JPH0334534A - Manufacture of phosphorus-doped ii-vi compound semiconductor - Google Patents

Manufacture of phosphorus-doped ii-vi compound semiconductor

Info

Publication number
JPH0334534A
JPH0334534A JP1170113A JP17011389A JPH0334534A JP H0334534 A JPH0334534 A JP H0334534A JP 1170113 A JP1170113 A JP 1170113A JP 17011389 A JP17011389 A JP 17011389A JP H0334534 A JPH0334534 A JP H0334534A
Authority
JP
Japan
Prior art keywords
substrate
phosphorus
doped
molecular beam
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1170113A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okawa
和宏 大川
Takeshi Karasawa
武 柄沢
Tsuneo Mitsuyu
常男 三露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1170113A priority Critical patent/JPH0334534A/en
Publication of JPH0334534A publication Critical patent/JPH0334534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a II-VI compound semiconductor which has been doped sufficiently with phosphorus which is activated as an acceptor by a method wherein the phorphorus is doped while a substrate is irradiated with zinc diphosphide or cadmium diphosphide or the zinc diphosphide or the cadmium diphosphide is transported onto the substrate. CONSTITUTION:High-purity zinc (Zn), selenium (Sn) and zinc diphosphide (ZnP2) as raw materials are filled respectively into separate molecular-beam sources 21, 22, 23; a substrate 15 which has been cleaned is attached to a substrate holder 13. 21a is a Zn molecular beam, 22a is an Sn molecular beam and 23a is a molecular beam which is obtained by heating and evaporating solid ZnP2. Then, a vacuum container 12 is evacuated to an ultrahigh vacuum; the GaAs substrate 15 is thermally etched at 600 deg.C for 10 min to clean the surface of the substrate. The substrate 15 is stabilized at a temperature within a range of 200 to 500 deg.C which is suitable for a growth operation of a II-VI compound semiconductor. When the substrate 15 is irradiated simultaneously with the Zn molecular beam 21a, the Se molecular beam 22a and the ZnP2 molecular beam 23a, a phosphorus-doped ZnSe thin-film crystal 16 can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新しいオプトエレクトロニクス材料として期待
されるII−VI族化合物半導体に関し 特にp型伝導
を示す燐添加II−VI族化合物半導体の製造方法に関
するものであも 従来の技術 II−VI族化合物半導体は一部を除いてほとんど伝導
型を制御できなく、例えばテルル化亜鉛ではp型のへ 
またセレン化亜鉛(ZnSe)や硫化亜鉛(ZnS)で
はn型のみしか得られな賎 従って例えば 青色領域に
おける発光ダイオードやレーザーダイオードなどの発光
素子を構成する材料として有望であるZn5e半導体は
 一般にp型伝導を示す結晶を得ることが難しく、その
ため高効率のpn接合発光素子は実現していな賎一方従
ip型のZn5e半導体を得る試みとして、分子線エピ
タキシー法による結晶過程においてp型化のための不純
物として燐(P)が注目されていも その添加方法とし
ては固体燐を用いた方法負 二燐化三亜鉛(Z nsP
*)を用いた方法が知られている(例えば ジャパニー
ズ ジャーナル オプ アプライド フィジックス 第
25巻 第6殊 821−827ページ、1986年)
。これ(友 真空中でZn、Seおよび固体2nSP2
をそれぞれ加熱蒸発させて基板上に燐添加Zn5e結晶
薄膜を形成する方法であも発明が解決しようとする課題 しかしながら上述のような従来の方法でc上  固体燐
や固体Z n*P*を加熱蒸発していられるP4はZn
5e膜に対する付着係数が小さくほとんど取り込まれな
かったり、取り込まれても活性化しないためにp型Zn
5eを得ることは不可能であもまた固体Zn*P*を加
熱蒸発したときP4の他にZn5Pa型の分子線も生じ
も しかしこのZn5P2分子はZn5e結晶にないZ
n原子並びを有していることや分子が大きいことのため
に有効に活性化する燐を十分にZn5e膜に添加するこ
とができなかった 本発明はかかる点に鑑みてなされたちの玄 燐を有効に
添加することによりp型伝導を示すZn5eやZnS半
導体等のII−VI族化合物半導体を製造する方法を提
供することを目的としていも課題を解決するための手段 上記課題を解決するための本発明の技術的手段i;L 
 II−VI族化合物半導体を成長すると同時に二燐化
亜鉛または二燐化カドミウムを加熱蒸発して得られた成
分を照射もしくは輸送することにより燐添加II−VI
族化合物半導体を作製するものであも例えば上述の分子
線エピタキシー法を用いた2nSe半導体戒長において
(上 基板上に亜鉛(Zn)とセレン(Se)のビーム
を照射すると同時に 二燐化亜鉛(ZnP*)を加熱蒸
発により生じた成分を照射することにより、燐添加Zn
5e半導体を作製するものであも 作用 固体ZnPaを加熱蒸発して得られるZnPa型の成分
41  VI族元素サイトにはいるべき燐原子がちょう
どII族元素である亜鉛原子と隣合っているた△ II
−VI族化合物半導体結晶と原子並びが近くなり、燐が
アクセプタとして有効に取り込まれやすいことを発見し
tラ  その結電 燐添加II−VI族化合物半導体は
p型伝導を示し1゜ 実施例 本発明を実施例により説明すも なお以下述べる本実施例ではII−VI族化合物半導体
の具体例としてまずセレン化亜鉛(ZnSe)薄膜結晶
に燐(P)を添加する場合を取り上げtもまた製造に用
いる装置は低温で結晶成長することのできる分子線エピ
タキシー装置または有機金属気相成長装置が適切であも 結晶成長の基板にはZn5eと格子定数が近い砒化ガリ
ウム(GaAs)を用いた なおGaAS基板は有機溶
剤で洗浄し 硫酸と過酸化水素水と水よりなるエツチン
グ液によって表面をエツチングした後に成長装置に導入
した 実施例1 第1図に本実施例で用いた分子線エピタキシー装置の概
念原理図を示も 分子線エピタキシー装置は真空排気装置11を備えた真
空容器12内に複数の分子線源21、22.23と基板
支持機構(基板ホルダー13)とシャッター14を備え
た一種の真空蒸着装置であも まず原料となる高純度の
亜鉛(Zn)、  セレン(Se)及び二燐化亜鉛(Z
 n Pa)をそれぞれ個別の分子線源21.22、2
3に充填すも 前述したように清浄にした基板15を基
板ホルダー13に第1図のごとく装着すも 第1図にお
いて、21aはZn分子1iL 22aはSe分子$1
L  23aは固体ZnP象を加熱蒸発して得られる分
子線であも 次に 真空容器12を超高真空に排気すも 導入された
GaAs基板15に600t、10分間のサーマルエツ
チングを行い基板表面を清浄化すも そして基板15を
II−VI族化合物半導体の成長に適当な200tから
500tの範囲の温度に安走化させも 基板15にZn
分子線21a、Se分子線22a及びZnP2分子線2
3aを同時に照射することにより燐添加Zn5e薄膜結
晶16の形成することができtら 実施例2 第2図に本実施例で用いた有機金属気相成長装置の概念
原理図を示も 有機金属気相成長装置は真空排気装置11を備えた真空
容器12内に複数の原料ガス導入バイブ31、32と基
板ホルダー13より戒もま哄 原料となる高純度のZn
 (CeHs) 2(略称:  DEZ)ガスと水素化
セレン(H2Se)を水素で希釈しそれぞれパイプ32
、31から真空容器12に供給すも またZnPgはル
ツボ33に充填する。GaAs基板15は基板ホルダー
13に第2図のごとく装着す、L31aはH2S eを
含むガスであり、 34はZnPaの蒸発成分を含むD
EZガスであa このようにZnPaの蒸発成分をDE
Zガスで基板に輸送するの(よ ルツボ33の穴付近で
H=SeとZnPaが反応してZn5eを形成しないよ
うにするためである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to II-VI group compound semiconductors that are expected to be used as new optoelectronic materials, and particularly relates to a method for producing phosphorus-doped II-VI group compound semiconductors exhibiting p-type conductivity. Amo Conventional technology Group II-VI compound semiconductors have almost no control over their conductivity type, with some exceptions; for example, zinc telluride has a p-type conduction type.
Furthermore, with zinc selenide (ZnSe) and zinc sulfide (ZnS), only n-type can be obtained. Therefore, for example, Zn5e semiconductor, which is a promising material for forming light-emitting devices such as light-emitting diodes and laser diodes in the blue region, is generally p-type. It is difficult to obtain a crystal that exhibits conduction, and as a result, a highly efficient p-n junction light emitting device has not been realized.On the other hand, in an attempt to obtain a conventional IP-type Zn5e semiconductor, a method for converting it to a p-type in the crystallization process using molecular beam epitaxy was used. Although phosphorus (P) is attracting attention as an impurity, the method of adding it is one using solid phosphorus.
*) is known (for example, Japanese Journal of Applied Physics, Vol. 25, No. 6, pp. 821-827, 1986).
. This (Friend) Zn, Se and solid 2nSP2 in vacuum
However, the problem to be solved by the invention is to form a phosphorous-doped Zn5e crystal thin film on a substrate by heating and evaporating each of them. P4 that can be evaporated is Zn
P-type Zn
It is impossible to obtain Zn5e, but when solid Zn*P* is heated and evaporated, Zn5Pa type molecular beams are also generated in addition to P4.
It was not possible to add enough phosphorus to the Zn5e film to effectively activate it due to the arrangement of n atoms and the large size of the molecule.The present invention was made in view of these points, and it is possible to add phosphorus to the Zn5e film. The purpose of this book is to provide a method for manufacturing II-VI group compound semiconductors, such as Zn5e and ZnS semiconductors, which exhibit p-type conductivity by effective doping. Technical means of invention i;L
Phosphorus is added to II-VI by irradiating or transporting the component obtained by heating and evaporating zinc diphosphate or cadmium diphosphide while growing a II-VI group compound semiconductor.
For example, when manufacturing a group compound semiconductor, for example, in a 2nSe semiconductor using the above-mentioned molecular beam epitaxy method (above), zinc diphosphate ( Phosphorus-added Zn
A ZnPa-type component 41 obtained by heating and evaporating a working solid ZnPa for producing a 5e semiconductor.The phosphorus atom that should be in the group VI element site is exactly adjacent to the zinc atom, which is a group II element. II
- It was discovered that the atomic arrangement becomes close to that of the VI group compound semiconductor crystal, and phosphorus is more likely to be effectively taken in as an acceptor.The phosphorus-doped II-VI group compound semiconductor exhibits p-type conduction; The invention will be explained by way of examples.In this example, which will be described below, we first take up the case where phosphorus (P) is added to zinc selenide (ZnSe) thin film crystal as a specific example of a II-VI group compound semiconductor. The appropriate equipment to use is a molecular beam epitaxy equipment or an organometallic vapor phase growth equipment that can grow crystals at low temperatures; however, gallium arsenide (GaAs), which has a lattice constant close to that of Zn5e, was used as the substrate for crystal growth. Example 1 Figure 1 shows the conceptual principle of the molecular beam epitaxy apparatus used in this example. The molecular beam epitaxy apparatus is a type of vacuum evaporation apparatus equipped with a plurality of molecular beam sources 21, 22, 23, a substrate support mechanism (substrate holder 13), and a shutter 14 in a vacuum chamber 12 equipped with a vacuum evacuation device 11. First, the raw materials, high-purity zinc (Zn), selenium (Se), and zinc diphosphide (Z
n Pa) with individual molecular beam sources 21, 22, 2
3. The substrate 15 cleaned as described above is mounted on the substrate holder 13 as shown in FIG. 1. In FIG.
L 23a is a molecular beam obtained by heating and evaporating a solid ZnP particle.Next, the vacuum chamber 12 is evacuated to an ultra-high vacuum, and the introduced GaAs substrate 15 is thermally etched at 600 tons for 10 minutes to coat the substrate surface. After cleaning, the substrate 15 is heated to a temperature in the range of 200 t to 500 t, which is suitable for the growth of II-VI group compound semiconductors.
Molecular beam 21a, Se molecular beam 22a and ZnP2 molecular beam 2
A phosphorous-doped Zn5e thin film crystal 16 can be formed by simultaneous irradiation with phosphorus-doped Zn5e. The phase growth apparatus is a vacuum container 12 equipped with a vacuum evacuation device 11, in which a plurality of raw material gas introduction vibes 31, 32 and a substrate holder 13 are used to introduce high-purity Zn as a raw material.
(CeHs) 2 (abbreviation: DEZ) gas and hydrogenated selenium (H2Se) are diluted with hydrogen and each pipe 32
, 31 to the vacuum container 12, and the crucible 33 is filled with ZnPg. The GaAs substrate 15 is mounted on the substrate holder 13 as shown in FIG.
In this way, the evaporated components of ZnPa are DE
This is to prevent H=Se and ZnPa from reacting near the hole of the crucible 33 to form Zn5e.

次に 真空容器12を超高真空に排気すも 導入された
GaAs基板15に600t、  10分間のサーマル
エツチングを行い基板表面を清浄化すも そして基板1
5をII−VI族化合物半導体の成長に適当な200℃
から500℃の範囲の温度に安定化させ&  V1元素
とII族元素の供給モル比(VI/II)を50程度に
保ちなが板 真空容器12内の圧力が0.3Torr程
度になるように原料を基板15に照射し 燐添加Zn5
e薄膜結晶16を形成することができtら 以上 第1図及び第2図に基づいて説明したように分子
線エピタキシー法や有機金属気相成長法を用いて燐添加
Zn5e薄膜結晶を作製することができた このように
ZnP2を利用して得られた燐添加Zn5e薄膜結晶(
友 ホールを供給するアクセプタとして燐を十分取り込
んでいtも以上に述べた実施例は燐添加Zn5eを作製
するものであるIJ<、  ZnuCdwTexSey
Sz  (V+W=1.X+Y+Z=1)の組成を有す
る2元結晶から5元の混晶に至るII−VI族化合物半
導体またはそれらII−VI族化合物半導体の超格子に
おいてZnP2またはCaF2を利用した燐添加をする
事ができた ただしZnを含むII−VI族化合物半導
体においてはZnP2を使用り、、Cdを含む場合はC
aF2を、ZnとCd両方を含む場合はZnPeとCd
Pgのいずれを用いてもよ(1 このような手段によってII−VI族化合物半導体中の
燐はホールを供給するアクセプタとして十分な量取り込
まれてい九 またこのようなZnuCdIITe×5eYS2 (v
+W=1.X+Y+Z=1)の組成を有する2元結晶か
ら5元の混晶に至るu−VI族化合物半導体またはそれ
らII−VI族化合物半導体の超格子は硫化亜鉛または
セレン化亜鉛またはテルル化亜鉛または硫化カドミウム
またはセレン化カドミウムまたはテルル化カドミウムを
組み合わせたり、それらの元素単体と組み合わせても作
製可能であも発明の効果 以上述べたように 本発明はII族元素もしくはVI族
元素の内少なくとも1種含む化合物半導体を形成する際
に 二燐化亜鉛もしくは二燐化カドミウムを基板上に照
射または輸送したことによって、アクセプタとして活性
化する燐を十分に添加したII−VI族化合物半導体を
得ることができ、従来困難であったp型伝導が実現され
も その結電 高効率のpn接合発光素子が実現でき、
実用的にきわめて有用であも
Next, the vacuum chamber 12 was evacuated to an ultra-high vacuum, and the introduced GaAs substrate 15 was thermally etched at 600 tons for 10 minutes to clean the surface of the substrate.
5 at 200°C, which is suitable for the growth of II-VI group compound semiconductors.
to 500° C. and keep the supply molar ratio (VI/II) of V1 element and Group II element at about 50, while maintaining the pressure inside the vacuum vessel 12 at about 0.3 Torr. The raw material is irradiated onto the substrate 15 to form phosphorus-added Zn5.
As explained based on FIGS. 1 and 2, a phosphorus-doped Zn5e thin film crystal can be formed using a molecular beam epitaxy method or an organometallic vapor phase epitaxy method. The phosphorus-doped Zn5e thin film crystal (
The above-mentioned example is for preparing phosphorus-doped Zn5e with sufficient incorporation of phosphorus as an acceptor to supply the holes.
Sz (V + W = 1. However, for II-VI group compound semiconductors containing Zn, ZnP2 is used, and when Cd is included, C is used.
If aF2 contains both Zn and Cd, ZnPe and Cd
Either Pg (1) By such means, a sufficient amount of phosphorus is incorporated into the II-VI group compound semiconductor as an acceptor that supplies holes.
+W=1. The superlattice of u-VI group compound semiconductors ranging from binary crystals to quinary mixed crystals or those II-VI group compound semiconductors having the composition of Alternatively, it can be produced by combining cadmium selenide or cadmium telluride, or by combining these elements alone, but the effects of the invention As stated above, the present invention provides a compound containing at least one group II element or group VI element. By irradiating or transporting zinc diphosphide or cadmium diphosphide onto a substrate when forming a semiconductor, it is possible to obtain a II-VI group compound semiconductor sufficiently doped with phosphorus, which is activated as an acceptor. Even if p-type conduction, which was difficult to achieve, was achieved, high-efficiency p-n junction light emitting devices could be realized.
Although it is extremely useful in practical terms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1で用いた分子線エピタキシー
装置を用いた燐添加Zn5e半導体の作製を示す概略原
理阻 第2図は本発明の実施例2で用いた有機金属気相
成長装置を用いた燐添加2nSe半導体の作製を示す概
略原理図であも11・・・真空排気装置 12・・・真
空容銖13・・・基板ホルダー、 14・・・シャッタ
ー、15・・・基板 16・ ・Zn5e薄膜結晶21
.22.23・ ・分子線温 21a・・Zn分子IL
 22a・・・Se分子撒 23a・・・ZnPa分子
[31,32・・・原料ガス導入バイス 31a ルツベ 34・・ ス
Fig. 1 shows a schematic principle of manufacturing a phosphorous-doped Zn5e semiconductor using the molecular beam epitaxy apparatus used in Example 1 of the present invention. Fig. 2 shows the organometallic vapor phase epitaxy apparatus used in Example 2 of the present invention. This is a schematic principle diagram showing the production of a phosphorous-doped 2nSe semiconductor using 11... Vacuum exhaust device 12... Vacuum chamber 13... Substrate holder, 14... Shutter, 15... Substrate 16・ ・Zn5e thin film crystal 21
.. 22.23・・Molecular beam temperature 21a・・Zn molecule IL
22a... Se molecules spray 23a... ZnPa molecules [31, 32... Raw material gas introduction vice 31a Rutbe 34... S

Claims (4)

【特許請求の範囲】[Claims] (1) I I 族元素を含む物質、またはV I 族元素を
含む物質、または I I −V I 族化合物を主原料とし
て含む物質を基板上に I I −V I 族化合物半導体を
形成する状態において、二燐化亜鉛または二燐化カドミ
ウムを前記基板上に照射または輸送することによって燐
を添加することを特徴とする、燐添加 I I −V I 族
化合物半導体の製造方法。
(1) A substance containing a Group II element, a substance containing a Group VI element, or a substance containing a Group II-VI compound as a main raw material is used to form a Group II-VI compound semiconductor on a substrate. A method for producing a phosphorus-doped II-VI compound semiconductor, characterized in that phosphorus is added by irradiating or transporting zinc phosphide or cadmium diphosphide onto the substrate.
(2) I I 族元素として亜鉛またはカドミウムのいず
れか一つ以上を用いた特許請求の範囲第一項記載の燐添
加 I I −V I 族化合物半導体の製造方法。
(2) A method for producing a phosphorus-doped II-VI group compound semiconductor according to claim 1, in which at least one of zinc or cadmium is used as the group II element.
(3)V I 族元素として硫黄またはセレンまたはテル
ルのいずれか一つ以上を用いた特許請求の範囲第一項記
載の燐添加 I I −V I 族化合物半導体の製造方法。
(3) A method for producing a phosphorus-doped II-VI group compound semiconductor according to claim 1, in which one or more of sulfur, selenium, or tellurium is used as the VI element.
(4) I I −V I 族化合物として硫化亜鉛またはセ
レン化亜鉛またはテルル化亜鉛または硫化カドミウムま
たはセレン化カドミウムまたはテルル化カドミウムのい
ずれか一つ以上を用いた特許請求の範囲第一項記載の
I I −V I 族化合物半導体の製造方法。
(4) The claim described in claim 1 in which one or more of zinc sulfide, zinc selenide, zinc telluride, cadmium sulfide, cadmium selenide, or cadmium telluride is used as the II-V I group compound.
II-V Method for manufacturing a group I compound semiconductor.
JP1170113A 1989-06-30 1989-06-30 Manufacture of phosphorus-doped ii-vi compound semiconductor Pending JPH0334534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170113A JPH0334534A (en) 1989-06-30 1989-06-30 Manufacture of phosphorus-doped ii-vi compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170113A JPH0334534A (en) 1989-06-30 1989-06-30 Manufacture of phosphorus-doped ii-vi compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0334534A true JPH0334534A (en) 1991-02-14

Family

ID=15898881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170113A Pending JPH0334534A (en) 1989-06-30 1989-06-30 Manufacture of phosphorus-doped ii-vi compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0334534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872022A (en) * 1994-09-02 1999-02-16 Mitsubishi Denki Kabushiki Kaisha Method for etching a semiconductor method for fabricating semiconductor device method for fabricating semiconductor laser and semiconductor laser
EP1189290A1 (en) * 2000-09-13 2002-03-20 Director-General Of National Institute Of Advanced Industrial Science And Technology Semiconductor device having ZnO based oxide semiconductor layer and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872022A (en) * 1994-09-02 1999-02-16 Mitsubishi Denki Kabushiki Kaisha Method for etching a semiconductor method for fabricating semiconductor device method for fabricating semiconductor laser and semiconductor laser
EP1189290A1 (en) * 2000-09-13 2002-03-20 Director-General Of National Institute Of Advanced Industrial Science And Technology Semiconductor device having ZnO based oxide semiconductor layer and method of manufacturing the same
JP2002094114A (en) * 2000-09-13 2002-03-29 National Institute Of Advanced Industrial & Technology SEMICONDUCTOR DEVICE COMPRISING ZnO-BASED OXIDE SEMICONDUCTOR LAYER AND ITS FABRICATING METHOD

Similar Documents

Publication Publication Date Title
Lopez-Otero Hot wall epitaxy
US3751310A (en) Germanium doped epitaxial films by the molecular beam method
JP3373853B2 (en) Multilayer crystal structure and method of manufacturing the same
US6566162B2 (en) Method of producing Cu (In, Ga) (Se, S) 2 semiconductor film
US20050158993A1 (en) Lncuo(s,se,te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
JP2014508415A (en) Method for the growth of surfactant crystals of metal-nonmetal compounds
US4735910A (en) In-situ doping of MBE grown II-VI compounds on a homo- or hetero-substrate
Yudasaka et al. Formation of InSe and GaSe deposited films and their electrical properties
JPH0647515B2 (en) Compound semiconductor epitaxial growth method
Gertner Epitaxial mercury cadmium telluride
JPH0334534A (en) Manufacture of phosphorus-doped ii-vi compound semiconductor
Hartmann Vapour phase epitaxy of II–VI compounds: A review
JPH03160734A (en) Manufacture of arsenic added ii-vi compound semiconductor
JPS6270290A (en) Production of semiconductor
JPS62119193A (en) Production of semiconductor
JPS63303899A (en) Production of semiconductor
Shastry et al. Interface reactions and grain growth processes in poly-GaAs deposited on molybdenum substrates by the organometallic process
JPS62271438A (en) Semiconductor device and manufacture thereof
JPS6270289A (en) Production of semiconductor
JPH07517B2 (en) Semiconductor crystal thin film manufacturing equipment
JPH07307287A (en) Compound semiconductor epitaxial growth method
JPH03293735A (en) Manufacture of semiconductor
JP2671848B2 (en) 2-6 Semiconductor impurity addition method
JPS6226568B2 (en)
TW477823B (en) Method and application for preparing ZnSe thin films by ion-assisted cw CO2 laser deposition