TW477823B - Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition - Google Patents

Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition Download PDF

Info

Publication number
TW477823B
TW477823B TW88110251A TW88110251A TW477823B TW 477823 B TW477823 B TW 477823B TW 88110251 A TW88110251 A TW 88110251A TW 88110251 A TW88110251 A TW 88110251A TW 477823 B TW477823 B TW 477823B
Authority
TW
Taiwan
Prior art keywords
substrate
film
assisted
application
carbon dioxide
Prior art date
Application number
TW88110251A
Other languages
Chinese (zh)
Inventor
Pen-Shin Yeh
Jyh-Shin Chen
Cheng-Chung Jiang
Hsiang-Ming Tseng
Long-Shung Liao
Original Assignee
Prec Instr Dev Ct Nat S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prec Instr Dev Ct Nat S filed Critical Prec Instr Dev Ct Nat S
Priority to TW88110251A priority Critical patent/TW477823B/en
Application granted granted Critical
Publication of TW477823B publication Critical patent/TW477823B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Zincselenide (ZnSe) films were grown on quartz glass and GaAs (100) substrates by continuous wave CO2 laser with ion beam assisted deposition. The ZnSe films are applied for (1) multilayer anti-reflection coatings (2) blue light emitting devices. There are some advantages for this technique over the ion-beam coating, MBE, MOCVD and PLD methods for fabricating layered semiconductors: (1) it is cheaper and safer than ion-beam coating, MBE and others. (2) To heat the target locally by using laser that could reduce contaminations and heat radiation. (3) To avoid the splash of PLD.

Description

477823477823

Λ 邊^明蠢(1疼 -------- : IΛ Edge ^ Ming stupid (1 pain --------: I

… I '7^—業L-Jiy —. 領域 本發明係使用連續式二氧化碳雷射及離子輔助系統, 瘵鍵成長砸化鋅薄膜於石英玻璃及珅化鎵基板上,^、止 學多層膜及抗反射鍍膜,以及藍光發光元件。 & 背 景 、一瘵鍍成長硒化鋅薄膜於基板上,製造鍍膜以及藍光發 光7G件,可運用有機金屬氣相沈積法(M〇CVD )、分子束磊 晶法。其中有機金屬氣相沈積法已經運用於砷化嫁1 1 0 0)基板,为子束磊晶法也能在砷化鎵基板 是藍寶石基板上成長氮化鎵磊晶。 ^ 目前關於磊晶之方法以有 子束蠢晶法為主流;有機金屬 機金屬作為原料,所以較具危 貴及有不易量產之問題。 機金屬化學氣相沈積法及分 化學氣相沈積法由於使用有 險性;分子束磊晶法則較昂… I '7 ^ —industry L-Jiy —. Field The present invention uses a continuous carbon dioxide laser and ion assisted system, the bond growth of the zinc film on the quartz glass and gallium halide substrate, ^, stop learning multilayer film And anti-reflective coating, and blue light emitting elements. & Background, A layer of zinc selenide thin film was plated on the substrate to manufacture a coating and blue light-emitting 7G parts. Organic metal vapor deposition (MOCVD) and molecular beam epitaxy can be applied. Among them, organometallic vapor deposition has been applied to arsenide substrates. The sub-beam epitaxy method can also grow gallium nitride epitaxes on gallium arsenide substrates and sapphire substrates. ^ The current epitaxial method is dominated by the seeded beam stupid method; organic metals and organic metals are used as raw materials, so they are more expensive and difficult to mass produce. Organic metal chemical vapor deposition and chemical vapor deposition are dangerous due to their use; molecular beam epitaxy is more expensive

利用有機金屬分子當 入反應腔内沈積於高 ’於基板表面反應生 習 知技藝 有機金屬氣相沈積法(MOCVD )係 先驅物,經由適當氣體管路傳輸,進 溫基板上’反應物受高溫產生熱分解Organometallic molecules are deposited into the reaction chamber and deposited on the substrate surface. The conventional technique of organometallic vapor deposition (MOCVD) is a precursor, which is transmitted through an appropriate gas pipeline, and the reactant is exposed to high temperature on the substrate. Thermal decomposition

第6頁 五、發明說明(2) 成薄膜。於石西化辞薄膜成長上有件吝出,^Page 6 5. Description of the invention (2) Form a thin film. There is something emerging from the growth of the Shixi chemical word film, ^

Stutius#A^1 978 ^Appl. Phys. 發表以此技術成長硒化辞薄膜於砷化鎵基板上。 式為以二甲基鋅及氫化硒分別A鈕 ^丹风长万 son Α ^ 刀另J為鋅及硒的先驅物,於 300-350 C基板>皿度下,成長速率約2龍/hr, 為。.15 Tori況下’於氣態中砸與鋅比例為5:广 條件,可以成長出高品質砸化❹晶。[射 = 石西化辞U0G)料半高寬最窄,顯示最佳薄媒品質^外 於室溫下.經光激發光譜分析,結果亦顯示在447⑽的⑽訂 -band-gap放光譜線,且無明顯缺陷存在,為一高品 光磊晶層。另外,Simpson &Williams於199〇年^卯^ Surface. Science第46期第27頁發表以有機金屬氣相積 技術,於砷化鎵(100)基板上成長硒化鋅。其係使用二曱 基鋅及二乙基硒為辞及硒的先驅物,於275_35〇溫度範 圍内’可成長出高結晶性的硒化鋅單晶。 利用有機金屬氣相沈積法,除了可以成長高品質硒化 辞薄膜外,近年來亦將觸角伸向同為藍色發光元件之氮化 鎵磊晶應用上。1((^&73311丨等人於1 9 97年發表於】1)11 j Appl. Phys·第36期第2592頁報導,以DMHy及三曱基鎵分 別為氮及鎵的先驅物,可以改善傳統成長氮化鎵需在 溫度(>1000 °C)下成長之缺點。其採行兩種成長方式, 第一種成長方法係先以530 °C成長低溫氮化鎵緩衝層,再 於7 7 0 °C高溫下成長氮化鎵磊晶層。第二種成長方法係先 477823 五、發明說明(3) 以70 0 °C成長氮化鋁緩衝層後,於85〇。〇高溫下成長氮化鎵 磊晶層二分析結果顯示以第二種成長方式於85〇它溫度 下’五二族比例約6 〇倍,系統總壓力約3 〇 〇 T〇rΓ,可成县 出最佳薄膜品質。 农 另一種常用來成長高品質磊晶技術為分子束磊晶法, 其係利用在超高真空環境中加熱原子態,使其熱篡發後, 射向基板表面藉以產生反應,形成磊晶層。Reich〇w等人 於1 9 9 3年利用此技術在砷化鎵基板上沈積硒化鋅磊晶,苴 係於反應前先通鋅原子氣流以阻隔三硒化二鎵的生成,ς 330 350 C/JEL度下,成長出i_2#m砸化鋅薄膜。當以X一射 線繞射儀測得砸化鋅(4〇〇 )峰半高寬最窄可達2〇〇 arCSeC•代表絕佳的薄膜結晶品質。Sou等人於1 995年j 'rowth^147#^391 ^^^^^^^.¾^# 日1射線繞射分析。其成長方式係先以預熱方 化物不純物,通以1 ☆鐘鋅原子氣流 5(ΤΓ Λ 流,保持辞與硒壓力比為1 :3.3,於 為2 7,成長速率約0.18-0.36心/h,可成長厚度 i 4;本'則匕鋅。經高解析度[射線繞射分析砸化 Ϊ曰:可2 ί ’亦可達200 arcsec•充分顯現以分子束 曰曰去了成長出結晶性非常良好的硒化鋅薄膜。 化鎵3似ί長:化辞方式同樣地1可成長出高品質氮 膜。KUr〇be等人於1 998年發表於Appl. Phys.Stutius # A ^ 1 978 ^ Appl. Phys. Published this technique to grow a selenide film on a gallium arsenide substrate. The formula is a dimethyl zinc and selenium hydride button A ^ Danfeng Changwanson Α ^ knife and J is the precursor of zinc and selenium, at 300-350 C substrate > dish, the growth rate is about 2 Dragon / hr, for. .15 In the condition of Tori, the ratio of smashing to zinc in a gaseous state is 5: wide, and high-quality smashing crystals can be grown. [射 = 石 西化 词 U0G) The material has the narrowest FWHM, showing the best quality of thin media ^ at room temperature. After analysis by light excitation spectrum, the results also show the tuned-band-gap spectral line at 447⑽, And there is no obvious defect, it is a high-quality photoepitaxial layer. In addition, Simpson & Williams published Surface Science Science, Issue 46, Page 27 in 1990, using organic metal vapor deposition technology to grow zinc selenide on a gallium arsenide (100) substrate. It is a precursor of selenium using difluorinated zinc and diethylselenium. Within the temperature range of 275-350 °, a high crystallinity zinc selenide single crystal can be grown. In addition to the use of organometallic vapor deposition methods, in addition to growing high-quality selenide films, in recent years, it has also extended its tentacles to gallium nitride epitaxy, which is also a blue light-emitting element. 1 ((^ & 73311 丨 et al., Published in 1979)] 1) 11 j Appl. Phys 36th p. 2592 reported that DMHy and trifluorenylgallium were the precursors of nitrogen and gallium, respectively. It can improve the disadvantages of the traditional growth of gallium nitride at temperature (> 1000 ° C). It adopts two growth methods. The first growth method is to grow the low temperature gallium nitride buffer layer at 530 ° C, and then The gallium nitride epitaxial layer is grown at a high temperature of 77 ° C. The second growth method is 477823. V. Description of the invention (3) After the aluminum nitride buffer layer is grown at 70 ° C, the temperature is 85.0 ° C. The second analysis of the growth of the epitaxial layer of gallium nitride shows that in the second growth mode at 85 ° C, the proportion of the 'five-two family' is about 60 times, and the total system pressure is about 3,000 Torr. Another thin-film epitaxial technique commonly used to grow high-quality epitaxy is the molecular beam epitaxy, which uses the atomic state to be heated in an ultra-high vacuum environment to make it thermally tampered with and then fires on the substrate surface to generate a reaction. An epitaxial layer is formed. ReichOw et al. Used this technique to deposit zinc selenide epitaxy on a gallium arsenide substrate in 1983, Zinc is passed through the zinc atom gas flow before the reaction to block the formation of digallium triselenide. At 330 350 C / JEL, i_2 # m thin zinc film is grown. When measured by X-ray diffractometer, Zinc (400) peak half-height width can be as narrow as 2000arCSeC • represents excellent film crystalline quality. Sou et al. 1 '995 j'rowth ^ 147 # ^ 391 ^^^^^^^ .¾ ^ # Day 1-ray diffraction analysis. The growth method is to preheat the impure impurities, pass 1 ☆ clock zinc atomic gas flow 5 (ΤΓ Λ flow, keep the ratio of pressure to selenium 1: 3.3, so for 27, the growth rate is about 0.18-0.36 heart / h, and the thickness can be grown i 4; this is the zinc. After high-resolution [ray diffraction analysis, it can be said: can 2 ί 'can also reach 200 arcsec • full It appears that the molecular beam is used to grow a zinc selenide film with very good crystallinity. Gallium 3 looks like a long one: the same way 1 can grow a high-quality nitrogen film. Kuromoto et al. 1998 Posted in Appl. Phys.

第8頁 477823 五、發明說明(4)Page 8 477823 V. Description of the invention (4)

Lett·,第73期第2305頁報導,於8〇〇 °c溫度下,藍寶石基 f上成長高品質氮化鎵磊晶。其係使用三乙基鎵及射頻氮 氣電敷源為鎵及氮的來源,於成長速率約〇· 35 #m/h,以 X-射線及光激發光譜分析法,可測出此方法可成長出高品 質的氮化鎵磊晶。 美國專利第4 8 6 6 0 0 7號係一種可以製造砸化辞單晶塊 材(crystal ZnSe)的方法,步驟如下:(ι)將多晶znse製Lett., No. 73, p. 2305 reports that high-quality gallium nitride epitaxy is grown on sapphire substrate f at 800 ° C. It uses triethylgallium and radio frequency nitrogen electrodeposition source as the source of gallium and nitrogen. At a growth rate of about 0.35 # m / h, X-ray and photoexcitation spectroscopy are used to determine that this method can grow. High-quality GaN epitaxy. U.S. Patent No. 4 8 6 0 0 7 is a method for manufacturing crystal ZnSe, the steps are as follows: (ι) polycrystalline znse

成棍狀起始材料,置入反應槽;(2)充入鈍氣、氮氣、 H】Se混合物〇·1到1〇〇 Torr之間;(3)以5mm/天移動速率通 過高溫區,使得ZnSe多晶材料轉變成ZnSe單晶材料。美國 專利第4584053號係製備大面積單晶(ZnSe single crystal)之方法,具有高品質,低雜質能被使用當磊晶成 長用之基板材質。主要方式包括先以CVD方法製鑛多晶 ZnSe,置入膠囊内封合,經由高溫高壓可製成單晶材料, 可當磊晶基板材料。美國專利第51 74854號係一種製鑛 ZnSe 晶體的方法(Crystal growth of group II - Vi compound Semiconductor),其步驟為:於高溫狀態中, 約6-9大氣壓之Se,溶於Zn溶劑中至飽和狀態;將基板置 於低溫環境下’可以成長出Z n S e單晶。美國專利第 56 1 6 1 78號係一種利用有機金屬化學氣相沈積法,製鍍 type ZnSe的方法。此方法使用p-type摻雜的有機物質為 起始物,此物質至少須包括一個氮原子及兩個分子量大於 12的原子團。其中之一種物質為di - isopropylamine。美Formed into a stick-shaped starting material and placed in a reaction tank; (2) filled with a mixture of inert gas, nitrogen, and H] Se between 0.1 and 100 Torr; (3) passed the high temperature zone at a movement rate of 5mm / day, The ZnSe polycrystalline material is transformed into a ZnSe single crystal material. U.S. Patent No. 4584053 is a method for preparing a large area single crystal (ZnSe single crystal), which has high quality and low impurities and can be used as a substrate material for epitaxial growth. The main methods include firstly ore-smelting polycrystalline ZnSe by CVD method, sealing in a capsule, forming a single crystal material through high temperature and high pressure, and being an epitaxial substrate material. U.S. Patent No. 51 74854 is a method for making ZnSe crystals (Crystal growth of group II-Vi compound Semiconductor). The steps are as follows: in a high temperature state, about 6-9 atm of Se is dissolved in the Zn solvent to saturation. State; placing the substrate in a low temperature environment can grow a Z n S e single crystal. US Patent No. 56 1 6 1 78 is a method for preparing type ZnSe by using organometallic chemical vapor deposition. This method uses a p-type doped organic substance as the starting material. This substance must include at least one nitrogen atom and two atomic groups with a molecular weight greater than 12. One of them is di-isopropylamine. nice

477823 五、發明說明(5) 國專利第5 1 9241 9號係一種利用電化學沈積法成長高品質 P-type ZnSe 的方法(Method for producing a zinc selenide blue 1 i gh t em i 11 i ng device),其方法係將含 有鋅的陽極及ZnSe單晶基板沈浸於含有辞離子,砸離子的 溶液。電流由鋅陽極傳導至n-type ZnSe基板陰極,最後 P - type ZnSe 沈積於 n-type ZnSe 陰極上形成 pn_juncti〇n ZnSe半導體。美國專利第55542 1 9號係一種利用高壓熔融 方式’如垂直式布吉曼南溫爐成長單晶塊材之方式。 此方式係使用多晶ZnSe當種子,當以高溫熔融後經適當程 序可以成長出南品質之ZnSe單晶材料。美國專利第 5015327號係一種能成長ZnSe薄膜於ZnSe基板上之方法, 包括以下步驟:(1)於0.1-10 Torr氫氣壓力下,加熱znSe 基板從25 0 °C 到450 °C ; (2)通入Zn(CH3)2 *Zn(C2H5)2 及 ISe氣體,使得Se與Zn莫耳分率比約在10到1〇〇之間, 於此條件下可以成長ZnSe薄膜於ZnSe單晶基板上。 發明目標 本發明主要目的在於揭示一種連續式二氧化碳雷射及 離子輔助系統’於基板上蒸鍍成長硒化鋅薄膜之方法,以 製造光學多層膜及抗反射鍍膜,可產生藍光發光元件。 圖示說明:477823 V. Description of the invention (5) National Patent No. 5 1 9241 9 is a method for growing a high-quality P-type ZnSe by electrochemical deposition method (Method for producing a zinc selenide blue 1 i gh t em i 11 i ng device ), The method involves immersing an anode containing zinc and a ZnSe single crystal substrate in a solution containing ion and ion. The current is conducted from the zinc anode to the n-type ZnSe substrate cathode. Finally, P-type ZnSe is deposited on the n-type ZnSe cathode to form a pn_junctiON ZnSe semiconductor. U.S. Patent No. 55542 119 is a method for growing single crystal blocks by using a high-pressure melting method, such as a vertical Bujimanan furnace. In this method, polycrystalline ZnSe is used as a seed, and after melting at high temperature, a ZnSe single crystal material of South quality can be grown through an appropriate procedure. US Patent No. 5015327 is a method for growing a ZnSe film on a ZnSe substrate, including the following steps: (1) heating the znSe substrate from 25 0 ° C to 450 ° C under a pressure of 0.1-10 Torr hydrogen; (2) Pass in Zn (CH3) 2 * Zn (C2H5) 2 and ISe gas, so that the molar ratio of Se to Zn is between about 10 and 100. Under this condition, a ZnSe film can be grown on a ZnSe single crystal substrate. . OBJECTS OF THE INVENTION The main purpose of the present invention is to disclose a continuous carbon dioxide laser and ion assisted system 'method for depositing a zinc selenide film on a substrate to produce an optical multilayer film and an anti-reflection coating film, which can generate a blue light emitting element. Graphic description:

第10頁 477823 五、發明說明(6) 圖一蒸鍍設備之示意圖: 子源 A :連續式二氧化碳雷射 B :反射鏡 C :聚焦透鏡 D :真空腔體 E :基板支撐架及加熱器 F:石英振盪膜厚監控器 G :遮板 Η ··硒化鋅靶 I : 3公分克福曼類型(Kaufman-Type )萄 J :耐熱氮化硼 K :機械幫浦 L :擴散幫浦 Μ :冷凝阻陷 Ν :閘閥 圖二石西化鋅薄膜的X射線繞射圖, 卜硒化鋅/石英 助裝置 數k於波長700 (Α)石西化辞粉末 (Β)室溫· (C) 150 °C下硒化辞/石英 (D) 150°C下硒化鋅/石英+離子束輔 圖三不同蒸鍍速率下,折射率n及消光係 nm時的變化情形, ^ 477823 五、發明說明(7) 膜厚度·· 5 5 0 nmPage 10 477823 V. Description of the invention (6) Figure 1: Schematic diagram of evaporation equipment: Sub-source A: Continuous CO2 laser B: Mirror C: Focusing lens D: Vacuum cavity E: Substrate support frame and heater F : Quartz oscillating film thickness monitor G: Shroud Η ·· Zinc selenide target I: 3 cm Grafman type (Kaufman-Type) Grape J: Heat-resistant boron nitride K: Mechanical pump L: Diffusion pump M: Condensation block N: Gate valve Figure 2. X-ray diffraction pattern of Shixi Zn film, using zinc selenide / quartz auxiliary device at a wavelength of 700 (Α) Shixi chemical powder (B) room temperature · (C) 150 ° Selenide at C / Quartz (D) Zinc Selenide / Quartz + Ion Beam at 150 ° C Figure 3. Variation of refractive index n and extinction nm at different evaporation rates, ^ 823823 V. Description of the invention ( 7) Film thickness 5 5 0 nm

基板溫度:15 0 °C 圖四 不同基板溫度下, nm時的變化情形, 蒸鍍速率:6. 4 折射率n及消光係數k於波長700 埃/秒, 膜厚度:550 nm 圖五 =離子束輔助蒸鑛條件,改變離子束電流時n分佈圖 f鍍速率:9·0埃/秒,膜厚度:550 nm,基板溫 度:1 5 0 °cSubstrate temperature: 15 0 ° C Figure 4. Changes in nm at different substrate temperatures, evaporation rate: 6.4 Refractive index n and extinction coefficient k at a wavelength of 700 Angstroms / second, film thickness: 550 nm Figure 5 = Ion Beam-assisted mineralization conditions, the distribution of n when the ion beam current is changed, f plating rate: 9 · 0 angstroms / second, film thickness: 550 nm, substrate temperature: 150 ° C

(A) 20 mA (B) 10 mA(A) 20 mA (B) 10 mA

(C) 15 mA(C) 15 mA

圖六 j離子束輔助蒸鍍條件,改變離子束電流時k分佈圖Fig. 6 k-distribution of j-beam assisted evaporation conditions when ion beam current is changed

,鍍速率.9.0埃/秒,膜厚度· 55〇 nm,基板溫 度:150 〇C, Plating rate. 9.0 Angstroms / second, film thickness · 55 ° nm, substrate temperature: 150 ° C

、Α)2〇ΠΐΑ r D Λ 1 r A, Α) 2〇ΠΐΑ r D Λ 1 r A

W 15 mA (C) 10 mAW 15 mA (C) 10 mA

不同離子束電流下拉 (A)無離子束輔助Different Ion Beam Current Pulldown (A) Without Ion Beam Assistance

(C) 15 mA 圖八石西化鋅薄膜在不同石申 圖, 曼光譜的變化(C) 15 mA Figure 8 shows the change of the Mann spectrum of the eight-stone siliconized zinc film in different stones.

(B) 1〇 mA(B) 10 mA

(D) 20 mA 化鎵基板溫度下的X射線繞射(D) X-ray diffraction at 20 mA gallium substrate temperature

(A)l〇〇 °c (D)3〇〇 〇c (B)150 t(A) 100 ° c (D) 300 ° c (B) 150 t

(E) 350 °C (C)200 t:(E) 350 ° C (C) 200 t:

(F)400 °C(F) 400 ° C

477823 五 、發明說明(8)477823 V. Description of Invention (8)

圖九不同基板溫度時拉曼光譜的變化 (A) 1 〇 0 °C ( B) 1 5 0 °CFigure 9 Changes in Raman spectrum at different substrate temperatures (A) 1 0 0 ° C (B) 1 5 0 ° C

(C) 200 °C (D) 30 0 °C(C) 200 ° C (D) 30 0 ° C

(E) 350 °C (F)40 0 °C 圖十4 0 〇 °c硒化鋅薄膜之2 〇 K低溫光激發光譜圖(E) 350 ° C (F) 40 0 ° C Figure 10. Low temperature photoexcitation spectrum of 2 0 K of zinc selenide film at 400 ° C

圖十一 400 °C石西化辞薄膜之變溫量測光激發光譜圖 (A)300K (B)250KFigure XI Excitation spectrum of Shixihua Ci film at 400 ° C (A) 300K (B) 250K

(C)200K (D)150K(C) 200K (D) 150K

(E)100K (F)50K(E) 100K (F) 50K

(G)20 K 、 發明之詳細說明(G) 20 K, detailed description of the invention

發明主要揭示一種連續式二氧化碳雷射及離子輔 ’厂於基板上瘵鍍成長硒化辞薄膜之方法,以製造光 及抗反射鍍膜。該製造方法適用於石英玻璃及砷 ίί:::化鋅(ZnSe)基板,或是藍寶石基板,並且在 #基板上成長硒化辞薄膜、氮化鎵薄膜。The invention mainly discloses a continuous carbon dioxide laser and ion-assisted method for electroplating a grown selenide film on a substrate to manufacture light and anti-reflection coatings. The manufacturing method is suitable for quartz glass and arsenic ί ::: zinc substrate (ZnSe) or sapphire substrate, and a selenide film and a gallium nitride film are grown on the # substrate.

477823 五、發明說明(9) 及抗反射鍍膜,可作為,藍光發光元件。 本發明係以連續式二·氧化碳雷射照射由多晶顆粒狀石西 化鋅( 99. 9 9%)壓成的靶材,加熱後蒸鍍於砷化鎵( 和石英玻璃基板上’並以氬離子束辅助成長。 該連續式二氧化碳雷射蒸鍍碼化鋅薄膜之製程參數 ,隨基板之不同而有所區別;石英基板之製程壓力為1 X γ〇·3〜1 X 10, torr,製程溫度為25〜4〇〇t,成長速率 為3·6〜20.2 A/sec,二氧化碳雷射功率為6 —7〇瓦,辅 瘵鍍之離子束電流為10〜20 mA,辅助蒸鍍之離子束 為100〜350 V。於砷化鎵(100)基板之製程壓力為} χ川·3 ( 〜1 X ίο·6 t〇rr,製程溫度為25〜40(rc,成長速率為2 8 〜20 A/sec,基板表面氧化層去除方式為以氨水:雙氧水 :水=3 : 1 : 15之化學溶液及氬離子束(1〇〇_35〇 ν,1〇〜 25 mA)轟擊1〜20分鐘。 圖一為蒸鍍設備之示意圖,包括真空系統設備為機 幫浦和擴散幫浦,可抽至5X 10-6 :t〇rr,腔體内置有一 ,束產生器,用來輔助薄膜成長及清潔基板。步驟係將 氣充入游離室(Discharge Chamber)與電漿中和二 (Plasma bridge neutralizer),游離成氬離子,以二 f加速打出,並用電漿中和器產生電子雲形成中性電漿, 藉由控制氬氣流量,以及離子束電壓(1〇〇〜350V )、電 第14頁 五、發明說明(10) 流(10〜25mA),祐两p人X常时 以迴授㈣雷射功率來;整“ ^ f #器偵測薄膜厚度’ A/s) . (2.79^20.2 在室溫至400 〇C之間,可以得到夕日口 ’、,、夺加以改變,控制 门J ^付到多晶及單晶結構。 藉由X射線繞射儀、拉@吾、、目,丨么μ ^ ^ ^ $11 ^ ^ ^ 拉又里測系統及光激光光譜來分 兩部分敘述: 、刀為石*破璃和砂化鎵(001)基板 1 ·運用在石英基板·· =二為硒化鋅薄膜的χ #線繞射圖, 0 10Q torr,製程溫度為25〜400 t,成長 J率為3·6〜20.2 A/sec,二氧化碳雷射功率為6 —7〇瓦, ,助瘵鍍之離子束電流為1〇〜2〇 mA,輔助蒸鍍之離子 電廢為1田00〜35"。纟中在150。〇成長及有離子束辅 形,、有最ji圭的薄膜品質。圖三為不同蒸鍍速率下, ^ η及消光係數k於波長700 nm時的變化情形,·圖四則改不 同基板溫度,η及k於700 nm時變化情形,顯示於/ :下,可得最佳光學性-質。圖五及六分別為以離子束輔助、 =鍍條件,改變離子束電流時n 分佈圖,顯示於丨^ 電流及20 0V電壓製程條件下,製鍍硒化鋅膜具有最^ 為2.536 ’與單晶塊材在7〇〇⑽時!!值2·54〇 ,極為接近值 477823 五、發明說明(11) / 另外亦顯示加以離子束輔助,確有降低硒化 效應。圖七則為不同離子束電流下拉曼光譜的= 離子束辅助時,其薄膜結晶性較無離子: 上量測結果,可以建立高ο暂夕挪几处2 佳藉由以 J以建立同σ口質之硒化辞薄膜的長晶條件。 2·運用在砷化鎵(GaAs ,1〇〇)基板,製程壓力 °〜1 X 1〇= torr,製程溫度為25〜400。(:,成h產 為2· 8〜20 A/sec,基板表面氧化層去除方式為 匕: 水=3:1:15之化學溶液及氬離子Λ;二t50 v,10〜25 mA)轟擊分鐘。圖八為硒化辞薄膜在 基板溫度(從100〜4〇〇〇c)之X射線繞射圖,分別顯示" ‘;200 )及(400)面等峰值變化。於低溫成長下(低於2〇。 乂,:二鋅(111)面的存在’代表此時成長的薄膜仍屬於 夕曰日的結構。隨時基板溫度上升,當大於2〇〇乞時, 顯現硒化鋅(m),(200 )及(4〇〇)等峰值的消長,置中於 4〇〇 C,成長可得到最好的。圖九為不㈣板溫度時拉 曼光譜的變化,顯示於400 t成長條件下,硒化辞單晶 石申化鎵基板間有最小的應力。圖十及十一為4〇〇 〇c石西化^ 薄膜之光激光譜圖,顯示激子(excit〇n)和施子一受子對 (donor acceptor pair)之間相對性及其與溫度變化的關 係。 ; 本發明揭示方法係以連續式二氧化碳雷射在砷化鎵基 板上成長硒化鋅薄膜,利用雷射光束於真空環境中,連續477823 V. Description of the invention (9) and anti-reflection coating, can be used as blue light emitting element. The present invention uses continuous carbon dioxide laser irradiation to irradiate a target made of polycrystalline granular petrochemical zinc (99. 9%), and then vaporizes the target on gallium arsenide (and quartz glass substrate) after heating. Assisted growth with argon ion beam. The process parameters of the continuous carbon dioxide laser vapor-deposited zinc film vary with different substrates; the process pressure of the quartz substrate is 1 X γ 0.3-1 X 10, torr , The process temperature is 25 ~ 400t, the growth rate is 3.6 ~ 20.2 A / sec, the carbon dioxide laser power is 6-70 watts, the ion beam current of auxiliary plating is 10 ~ 20 mA, and the auxiliary evaporation The ion beam is 100 ~ 350 V. The process pressure on the gallium arsenide (100) substrate is} chuan · 3 (~ 1 X ίο · 6 t〇rr, the process temperature is 25 ~ 40 (rc, the growth rate is 2 8 ~ 20 A / sec. The method of removing the oxide layer on the surface of the substrate is to bombard with a chemical solution of ammonia: hydrogen peroxide: water = 3: 1: 15 and argon ion beam (100 ~ 35〇ν, 10 ~ 25 mA). ~ 20 minutes. Figure 1 is a schematic diagram of the evaporation equipment, including vacuum pumps for machine pumps and diffusion pumps, which can be pumped up to 5X 10-6: t〇rr, the cavity has a built-in First, the beam generator is used to assist the growth of the film and clean the substrate. The steps are to charge the gas into the Discharge Chamber and Plasma bridge neutralizer, dissociate into argon ions, and accelerate the emission at two f. A plasma neutralizer is used to generate an electron cloud to form a neutral plasma. By controlling the flow of argon gas, and the ion beam voltage (100-350V), the electricity is explained on page 14 (5). 25mA), you two people X always use feedback laser power; ^ f # device to detect film thickness' A / s). (2.79 ^ 20.2 between room temperature to 400 ℃, can To get the sunset, change the control gate J ^ to the poly and single crystal structure. With the X-ray diffractometer, pull @ 吾 ,, mesh, 丨 μ μ ^ ^ ^ $ 11 ^ ^ ^ ^ The measurement system and the optical laser spectrum are described in two parts: 刀, 刀 为 石 * 破 璃 and 化 GaN 镓 (001) Substrate 1 · Applied to a quartz substrate ·· = Second is the χ # line diffraction of the zinc selenide film Figure, 0 10Q torr, process temperature is 25 ~ 400 t, growth J rate is 3.6 ~ 20.2 A / sec, carbon dioxide laser power is 6-7 watts The ion beam current is 10 ~ 20mA, and the ionic electricity waste for auxiliary vaporization is 1 field 00 ~ 35 ". The medium grows at 150 °, has ion beam assist shape, and has the best film quality. Figure The third is the change of ^ η and extinction coefficient k at a wavelength of 700 nm at different evaporation rates. Figure 4 changes the temperature of η and k at 700 nm for different substrate temperatures. It is shown at /: Good optical quality. Figures 5 and 6 show the distribution of n with ion beam assisted and = plating conditions when the ion beam current is changed. It is shown under the current and voltage process conditions of 20 0V. Single crystal bulk material at 700 ⑽ !! The value is 2.54〇, which is very close to the value of 477823. V. Description of the invention (11) / In addition, it is shown that the addition of ion beam assist has indeed reduced the effect of selenization. Figure 7 shows the Raman spectra of different ion beam currents. The film crystallinity is lower than that of ion-assisted ion beams. The above measurement results can be used to establish high levels. Growth conditions of the selenide film of the mouth. 2. Use on a gallium arsenide (GaAs, 100) substrate, process pressure ° ~ 1 X 10 = torr, and process temperature 25 ~ 400. (: Cheng H production is 2 · 8 ~ 20 A / sec, the method of removing the oxide layer on the surface of the substrate is dagger: water = 3: 1: 15 chemical solution and argon ions; t50v, 10 ~ 25 mA) bombardment minute. Fig. 8 is an X-ray diffraction pattern of a selenide film at a substrate temperature (from 100 to 4000c), showing peak changes such as "'200" and (400) planes, respectively. Under the low temperature growth (less than 20%), the presence of the dizinc (111) plane 'represents that the thin film grown at this time still belongs to the structure of Xiyue. At any time, the substrate temperature rises, and when it is greater than 200, it appears The increase and decrease of the peaks of zinc selenide (m), (200) and (400) are centered at 400C, and the growth can be best. Figure 9 shows the change of Raman spectrum when the plate temperature is not too high. It shows that under 400 t growth conditions, there is minimal stress between the gallium selenide substrate and the gallium substrate. Figures 10 and 11 show the light laser spectrum of the 4000C petrified ^ thin film, showing excitons (excit 〇n) and the donor acceptor pair and its relationship with temperature changes. The method disclosed in the present invention uses a continuous carbon dioxide laser to grow a zinc selenide film on a gallium arsenide substrate , Using a laser beam in a vacuum environment, continuously

第16頁 477823Page 16 477823

性加熱石西 較於有機 安全的薄 低廉,以 及減少熱 ,造成薄 為製造藍 製造全彩 之雷射讀 長出面品 重大技術 化鋅塊材而 金屬化學氣 膜成長方法 及安全性較 輻射;可避 膜品質不佳 光二極體及 看板,藍紫 寫頭,而使 質高發光效 相沈積法 。此方法 南(以雷 免脈衝式 ,等以上 藍光雷射 光偵測器 目前光碟 率以及工 與分子束磊 具有(設備 射局部加熱 雷射濺鑛中 之優點。石西 之重要基礎 ,以及取代 之資料提升 作壽命長之 一定之 晶法是 成本較 靶材, 常見之 化鋅薄 。藍光 目前CD 約4倍 元件, 品質,相 既經濟又 上述方式 降低污染 液滴濺出 膜的成長 二極體是 、DVD 等 。故能成 為當前之Compared with the organic safety, thin heating and heating is cheaper and cheaper, as well as reducing the heat, which results in the production of blue and full-color laser-reading and long-lasting products, which are major technical zinc blocks, and the growth method and safety of metal chemical gas film are relatively radiant; It can avoid photodiodes and kanbans with poor film quality, and blue-violet writing heads, so that high-quality light-emitting phase deposition method can be used. This method (with pulse-free pulse type, etc.) The current optical disc rate and industrial and molecular beam emission of the above-mentioned blue laser detectors have the advantages of localized heating and laser sputtering in equipment. The important foundation of Shixi, and its replacement A certain crystal method for improving the data for a long life is that the cost is lower than that of the target material, and the common zinc is thinner. Blue light is currently about 4 times the component of CD. The quality and phase are both economical and the above methods reduce the growth of the contaminated liquid droplets from the film. Yes, DVD, etc. So it can become the current

Claims (1)

477823477823 —二H择』1丨束輔助連續式二氧化碳雷射蒸鍍硒化鋅薄 族於石英玻瑪上之方法,其中連蹟式二氧化碳蒸鍍硒 化鋅薄膜於石英基板之製程壓力為1〇·3~1χ 1〇-6 士〇1^,製程溫度為25~40〇°(:,成長速率為3.6-20.21| /sec,二氧化碳雷射功率為卜7〇瓦,辅助蒸鍍之_ 束電流為10〜20mA,輔助蒸緩之離子束電壓為 100〜350V 〇 2、 如申請專利範圍第丨項之方法,可選用石英玻璃及砷化 嫁基板’砸化鋅(ZnSe )基板,或藍寶石基板, 3、 如申請ΐ利範圍第1項之方法,其用途係可在上述等基 板上成長硒化鋅薄膜、氮化鎵薄膜。 i、一種以離子束輔助連續式二氧化碳雷射蒸鍍硒化鋅薄 膜於石英玻璃基版上之方法,以製造光學多層膜及抗 反射鍍膜。· 一種以離子束輔助連續式二氧化碳雷射蒸鍍硒化鋅薄 膜於钟化鎵基板上之方法,其中連續式二氧化破篆链 硒化鋅薄膜於砷化鎵(1〇〇)基板之製程麼力為ΐχ、' torr,製程温度為25~4〇ot,成長速率 y/4_sec,基板表面氧化層去除方式為以氨水·· 雙氧水·水=3 : 1 : 1 5之化學溶液及氬離子束 477823 六、申請專利範圍 I ( 100-3 50V,10~25mA )轟擊卜20 分鐘 4 I 9a ?〇 ^ βι 第19頁—Two H options ”1 丨 Beam-assisted continuous carbon dioxide laser vapor deposition of zinc selenide thin family on quartz glass substrate, in which continuous carbon dioxide vapor deposition of zinc selenide thin film on a quartz substrate process pressure is 10 · 3 ~ 1χ 1〇-6 ± 〇1 ^, process temperature is 25 ~ 40 ° (:, growth rate is 3.6-20.21 | / sec, carbon dioxide laser power is 70 watts, assisted evaporation of _ beam current It is 10 ~ 20mA, and the voltage of the ion beam to assist the evaporation is 100 ~ 350V 〇2. If the method of the scope of the application for the patent application item 丨, you can choose quartz glass and arsenic substrate 砸 ZnSe substrate, or sapphire substrate 3. If the method of the first item of the scope of application is applied, its application is to grow zinc selenide film and gallium nitride film on the above substrates. I. A continuous carbon dioxide laser vapor deposition selenization assisted by ion beam. Method for forming zinc thin film on quartz glass base plate to manufacture optical multilayer film and anti-reflection coating. · A method of ion beam assisted continuous carbon dioxide laser vapor deposition of zinc selenide film on gallium bell substrate, in which the continuous type Zinc Selenide Film The manufacturing process of the gallium arsenide (100) substrate is ΐχ, 'torr, the process temperature is 25 ~ 40ot, the growth rate is y / 4_sec, and the method for removing the oxide layer on the substrate surface is ammonia water, hydrogen peroxide, water = 3. : 1: 1: 5 chemical solution and argon ion beam 477823 6. Application for patent scope I (100-3 50V, 10 ~ 25mA) Bombing for 20 minutes 4 I 9a? 〇 ^ βιPage 19
TW88110251A 1999-06-17 1999-06-17 Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition TW477823B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88110251A TW477823B (en) 1999-06-17 1999-06-17 Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88110251A TW477823B (en) 1999-06-17 1999-06-17 Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition

Publications (1)

Publication Number Publication Date
TW477823B true TW477823B (en) 2002-03-01

Family

ID=21641178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88110251A TW477823B (en) 1999-06-17 1999-06-17 Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition

Country Status (1)

Country Link
TW (1) TW477823B (en)

Similar Documents

Publication Publication Date Title
US6362494B1 (en) Semiconductor device and method and apparatus for manufacturing semiconductor device
US20100136770A1 (en) Group-iii metal nitride and preparation thereof
WO2008096884A1 (en) N-type conductive aluminum nitride semiconductor crystal and method for producing the same
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
US5743957A (en) Method for forming a single crystal diamond film
KR20180051893A (en) Encapsulating material by using h-BN as protective layer and preparing method thereof
JP4565062B2 (en) Thin film single crystal growth method
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
JPS62202897A (en) Production of diamond
TW477823B (en) Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition
US6503578B1 (en) Method for preparing ZnSe thin films by ion-assisted continuous wave CO2 laser deposition
JP2000178713A (en) FORMATION OF beta-MONOIRON DISILICIDE THIN FILM
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
CN110668499B (en) Cerium-doped monolayer tungsten disulfide film and preparation method thereof
EP0204724B1 (en) Method for deposition of gallium arsenide from vapor phase gallium-arsenic complexes
US4933207A (en) Laser and thermal assisted chemical vapor deposition of mercury containing compounds
Pirposhte et al. ZnO Thin Films: Fabrication Routes, and Applications
KR100385634B1 (en) Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
Hussain et al. Photoluminescence comparison of different substrates on AlN: Cr thin films for optoelectronic devices
JP3637926B2 (en) Method for producing diamond single crystal film
Jeong Thin zinc oxide and cuprous oxide films for photovoltaic applications
JPH08264829A (en) Compound semiconductor structure and manufacture thereof
JPS62219973A (en) Manufacture of blue light emitting device
JPS61151092A (en) Thin film formation and system therefor
JPH0334534A (en) Manufacture of phosphorus-doped ii-vi compound semiconductor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees