TW584867B - Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same - Google Patents

Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same Download PDF

Info

Publication number
TW584867B
TW584867B TW92103763A TW92103763A TW584867B TW 584867 B TW584867 B TW 584867B TW 92103763 A TW92103763 A TW 92103763A TW 92103763 A TW92103763 A TW 92103763A TW 584867 B TW584867 B TW 584867B
Authority
TW
Taiwan
Prior art keywords
patent application
item
dielectric material
scope
zinc
Prior art date
Application number
TW92103763A
Other languages
Chinese (zh)
Other versions
TW200416749A (en
Inventor
Wen-Hsi Lee
Ying-Chieh Lee
Shu-Wui Wang
Original Assignee
Yageo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yageo Corp filed Critical Yageo Corp
Priority to TW92103763A priority Critical patent/TW584867B/en
Application granted granted Critical
Publication of TW584867B publication Critical patent/TW584867B/en
Publication of TW200416749A publication Critical patent/TW200416749A/en

Links

Abstract

The present invention relates to a novel microwave-dielectric ZnTiO3 material system comprising z % by weight of Bi203 and w % by weight of (Zn0)4.B2O3, wherein 0.1 <= z <= 15 and 0.5 <= w <= 10, which has properties of super-low-temperature, high reliability, and high mechanical strength, and is able to applied to produce low capacitance multilayer chip ceramic capacitor with high insulation resistance. The present invention also relates to a method of preparing such novel ZnTiO3 material system.

Description

584867 ⑴ 玖、·.發明說明 (發明說明應敘明‘:發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 一、 發明所屬之技術領域 本發明關於一種可作為微波介電材料之鈦酸鋅 (ZnTi03 )材料系統,藉由在鈦酸鋅材料系統中添加硼 鋅玻璃(即,[(Zn〇)4 · B2〇3])及氧化鉍(Bi203 ),達 到提高可靠度、降低燒結溫度、穩定陶瓷成分比例、穩定 介電特性、提高相分解溫度、改善絕緣電阻及崩潰電壓等 多項優點;另外本發明亦論及上述材料系統之製造方法。 二、 先前技術 為因應現今視聽器材、電腦設備及通訊器材如無線電話 聽筒、行動電話及衛星通訊轉接及接收器等對高頻率、小 尺寸、輕重量之需求,可承載高頻多晶模組之製造技術已 成必須。在製造上述模組之電性迴路中,常應用介電陶瓷 材料於旁路、連結器、共振器及過濾器上,其中,運用低 溫超微波介電材料製造具有高絕緣電阻的低電容之積層 陶瓷電容器尤其重要。該材料常須符合以下要求,包括高 介電常數、低介電損失、高可靠度、高絕緣值(insulation resistance,I.R·)、高機械強度、以及低熱膨脹係數。 傳統上常使用如金、鉑、鈀等貴金屬以製造電容器之内 電極及端電極,亦可使用銀、銀合金、銅、銅合金等價格 較低之物降低成本,尤其具有低歐姆電阻之銀與銀合金 更被廣泛使用。然而,由於銀具相對低之熔點(約9 6 0 °C ), 故需採用低燒結溫度之陶瓷材料,方能與其共燒而應用 之0 -6 - 584867 ⑺ 一般於不添加助燒結劑之狀態下,欲達理想機械強度與 介電性質’必須於1 3 00至1600°c燒結介電材料,業界一般 使用鋇榍石(barnim titamtes)、鎂榍石(magnesmm tltamtes) 及鋇鈣鈦礦(barium perovskites)等材料。但為能與銀一起 燒結,開發可在900°C左右燒結之材料已成必須,如j Am. Ceram· Soc·,8 2 [ 1 1 ] 3043-4 8 (1999)中揭示使用棚於偏钦酸鋅-金紅石(zinc metatitanate-rutile )混合物中;j Am· Ceram. Soc 82[12]3476-80( 1999)揭示使用(Zn,Mg) TiCMC 合物;曰 本專利第243725/1994號揭示以(SrCa)Ti〇3為主體之介電材 料;日本專利第325641/1993號揭示以Ba〇-Ti〇2為主體之介 電材料;美國專利第5,723,395號揭示以丁i〇2-Zn〇為主體的 介電材料;及美國專利第5,866,492號揭示以 ZnTi03-Zn0-Ti02為主體之介電材料。 美國專利第5,723,395號係教示添加B2〇3玻璃或含B2〇3 之玻璃成份至鈦酸鋅(ZnTi03)介電材料系統中,可將鈦酸 鋅介電材料系統之燒結溫度由110CTC降低至90CTC附近,其 亦教示添加氧化錳(MnO )以提高鈦酸鋅材料系統之絕緣 電阻值。依據該案教示,經添加0.1 -1 〇 %之氧化錳可使絕 緣電阻達到10ιι歐姆之程度。此案雖教示使用如 Zn〇-Si〇2-B203與Bi2〇3-ZnO-B2〇3之含B2〇3之玻璃成份的 使用,並未認知使用含ΙΟ;之玻璃成份中ZnO含量之重要 性,更未唭體教示B2〇3與ΖηΟ之比例對材料特性的影響。 美國專利第5,8 66,492號則揭示添加Mg (通常為氧化鎂 Mg〇 ),改善鈦酸鋅介電材料系統的品質因子及提升584867 玖 · .. Description of the invention (the description of the invention should state ': the technical field, prior art, content, embodiments, and drawings of the invention are briefly explained) 1. The technical field to which the invention belongs The invention relates to a microwave technology Zinc titanate (ZnTi03) material system for electrical materials, by adding boron-zinc glass (ie, [(Zn〇) 4 · B2〇3]) and bismuth oxide (Bi203) to the zinc titanate material system, to improve reliability Degree, reducing sintering temperature, stabilizing ceramic component ratio, stabilizing dielectric characteristics, increasing phase decomposition temperature, improving insulation resistance and breakdown voltage, etc. In addition, the present invention also discusses the manufacturing method of the material system. 2. The previous technology is able to support high-frequency polycrystalline modules in response to the needs of today's audiovisual equipment, computer equipment and communication equipment such as wireless telephone handsets, mobile phones and satellite communication adapters and receivers for high frequency, small size and light weight. The manufacturing technology of the group has become necessary. In the electrical circuit manufacturing of the above modules, dielectric ceramic materials are often applied to bypasses, connectors, resonators, and filters. Among them, low-temperature ultra-microwave dielectric materials are used to produce low-capacitance laminates with high insulation resistance. Ceramic capacitors are especially important. The material often must meet the following requirements, including high dielectric constant, low dielectric loss, high reliability, high insulation resistance (I.R.), high mechanical strength, and low thermal expansion coefficient. Traditionally, precious metals such as gold, platinum, and palladium are often used to manufacture internal and terminal electrodes of capacitors. Silver, silver alloys, copper, and copper alloys can also be used to reduce costs, especially silver with low ohmic resistance. And silver alloys are more widely used. However, because silver has a relatively low melting point (about 960 ° C), it is necessary to use a ceramic material with a low sintering temperature before it can be co-fired. 0 -6-584867 ⑺ It is generally used in the absence of sintering aids. In the state, to achieve the ideal mechanical strength and dielectric properties, the dielectric material must be sintered at 1 3 00 to 1600 ° C. The industry generally uses barnim titamtes, magnesmm tltamtes and barium perovskites (Barium perovskites) and other materials. However, in order to sinter with silver, it has become necessary to develop materials that can be sintered at about 900 ° C. For example, J Am. Ceram · Soc ·, 8 2 [1 1] 3043-4 8 (1999) revealed that Zinc metatitanate-rutile mixture; J Am Ceram. Soc 82 [12] 3476-80 (1999) reveals the use of (Zn, Mg) TiCMC compounds; this patent No. 243725/1994 Dielectric material with (SrCa) Ti〇3 as main body; Japanese Patent No. 325641/1993 discloses dielectric material with BaO-Ti〇2 as main body; U.S. Patent No. 5,723,395 discloses with Dio-Zn 〇 is a dielectric material with a host; and U.S. Patent No. 5,866,492 discloses a dielectric material with ZnTi03-Zn0-Ti02 as a host. U.S. Patent No. 5,723,395 teaches adding B203 glass or B203-containing glass components to a zinc titanate (ZnTi03) dielectric material system, which can reduce the sintering temperature of the zinc titanate dielectric material system from 110CTC to 90CTC Nearby, it also teaches the addition of manganese oxide (MnO) to increase the insulation resistance value of the zinc titanate material system. According to the teachings of this case, the addition of 0.1 to 10% of manganese oxide can make the insulation resistance reach 10 ohm. Although this case teaches the use of B2 03-containing glass components such as Zn〇-Si〇2-B203 and Bi2 03-ZnO-B2 03, the importance of using ZnO content in glass components containing 10% is not recognized. Properties, not to mention the effect of the ratio of B2O3 to ZηΟ on material properties. U.S. Patent No. 5,8,66,492 discloses the addition of Mg (usually MgO) to improve the quality factor and increase of the zinc titanate dielectric material system.

O:\72\72066. DOO^SU 584867 (3) 發够説:瞵續頁: ΖηΤι〇3轉換成Ζη2Τι〇4的相分解溫度,氧化鎂建議含量為 0.02mol至0.5mol。然而,由此所提供之介電材料之燒結溫 度仍高達1050至1250°C,尚不符合可與銀共燒之低溫(約 900°C )要求。O: \ 72 \ 72066. DOO ^ SU 584867 (3) It is enough to say: 瞵 Continued: The phase decomposition temperature of the conversion of ZnηΤι3 to Znη2Τι04, the recommended content of magnesium oxide is 0.02mol to 0.5mol. However, the sintering temperature of the dielectric materials thus provided is still as high as 1050 to 1250 ° C, which does not yet meet the low temperature (about 900 ° C) requirements for co-firing with silver.

業經發現,於鈦酸鋅介電材料系統中使用硼玻璃(Bach ) 或含硼玻璃,常有燒結特性不穩定與產品介電性質不易控 制之問題。本案發明人研究發現,於美國專利第5,723,395 號教示钦酸鋅介電材料系統中,若直接添加B2〇3玻璃,It has been found that the use of boron glass (Bach) or boron-containing glass in a zinc titanate dielectric material system often has problems of unstable sintering characteristics and difficult to control the dielectric properties of the product. The inventors of this case have found that in the US patent No. 5,723,395 teaches zinc zinc acetate dielectric material system, if B2O3 glass is directly added,

因B2〇3在燒結時必須先與ZnO反應生成Β203 -Ζπ0化合物 方具助燒結特性,故會改變ZnTi03中鋅/鈦的比例,而使介 電性質改變,又因B2〇3熔點在460 °C附近,當加熱到此溫 度時,部分的B2〇3揮發,使得不易控制於最後助燒結時 B2〇3之量,造成燒結特性的不穩定。此外,於添加含B2〇3 之玻璃成份時,過高之ZnO含量會直接影響主體材料中鋅/ 鈦的比例,過低之ZnO含量則會使該含B2〇3玻璃中過多之 B2〇3會與主體材料中之鋅反應,此亦影響主體材料中鋅/ 鈦的比例,造成介電性質改變。然而,若直接使用具特定 B2〇3/ZnO比例之硼鋅玻璃,非但可降低介電材料之燒結溫 度,且可避免前述介電性質不易控制或燒結特性不穩定之 結果。 此外於鈦酸鋅材料系統燒結時,會形成Zn2Ti〇4相而使 可靠度降4氏,使得長時間使用或於高溫、高壓、高濕度、 高電壓狀態下使用所製成之電子元件時,會因為材料的可 靠度不佳而燒毀。Because B2O3 must react with ZnO to form B203-Zπ0 compound before sintering, it has sintering properties, so it will change the ratio of zinc / titanium in ZnTi03, which will change the dielectric properties, and because B2O3 has a melting point of 460 ° Near C, when heated to this temperature, part of the B2O3 is volatilized, which makes it difficult to control the amount of B2O3 during the last assisted sintering, causing instability of the sintering characteristics. In addition, when adding glass components containing B203, excessively high ZnO content will directly affect the zinc / titanium ratio in the host material, and excessively low ZnO content will cause excessive B2O3 in the B203-containing glass. It will react with zinc in the host material, which also affects the zinc / titanium ratio in the host material, causing the dielectric properties to change. However, if a boro-zinc glass with a specific B203 / ZnO ratio is used directly, it will not only reduce the sintering temperature of the dielectric material, but also avoid the results that the aforementioned dielectric properties are difficult to control or the sintering characteristics are unstable. In addition, when the zinc titanate material system is sintered, the Zn2Ti04 phase will be formed and the reliability will be reduced by 4 degrees. When used for a long time or under high temperature, high pressure, high humidity, and high voltage conditions, the electronic components made are used. Burnout due to poor reliability of the material.

O:\72\7:0(S6.DOC\6\SU 584867 ⑷ 發瞵説瞒續頁 因此,本發明乃開發一新穎材料系統,其針對鈦酸鋅介 電材料系統添加之燒結助劑加以改良,以期達到穩定燒結 比例組成、穩定介電特性、提高可靠度、降低燒結溫度、 穩定陶瓷成分比例及提高相分解溫度。 三、 發明内容 本發明之目的在於提供一種鈦酸鋅(ZnTi〇3)系統之介電 材料,其包含Z%以重量計之氧化鉍(Bi203)及w%以重量 計之[(Zn〇)4 · B2〇3],其中 0.1SzS15,且 0.5$w$10, 其具高品質因子、低燒結溫度、穩定之陶瓷成分比例、穩 定之介電特性、高相分解溫度、高絕緣電阻及高崩潰電壓 等多項優點。 本發明之另一目的在於提供一種製備鈦酸鋅(ZnTi03)系 統之介電材料之方法,該介電材料包含Z %以重量計之氧 化鉍(Bi2〇3)及W%以重量計之[(ZnO)4 · B2〇3],其中0· 1 $ζ^15,且0.5$w$10,該方法包含: (a) 提供一包含鈦酸鋅系統之陶瓷粉末; (b) 製備硼鋅玻璃[(ZnO)4 · B2〇3];及 (c) 混合步騾(a)之陶瓷粉末與步騾(b)之硼鋅玻璃 及Z %以重量計之氧化鉍。 四、 實施方式 本發明係關於一種鈦酸鋅(ΖηΤι〇3)系統之介電材料,其 包含Ζ%喊重量計之氧化鉍(Bi2 03)及w%以重量計之 [(ZnO)4· B2〇3],其中 0.lSz$15,且 0.5$w^l0。 於本發明中,係先將82〇3與Zn〇反應生成[(ΖηΟ)4·Β2〇3] Ο:\72\7:0ήή (5) 之硼鋅玻璃複合物,再 舟添加至材料主體中。因該B2〇3已 與Ζ η 0先反應形虏屮你丨杜—、_ 成比例特疋二设合物,故於整體主材料燒 結時,並無因Β 〇邊一 步人王材料之ΖηΟ反應或因過多 ΖηΟ而影響材料主妒 眼,、且成 &lt; 情形,也沒有直接使用Β2〇3 而因其揮發所敢之馇社社从τ , 燒…特性不穩定的缺點,而仍具降低燒 結度之效器。+ , 皿^ 4 ,可提供繞結溫度低至800-960°C之O: \ 72 \ 7: 0 (S6.DOC \ 6 \ SU 584867 ⑷ Announced continuation page. Therefore, the present invention is to develop a novel material system for the sintering additive added to the zinc titanate dielectric material system. It is improved in order to achieve stable sintered proportion composition, stable dielectric characteristics, increased reliability, reduced sintering temperature, stabilized ceramic component ratio and increased phase decomposition temperature. III. Summary of the Invention The object of the present invention is to provide a zinc titanate (ZnTi〇3 ) Dielectric material of the system, which includes Z% by weight of bismuth oxide (Bi203) and w% by weight of [(Zn〇) 4 · B2〇3], of which 0.1SzS15 and 0.5 $ w $ 10, which It has many advantages such as high quality factor, low sintering temperature, stable ceramic composition ratio, stable dielectric characteristics, high phase decomposition temperature, high insulation resistance and high breakdown voltage. Another object of the present invention is to provide a method for preparing zinc titanate. (ZnTi03) A method of a dielectric material for a system, the dielectric material comprising Z% by weight of bismuth oxide (Bi203) and W% by weight of [(ZnO) 4 · B2 03], where 0 · 1 $ ζ ^ 15 and 0.5 $ w $ 10, the method includes: (a) providing a package Ceramic powder of zinc titanate system; (b) Preparation of boro-zinc glass [(ZnO) 4 · B2 03]; and (c) Mixing ceramic powder of step (a) with boro-zinc glass of step (b) and Z% by weight of bismuth oxide. 4. Embodiments The present invention relates to a dielectric material of a zinc titanate (ZηΤι 03) system, which comprises Zn% by weight of bismuth oxide (Bi2 03) and w% by [(ZnO) 4 · B2〇3] by weight, of which 0.1Sz $ 15, and 0.5 $ w ^ 10. In the present invention, 8202 and Zn〇 are first reacted to form [(Zη〇) 4 · Β2 〇3] 〇: \ 72 \ 7: 0valent price (5) of the boro-zinc glass composite, and then added to the main body of the material. Because the B2〇3 has reacted with Z η 0 first to shape you 丨 Du-, _ The proportion of the special compound is two, so when the overall main material is sintered, it does not affect the material owner's jealousy due to the reaction of the Zn 〇 one step of the king material or too much Zn η, and it does not have The use of B2O3 directly, because of its volatility, has a shortcoming of unstable characteristics such as τ, sintering, etc., and still has the effect of reducing the sintering degree. +, Ware ^ 4, can provide sintering temperature as low as 800 -960 ° C

ZnTi03材料系統。 於本發明材料手統中,a 你本田·典山 …·. s [(Ζη〇)4 · B2〇3]硼鋅破璃複舍 物含里過高,合你、、w在 , 9 /亚又係數增加,然其含量過低,則使燒 、*,口;m度不易降你。w * 、,必須控制[(ZnO)4 · B2〇3]硼鋅旅 瑪於本發明材料#絲 鋅玻璃之用Λ 較佳地,[(Μ)〆B办]挪 〆日 材料王拉重量百分比0.5至1 〇%之間 (即 ’ 〇·5$ 10) , f , .. 更佳為1至5%之間,最佳為ι〇/〇。 此外,於本發明中,蕻士 # 猎由如氧化鉍(Bi203 )之含鉍化 口;使用,可穩^材料系統中燒結時之Ζητ軸,而抑 制帥〇4相之形成,而大幅提昇H亦可降低材Ρ 燒結溫度'终而’過高之氧化祕用量會不利於材料之品質 因子H於本發明介電材料中,較佳之氧化祕添加量 :約〇.”/。至约15%以重量計’較佳係自約ι%至约⑽以重 :計’更佳為自約1%至約5%以重量計更佳為約5%以重 量計。 :達較嘀之品質因子’本發明可使用氧化鎂作為燒結助 j成為(znxMgl.x)Tl〇3,但過多或過少之鍰含量皆會使品 貝因子下降,故氧化鎂之添加量較佳係使丨^為I]彡ZnTi03 material system. In the material hand system of the present invention, a you Honda · Dianshan… .. [(Zη〇) 4 · B2〇3] The content of the boron-zinc broken glass complex is too high, which is suitable for you, w, 9 / The Asian coefficient increases, but if its content is too low, it will burn, *, mouth; m degrees are not easy to drop you. w *, must control [(ZnO) 4 · B2〇3] Boron Zinc in the material of the present invention # silk zinc glass Λ Preferably, [(Μ) 〆B Office]] the weight of the material king pull The percentage is between 0.5 and 10% (ie, '0.5 $ 10), f, .. is more preferably between 1 and 5%, and most preferably ι〇 / 〇. In addition, in the present invention, the 蕻 士 # hunting is made of a bismuth-containing port such as bismuth oxide (Bi203); it can stabilize the Zητ axis during sintering in the material system, and suppress the formation of the handsome 04 phase, which greatly improves H can also reduce the sintering temperature of the material P, and the excessively high oxidation secret amount will be detrimental to the material's quality factor H. In the dielectric material of the present invention, the preferred oxidation secret addition amount is about 0. "/. To about 15 '% By weight' is preferably from about 1% to about ⑽ by weight: more preferably from about 1% to about 5% by weight, more preferably about 5% by weight. Factor 'In the present invention, magnesium oxide can be used as a sintering aid to become (znxMgl.x) T103, but too much or too little radon content will reduce the fry factor, so the added amount of magnesium oxide is preferably such that ^^ I] 彡

O:\72\710W 0〇a6\SU 584867 (6)O: \ 72 \ 710W 0〇a6 \ SU 584867 (6)

發明説瞵續I 0.3,更佳為0.02$l-x$0.15,最佳l-χ為0.5,亦即x為 0.95 ^ 根據本發明之材料系統,另包含有氧化鈦(Ti〇2)用以調 整材料中之溫度係數,並可提升介電常數及品質因子, 但過高之氧化鈦卻不利於陶瓷密度,其量係相對於每莫 耳之鈥酸鋅,具有y莫耳之氧化致,其中O.l^y^l,較 佳地,y為0.2 5。 本發明另關於一種製備鈦酸鋅(ZnTi03)系統之介電材 料之方法,該介電材料包含Z %以重量計之氧化鉍 (Bi2〇3)及 W% 以重量計之[(ΖηΟ)4· B203],其中 O.lSzS 15,且0.5$wS10。其中,可使用習知製造陶瓷介電材 料之方式來製備,惟,所採用硼鋅玻璃[(ZnO)4 · B2〇3]必 須於施用前先製得,而非於介電材料之製備過程中當場合 成。一般而言,製備本發明介電材料之方法係包含下列步 騾: (a) 提供一包含鈦酸鋅系統之陶瓷粉末; (b) 製備硼鋅玻璃[(Ζη0)4·Β203];及 (c) 混合步騾(a)之陶瓷粉末與步騾(b)之硼鋅玻璃及 Z %以重量計之氧化鉍。 於步騾(a)中,該陶瓷粉末可經由含所欲金屬物種之各 式化合物如氧化物及碳酸鹽等製備而得,較佳地,於鈥 酸鋅中之-部分鋅係由鎂所取代成為(ZnxMgl.x)Ti03,其 中0.7 $ X S 1。步驟(a)之實施舉例言之,混合可提供所欲 比例之Ζ η Ο與T i〇2及適需要之M g Ο,以濕混方式於水中混 O:\72\7206A. DOC\(WJU -11 - 584867According to the invention, the continuation I 0.3, more preferably 0.02 $ lx $ 0.15, and the best l-χ is 0.5, that is, x is 0.95 ^ According to the material system of the present invention, titanium oxide (Ti〇2) is further included for adjusting the material Temperature coefficient, and can increase the dielectric constant and quality factor, but too high titanium oxide is not conducive to ceramic density, its amount is relative to zinc oxide per mole, with y molar oxidation, where Ol ^ y ^ l, preferably, y is 0.2 5. The present invention also relates to a method for preparing a dielectric material of a zinc titanate (ZnTi03) system. The dielectric material includes Z% bismuth oxide (Bi203) by weight and W% [(ZηΟ) 4 by weight. B203], where 0.1SzS 15 and 0.5 $ wS10. Among them, the conventional method for manufacturing ceramic dielectric materials can be prepared, but the boro-zinc glass [(ZnO) 4 · B2 03] used must be prepared before application, not the preparation process of the dielectric material. In the spot synthesis. In general, the method for preparing the dielectric material of the present invention comprises the following steps: (a) providing a ceramic powder comprising a zinc titanate system; (b) preparing a borozinc glass [(Zη0) 4 · B203]; and ( c) Mix the ceramic powder of step (a) with the boro-zinc glass of step (b) and Z% bismuth oxide by weight. In step (a), the ceramic powder can be prepared from various compounds containing desired metal species such as oxides and carbonates. Preferably, a part of zinc in zinc acid is made of magnesium. Replaced by (ZnxMgl.x) Ti03, where 0.7 $ XS 1. As an example of the implementation of step (a), mixing can provide a desired ratio of Z η Ο and T i〇2 and M g 〇 as needed, and mix it in water by wet mixing: O: \ 72 \ 7206A. DOC \ ( WJU -11-584867

⑺ 合’研磨製得平均粒徑小於Ο · 5mm之原料粉末,烤乾該粉 末後於700至800°C煅燒4至8小時,視需要地,可再於水中 研磨’經烤乾及研磨後製得平均粒徑〇 7土 Q lmII1之陶资粉 末0 步騾(b)之硼鋅玻璃則可取用適當之含鋅 製備而得。舉例言之,但不限於此例,可取用莫耳比為4 : 1之Zn〇與B2〇3,於水中以濕混方式混合,經烤乾該混合 物後,再於500至700 °C懷燒4至8小時,較佳於60CTC懷燒4 小時,由此形成硼鋅玻璃[(Zn〇)4 · Up視需要地,可 再於水中研磨,經烤乾及研磨後製成聲鋅玻璃粉末。 步騾(c)則係視所欲之…值添加合宜之上述步騾(b)硼鋅 玻璃及Z值 &lt; 氧化鉍(Bi2〇3)至步騾陶瓷粉末中,而提供 本發明介電材料。舉例言之,但不限於此例,可以濕混方 式於水中混合步騾(1))硼鋅玻璃、步騾(a)陶瓷粉末及氧化 鉍,隨後烤乾該混合物,再經研磨後製得本發明介電材料。 舉例言之,可自43·139克之Zn0、55 73 6克之T102、i 125 克I Mgo、5·0克之Bi2〇3及i克之· B2〇3]製得 (〇.95Mf〇 0))Tl〇3系統、相對於每莫耳之(zn。95Mg〇。5)丁1〇3 八 莫耳之Tl〇2、1%以重量計之[(ΖηΟ)4 · b203]及5%以 重量計之Bi2〇3。 本發月j見材料粉末可與合適量之pvA (聚乙烯醇)、 PEG。(塑㈣j)、分離劑與潤濕劑混合形成可於低溫(如 _C )燒結之漿料,製得陶资體。特定言之,本發明之 %材料可與導電體(銀、銀合金、銅及銅合金等導電金'Grind to obtain a raw material powder with an average particle size of less than 0 · 5mm. After baking, dry the powder at 700 to 800 ° C for 4 to 8 hours. If necessary, grind in water. After baking and grinding, A ceramic powder having an average particle size of 0,7 Q, lmII1, and 0 (B) boro-zinc glass can be prepared by using appropriate zinc-containing materials. For example, but not limited to this example, Zn〇 and B203 which have a molar ratio of 4: 1 can be used, mixed in water by wet mixing, and the mixture is dried at 500 to 700 ° C. Bake for 4 to 8 hours, preferably at 60 CTC for 4 hours, so as to form borozinc glass [(Zn〇) 4 · Up, if necessary, can be ground in water, dried and ground to make acoustic zinc glass powder. Step (c) is to add the appropriate step (b) boro-zinc glass and Z value &lt; bismuth oxide (Bi203) to the step 骡 ceramic powder according to the desired ... value to provide the dielectric of the present invention material. For example, but not limited to this example, the step (1)) boro-zinc glass, step (a) ceramic powder and bismuth oxide can be mixed in water in a wet-mixing manner, and then the mixture is roasted and then ground to obtain The dielectric material of the present invention. For example, (0.195 Mf〇0)) Tl can be prepared from 43.139 grams of Zn0, 55 73 6 grams of T102, i 125 grams of I Mgo, 5.0 grams of Bi203 and i grams of B203.) 〇3 system, with respect to (zn.95Mg0.5) per mol D0103 octamol T102, 1% [(ZηΟ) 4 · b203] by weight and 5% by weight Bi2〇3. This month, we see that the material powder can be mixed with appropriate amounts of pvA (polyvinyl alcohol) and PEG. (Plastic j), a separating agent and a wetting agent are mixed to form a slurry which can be sintered at a low temperature (such as _C) to obtain a ceramic body. In particular, the% material of the present invention can be used with electrical conductors (silver, silver alloys, copper, and copper alloys)

〇A72\71〇66.D〇a&lt;5WiU -12 - 584867 (8) 發_説觸螓賓 :;注纖_灘:猶 屬)一起共燒’而製造積層電容器(multilayer chip capacitor)、 溫度補 4員电谷器(temperature compensating capacitor)、LC 遽 波器中之電容元件及介電濾波器。該低電容之積層陶瓷電 容器包含陶瓷材料部分、内電極及與内電極連結之端電 極°其中’本發明之介電材料即應用於陶瓷材料部分,其 係由本發明介電材料所得之漿料以刮刀成型製得 20-30 μπι之陶瓷膜,再以銀、銀合金、銅及銅合金等導電 金屬貧網版印刷於陶瓷膜上作為内電極,經烤乾後,將多 層經印刷之陶瓷膜堆疊,再於上下各堆疊數層空白陶瓷 膜,形成含陶瓷材料部分及内電極之陶瓷體,經熱壓、裁 切、於90(TC熱燒結2小時後,再將銀、銀合金、銅及銅合 金等導電金屬膏浸鍍至陶瓷體兩端形成端電極。 狄以下列只例予以詳細說明本發明,唯並不意味本發明 僅侷限於此等實例所揭示之内容。 f 例 1 - 2 7 : 依提供表1所示之,及7之適當比例取用Zn〇、Mg〇及 Ti〇2為原料,在粉末固體含量為60%之水中混合,並以2mm 氧化锆球進行滾磨2 4小時,以提供平a R %十岣粒徑約於〇 3至 0.4μπι之原料粉末。將該混合物粉末 、圬福中以100 C烤乾 後,於900 °C烺燒5小時後,再以2mm氣&amp; . ^ 虱化锆球於水中研 磨’以提供平均粒徑〇 5土〇丨μιη之陶资粉束 合8小時,於烤箱中 ’以形成硼鋅玻璃 將Ζ η 0輿Β 2 〇3依適當比例在水中處 1〇〇 C烤乾後,在600°c煅燒4小時 [(ΖηΟ)4 · b2〇3]。〇A72 \ 71〇66.D〇a &lt; 5WiU -12-584867 (8) Developed a multi-layer capacitor (multilayer capacitor capacitor, temperature) Compensate temperature compensating capacitors, capacitor components and dielectric filters in LC wave filters. The low-capacitance multilayer ceramic capacitor includes a ceramic material part, an internal electrode, and an end electrode connected to the internal electrode. Among them, the dielectric material of the present invention is applied to the ceramic material part, and the slurry obtained from the dielectric material of the present invention is 20-30 μπι ceramic film is prepared by doctor blade, and then conductive metal such as silver, silver alloy, copper and copper alloy is screen printed on the ceramic film as an internal electrode. After baking, the multilayer printed ceramic film is baked. Stack, and then stack several layers of blank ceramic films on top and bottom to form a ceramic body containing a ceramic material part and an internal electrode. After hot pressing, cutting, and thermal sintering at 90 ° C for 2 hours, silver, silver alloy, copper Conductive metal pastes such as copper alloys and copper alloys are immersed on both ends of the ceramic body to form terminal electrodes. The following examples illustrate the present invention in detail, but it does not mean that the present invention is limited to what is disclosed in these examples. F Example 1- 2 7: Zn〇, Mg〇, and Ti〇2 are taken as raw materials according to the table 1 and the appropriate ratios of 7 are provided, mixed in water with a powder solid content of 60%, and tumbled with 2 mm zirconia balls 2 4 hours to mention Flat a R% raw material powder with a particle size of about 0.33 to 0.4 μm. The mixture powder and fufuzhong were dried at 100 C, then fired at 900 ° C for 5 hours, and then heated with 2 mm gas &amp; ^ Grind zirconia balls in water 'to provide ceramic powder with an average particle size of 0 soil and 5 μm bundle for 8 hours, in an oven' to form a borozinc glass. Z η 0 and β 2 〇3 as appropriate After the ratio was dried at 100 ° C in water, it was calcined at 600 ° C for 4 hours [(ZηΟ) 4 · b2 03].

O:V72\710&lt;i6 DO〇6\SU -13 - 584867 (9) 發瞵説躪磷貰 將陶资粉末與提供表1所示w比例的硼鋅玻璃及z比例之 Bi2〇3在陶瓷粉末固體含量為60%之水中混合,並置入含 5 0 c . c .氧化锆球及約500c. c .水之滾筒中,研磨4小時至平均 粒徑0.5 μιη,並於烤箱中烤乾即得介電粉末。 於上述介電粉末中添加合適量之聚乙烯醇(PVA)、 PEG(三甘醇)、分離劑(Triton,購自Air product)及潤濕劑 (SE-F(465),購自Air product),以形成漿料,於900eC熱燒結 該漿料2小時以製成陶瓷體。量測該等陶瓷體之密度(D, %g/cm3)、介電常數(K)、品質因子(Q)、絕緣電阻(I.R·, 歐姆)、溫度係數(τί*,T.C.C.,ppm/°C )及崩潰電壓(B. V., Volt/μιη),並將其結果示於下表1。 表1 :鈦酸鋅系統(ZnxMgi.JTiOs、相對於每莫耳之 (ZruMgbdTiCh 具有 y 莫耳之 Ti02、z% Bi2〇3 及 w% 之 [(Zn〇)4 · B2〇3] 實例 X y z w D K Q I.R T.C.C. B.V 1 0.90 0.15 0 .1 98 25.1 400 1X1012 -60 60 2 0.90 0.25 0 1 98 27.2 450 1X1012 -65 35 3 0.80 0.10 0 1 96 23.4 450 1X1012 -75 45 4 0.70 0.05 0 1 96 23.2 410 1X1012 -95 45 5 0.70 0.25 0 1 94 20 9000 1X1012 -80 55 6 0.80 0.25 0 1 94 21 8700 lxio12 -70 45 7 0.9CT 0.25 0 1 94 21.3 10000 lxio12 -90 60 8 0.95 0.25 0 1 94 22.7 12000 lxio12 -60 50 9 0.97 0.25 0 1 94 22.7 10500 lxio12 -70 50 O:\72\72060.DOC\6VSU -14 - (10) 發明說:明.續·Ι 10 0.95 0.05 5 1 99 21.9 400 1X1012 +30 50 11 0.95 0.10 5 1 99 23.3 440 1X1012 +30 45 12 0.95 0.15 5 1 98 24.5 470 ΐχίο12 十10 60 13 0.95 0.25 5 1 96 26.3 500 ΐχίο12 +30 70 14 0.95 0.35 5 1 95 28.4 620 ΐχίο12 +35 40 15 0.95 0.25 0 1 94 22.7 12000 1X1012 -60 50 16 0.95 0.25 1 1 95 25.3 1000 lxio12 +50 : 50 17 0.95 0.25 3 1 96 25.6 800 1X1012 +30 40 18 0.95 0.25 10 1 99 23.2 300 lxio12 +40 25 19 0.95 0.25 15 1 99 20.2 310 lxio12 +60 45 20 0.95 0.25 20 1 99 18.5 340 lxio12 +100 40 21 0.95 0.25 5 0.5 93 25.6 520 5X1011 +30 60 22 0.95 0.25 5 2 99 27.5 640 lxio12 十30 40 23 0.95 0.25 5 3 99 28.3 600 lxio12 +40 55 24 0.95 0.25 5 5 99 26.3 550 lxio12 +30 40 25 0.95 0.25 5 7 99 27.2 500 lxio12 +50 60 26 0.95 0.25 5 10 99 29.1 620 lxio12 +80 45 27 1.00 0.25 5 1 98 25.4 600 lxio12 +20 40 584867 實例5至9為測試材料中鋅、鎂含量對電性之影響;實例 27則為不含鎂狀態下之電性,其中隨著鋅含量之增加(亦 即鎂含量之減少),介電常數隨之增加,然而過多的鋅或 鎂含量都j使品質因子下降。 實例1 0至1 4為測試材料中氧化鈦含量對電性之影響。其 結果顯示,加入氧化鈦係用以調整介電材料之溫度係數, 並可提升介電材料之K值與品質因子,然而過高之氧化鈦 O:\72\72066.DOa6VSU -15 - 584867 (π) 發瞵説:螞磷矿 含量(如實例14 )則不剎於產物之陶瓷密度性質。 實例15至20為測試材科中氧化鉍比例對電性之影響,其 結果顯示隨著氧化鉍的含量增加’陶資密度亦增加’但過 多的氧化鉍卻使得品質因子大幅降低° 實例2 1至2 6為測試調辞玻璃[(Ζ η 〇 ) 4 · Β 2 〇 3 ]含量對於材 料電性之影響,其結果顯示刪辞玻璃之含量增加’陶資體 之密度亦增加,但過多的测辞玻璃卻亦使溫度係數増加。 實侥1 28 : 於本實例中,以實例8之材料組成分別於860^、880°C、 900°C及920°C燒結後進行X-射線繞射實驗’其結果不於圖 1,由其結果可知,無氧化姐的加入’於高溫燒結(92〇°C ) 時,可在光譜中偵測得Ζ η 2 丁 i 〇 4相’而不利於製成產品時 之可靠度。 實例29 ·· 於本實例中,以實例1 3之材料組成分別於860°C、880°C、 900°C、92〇t:、94〇°C及960°C燒結後進行X-射線繞射實驗, 其結果TF於圖2,由其結果可知,加入5 %氧化在jt,則於高 燒結(甚至高達960 C )時’在光1醤圖中都無法偵測得 ZhTiO4相,可知氧化鉍可抑制Zn2Ti〇4相,使製成產品時之 可靠度大增。 實例3 0 : 於本實i列中,以實例8之材料分別加入〇 %、1 %、3 %、 5 %及1 0 %之氧化鉍組成,於9〇〇°C燒結後進行X -射線繞射 實驗,其結果示於圖3,由其結果可知,隨著氧化鉍含量 0:\72\720&lt;5&lt;i.DOCA&lt;SVSU -16· 584867 (12) 發暾說明.續頁 之增加,於光譜圖中Bi2Ti2〇7相亦增加 形成。 實例3 1 ·· 於本實例中,於實例8之介電材料中 鉍含量之介電常數值,其燒結溫度分3 92(TC,參看圖4可知,於氧化鉍含量較 之變化較大,但隨著氧化级含量增加, 穩定。 實例3 2 : 於本實例中,於實例8之介電材料中 鉍含量之絕緣電阻值,其燒結溫度分另 9 20 t:,參看圖5可知,於氧化鉍含量較 之變化較大,但隨著氧化鉍含量增加, 趨穩定。 實例3 3 : 於本實例中,於實例8之介電材料中 測試於不同氧化鉍含量之溫度係數值, 同之氧化鉍含量,會具有不同之溫度係 實例3 4 ·· 於本實例中,於實例8之介電材料中 鉍含量之品質因子值,其燒結溫度分另J 920°C,參if圖7可知,於氧化鉍含量較 之下降較大,尤其是於高溫燒結時,但I 加,其品質因子值則漸趨穩定。 7,且無Zll2Ti〇4相之 ,測試於不同氧化 W 為 880°C、900°c 及 低時,介電常數值 其介電常數則漸趨 ,測試於不同氧化 ,J 為 880°C、9CKTC 及 低時,絕緣電阻值 其絕緣電阻值則漸 ,於900°C燒結時, 參看圖6可知,不 數值之變化較大。 ,測試於不同氧化 為 880°C、9 00°C 及 低時,品質因子值 隨著氧化鉍含量增 O:\72\72066.DOC\6VSU -17 - 584867 (13) 鮝明魏明.續..賓: 本發明材料、方法及特徵,經上述實例說明將更為明 顯,現應瞭解的是,任何不脫離本發明精神下所為之修飾 或改變,皆屬本發明意圖保護者。 五 N 圖式簡要說明 本發明將以下列圖示進一步說明,其中 圖1表示本發明不含氧化鉍之介電材料中,於不同燒結 溫度之X-射線繞射光譜圖; 圖2表示本發明含5%氧化鉍之介電材料中,於不同燒結 溫度時之X-射線繞射光譜圖; 圖3表示本發明不同氧化鉍含量之介電材料中,於900 °C燒結時之X-射線繞射光譜圖; 圖4表示本發明不同氧化鉍含量之介電材料中,於不同 溫度燒結時之介電常數關係圖; 圖5表示本發明不同氧化鉍含量之介電材料中,於不同 溫度燒結時之絕緣電阻值關係圖; 圖6表示本發明不同氧化鉍含量之介電材料中,於900°C 燒結時之溫度係數關係圖;及 圖7表示本發明不同氧化鉍含量之介電材料中,於不同 溫度燒結時之品質因子關係圖。 ()Λ72\72066 DOCftViU -18 -O: V72 \ 710 &lt; i6 DO〇6 \ SU -13-584867 (9) The company said that the phosphor powder will mix the ceramic powder with the boron-zinc glass with w ratio shown in Table 1 and Bi203 with z ratio. The powder solid content is mixed in water of 60%, and placed in a roller containing 50 c. C. Zirconia balls and about 500 c. C. Water, ground for 4 hours to an average particle size of 0.5 μm, and baked in an oven. The dielectric powder was obtained. Add appropriate amounts of polyvinyl alcohol (PVA), PEG (triethylene glycol), separating agent (Triton, purchased from Air product) and wetting agent (SE-F (465), purchased from Air product) to the dielectric powder. ) To form a slurry, which was thermally sintered at 900 eC for 2 hours to make a ceramic body. Measure the density (D,% g / cm3), dielectric constant (K), quality factor (Q), insulation resistance (IR ·, ohm), temperature coefficient (τί *, TCC, ppm / ° of these ceramic bodies) C) and breakdown voltage (BV, Volt / μm), and the results are shown in Table 1 below. Table 1: Zinc titanate system (ZnxMgi.JTiOs, relative to per mole (ZruMgbdTiCh with y mole, Ti02, z% Bi203, and w% [(Zn〇) 4 · B2〇3] Example X yzw DKQ IR TCCBV 1 0.90 0.15 0 .1 98 25.1 400 1X1012 -60 60 2 0.90 0.25 0 1 98 27.2 450 1X1012 -65 35 3 0.80 0.10 0 1 96 23.4 450 1X1012 -75 45 4 0.70 0.05 0 1 96 23.2 410 1X1012- 95 45 5 0.70 0.25 0 1 94 20 9000 1X1012 -80 55 6 0.80 0.25 0 1 94 21 8700 lxio12 -70 45 7 0.9CT 0.25 0 1 94 21.3 10000 lxio12 -90 60 8 0.95 0.25 0 1 94 22.7 12000 lxio12 -60 50 9 0.97 0.25 0 1 94 22.7 10 500 lxio12 -70 50 O: \ 72 \ 72060.DOC \ 6VSU -14-(10) Invention description: Ming. Continued 10 0.95 0.05 5 1 99 21.9 400 1X1012 +30 50 11 0.95 0.10 5 1 99 23.3 440 1X1012 +30 45 12 0.95 0.15 5 1 98 24.5 470 ΐχίο12 ten 10 60 13 0.95 0.25 5 1 96 26.3 500 ΐχίο12 +30 70 14 0.95 0.35 5 1 95 28.4 620 ΐχίο12 +35 40 15 0.95 0.25 0 1 94 22.7 12000 1X1012 -60 50 16 0.95 0.25 1 1 95 25.3 1000 lxio12 +50: 50 17 0.95 0.25 3 1 96 25.6 800 1X1012 +30 40 1 8 0.95 0.25 10 1 99 23.2 300 lxio12 +40 25 19 0.95 0.25 15 1 99 20.2 310 lxio12 +60 45 20 0.95 0.25 20 1 99 18.5 340 lxio12 +100 40 21 0.95 0.25 5 0.5 93 25.6 520 5X1011 +30 60 22 0.95 0.25 5 2 99 27.5 640 lxio12 ten 30 40 23 0.95 0.25 5 3 99 28.3 600 lxio12 +40 55 24 0.95 0.25 5 5 99 26.3 550 lxio12 +30 40 25 0.95 0.25 5 7 99 27.2 500 lxio12 +50 60 26 0.95 0.25 5 10 99 29.1 620 lxio12 +80 45 27 1.00 0.25 5 1 98 25.4 600 lxio12 +20 40 584867 Examples 5 to 9 are the effects of zinc and magnesium content on the electrical properties of the test materials; Example 27 is the electricity without magnesium The dielectric constant increases with the increase of the zinc content (that is, the decrease of the magnesium content), but the excessive zinc or magnesium content decreases the quality factor. Examples 10 to 14 are the effects of the titanium oxide content on the electrical properties of the test materials. The results show that the addition of titanium oxide is used to adjust the temperature coefficient of the dielectric material, and can improve the K value and quality factor of the dielectric material. However, the too high titanium oxide O: \ 72 \ 72066.DOa6VSU -15-584867 ( π) The hairpin said: the content of amphite (as in Example 14) does not depend on the ceramic density properties of the product. Examples 15 to 20 are the effects of the proportion of bismuth oxide on the electrical properties in the test materials. The results show that as the content of bismuth oxide increases, the ceramic density also increases, but too much bismuth oxide causes the quality factor to decrease significantly. Example 2 1 From 2 to 6 is a test of the influence of the content of rhetoric glass [(Z η 〇) 4 · Β 2 〇3] on the electrical properties of the material. The results show that the content of lexical glass increases. The density of ceramic materials also increases, but too much Rhetoric glass also increases the temperature coefficient. Practice 1 28: In this example, the X-ray diffraction experiment was performed after sintering at the material composition of Example 8 at 860 ^, 880 ° C, 900 ° C, and 920 ° C. The results are not shown in Figure 1. As a result, it can be seen that the addition of the non-oxidized sister, 'Z η 2 but i 〇4 phase' can be detected in the spectrum when sintered at high temperature (92 ° C), is not conducive to the reliability of the product. Example 29 In this example, the material composition of Example 13 was sintered at 860 ° C, 880 ° C, 900 ° C, 92 ° C, 94 ° C, and 960 ° C, and then X-ray winding was performed. The TF results are shown in Fig. 2. From the results, it can be seen that when 5% oxidation is added to jt, the ZhTiO4 phase cannot be detected in the light 1 醤 diagram at high sintering (even as high as 960 C). Bismuth can inhibit the Zn2Ti04 phase, which greatly increases the reliability when made into products. Example 30: In column i of this example, the materials of Example 8 were added with 0%, 1%, 3%, 5%, and 10% bismuth oxide, respectively, and X-rays were sintered at 900 ° C. The results of the diffraction experiment are shown in Fig. 3. From the results, it can be seen that with the content of bismuth oxide 0: \ 72 \ 720 &lt; 5 &lt; i.DOCA &lt; SVSU -16 · 584867 (12) issued a description. Continued increase In the spectrum, the Bi2Ti207 phase is also increased. Example 3 1 · In this example, the dielectric constant value of the bismuth content in the dielectric material of Example 8 has a sintering temperature of 3 92 (TC, see FIG. 4. It can be seen that the bismuth oxide content has a larger change than that. But as the content of the oxidation grade increases, it is stable. Example 3 2: In this example, the insulation resistance value of the bismuth content in the dielectric material of Example 8 has a sintering temperature of 9 20 t: See Figure 5 for The content of bismuth oxide is relatively large, but it becomes stable as the content of bismuth oxide increases. Example 33: In this example, the temperature coefficient values of different bismuth oxide contents were tested in the dielectric material of Example 8, the same The content of bismuth oxide will have different temperatures. Example 3 4 In this example, the quality factor value of the content of bismuth in the dielectric material of Example 8, the sintering temperature is divided into J 920 ° C, see Figure 7 if When the content of bismuth oxide is greatly reduced, especially when sintered at high temperature, but the value of I increases, the quality factor value gradually becomes stable. 7, and there is no Zll2Ti04 phase, tested at different oxidation W is 880 ° C At 900 ° C and low, the dielectric constant value gradually decreases. Tested at different oxidation, when J is 880 ° C, 9CKTC and low, the insulation resistance value gradually decreases, and when sintered at 900 ° C, refer to Figure 6, it can be seen that the value varies greatly. The test is different When the oxidation is 880 ° C, 900 ° C and low, the quality factor value increases with the content of bismuth oxide. O: \ 72 \ 72066.DOC \ 6VSU -17-584867 (13) 鮝 明魏明 .Continue..bin: The materials, methods and features of the present invention will be more obvious through the above examples, and it should be understood that any modification or change that does not depart from the spirit of the present invention is intended to be protected by the present invention. Five N Scheme Brief Description The present invention will be further illustrated by the following diagrams, in which FIG. 1 shows X-ray diffraction spectra of the bismuth oxide-free dielectric material of the present invention at different sintering temperatures; FIG. 2 shows the 5% bismuth oxide-containing dielectric material of the present invention. X-ray diffraction spectrum diagrams of dielectric materials at different sintering temperatures; Figure 3 shows X-ray diffraction spectrum diagrams of dielectric materials with different bismuth oxide contents according to the present invention when sintered at 900 ° C; 4 indicates that among the dielectric materials with different bismuth oxide contents of the present invention, Figure 5 shows the relationship between the dielectric constant when sintered at different temperatures; Figure 5 shows the relationship between the insulation resistance values of different bismuth oxide content dielectric materials of the present invention when sintered at different temperatures; Figure 6 shows the dielectric properties of different bismuth oxide content of the present invention In the material, the temperature coefficient of the sintered at 900 ° C; and Figure 7 shows the quality factor of the bismuth oxide dielectric materials of the present invention when sintered at different temperatures. () Λ72 \ 72066 DOCftViU -18 -

Claims (1)

584867584867 拾、申請專利範園 其包含Z %以 之[(Zn〇)4 · $ 10 ° ,其中於欽酸 Mgl.x)Ti〇3 ^ ,其中0.85 ^ ,其中 X為 ,其相對於每 鈦(Ti02),其 ,其中y為 ,其中 1 S z ,其中1 $ Z 其中z為5。 ,其中1 $ w 1. 一種鈦酸鋅(ΖηΤι〇3)系統之介電材料 重量計之氧化级(Bi2〇3)及w %以重量’ B2〇3],其中 〇·1$ζ$15,且 0.5$w 2. 根據申請專利範圍第1項之介電材料 鋅中之部分鋅係由鎂所取代成為(Zn 其中 0.7 S 1。 3 . 根據_請專利範圍第2項之介電材料 0.98。 4. 根據申請專利範圍第 3項之介電材刻 0.95。 5 · 根據申請專利範圍第1項之介電材料 莫耳之鈦酸鋅,另包含y莫耳之氧化 中 0. 1 $ y $ 1。 6 · 根據申請專利範圍第 5項之介電材料 0.25。 7. 根據申請專利範圍第1項之介電材料 S 10。 8. 根據申請專利範圍第1項之介電材料 $ 5。 9. 根據申請專利範圍第8項之介電材料, 1 〇 .根據&gt; 請專利範圍第1項之介電材料 S 5。 1 1 .根據申請專利範圍第1項之介電材料,其中w為1 584867 命嫌拳利範闺.續f 12. 一種低電容之積層陶瓷電容器,其係包含根據申請 專利範圍第1項之介電材料。 1 3 .根據申請專利範圍第1 2項之積層陶瓷電容器,其 包含銀、銀合金、銅或銅合金之電極。 14. 一種製備鈦酸鋅(ZnTi〇3)系統之介電材料之方法, 該介電材料包含 Z%以重量計之氧化鉍(Bi2 03 )及 w%以重量計之[(Zn〇)4· B2〇3],其中0.1$z$15, 且0.5^ 10,該方法包含: (a) 提供一包含鈦酸鋅系統之陶瓷粉末; (b) 製備硼鋅玻璃[(Ζη0)4·Β203];及 (c) 混合步騾(a)之陶瓷粉末與步騾(b)之硼鋅玻璃 及Z %以重量計之氧化。 1 5 .根據申請專利範圍第 14項之方法,於鈦酸鋅中之 部分鋅係由鎂所取代成為(ZnxMgl.x)Ti〇3,其中0.7 ^ X ^ 1 β 16.根據申請專利範圍第14項之方法,其中步騾(a)之 陶瓷粉末係由包含如下步騾之方法製得: (1) 以含鋅及鈦之化合物為原料; (2 )在水中混合研磨(1)之原料;及 (3)烤乾(2)之混合物,再於700至8 00°C烺燒該經 乾燥之混合物4至8小時。 1 7.根據神請專利範圍第1 6項之方法,其中含鋅之化 合物為Ζ η〇。 1 8 .根據申請專利範圍第1 6項之方法,其中含鈦之化 O:\72W1066.DOC\7VSU 584867 _鍊專·剩:範辑續I: 合物為Ti〇2。 1 9 .根據申請專利範圍第1 6項之方法,其中步驟(1)另 包含以含錢之化合物作為原料。 2 0.根據申請專利範圍第 1 6項之方法,其中含鎂之化 合物為Mg〇。 2 1.根據申請專利範圍第14項之方法,其中步騾(b)之 硼鋅玻璃[(Ζ η 0) 4 · B 2〇3 ]係由包含下列步騾之方法 製得: (1) 於水中研磨混合莫耳比為4: 1之Ζη〇及Β2‘〇3; (2) 烤乾(1)之混合物且於5 00至700°C煅燒該經 乾燥之混合物4至8小時。 2 2.根據申請專利範圍第21項之方法,其中步騾(2)係 於6 0 0 °C煅燒4小時。 2 3.根據申請專利範圍第14項之方法,其中步騾(c)包 含在水中進行研磨混合,且進一步烤乾以製得該介 電材料。 O:V72\72066.DOC\7\SUThe patent application patent park contains Z% of [(Zn〇) 4. $ 10 °, where Yuqin acid Mgl.x) Ti〇3 ^, where 0.85 ^, where X is, relative to each titanium ( Ti02), where y is, where 1 S z, where 1 $ Z where z is 5. Of which 1 $ w 1. Oxidation grade (Bi 2 0 3) and w% by weight of a dielectric material of zinc titanate (ZηΤι 03) system, by weight 'B 2 0 3], of which 0. 1 $ ζ $ 15, And 0.5 $ w 2. According to the scope of the patent application, the dielectric material zinc in the first part of the zinc is replaced by magnesium (Zn of which 0.7 S 1. 3. According to the patent scope of the second dielectric material 0.98 1 $ y 4. Dielectric material according to item 3 of the scope of patent application is engraved with 0.95. 5 · Dielectric material according to item 1 of the scope of patent application is Moore's zinc titanate, which also contains y Moore's oxide in 0.1 1 y $ 1. 6 · Dielectric material 0.25 according to item 5 of the scope of patent application 7. Dielectric material S 10 according to item 1 of the scope of patent application 8. 8. $ 5 dielectric material according to the scope of patent application 9. Dielectric material according to item 8 of the patent application, 1 10. Dielectric material S 5. according to item 1 of the patent application. 1 1. Dielectric material according to item 1 of the patent application, where w It is 1 584867, and it is fateful. Continued f 12. A low-capacitance multilayer ceramic capacitor, which is based on a patent application The dielectric material surrounding item 1. 1 3. The laminated ceramic capacitor according to item 12 of the patent application scope, comprising electrodes of silver, silver alloy, copper or copper alloy. 14. A method for preparing zinc titanate (ZnTi〇3 ) A method for the dielectric material of the system, the dielectric material comprises Z% by weight of bismuth oxide (Bi2 03) and w% by weight of [(Zn〇) 4 · B2〇3], of which 0.1 $ z $ 15 And 0.5 ^ 10, the method comprises: (a) providing a ceramic powder comprising a zinc titanate system; (b) preparing a borozinc glass [(Zη0) 4 · B203]; and (c) a mixing step (a) The ceramic powder and the boro-zinc glass of step (b) and Z% are oxidized by weight. 1 5. According to the method of item 14 of the patent application scope, part of the zinc in zinc titanate is replaced by magnesium ( ZnxMgl.x) Ti〇3, of which 0.7 ^ X ^ 1 β 16. The method according to item 14 of the scope of patent application, wherein the ceramic powder of step (a) is prepared by a method including the following step: (1) Using zinc and titanium-containing compounds as raw materials; (2) mixing and grinding (1) raw materials in water; and (3) baking and drying (2) the mixture, and then baking the dried mixture at 700 to 800 ° C The dry mixture is 4 to 8 hours. 1 7. The method according to item 16 of the patent claim, wherein the zinc-containing compound is Z η〇 1 18. The method according to item 16 of the patent application, which contains titanium Zhihua O: \ 72W1066.DOC \ 7VSU 584867 _Chain Special · Remaining: Fan Series Continued I: The compound is Ti〇2. 19. The method according to item 16 of the scope of patent application, wherein step (1) further comprises using a rich compound as a raw material. 20. The method according to item 16 of the scope of patent application, wherein the magnesium-containing compound is Mg0. 2 1. The method according to item 14 of the scope of patent application, wherein the boro-zinc glass [(Z η 0) 4 · B 2〇3] of step (b) is prepared by a method including the following steps: (1) Grind and mix Zη〇 and B2′03 with a molar ratio of 4: 1 in water; (2) roast the mixture of (1) and calcine the dried mixture at 500 to 700 ° C. for 4 to 8 hours. 2 2. The method according to item 21 of the scope of patent application, wherein step (2) is calcined at 600 ° C for 4 hours. 2 3. The method according to item 14 of the scope of patent application, wherein step (c) comprises grinding and mixing in water, and further drying to obtain the dielectric material. O: V72 \ 72066.DOC \ 7 \ SU
TW92103763A 2003-02-24 2003-02-24 Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same TW584867B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92103763A TW584867B (en) 2003-02-24 2003-02-24 Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92103763A TW584867B (en) 2003-02-24 2003-02-24 Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same

Publications (2)

Publication Number Publication Date
TW584867B true TW584867B (en) 2004-04-21
TW200416749A TW200416749A (en) 2004-09-01

Family

ID=34059026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92103763A TW584867B (en) 2003-02-24 2003-02-24 Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same

Country Status (1)

Country Link
TW (1) TW584867B (en)

Also Published As

Publication number Publication date
TW200416749A (en) 2004-09-01

Similar Documents

Publication Publication Date Title
TWI241601B (en) Electronic device, dielectric ceramic composition and the production method
JP4513981B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
TWI294132B (en) Method of production of multilayer ceramic electronic device
CN106024383A (en) Multilayer ceramic electronic device
JP3636123B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
TWI285381B (en) Multilayer ceramic capacitor
JP3797281B2 (en) Conductive paste for terminal electrode of multilayer ceramic electronic component, method for manufacturing multilayer ceramic electronic component, multilayer ceramic electronic component
JP2004262717A (en) Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitance
WO2006098462A1 (en) Dielectric porcelain composition and method for production thereof
JP2009007209A (en) Dielectric porcelain and laminated ceramic capacitor using it
TW200529262A (en) Multilayer ceramic capacitor
US9064638B2 (en) Dielectric ceramic, stack ceramic electronic component, and method of manufacturing these
JP5452244B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
TWI233623B (en) Dielectric ceramic composition and electronic component
JPH0222806A (en) Laminated ceramic capacitor
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
TWI245750B (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic, and multiplayer ceramic capacitor
TW584867B (en) Novel microwave-dielectric with super-low-temperature and high reliability and method of preparing the same
JP2005209404A (en) Conductive paste for internal electrode of laminated ceramic electronic component and manufacturing method of laminated ceramic electronic component using it
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JPWO2015119113A1 (en) Laminated body, laminated device and manufacturing method thereof
JP4325900B2 (en) Dielectric porcelain composition
JP4691978B2 (en) Method for manufacturing dielectric composition
JP5574343B2 (en) DIELECTRIC CERAMIC COMPOSITION, DIELECTRIC, CERAMIC SUBSTRATE AND ELECTRONIC COMPONENT, AND METHOD FOR PRODUCING DIELECTRIC
JP4691977B2 (en) Method for manufacturing dielectric composition

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees