OVPD模擬係於比載體氣體中 使用1〇6 Alq3分子。沉積壓力對於圖型解析度之影響係藉 著改變mfp而評估’與反應器壓力成比例。考慮經由w = 83〇 微米,P70微米之隙孔生長,基材與低層罩幕邊緣距離 -31-The Monte-Carlo simulation was performed as follows. The calculation space is divided into x-z grids that extend indefinitely in the y_ direction. The purpose is to position the substrate and the surface of the mask and track the changes in the thickness of the sediment. Particles representing organic molecules are assigned to any original location (XQ, h, ZG) in the boundary layer and above the mask. Select any original direction ’particle travels a distance r = [(XrXQ) + (yi,) + (Zi_z.)] 1/2, where Oi, yi, Zi) is the new position of the particle. The distance Γ is the minimum value of the grid size or mfP / l0. Probability of collision with carrier gas molecules pe.丨 1 is expressed as Pconon = r / mfp, and is detected relative to a random number rand between 0 and 1. If Peon < rand, the molecule can still advance a distance r in the same direction. If PCDH > rand ', the particles collide with a carrier gas molecule that is locally generated with a velocity selected arbitrarily from the MaxweU-B0Uzmann distribution. The speed and angle of the molecular turn caused by this collision are consistent with the conservation of momentum and energy of the elastic collision of two hard balls. If the path of the particles traverses the plane of the substrate or the wall of the gap, it is assumed that the particles stay on the surface with a single efficiency, and the thickness of the sediment is updated. A single slot is simulated to place periodic boundary conditions in the X · direction. The simulation time increases with the number of molecules used to perform the deposition, and decreases with larger m fp. The influence of the gap geometry on the pattern formation is based on model experiments by assigning different angles of the gap sidewalls. Α = 45, 90, -30. This paper is applicable to China National Beech Standard (cn ^ 7I ^ (210 χ 297 public directors) 1223840 A7 B7 V. Description of the invention (28) 135 'and α' = 270. As shown in Figure 5. Let us consider the archetypal molecule three (8-hydroxyjunline) (Alq3) Thin film growth, d ~ 10 angstroms. The collision profile of the mixture of Alch in% carrier gas is taken as the average value of the individual profiles of two substances in their own diffusion, ¢ 1 ^ / 2 (^ 43 + (^ 2), and the formula ( 1) ρρ. Figure 16 shows a simulation curve of the concentration of organic matter at the end of the simulation of 105 particles, S = 7 microns, t = 3 microns, and αM35., And _ = 100 microns, corresponding to the T = Total deposition pressure of ~ 37 Pascal at 500K. The organic layer 1630 (simulation) is deposited on the substrate 1620 through the mask 1610, which is arranged at a distance s above the mask 1610. The particle velocity at the beginning of production is from arbitrary The heat distribution is distributed, superimposed on the z-direction velocity vector, and the size is 1 / 10m / s. The size is enlarged to show the outline of the thickness of the deposited film. The η line in FIG. 17 shows the same simulation curve as in FIG. 16, in which the organic layer 1730 (simulation) is deposited on the substrate 1720 via the mask 1710 and is disposed on the mask The distance s from the top of the screen is 17. The mfp used to generate the result of FIG. 17 is 10 times smaller than the user of FIG. 16. By reducing the mfp by 10 times, a more diffuse pattern is obtained. The film shown may be thicker than practically larger devices, but the figure also shows the increase in parasitic deposition on the inside of the mask and the wall of the aperture when the mfp decreases. The thickness of the film of 1000 Angstroms is more practical. The simulation results only provide thickness curves. For clarity, the wells are not overlapped. Unless otherwise stated, the following OVPD simulations use 106 Alq3 molecules in a specific carrier gas. The effect of deposition pressure on pattern resolution is by Change mfp to evaluate 'proportional to reactor pressure. Consider growth via voids of w = 830 μm, P70 μm, distance between substrate and edge of lower layer curtain -31-

1223840 A7 B71223840 A7 B7

五、發明説明( S-20微米。S及t之選擇盘丁 P、仓 k俘/、稭VTE進行之高解析度顯示 (像素)的沉積相同,其中面向下方蒸發幾何形狀之基材導 致罩幕於重力下自基材彎曲,使得s〜2〇微米。為使罩幕硬 化且使s減至最小’通常使用t&gt;7〇微米。圖Μ出示形狀因子 相對於平均自由路徑之圖。形狀因子“堇於四位數下隨著 m fp增加而略微增加(1料半&lt;· m f,Λ Μ曰刀做水$mpfg 1000微米,約對應於 1〇3 Pa^Pdep^l Pa),如探討Knudsen輸送方法之系統所預 、J :、、〈、而77因為成乎正方形隙孔之側壁上的寄生沉積而 無法達到-。如所預期,最高圖型邊緣解析度係於最大 mfp下達成,即取低Pdep。然而,該圖型輪廓因為相對大之 t / w比例而具有半球形。 、 圖19出示與圖16之薄層丨630相同的模擬有機層的輪廓, 但使用不同參數生成。增加隙孔厚度會改善朝向基材之分 子流的平行校正,因為冷凝於隙孔壁上。圖191〇、192〇、 1 930及1940個別顯示隙孔厚度5〇、2〇、1〇及5微米之輪廓, s二mfp = 2〇微米。w==300微米應不影響輪廓邊緣上之展佈。 然而,當t/w增加時,所沉積之圖型變得大幅膨脹,因為 隙孔之上緣掃除山有機分子Q形狀因子於}微米&lt;t&lt;丨⑽微 米範圍内降低至5百分比以下。該像素沉積效率隨著t增加 而降低,因為隙孔側壁上之寄生沉積之故。 圖2 0 Μ圖1 6之薄層相同的模擬有機層的輪廊,但使用不 同參數生成。該罩幕間距s可因於重力下之彎曲而變化 (VTE),或可能於沉積過程中加熱。圖2〇1〇、2〇2〇、2〇3〇 及2040出示沉積之輪廓,其中個別s = 2、1〇、22及5〇微米 -32- 本纸張尺度適财關家標準(CNS) A4規格(210 X 297公着)&quot; '—----- 1223840 A7 B7 五、發明説明(3〇 ) 就各圖而舌’ t = 2〇微米、w = 30〇微米,且mfp = 20微米。 明顯之邊緣增寬可能係因s&gt;mfp時,罩幕_基材間隙中刳生 碰撞所致。此外,沉積中間之膨脹亦增多,與高值t/w相 反地’伴生了像素邊緣增寬。圖20之2050插圖係繪製此系 列沉積之相對於s,顯示”隨著s而快速降低。導致矩型 /儿積之隶仏圖型解析度係於最小s及〖下達成。因為〇 v p 〇 基本上可使用位於基材上方之罩幕進行,故可使用薄罩幕 ,而不因罩幕彎曲犧牲低s值,此情況會發生於VTE中。薄 罩幕之一缺點係其較易因熱及機械導致應力。 圖21係出示與圖16之薄層163〇相同之模擬有機層的輪廓 ,但使用不同參數生成。圖21之輪廓說明不同側壁角度的 影響j圖2 11 〇出示使用45度側壁角〇所生成之輪廓。$係 為10微米,mfp係為2〇微米,而罩幕厚度t係於5及8〇微米 之間文化以生成圖2110之不同輪廓。圖2120、2130及 2140係使用與圖2&quot;〇相同之參數生成,不同處係“固別係 為135、270及45度。圖21出示可於隙孔邊緣使〖最小化,而 罩幕其他地方保持厚度。 圖22出不形狀因子相對於罩幕厚度之圖,基於圖 廓。圖 2210、2220 ' 2230 及 224〇 係個別基於圖 2ιι〇、212〇 、2130及2140。請隙孔形狀之變化係藉著改變隙孔側壁 角度α=45、90、135且α,= 27〇。而評估。〇叫^之隙孔 產生最具擴散性之像素,因為缺少物理性吸附分子之接近 角的平行校正。雙錐形隙孔(α, = 27〇。)較為輕微,但在“ 40。且^45。幾何形狀下達到最明銳之圖型。除了沉積V. Description of the invention (S-20 microns. The selection of S and t is the same for high-resolution display (pixels) of P, P, K, and VTE, in which the substrate with the evaporation geometry facing downward leads to the cover. The curtain is bent from the substrate under gravity such that s ~ 20 microns. To harden the mask and minimize s', t &gt; 70 microns is commonly used. Figure M shows a graph of the shape factor versus the average free path. Shape The factor "Coriolis increases slightly with the increase of m fp in the four digits (1 material and a half of &lt; · mf, Λ M is the knife made of water $ mpfg 1000 microns, which corresponds to about 103 Pa ^ Pdep ^ Pa), As predicted by the Knudsen transport system, J: ,, <, and 77 cannot be reached due to parasitic deposition on the side wall of the square gap hole. As expected, the highest pattern edge resolution is at the maximum mfp When it is achieved, the low Pdep is taken. However, the profile of the pattern has a hemispherical shape because of the relatively large t / w ratio. Figure 19 shows the same simulated organic layer profile as the thin layer 630 of Figure 16, but using different parameters Generation. Increasing the thickness of the pores will improve the leveling of molecular flow towards the substrate Corrected because it is condensed on the gap wall. Figures 1910, 1920, 1 930, and 1940 individually show the contours of the gap thickness of 50, 20, 10, and 5 microns, s = mfp = 20 microns. W = = 300 microns should not affect the spread on the contour edges. However, as t / w increases, the deposited pattern becomes greatly expanded, because the upper edge of the pores sweeps the organic molecules Q shape factor at} microns &lt; The t &lt; 丨 ⑽ micron range is reduced to less than 5%. The pixel deposition efficiency decreases as t increases due to the parasitic deposition on the side wall of the gap. Figure 2 0 M Figure 16 The same simulated organic layer The contour of the wheel, but generated using different parameters. The mask interval s can change due to bending under gravity (VTE), or may be heated during the deposition process. Figures 2010, 2020, 2003 〇 and 2040 show the outline of the deposit, with individual s = 2, 10, 22, and 50 microns -32- This paper size is suitable for financial standards (CNS) A4 specifications (210 X 297) &quot; '— ----- 1223840 A7 B7 V. Description of the invention (30) For each figure, the words' t = 20 micrometers, w = 30 micrometers, and mfp = 20 micrometers. The apparent edge widening may be caused by the collision in the mask_substrate gap during s &gt; mfp. In addition, the expansion in the middle of the deposition is also increased, contrary to the high value t / w, it is accompanied by the pixel edge widening The 2050 insets in Figure 20 are plotted relative to s for this series of deposits, showing that "they decrease rapidly with s. The resolution of the graph of the moment / child product is reached at the minimum s and ○. Because 0vp 〇 Basically, it can be performed by using a mask located above the substrate, so a thin mask can be used without sacrificing low s value due to the bending of the mask, which occurs in VTE. One disadvantage of thin hoods is that they are more susceptible to thermal and mechanical stress. FIG. 21 shows the contour of a simulated organic layer that is the same as the thin layer 1630 of FIG. 16, but generated using different parameters. The contour in Figure 21 illustrates the effect of different side wall angles. Figure 2 11 shows the contour generated using a 45-degree side wall angle. The $ system is 10 micrometers, the mfp system is 20 micrometers, and the mask thickness t is cultured between 5 and 80 micrometers to generate different contours of FIG. 2110. Figures 2120, 2130, and 2140 were generated using the same parameters as in Figure 2 with the difference that the "fixed system is 135, 270, and 45 degrees. Figure 21 shows that it can be minimized at the edge of the gap, and the other Keep the thickness in place. Figure 22 shows the figure of the shape factor relative to the thickness of the mask, based on the outline. Figures 2210, 2220 '2230, and 2240 are based on Figures 2ιom, 2120, 2130, and 2140. Please shape the hole shape. The change is evaluated by changing the angles of the side walls of the apertures α = 45, 90, 135 and α, = 27 °. The apertures called ^ produce the most diffusive pixels because of the lack of close angle of physical adsorption molecules Parallel correction. Double taper apertures (α, = 27〇.) Are slight, but at "40. And ^ 45. The sharpest pattern is achieved under geometric shapes. Except deposition

裝 玎 線 1223840 五、發明説明(31 月銳圖3L之外’此等隙孔角度於特定沉積形狀下得到最大 &quot;l積效率’而結構上較特定〖下之其他罩幕形狀堅固。 田mfp增加(對應於降低之匕^)時,分子在進入且貫穿邊 界3 T保持更接近其原始整體流速。此情況下,執跡平 句艾得車乂平行/冗積輪廓變得較明銳。圖2 3出示經標準化 之同度相對於三情況下之位置的圖。圖231〇出示在純擴散 &quot;L積下所生成的輪廓。圖232〇出示整體輸送速度(設定於 平均熱速度之十分之一)附加於載體氣體分子之熱化速度向 量的Z分量。圖2330係為中間體情況,其中載體分子之2方 向速度^著其接近基材而逆向地降低。該純擴散情泥產生 取狹窄明確之沉積邊緣,而圖232〇產生最明銳之圖型。實 際沉積機制亦受限於此兩極限,證明載體氣體流動的複2 流體力學’其中較重之有機分子保留整體載體氣體流動之 一比率z方向分量。 考慮經由小值直徑毛細管輸送於經冷卻基材上之載體氣 體噴射。在Monte-Carlo模擬中,z-方向載體氣體速度Uz 可增加以模擬一噴射,其僅因重疊此流動範圍上之各向同 性任意分子速度而增寬。圖24出示載有Aiqs之模擬噴射的 空間濃度曲線,mfp=10微米,t = 50微米,且Uz叫〇〇米/秒 ,而平均熱速度ΰ = 500米/秒。因為此流動方法中之流動範 圍係未知,故為簡化計,模擬保持dUz/dz = 〇。該圖顯示經 平行校正之噴射會導致具有明確邊緣之沉積物,即使 s&gt;&gt;mfP亦然。在謹慎地選擇U之下,Pdep、^及3可使用分 子有機薄膜之印刷方法’如同聚合物所使用之噴墨式列印 34- 裝 訂 線 1223840 A7 ______ B7 五、發明説明(一 - ’不同處係液體溶劑係由高揮發性惰性載體氣體之噴流所 取代。圖24中’含有有機分子之載體氣體係自罩幕2410中 之隙孔2415噴射,撞擊於基材2420上。圖2430、2440及 2450係說明不同模擬結果,其中噴嘴係與基材距離相異, 顯示蒸Ά育流在遠離噴嘴時增寬。 附加實驗Installation line 1223840 V. Description of the invention (in addition to 3L sharp picture 3L, 'these aperture angles get the maximum under a specific deposition shape &quot; product efficiency &quot; and the structure is stronger than the other shape of the specific shield. When the mfp increases (corresponding to the lowered dagger ^), the molecule enters and penetrates the boundary 3 T to stay closer to its original overall flow velocity. In this case, the parallel / redundant contour of the tracked flat sentence Aide car becomes sharper. Figure 23 shows the normalized relative degree with respect to the position in the three cases. Figure 2310 shows the contour generated under the pure diffusion &quot; L product. Figure 2320 shows the overall conveying speed (set at the average thermal speed). One tenth) is added to the Z component of the heating velocity vector of the carrier gas molecule. Figure 2330 is the case of the intermediate, in which the two-direction velocity of the carrier molecule decreases inversely as it approaches the substrate. The pure diffusion mud A narrow and clear sedimentary edge is generated, and Figure 232 produces the sharpest pattern. The actual deposition mechanism is also limited by these two limits, which proves that the complex gas flow of the carrier gas 2 'heavier organic molecules retain the whole One of the ratio z-direction components of the body gas flow. Consider a carrier gas jet delivered on a cooled substrate via a small-diameter capillary. In the Monte-Carlo simulation, the z-direction carrier gas velocity Uz can be increased to simulate a jet, which Widened only by overlapping isotropic arbitrary molecular velocities over this flow range. Figure 24 shows the spatial concentration curve of the simulated jet with Aiqs, mfp = 10 microns, t = 50 microns, and Uz is 0 m / s. , And the average thermal velocity ΰ = 500 m / s. Because the flow range in this flow method is unknown, for simplicity, the simulation maintains dUz / dz = 〇. The figure shows that a parallel-corrected jet will result in a clear edge. Deposits, even s &gt; &gt; mfP. With careful selection of U, Pdep, ^, and 3 can be printed using molecular organic thin films' as inkjet printing for polymers 34-gutter 1223840 A7 ______ B7 V. Description of the invention (a-'The liquid solvent in different places is replaced by a jet of highly volatile inert carrier gas. The carrier gas system containing organic molecules in Figure 24 is from the gap in the cover 2410 The hole 2415 sprays and hits the substrate 2420. Figures 2430, 2440, and 2450 illustrate different simulation results, in which the nozzle system is at a different distance from the substrate, showing that the steaming stream is widened away from the nozzle. Additional experiments

Alqa有機薄膜之沉積係使用多筒石英沉積系統進行’使 用原位溫度及厚度測量設備。圖25出示沉積系統之說明。 11厘米直徑乘150長之石英圓筒25 1〇作為艙壁。該圓筒係 裝置於上游末端,具有4個蒸發源極機筒2520(圖25中僅見 到2個)’由個別裝有石英蒸發構件之2.5厘米直徑乘1〇〇厘 米長度石英圓筒所構成。主管係藉三區段爐具253〇加熱, 以藉由將各構件放置於管内溫度梯度沿線而控制源極溫度 。載體氣體流於圓筒25 10及源極機筒2520之内側上,藉質 流控制益調整,而沉積壓力係藉著調整泵節流闊及由1 〇至 100 seem之整體載體流速,而保持介於〇1及1〇托耳之間。 使用具有液態氮冷阱之40 lpm真空泵以排出未冷凝之載體 及有機物。來自氣相之有機分子物理性吸附於旋轉之經水 冷卻而位於機械操作之擋閘255〇後方的基材254〇上。薄膜 厚度及生長速率係使用經偏光測定有機薄膜厚度校正之石 英結晶微量天平偵測。亦使用圖25之系統以生成前文所討 論之實驗結果。 使用OVPD所得之有機薄膜的沉積輪廓與來自習用真空 熱洛發器者比較。源極-至-基材之距離約為3〇厘米;而沉 -35- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公^ ------- 1223840 A7 B7 五、發明説明(33 積壓力係保持於1 〇-6托耳。 使用三類孔板。-為60微米厚,i厘米χι厘米麵方塊, 具有直徑為丨000、500及丨00微米之圓形開口。此罩幕中之 隙孔輪廓係為圓柱形(α=9(Γ )。所採用之另_種罩幕係為 具有標稱直徑為麵、300及100微米之圓形隙孔的^毫米 厚度鉬板。此罩幕中之開口具有雙重傾斜之邊緣,形成雙 錐形隙孔(^27(Γ )。第三類軍幕係為犯網板,3 5+ 〇5 微米厚’具有標稱7.5及12.5微米之方形開口,&quot;寬之線 分隔。該軍幕係使用護圈固定於㊉基材上。料幕基材間 距係使用放置於Si基材與Mo罩幕底面門 土 ’履面之間的多層N i網板塾 片控制。經由Nl網板沉積時,藉著们厘米χΐ厘米之網板 夾置於基材與第一或第二類罩幕之間,之後藉護圈夹於支 架上,而將其固定於基材上。因為Ni網板之輪廊最小有 效之間距係為1 ·〇± 0.5微米,但因為網板本身之可燒性, 故有時可較大。 沉積圖型輪廓之分析係使用針對最小像紊尺寸之掃描式 電子顯微鏡(SEM)及原子力顯微鏡(AFM),及針對較大像 素之干涉式顯微鏡而進行。後-種方法包括使用單色光u 540± 1 〇不米)射基材,觀察鐘形像素之傾斜邊緣所形 成之邊紋圖型。圖26出示所得之影像的實例。影像26ι〇顯 示藉〇卿沉積之圓形像素(α贊)之SEM顯微鏡結果。 此沉積所使用之圓柱形隙孔罩幕係包括w=i〇〇、3〇〇及1〇〇〇 微米之像素直徑。影像263〇顯示影像261〇之區域的干 涉顯微結果。 -36- 本紙張尺度適财開家鮮(CNS) A4規格(21GX^^ 1223840 A7 ________B7 五、發明説明(~--~--- 圖27出示來自圖26之影像的厚度輪廓2710,藉著計數來 自邊緣(圖2720)之邊紋數目且使用下式而自經數位化之像 素影像導出: 2 n (12) 其中Η係為像素厚度,m = 〇、i、2、3等,係為邊紋級 數,λ=540奈米,且η=1·74,係為八…之折射率。 圖28出示圖26之沉積層的測量圖型輪廓。圖281〇、282〇 、及2830個別顯示10〇、3〇〇及1〇〇〇微米直徑層的輪廓,各 具有s = 〇微米,且卜50微米。圖285〇、286〇及287〇個顯示 100、3 00及1000微米直徑層之輪廓,5各=4〇微米且^微米 。圖2820係對應於標稱2微米厚之薄膜,而圖286〇係對應 於標稱1.6微米厚之薄膜。圖284〇係出示圖286〇 ,藉著乘以 2/1.6而標稱化成圖282〇且重疊於圖282〇上。此等圖顯示像 素沉積效率(意指位於各輪廓底下之區域)隨著寬高比t/w 而降低。各像素之中間部分於較大t / w下膨脹之情況係與 在模擬中所發現者相同(參照圖19)。藉著比較經標稱化之 s = 0微米且s = 40微米曲線,顯然增大之s係降低圖型沉積 之效率(因為冷凝於罩幕背面)及邊緣銳度,如模擬實驗所 預期(參照圖20及相關討論)。 藉OVPD所得之最高解析度圖型因此可使用將N丨網夾置 於基材表面與較厚罩幕中之一之間而製得之罩蓋設備而達 成。於Pdep = 0.1托耳下藉〇VPD沉積之經圖型化Alq3薄膜 試樣係使用原子力顯微鏡(AFM)成像。使用標稱t〜3微米 -37- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱) 發明説明(36 ) 特別期望此種情況。次序亦可相反,第二次沉積較寬之層。 雖然各種具體實例皆將0 VPD及VTE描述為特定方法, 其中可使用基本壓力及其他參數控制沉積層之覆蓋面積, 但該觀念可延伸至其他沉積技術,諸如濺射、電子束、或 一般物理氣相沉積。覆蓋面積亦可於特定方法中控制。例 如’可於較窄之有機層上沉積寬有機層(或相反),兩者皆 使用OVPD,但使用不同之OVPD參數。 顯然OVPD可使用於有機薄膜之圖型化沉積,具有微米 大小之解析度。吾人發現因為0VPD中所使用之載體氣體 及有機分子的岔度低’故分子自由路徑經常為罩幕尺寸之 大小,顯示此種方法應使用Monte-Carlo直接模擬實驗進行 模型實驗。雖然沉積大多於擴散模式下進行,但實驗證據 顯示有機分子因為被載體氣體所整體輸送,故其速度保留 了相當之比例。當沉積壓力降低時,平均自由路徑增加, 導致較明銳之像素邊緣。使用較重之載體氣體對於擴散方 法中之像素形狀不具有第一階效應,而可改善蒸汽-噴射沉 積模式中之邊緣銳度。小於該系統之平均自由路徑的罩幕, 基材間距經常產生在視線真空沉積中所發現之梯形像素輪 廓。較厚之罩幕幫助增加像素邊緣銳度,唯損及罩幕-對-基材之沉積效率。模擬之蒸汽噴射沉積方法顯示可藉超快 氣體噴射直接將有機物圖型化,其中流速配合或超過分子 之熱速度。此方法可產生接近1〇〇百分比有效地圖型化之 有機氣相沉積。藉著在壓力範圍底限(&lt;1〇 pa)下沉積且使 用適當之隙孔形狀(例如α&lt;9〇。),可達到次微米圖型解析 -39- 1223840 A7 B7 五 發明説明(37 ) 度。 雖已針對特定實施例及較佳具體實例描述了本發明,但 已知本發明不限於此等實施例及具體實例。本發明因此係 包括本文所描述之特定實施例及較佳具體實例的變化型式 ,如同熟習此技藝者已知。雖可個別描述及申請部分特定 具體實例,但已知本文所描述及申請之各種具體實例皆可 組合使用。 -40- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) A 口 /j 乂 申請曰期 ______ 案 號J 9L 091120149 類 別 A4 C4 中文說明書替換頁(93年4月)The Alqa organic thin film is deposited using a multi-barrel quartz deposition system 'using in-situ temperature and thickness measurement equipment. Figure 25 shows a description of the deposition system. An 11 cm diameter by 150 long quartz cylinder 25 10 is used as the bulkhead. This cylinder system is installed at the upstream end and has 4 evaporation source barrels 2520 (only 2 are seen in FIG. 25). It is composed of 2.5 cm diameter by 100 cm quartz cylinders equipped with quartz evaporation components. . The main pipe is heated by a three-section stove 2530 to control the source temperature by placing each component along the temperature gradient in the tube. The carrier gas flows on the inside of the cylinder 25 10 and the source barrel 2520, and is adjusted by mass flow control, while the deposition pressure is maintained by adjusting the pump throttle and the overall carrier flow rate from 10 to 100 seem Between 0 and 10 Torr. Use a 40 lpm vacuum pump with a liquid nitrogen cold trap to discharge uncondensed carriers and organics. Organic molecules from the gas phase are physically adsorbed on a rotating substrate 2540 that is water-cooled and located behind a mechanically operated shutter 255. The film thickness and growth rate were detected using quartz crystal microbalances corrected for polarizing the organic film thickness. The system of Figure 25 was also used to generate the experimental results discussed previously. The deposition profile of the organic thin film obtained using OVPD was compared with those obtained from a conventional vacuum heat generator. The source-to-substrate distance is about 30 cm; and Shen-35- this paper size is applicable to China National Standard (CNS) A4 specifications (210X 297 public ^ ------- 1223840 A7 B7 V. Invention Explanation (33 product pressure is maintained at 10-6 Torr. Three types of orifice plates are used.-60 micron thick, i cm x cm cm square block, with circular openings with diameters of 000, 500, and 00 microns. The profile of the apertures in this mask is cylindrical (α = 9 (Γ). The other type of mask used is a ^ millimeter thickness with circular apertures with nominal diameters of 300 and 100 microns. Molybdenum plate. The opening in this hood has double-inclined edges to form a double-tapered gap (^ 27 (Γ). The third type of military curtain is a criminal screen, 3 5+ 〇5 microns thick, with a nominal 7.5 and 12.5 micron square openings, separated by "wide lines." The military curtain is fixed to the base material by using a retaining ring. The material substrate distance is placed on the base material of the Si substrate and the bottom of the Mo cover. The multi-layer Ni screen slabs between the faces are controlled. When depositing through the Nl screens, they are clamped between the substrate and the first or second type of screen by the centimeter x ΐ cm screen. Then, it is clamped on the bracket by the retaining ring and fixed to the substrate. Because the minimum effective distance between the rims of the Ni screen is 1 · 0.5 ± 0.5 microns, but because of the burnability of the screen itself, it has It can be larger. The analysis of the deposition pattern profile is performed using a scanning electron microscope (SEM) and atomic force microscope (AFM) for the smallest image anomaly size, and an interference microscope for larger pixels. Post-methods include Monochromatic light (U 540 ± 100mm) was used to shoot the substrate, and the fringe pattern formed by the inclined edges of the bell-shaped pixels was observed. An example of the obtained image is shown in FIG. 26. The image 26m0 shows the circle deposited by 〇 卿SEM microscopy results of shaped pixels (αzan). The cylindrical gap mask used for this deposition includes pixel diameters of w = 100, 300, and 1000 microns. Image 2630 shows image 2610. The results of interference microscopy in this area. -36- The paper size is suitable for financial use (CNS) A4 size (21GX ^^ 1223840 A7 ________B7 V. Description of the invention (~-~ ---) Figure 27 shows the results from Figure 26 The thickness profile of the image is 2710, by counting from the edge (Figure 2720) The number of lines is derived from the digitized pixel image using the following formula: 2 n (12) where Η is the pixel thickness, m = 0, i, 2, 3, etc., is the fringe level, λ = 540 nanometers M, and η = 1.74, which is a refractive index of eight ... Fig. 28 shows the measurement pattern outline of the deposited layer of Fig. 26. Figs. 2810, 2820, and 2830 each show 10, 3, and 1 The outlines of the 00 micron diameter layers each have s = 0 micron and 50 micron. Figures 285, 2860, and 2870 show the contours of the 100, 300, and 1000 micron diameter layers, 5 each = 40 microns and ^ microns. Figure 2820 corresponds to a nominal 2 micron thick film, and Figure 2880 corresponds to a nominal 1.6 micron thick film. Figure 2840 shows Figure 2860, which is nominally reduced to Figure 2820 by multiplying by 2 / 1.6 and superimposed on Figure 2820. These figures show that the pixel deposition efficiency (meaning the area under each contour) decreases with the aspect ratio t / w. The expansion of the middle portion of each pixel at a large t / w is the same as that found in the simulation (see Figure 19). By comparing the nominalized s = 0 micron and s = 40 micron curves, obviously increasing s reduces the efficiency of pattern deposition (because it condenses on the back of the mask) and edge sharpness, as expected from simulation experiments ( (See Figure 20 and related discussions). The highest resolution pattern obtained by OVPD can therefore be achieved using a capping device made by placing a N 丨 net clip between the substrate surface and one of the thicker masks. A patterned Alq3 thin film deposited by OVPD at Pdep = 0.1 Torr was imaged using an atomic force microscope (AFM). Use nominal t ~ 3 microns -37- This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 public love) Description of the invention (36) This situation is particularly expected. The sequence can also be reversed, with a wider layer being deposited a second time. Although various specific examples describe 0 VPD and VTE as specific methods in which the coverage area of the deposited layer can be controlled using basic pressure and other parameters, the concept can be extended to other deposition techniques such as sputtering, electron beam, or general physics Vapor deposition. The coverage area can also be controlled in specific methods. For example, ’can deposit a wide organic layer (or vice versa) on a narrower organic layer, both using OVPD, but using different OVPD parameters. Obviously OVPD can be used for patterned deposition of organic thin films with micron-sized resolution. I found that because the carrier gas and organic molecules used in 0VPD have a low degree of bifurcation, the molecular free path is often the size of the mask. This method should be modeled using Monte-Carlo direct simulation experiments. Although deposition is mostly carried out in diffusion mode, experimental evidence shows that organic molecules are transported by the carrier gas as a whole, so their velocity has been kept in a considerable proportion. As the deposition pressure decreases, the average free path increases, resulting in sharper pixel edges. The use of a heavier carrier gas does not have a first-order effect on the pixel shape in the diffusion method, but improves the edge sharpness in the vapor-jet deposition mode. Smaller than the average free path mask of this system, the substrate spacing often produces trapezoidal pixel profiles found in line-of-sight vacuum deposition. A thicker mask helps increase the sharpness of the pixel edges, but only at the expense of the mask-to-substrate deposition efficiency. The simulated steam jet deposition method shows that organic matter can be directly patterned by ultrafast gas jets, where the flow rate matches or exceeds the thermal velocity of the molecules. This method can produce organic vapour depositions with nearly 100% effective patterning. Sub-micron pattern resolution can be achieved by depositing at the bottom of the pressure range (&lt; 10pa) and using an appropriate void shape (e.g., &lt; 90). -39-1223840 A7 B7 Fifth invention description (37 ) Degrees. Although the present invention has been described with respect to specific embodiments and preferred specific examples, it is known that the present invention is not limited to these embodiments and specific examples. The invention therefore includes variations of the specific embodiments and preferred embodiments described herein, as is known to those skilled in the art. Although some specific examples can be individually described and applied, it is known that various specific examples described and applied herein can be used in combination. -40- This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X 297mm) A port / j 乂 Application date ______ Case No. J 9L 091120149 Category A4 C4 Chinese manual replacement page (April 1993)

、翁1名稱 令 發明 φ — 新金寻#^説明書1223840 製造有機裝置之方法 METHOD OF FABRICATING AN ORGANIC DEVICEf, 姓 名1.馬克西坦 max shtein2. Weng 1 Name Order Invention φ — 新 金 寻 # ^ Instructions 1223840 METHOD OF FABRICATING AN ORGANIC DEVICEf, NAME 1. Maxitan

2.史堤务 R·佛瑞特 STEPHEN R. FORREST 國 籍 1·-2.美國 U.S.A. 住、居所 姓 名 (名稱) 國 籍 1 ·美國新澤西州普林斯頓市費裘堤路7-ζ瑪奇大樓 I^!1AGIE FACULTY ROAD, PRINCETON, NEW JERSEY 08540, U.S.A. 2.美國新澤西州普林斯頓市航特道丨4 8號 148 HUNT DRIVE PRINCETON, NEW JERSEY 08540, U.S.A. 美國普林斯頓大學信託會 THE TRUSTEES OF PRINCETON UNIVERSITY 美國U.S.A. 裝 線 美國新澤西州普林斯頓市36號信箱 P.O. BOX 36, PRINCETON, NEW JERSEY 08544, U.S.A. 密雪兒D.克里斯汀2. STEVE R · FRED STEPHEN R. FORREST Nationality 1.-2. USA USA Name of residence and residence (name) Nationality 1 · 7-ζMacchi Building, Feichutti Road, Princeton, New Jersey, USA I ^! 1AGIE FACULTY ROAD, PRINCETON, NEW JERSEY 08540, USA 2. 4 8 148 HUNT DRIVE PRINCETON, NEW JERSEY 08540, USA The United States of America Princeton University Trust The TRUSTEES OF PRINCETON UNIVERSITY PO BOX 36, PRINCETON, NEW JERSEY 08544, USA Michelle D. Kristin, Princeton, NJ

MICHELLE D· CHRISTY 本紙張尺度適用中國國家檩準(CNS) Α4規格(21〇 χ邠7公釐) 1223840MICHELLE D · CHRISTY This paper size is applicable to China National Standard (CNS) Α4 size (21〇 χ 邠 7mm) 1223840

Nl 五 ^ 091120149號專利申請案g發明説明(1 ) 相關申請案之前後參照 本專利申請案主張下列美國專利申請案之優先權: 6〇,3 1 7,2 1 5(200 1 年9月 4 日申請)、6〇/3 1 6,264(2〇〇1 年9月 4 曰申請)、60/3 1 6,968(200 1 年9月 5日申請)、及 6〇/332,〇9〇 (2 00 1年1 1月2 1日中請)。此等專利申請案係以提及方式完 全併入本文中。 有關政府權利之陳述 本發明係由政府贊助,合約編號Ρ4962〇_92_;_〇5 24(普 林斯頓大學),u.s. Air Force 0SR(科學研究辦公室)^ 查。政府對本發明具有一定權利^ 發明領域 本發明係有關一種製造有機半導體裝置諸如有機發光裝 置之方法。本發明尤其有關一種製造經由罩幕沉積有機材 料之裝置的方法。 發明概述 本發明提供-種製造裝置之方法。該方法可稱為&quot;混人&quot; 方法’因為使用不同之沉積方法以沉積有機層及金屬層, 而此等方法之差異有助於該方法之進行。將孔板放置於鱼 基材具有特定距離之位置,隨之使用有機氣相沉積(0VPD; 經由罩幕進行沉積。隨之使用真空熱蒸發(VTE)經由相同 罩幕而沉積金屬(或導電性金屬氧化物)層1為0咖與 VTE之間的差異’該有機層可於可信且可控制之情況下Z 於金屬層,即使該有機及金屬層兩者皆經由相同罩幕沉積 亦然。本發明提供—種製造有機裝置之方法。藉由—製^ -4- 衣王 木紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 1223840 第09U20149號專利申請案Nl 5 ^ 091120149 Patent Application g Invention Description (1) Priority of the following U.S. patent applications with reference to related patent applications: 60,3 1 7,2 1 5 (September 2001 4th application), 60/31, 6,264 (filed on September 4, 2001), 60/3 1 6,968 (filed on September 5, 2001), and 60 / 332,009 ( (2001, January 21, 2001). These patent applications are fully incorporated herein by reference. Statement on Government Rights This invention is sponsored by the government under contract number P4962〇_92 _; _ 〇5 24 (Princeton University), u.s. Air Force 0SR (Office of Scientific Research) ^. The government has certain rights in the invention ^ FIELD OF THE INVENTION The invention relates to a method for manufacturing an organic semiconductor device such as an organic light emitting device. More particularly, the present invention relates to a method of manufacturing a device for depositing organic materials through a mask. SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a device. This method can be referred to as the "mixed method" because different deposition methods are used to deposit the organic layer and the metal layer, and the difference between these methods helps the method. The orifice plate is placed at a specific distance from the fish substrate, followed by organic vapor deposition (0VPD; deposition via a mask. Then vacuum thermal evaporation (VTE) is used to deposit metal (or conductivity) through the same mask Metal oxide) layer 1 is the difference between 0 ° C and VTE 'The organic layer can be in the metal layer under credible and controllable conditions, even if both the organic and metal layers are deposited through the same mask The present invention provides a method for manufacturing an organic device. By making ^ -4- Yiwangmu paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 1223840 Patent Application No. 09U20149

中文說明書替換頁(93年5月)丨7撫r月έ日 五、發明説明(2 ) ^ 經由罩幕沉積第一層,形成具有第一覆蓋區域之第一層。 二層沉積於該基材上,形 隨之藉由一製程經由該罩幕將第 成具有兴於第一覆蓋區域之第二覆蓋區域的第二層。 本發明亦提供另一種製造裝置之方法。前述混合方法係 用以經由罩幕沉積第一有機層,隨之第一金屬層,其中該 罩幕係配置於第一位置。該罩幕隨之移動至第二位置,此 可相對於第一位置而決定。之後,使用該混合方法經由該 罩幕 &gt;儿積第二有機層,之後為第二金屬層。該罩幕可隨之 移動至第二位置,此係相對於第二位置而決定。隨之使用 混合方法以經由罩幕沉積第三有機層,隨之為第三金屬 層。該基材可在罩幕之外移動或代之移動。 所提供之各方法中,該基材可於沉積有機層之期間進行 冷卻。 本發明之目的係提供一種改良之製造有機半導體裝置的 方法,其使用較先前方法少的步驟。 本發明另一步驟係提供一種改良之製造有機半導體裝置 之方法,其係利用OVPD方法。 圖式簡單說明 圖1出示一真空熱蒸發系統。 圖2出示一真空熱蒸發系統。 圖3出示一有機氣相沉積系統。 圖4出不一有機氣相沉積系統。 圖5,包含圖5 a , 5 b及5 c ,出示經由孔板進行沉積之衩Replacement page of the Chinese manual (May 1993) 丨 7 months on the fifth day 5. Description of the invention (2) ^ The first layer is deposited through the mask to form the first layer with the first coverage area. Two layers are deposited on the substrate, and then a second layer having a second coverage area that is attached to the first coverage area is formed through the mask through a process. The present invention also provides another method for manufacturing a device. The aforementioned hybrid method is used to deposit a first organic layer through a mask, followed by a first metal layer, wherein the mask is disposed at a first position. The mask then moves to a second position, which can be determined relative to the first position. After that, a second organic layer is deposited via the mask using the mixing method, and then a second metal layer is formed. The mask can then be moved to a second position, which is determined relative to the second position. A hybrid method is then used to deposit a third organic layer through the mask, followed by a third metal layer. The substrate can be moved outside or instead of the veil. In each of the methods provided, the substrate may be cooled during the deposition of the organic layer. An object of the present invention is to provide an improved method for manufacturing an organic semiconductor device, which uses fewer steps than the previous method. Another step of the present invention is to provide an improved method for manufacturing an organic semiconductor device, which uses the OVPD method. Brief description of the drawings Figure 1 shows a vacuum thermal evaporation system. Figure 2 shows a vacuum thermal evaporation system. FIG. 3 shows an organic vapor deposition system. Figure 4 shows an organic vapor deposition system. Fig. 5, including Figs. 5a, 5b and 5c, showing the deposition process through the orifice plate;

本紙張尺度適财®國家標準 f 091120149號專利申請案 換頁(93年4月) 3 五、發明説明( 擬結果,顯示不同沉積壓力的影響。 圖6 ’包含圖6a,6bA6c,出示經由孔板沉積之模擬結 果顯不改變介於罩幕與基材之間的間距之影響。 匕圖7 ’包含圖7a ’ 7b&amp;7e,出示經由孔板進行沉積之模 擬結果,顯示改變罩幕厚度的影響。 圖8,包含圖8 a及8 b,出示經由孔板進行沉積之模擬結 果’顯示改變有效邊界層厚度之影響。 圖9及圖1〇出示經由孔板進行沉積相對於载體氣體流速 之模擬結果。 圖11出示實驗所使用之基材_孔板組合體之一般示意 圖。插圖出示掃描式電子顯微相片,詳細描述直接放置於 基材上之頂層罩幕及鎳網板。 圖12出不經由孔板沉積之後形成於塗覆有銀之玻璃基材 上的部分代表性Alq3圖型的掃描式電子顯微相片。 圖13出示藉混合〇 VPD_ VTE沉積所形成之Alq3/Ag微圖型 之模擬結果,其中兩者使用相同之孔板。 圖14出示藉混合0VPD_VTE沉積所形成之Alq3/Ag微圖 型之實驗結果的掃描式電子顯微相片,其中兩者使用相同 之孔板。 圖15出示藉OVPD經由孔板所沉積之像素的鐘形輪廓。 圖16出不使用1〇5粒子,mfp=i00微米,s = 7微米,t = 3 微米,且α=135°自Monte-Carlo模擬所得之模擬沉積結果。 圖17出示使用1〇5粒子,mfp=i〇微米,s = 7微米,卜3微 米,且35。自Monte-Carlo模擬所得之模擬沉積結果。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1223840 A7 B7 $ 091120149號專利申請案 中文說明書替換頁(93年4月) 五、發明説明( ) 且^〜&amp;〇微m網板作為罩幕’ S&lt;1微米。邊緣銳度约 3微米,得自厚度輪廓。實驗圖型輪廓係藉由 :士 刀適配,使用w二6.0微米,t = 3.5微米,s = 〇 5微米, mf:-20微米且心27()。。該模擬及實驗尺寸接近相同,顯 不该隨機模擬可準確地描述經圖型化之沉積機制。 、 i於由0.1至2托耳之壓力下得到供沉積使用之相同圖型, 較低壓力較有利於較明銳之像素。兩極限情況係由圖^所 示之沉積薄膜的SEM說明。影像3110顯示在pdep=i〇_6托耳 且s〜0.5微米下經由Ni網板藉VTE沉積於si上之Ah]圖 型,而影像3120顯示於Pdep = 2托耳下於〇vpD中沉積之類 似圖型。真空沉積之圖型顯示前述之梯形輪廓,ΐ2&lt;ι = 米,而〇VPD_具有⑴微米大小之邊緣分散性。模擬 貫驗顯示若使用最小值之隙孔,則可達到次微 米解析度。 圖30顯示經由單一罩幕之混合沉積。罩幕322〇係配置於 基材3210底層。首先,有機層323〇係經由罩幕322〇藉 〇VPD沉較基材側上。之後,金屬或㈣氧化物層 3240係經由罩幕322〇藉VTE沉積於有機層323〇上。因為方 法之差異諸如基本壓力,故有機層較金屬或金屬氧化物層 寬,即使係經由相同罩幕沉積於相同位置上亦然,在兩沉 積過程中或之間,罩幕相對於基材無任何移動。此種現象 可有利地用以於較寬之第一層上沉積第二層,使得第二層 不與位於第一層底層之任何層接觸—當例如第一層係為發 光層’第二層係、為電極,而S _電極係位於有機層底層時 -38- 1223840 第091120149號專利申請案 中文說明書替換頁(93年4月) 五、發明説明(38 ) A7 B7 圖式元件符號說明 100,200 真空熱蒸發系統 110,210 源極 120 真空艙 130, 230, 330, 420, 1150, 1510, 1620, 1720, 2420, 3210 基材 220, 320, 410, 1110, 1520, 1610, 1710, 2410, 3220 罩幕 222,412, 1525 隙孔 240 圖形化之有機層 300, 400 有機氣相沈積系統 310 源極構件 340 壁 430, 1320, 1630, 1730, 3230 有機層 1120 網板 1130 板 1140 夾具 1210, 1220, 1230, 2610, 2630, 3110, 3120 影像 1310 金屬層 1410 Alq3有機層 1420 Ag金屬層 1530 層 1535 區域 2510 石英圓筒 2520 蒸發源極機筒 2530 爐 2550 檔閘 2620 區域 2710 厚度輪廓 3240 金屬/金屬氧化物層 裝 η 線 -41 -本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐)This paper is scaled by Shicai® National Standard No. f 091120149 (April 1993) 3 V. Description of the invention (Proposed results, showing the effect of different deposition pressures. Figure 6 'Contains Figures 6a, 6bA6c, showing through the orifice plate The simulation results of the deposition did not change the effect of the gap between the mask and the substrate. Fig. 7 'includes Fig. 7a' 7b & 7e, showing the simulation results of deposition through the orifice plate, showing the effect of changing the thickness of the mask Fig. 8, including Figs. 8a and 8b, shows the results of the simulation of deposition through a perforated plate 'shows the effect of changing the effective boundary layer thickness. Fig. 9 and Fig. 10 show the effect of deposition through a perforated plate relative to the carrier gas flow rate Simulation results. Figure 11 shows a general schematic diagram of the substrate_orifice assembly used in the experiment. The illustration shows a scanning electron micrograph detailing the top mask and nickel mesh directly placed on the substrate. Figure 12 shows Scanning electron micrograph of a representative Alq3 pattern formed on a silver-coated glass substrate after deposition without an orifice. Figure 13 shows A formed by mixing 0VPD_VTE deposition lq3 / Ag micropattern simulation results, where both use the same orifice plate. Figure 14 shows a scanning electron micrograph of the experimental results of Alq3 / Ag micropattern formed by mixing 0VPD_VTE deposition. The same orifice plate. Figure 15 shows the bell-shaped outline of the pixel deposited by OVPD through the orifice plate. Figure 16 shows the use of 105 particles without mfp = i00 microns, s = 7 microns, t = 3 microns, and α = 135 ° simulated deposition results from Monte-Carlo simulation. Figure 17 shows the use of 105 particles, mfp = 10 μm, s = 7 μm, 3 μm, and 35. Simulated deposition results from Monte-Carlo simulation The paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) 1223840 A7 B7 $ 091120149 Patent application Chinese manual replacement page (April 1993) V. Description of the invention () and ^ ~ &amp; 〇 微The m screen serves as the mask 'S &lt; 1 micron. The edge sharpness is about 3 micron, which is derived from the thickness profile. The experimental pattern profile is adapted by: sword knife, using w = 6.0 micron, t = 3.5 micron, s = 〇5 microns, mf: -20 microns and the core 27 (). The simulation and experimental dimensions are close Similarly, it should be shown that the random simulation can accurately describe the patterned deposition mechanism. I obtain the same pattern for deposition under a pressure of 0.1 to 2 Torr, and lower pressure is more conducive to sharper pixels The two extreme cases are explained by the SEM of the deposited thin film shown in Figure ^. Image 3110 shows the Ah deposited on the Si by VTE through Ni screen at pdep = i0_6 Torr and s ~ 0.5 microns] Image 3120 shows a similar pattern deposited in 0vpD under Pdep = 2 Torr. The pattern of vacuum deposition shows the aforementioned trapezoidal profile, ΐ2 &lt; m = m, and OVPD_ has edge dispersion of ⑴micron size. Simulations show that submicron resolution can be achieved with the smallest gap hole. Figure 30 shows hybrid deposition through a single mask. The mask 3220 is arranged on the bottom layer of the substrate 3210. First, the organic layer 3230 is deposited on the substrate side through the VPD via the mask 3220. Thereafter, a metal or hafnium oxide layer 3240 is deposited on the organic layer 3230 by VTE through the mask 3220. Because of differences in methods such as basic pressure, the organic layer is wider than the metal or metal oxide layer, even if it is deposited at the same location through the same mask. During or between the two deposition processes, the mask has no relative to the substrate. Any move. This phenomenon can be advantageously used to deposit a second layer on a wider first layer, so that the second layer is not in contact with any layer located on the bottom layer of the first layer—for example, when the first layer is a light-emitting layer and the second layer System, is an electrode, and S _ electrode system is located at the bottom of the organic layer -38-1223840 No. 091120149 Patent Application Chinese Specification Replacement Page (April, 1993) V. Description of the Invention (38) A7 B7 Symbol Description of Schematic Elements 100,200 Vacuum thermal evaporation system 110, 210 Source 120 Vacuum chamber 130, 230, 330, 420, 1150, 1510, 1620, 1720, 2420, 3210 Substrate 220, 320, 410, 1110, 1520, 1610, 1710, 2410, 3220 Cover 222,412, 1525 Slot 240 Patterned organic layer 300, 400 Organic vapor deposition system 310 Source component 340 Wall 430, 1320, 1630, 1730, 3230 Organic layer 1120 Screen plate 1130 Plate 1140 Fixture 1210, 1220, 1230, 2610 , 2630, 3110, 3120 image 1310 metal layer 1410 Alq3 organic layer 1420 Ag metal layer 1530 layer 1535 area 2510 quartz cylinder 2520 evaporation source barrel 2530 furnace 2550 shutter 2620 area 2710 thickness profile 3240 metal / metal oxidation Material layer η line -41-This paper size applies to China National Standard (CNS) Α4 size (210 X 297 mm)

Claims (1)

申Μ專利範園 ·-種製造-有機裝置之方法,包括 a) 於第一基本壓力下經由一罩幕將第一層沉積於一基材 上; b) 於第二基本壓力下經由相同罩幕沉積第二層; 其中該基本壓力係用以控制第一及第二層之尺寸。 2·一種製造有機裝置之方法,包括: a) 使用有機氣相沉積經由一罩幕於一基材上沉積第一 層,其中該第一層係為有機物; b) 藉由一方法經由相同罩幕於該第一層上沉積第二層, 產生覆蓋區域小於第一層之第二層。 3.如申請專利範圍第2項之方法,其;步驟b)係為蒸汽熱 蒸發(VTE)。 4· 一種製造一有機裝置之方法,包括: a) 藉由一製程經由一罩暮於一 羊I於基材上沉積第一層,產生 具有第一覆蓋區域之第一層; b) 藉由-製程經由該罩幕於基材上沉積第二層,產生具 有異於第-覆蓋區域之第二覆蓋區域的第二層。 5·如申請專利範圍第4項之方法,i +,隹 &gt; 止 θ 具中進行步驟a)及步驟b) 之基本壓力相異,而此差值係用 值1糸用以控制該第一及第二層 之相對覆蓋區域。 6 ·如申請專利範圍第4項之方法,農由 干該弟一層係包括金 屬或導電性金屬氧化物,該步驟 ,^ ^ )係為蒸汽熱蒸發,該 第二層係包3有機材料,該步驟b彳後 ^ 西从 、 )係為有機氣相沉積, 而該第二覆盍區域係大於該第—蓿# 復盡·區域。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1223840Shen M. Patent Fanyuan · A method of manufacturing an organic device, including a) depositing a first layer on a substrate through a mask under a first basic pressure; b) passing the same mask under a second basic pressure The second layer is deposited by the curtain; wherein the basic pressure is used to control the size of the first and second layers. 2. A method of manufacturing an organic device, comprising: a) using organic vapor deposition to deposit a first layer on a substrate through a mask, wherein the first layer is an organic substance; b) by a method through the same mask A second layer is deposited on the first layer, resulting in a second layer with a smaller coverage area than the first layer. 3. The method according to item 2 of the scope of patent application, wherein step b) is steam thermal evaporation (VTE). 4. A method of manufacturing an organic device, comprising: a) depositing a first layer on a substrate through a mask over a sheep by a process to produce a first layer having a first coverage area; b) by -The process deposits a second layer on the substrate through the mask to produce a second layer having a second coverage area different from the first coverage area. 5. If the method of item 4 of the scope of patent application, i +, 隹 &gt; θ, the basic pressures of steps a) and b) are different, and the difference is a value of 1 糸 to control the Relative coverage of the first and second layers. 6 · According to the method in the fourth item of the patent application, the first layer of the farmer includes metal or conductive metal oxide, and this step is ^ steam evaporation, and the second layer includes 3 organic materials, After this step (b), ^ is from organic vapor deposition, and the second overlying area is larger than the — ## replenishment area. This paper size applies to China National Standard (CNS) A4 (210X297 mm) 1223840 如申請專利範圍第4項之方法,其中該第_層係 機材枓,該步驟a)料機氣相沉積,該第 屬氧化物,該步驟咖 弟一覆盍區域係大於該第2€蓋區域。 8·如申請專利範圍第4項之方 機發光裝置。 ,、中料機裝置係為有 其中該有機裝置係為有 其中該有機裝置係為有 其中該金屬或金屬氧化 9 .如申請專利範圍第4項之方法 機電晶體。 10·如申請專利範園第4項之方法 機太陽能電池。 11.如申請專利範圍第7項之方法 物層係完全配置於右媳爲I 置於有機層上,使得金屬或金屬氧化物層 12. 如申請專利範圍第7項之方法 之基本壓力係約〇.1至10托耳。 13. 如申請專利範圍第4項之方法 被動陣列型顯示器。 14·如申請專利範圍第4項之方法 主動陣列型顯示器。 與任何位於有機層底層之材料不會接觸。 其中沉積該第一層期間 其中該方法係用以製造 其中該方法係用以製造 -2 -For example, the method of applying for item 4 of the patent scope, wherein the _ layer system material 枓, the step a) feeder vapor deposition, the genus oxide, the step coverage area in this step is larger than the 2 € cover region. 8. The lighting device of the unit such as the item 4 in the scope of patent application. In the middle feeder device, there is the organic device, there is the organic device, and the metal or the metal is oxidized. 9 The method such as the scope of the patent application No. 4 electromechanical crystal. 10. Method of applying for patent No. 4 in the Fan Garden. 11. If the method of claim 7 is applied, the material layer is completely arranged on the right side. I is placed on the organic layer so that the metal or metal oxide layer is 12. The basic pressure of the method of claim 7 0.1 to 10 Torr. 13. Method as claimed in item 4 of the patent application Passive array display. 14. The method according to item 4 of the patent application. Active Array Display. Does not come into contact with any material located on the bottom of the organic layer. During the deposition of the first layer, where the method is used for manufacturing, where the method is used for manufacturing, -2-
TW091120149A 2001-09-04 2002-09-04 Method of fabricating an organic device TWI223840B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US31626401P 2001-09-04 2001-09-04
US31696801P 2001-09-05 2001-09-05
US33209001P 2001-11-21 2001-11-21

Publications (1)

Publication Number Publication Date
TWI223840B true TWI223840B (en) 2004-11-11

Family

ID=27405857

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091120149A TWI223840B (en) 2001-09-04 2002-09-04 Method of fabricating an organic device

Country Status (2)

Country Link
TW (1) TWI223840B (en)
WO (1) WO2003034471A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100525819B1 (en) 2003-05-06 2005-11-03 엘지전자 주식회사 Shadow mask for manufacturing organic electroluminiscent display panel
US7214554B2 (en) * 2004-03-18 2007-05-08 Eastman Kodak Company Monitoring the deposition properties of an OLED
US9150953B2 (en) 2004-08-13 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including organic semiconductor
SG11201406746RA (en) * 2012-04-19 2015-03-30 Intevac Inc Dual-mask arrangement for solar cell fabrication
US11267012B2 (en) 2014-06-25 2022-03-08 Universal Display Corporation Spatial control of vapor condensation using convection
US11220737B2 (en) * 2014-06-25 2022-01-11 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
EP2960059B1 (en) 2014-06-25 2018-10-24 Universal Display Corporation Systems and methods of modulating flow during vapor jet deposition of organic materials
US10566534B2 (en) 2015-10-12 2020-02-18 Universal Display Corporation Apparatus and method to deliver organic material via organic vapor-jet printing (OVJP)
CN110212121B (en) * 2019-06-18 2021-10-29 京东方科技集团股份有限公司 Mask body, preparation method thereof and mask

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641611A (en) * 1995-08-21 1997-06-24 Motorola Method of fabricating organic LED matrices
US5998085A (en) * 1996-07-23 1999-12-07 3M Innovative Properties Process for preparing high resolution emissive arrays and corresponding articles
US20010005528A1 (en) * 1997-10-10 2001-06-28 Jae-Gyoung Lee Process for the preparation of organic electroluminescent device using vapor deposition polymerization
US6013538A (en) * 1997-11-24 2000-01-11 The Trustees Of Princeton University Method of fabricating and patterning OLEDs

Also Published As

Publication number Publication date
WO2003034471A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
US6716656B2 (en) Self-aligned hybrid deposition
JP5000302B2 (en) Method to increase the azimuthal resolution of organic vapor jet deposition by using limited protective fluid
Shtein et al. Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition
US7682660B2 (en) Process and apparatus for organic vapor jet deposition
EP2275587B1 (en) Process for organic vapor jet deposition
EP1803836B1 (en) Evaporation source and method of depositing thin film using the same
JP4767000B2 (en) Vacuum deposition equipment
TWI223840B (en) Method of fabricating an organic device
JP2005502779A5 (en)
CN104328391A (en) Vapor phase deposition system
JP2004076150A (en) Thin film forming system
KR101990619B1 (en) Apparatus for depositing evaporated material, distribution pipe, vacuum deposition chamber, and method for depositing an evaporated material
Kim et al. Morphology control of TIPS-pentacene grains with inert gas injection and effects on the performance of OTFTs
JP2012528245A (en) Method for forming an organic material layer on a substrate
JP4430718B2 (en) Atomic layer deposition system
Pryds et al. The spatial thickness distribution of metal films produced by large area pulsed laser deposition
JP2010126753A (en) Vapor deposition apparatus and method for manufacturing organic light-emission apparatus
Rolin et al. Vapor phase growth of functional pentacene films at atmospheric pressure
JP6512543B2 (en) Vapor deposition cell, thin film production apparatus and thin film production method
US9127349B2 (en) Method and apparatus for depositing mixed layers
Shtein Organic Vapor-Phase Deposition
KR20210049157A (en) Method for preprocessing vibration crystals to measure deposition rate, deposition rate measurement device, evaporation source and deposition apparatus
KR102616040B1 (en) Thin film deposition apparatus for forming patterned organic thin film and method of fabricating display device using the same
JP2009057614A (en) Vapor deposition apparatus and vapor deposition method
KR100549090B1 (en) Evaporator for organic vapor deposition apparatus

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent